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Abstract— In this contribution we propose a novel Coded Mod-
ulation assisted Genetic Algorithm based Multiuser Detection
(CM-GA-MUD) scheme for synchronous CDMA systems. The
performance of the proposed scheme was investigated using Qua-
drature-Phase-Shift-Keying (QPSK), when communicating over
AWGN and narrowband Rayleigh fading channels. When com-
pared with the optimum MUD scheme, the GA-MUD subsystem
is capable of reducing the computational complexity significantly.
On the other hand, the CM subsystem is capable of obtaining
considerable coding gains despite being fed with sub-optimal in-
formation provided by the GA-MUD output.

I. INTRODUCTION

The optimal CDMA Multiuser Detector (MUD) [1] based on
the Maximum-Likelihood (ML) detection rule performs an ex-
haustive search of all the possible combinations of the users’
transmitted bit or symbol sequences and then selects the most
likely combination as the detected bit or symbol sequence. Since
an exhaustive search is conducted, the computational complex-
ity of the detector increases exponentially with the number of
users as well as with the number of levels in the modulation
scheme employed. Since a CDMA system is required to sup-
port a large number of users, the optimum ML multiuser detec-
tor is impractical to implement due to its excessive complexity.
This complexity constraint led to numerous so-called subopti-
mal multiuser detection [2] proposals.

Genetic Algorithms (GAs) have been used for efficiently solv-

ing combinatorial optimisation problems in many applications [3].

Recently, GA assisted Multiuser Detector (MUD) has been stud-
ied using Binary-Phase-Shift-Keying (BPSK) modulation in the
context of a CDMA system [4]. In an afford to increase the sys-
tem’s performance with the aid of channel coding, but without
increasing the required bandwidth, in this contribution we will
investigate the performance of the Coded Modulation (CM) as-
sisted Genetic Algorithm Based Multiuser Detection (CM-GA-
MUD) using QPSK modulation.

Trellis Coded Modulation (TCM) [5, 6], which is based on
combining the functions of coding and modulation, is a band-
width efficient scheme that has been widely recognised as an ex-
cellent error control technique suitable for applications in mobile
communications. Turbo Trellis Coded Modulation (TTCM) [6,
7] is a more recent channel coding scheme, which has a struc-
ture similar to that of the family of power efficient binary turbo
codes [6, 8], but employs TCM codes as component codes. In
our TCM and TTCM schemes, random symbol interleavers were
utilised for both the turbo interleaver and the channel inter-
leaver. Another powerful Coded Modulation (CM) scheme util-
ising bit-based channel interleaving in conjunction with Gray
signal labelling, which is referred to as Bit-Interleaved Coded
Modulation (BICM), was proposed in [6,9]. It combines con-
ventional non-systematic convolutional codes with several inde-
pendent bit interleavers. The number of parallel bit-interleavers
used equals the number of coded bits in a symbol [9]. Re-

cently, iteratively decoded BICM using Set Partitioning (SP)
based signal labelling, referred to as BICM-ID has also been
proposed [6,10].

The rest of this treatise is organised as follows. Our system
overview is presented in Section II, the GA algorithm is ex-
plained in Section II-A and the CM principle is summarised in
Section II-B. Our simulation parameters and results are dis-
cussed in Section IIT and finally our conclusions are offered in
Section IV.

II. SysTEM OVERVIEW

Each user invokes a CM encoder, which provides a block of
M QPSK modulated symbols before spreading. We consider
a synchronous CDMA uplink as illustrated in Figure 1, where
K users simultaneously transmit data packets of equal length
using QPSK modulation to a single receiver. The transmitted
signal of the kth user can be expressed in an equivalent lowpass
representation as :

M-1
() =VE Y bVart—mT,), Vk=1,...,K (1)
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where &, is the kth user’s signal energy per transmitted sym-
bol, b;cm) = &%; 6, e {0, Z,m, 22} denotes the mth CM-
coded data symbol of the kth user for the QPSK signals of
{0(00),1(01), 2(10), 3(11)}, ar(t) is the kth user’s signature se-
quence, T} is the data symbol duration and M is the number of
data symbols transmitted in a packet. The superscript (m) can
be omitted, since no dispersion-induced interference is inflicted
by symbols outside a single symbol duration T} in narrowband
channel.

Each user’s signal 3 (t) is assumed to propagate over a nar-
rowband slowly Rayleigh fading channel, as shown in Figure 1
and the fading envelope of each path is statistically independent
for all users. The complex lowpass channel impulse response
(CIR) for the link between the kth user’s transmitter and the
base station’s receiver, as shown in Figure 1, can be written as :

hi(t) = ax (£)e?**8(t), Vk=1,...,K (2)

where the amplitude a(t) is a Rayleigh distributed random
variable and the phase ¢ (t) is uniformly distributed between
[0, 27).

Hence, when the kth user’s spread spectrum signal §x(t) given
by Equation 1 propagates through a slowly Rayleigh fading
channel having an impulse response given by Equation 2, the re-
sulting output signal s (t) defined over a single symbol duration
can be written as :

sk(t) = \/E_kakbkak(t)ejd)k. VeE=1,...,K (3)

Upon combining Equation 3 for all K users, the received sig-
nal at the receiver, which is denoted by r(¢) in Figure 1, can be
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written as :

r(t) =Y sk(t) +n(t), (4)
k=1

where n(t) is the zero-mean complex Additive White Gaussian
Noise (AWGN) with independent real and imaginary compo-
nents, each having a double-sided power spectral density of
o® = No/2 W/Hz.

Invoking Equation 3 describing the transmitted signal of each
user, the sum of the transmitted signals of all users can be
expressed in vectorial notation as :

s(t) = ) sk(t)
k=1
= aCép, ®)
where

a = [a(®),...,ax()]
C = diag[alej¢1,...,aKej¢K]
& = diag[\/ﬁ_l,...,\/g_K]
b = [b1,...,bx]". (6)

Hence the received signal of Equation 4 can be written as :
r(t) = s(t) + n(t). (7)

Based on Equations 5 and 7, the output vector Z of the bank
of matched filters portrayed in Figure 1 can be formulated as :

z = 1r

[zl,...,zK

RCEb+n, (8)

where R is the K x K dimensional user signature sequence cross-
correlation matrix and

T
K]

n = [nl, e
is a zero-mean Gaussian noise vector having a covariance ma-
trix R, = 0.5NgR. Based on this discrete-time model, we will
next derive the optimum multiuser detector based on the max-
imum likelihood criterion for the synchronous CDMA system
considered [1].

The joint optimum decision rule for the QPSK-modulated
K-user CDMA system based on the synchronous system model
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Block diagram of the K-user synchronous CDMA uplink model in a flat Rayleigh fading channel.

can be derived from that of the BPSK-modulated system [11],
which is expressed in vectorial notation as:

Q(b) =2% [b"¢C Z] - b ¢C* RCED, 9)

where ()7 is the complex conjugate transpose of the matrix
(.) and (.)* is the complex conjugate of the matrix (.). More
specifically, for BPSK modulation the term b¥ in Equation 9 is
substituted by b7, which is the transpose of the matrix b, since
only the real component is considered in the context of BPSK
modulation.

The decision rule for the optimum CDMA multiuser detec-
tion scheme based on the maximum likelihood criterion is to
choose the specific symbol combination b, which maximises the
correlation metric of Equation 9, yielding:

b = arg {mgx [Q (b)]} ) (10)

Finally, based on the decision vector b output by the GA-MUD,
the CM decoder of user k will be invoked for generating the final
estimate of the information of user k.

The maximisation of Equation 9 is a combinatorial optimi-
sation problem. Specifically, Equation 9 has to be evaluated
for each of the 2*% possible combinations of the QPSK mod-
ulated symbols of the K users, in order to find the vector b
that maximises the correlation metric of Equation 9. Explic-
itly, since there are 22K different possible QPSK vectors b, the
optimum multiuser detection has a complexity that increases
exponentially with the number of users K.

A. The GA-assisted Multiuser Detector Subsystem

The flowchart depicting the structure of the genetic algorithm
adopted for our GA-assisted multiuser detection technique is
shown in Figure 2. Firstly, an initial population consisting of P
number of so-called individuals is created in the ‘Initialisation’
block, where P is known as the population size. Each individual
represents a legitimate K-dimensional vector of QPSK symbols
constituting the solution of the given optimisation problem. In
other words, an individual can be considered as a K-dimensional
vector comnsisting of the QPSK decision variables to be opti-
mised.

In order to aid our GA-assisted search at the beginning, we
employed the hard decisions offered by the matched filter out-
puts Z of Equation 8, which were denoted as:

(11)

bur = [bl,MF,bZ,MF7 . ,bK,MF] ,
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Fig. 2. A flowchart depicting the structure of the genetic algorithm
adopted for our GA-assisted multiuser detection technique.

where IA)I,MF forl=1,...,K is given by:

21— el \/§_lb

In Equation 12 where the multiplication by a;e’?! is necessary
for coherent detection, because the phase rotation introduced
by the channel has to be taken into account.

A different randomly ‘mutated’ version [4, 12] of the hard
decision vector barr of Equation 11 was assigned to each of the
individuals in the initial population, where the same probability
of mutation, namely p,, was adopted for all individuals. Note
that we cannot assign the same hard decision vector basr to
all the individuals, since the process of incest prevention [13] is
invoked, which will not allow identical individuals to mate.

The so-called fitness value [3] associated with each individ-
ual in the population is evaluated by substituting the candidate
solution represented by the individual under consideration into
the objective function, as indicated by the ‘Evaluation’ block
of Figure 2. Individuals having the T' number of highest fitness
values are then placed in a so-called mating pool [3, 4] where

} . (12)

bi,mr = arg {min
b

2 < T < P. Using a kind of natural selection scheme [3] to-
gether with the genetically-inspired operators of crossover [12]
and mutation [12], the individuals in the mating pool are then
evolved to a new population.

Our objective function, or synonymously, fitness value is de-
fined by the correlation metric of Equation 9. Here, the legit-
imate solutions are the 22X possible combinations of the K-
symbol vector b, where there are 2 bits in each of the QPSK
symbols. Hence, each individual will take the form of a K-
symbol vector corresponding to the K users’ QPSK symbols
during a single symbol interval. We will denote the pth indi-
vidual here as by(y) = [bp,l(y), . ,bp,K(y)], where y denotes
the yth generation. Our goal is to find the specific individ-
ual that corresponds to the highest fitness value in the sense of
Equation9. In order to ensure that the fitness values are positive
for all combinations of b for the so-called fitness-proportionate
selection scheme [3], we modify the correlation metric of Equa-
tion 9 according to [14]:

exp{Q(b)} = exp {2R [b7¢C"Z] — b €C"RCED}.  (13)

The associated probability of fitness-proportionate selection se-
lection p; of the ith individual is defined as [3]:

pbi = {f 3

Zj fj
where f; is the fitness value associated with the ¢th individual.
Once a pair of parents is selected, the crossover and mutation
operations are then applied to this pair of parents.

The crossover [12] operation is a process in which arbitrary
decision variables are exchanged between a pair of selected par-
ents, 'mimicking the biological recombination process between
two single-chromosome organisms’. Hence, the crossover oper-
ation creates two new individuals, known as offspring in GA
parlance [3], which have a high probability of having better fit-
ness values than their parents. In order to generate P number of
new offspring, P/2 number of crossover operations are required.
A new pair of parents is selected from the mating pool for each
crossover operation. The newly created offspring will form the
basis of the new population. During the mutation operation
[12], each decision variable in the offspring is perturbed, i.e.
corrupted, with a probability of p,,, by either a predetermined
or a random value. This allows new areas in the search space
to be explored. The mutation probability of a decision variable
is usually low, in the region of 0.1-0.01 [3]. This value is often
reduced throughout the search, when the optimisation is likely
to approach the final solution. In this contribution, uniform
crossover [4] and binary mutation [12] were employed.

In order to ensure that high-merit individuals are not lost
from one generation to the next, the best or a few of the best
individuals are copied into the forthcoming generation, replac-
ing the worst offspring of the new population. This technique is
known as elitism [12]. In our application, we will terminate the
GA-assisted search at the Yth generation and the individual
associated with the highest fitness value at this point will be
the detected solution. The configuration of the GA employed
in our system is shown in Table I.

(14)

B. The Coded Modulation Subsystem

Due to the lack of space, here we specify only the generator
polynomials of the CM schemes used in this section. For a
detailed description of the various CM schemes the interested
readers are referred to the literature [6]. Specifically, [5,6,15,16]
are recommended for TCM, TTCM is discussed in [6,7], BICM
is considered in [6,9,17] and BICM-ID in [6,10,17,18]



TABLE 1
THE CONFIGURATION OF THE GA EMPLOYED IN OUR SYSTEM.

Method/Value |

Mutation of by of
Equation 11
Fitness-proportionate
Uniform crossover
Standard binary mutation

Setup /Parameter |

Individual initialisation
method

Selection method
Crossover operation
Mutation operation

Elitism Yes
Incest Prevention Yes
Population size P 40

Mating pool size T' T < P depends on the no.
of non-identical individuals
Probability of mutation p,, | 0.1
Termination generation Y 20
TABLE 11
THE GENERATOR POLYNOMIAL, Hi, OF THE TCM AND TTCM CONSTITUENT

CODES IN OCTAL FORMAT.

| Code Rate | Coding | State | H° | H' |
12 | TICM | 8 | 13 | 06
(QPSK) [ TOM | 64 | 117 | 26

Table II shows the generator polynomials of the TCM and
TTCM codes, which are presented in octal format. These are
Recursive Systematic Convolutional (RSC) codes and the en-
coder attaches only one parity bit to the information bits. More
specifically, in the context of QPSK modulation the number of
useful information Bits Per Symbol (BPS) is 1 and the cod-
ing rate is R = 1. Table III shows the BICM and BICM-ID

2

TABLE II1
THE GENERATOR POLYNOMIAL, gi, OF THE CONVOLUTIONAL CODES EMPLOYED
IN THE BICM ENCODER IN OCTAL FORMAT.

| Code Rate | Coding | State | q° | g’ |
172 BICM-ID | 16 | 23 | 35
(QPSK) BICM 64 | 113 | 171

codes’ generator polynomials in octal format, which were ob-
tained from page 331 of [19]. These are non-systematic convo-
lutional codes, which also produce one parity bit only. Hence,
the code rates of these codes are similar to those of the TCM
and TTCM codes, seen in Table II.

Soft decision trellis decoding utilising the Log-Maximum A
Posteriori (Log-MAP) algorithm [20] was invoked for decoding.
The Log-MAP algorithm is a numerically stable version of the
MAP algorithm operating in the log-domain, in order to reduce
its complexity and to mitigate the numerical problems associ-
ated with the MAP algorithm [21].

The complexity of the CM schemes is compared in terms of
the number of decoding states and the number of decoding it-
erations. For a TCM or BICM code of memory M, the corre-
sponding complexity is proportional to the number of decoding
states S = 2™, Since TTCM schemes invoke two component
TCM codes, a TTCM code employing ¢ iterations and using an
S-state component code exhibits a complexity proportional to
2-t-S. As for BICM-ID schemes, only one decoder is used, but
the demodulator is invoked in each decoding iteration. However,
the complexity of the demodulator is assumed to be insignifi-
cant compared to that of the CM decoder. Hence, a BICM-ID
code invoking ¢ iterations using an S-state code exhibits a com-
plexity proportional to ¢ - S. The codes shown in Tables II and
IIT exhibit similar complexity, where both TTCM and BICM-ID
utilise four decoding iterations.

III. SIMULATION RESULTS AND DISCUSSIONS

Our performance metric is the average Bit Error Ratio (BER)
evaluated over the course of several GA generations. The detec-
tion time of the GA is governed by the number of generations
Y required, in order to obtain a reliable decision. The com-
putational complexity of the GA, quantified in the context of
the total number of objective function evaluations, is related to
P x Y. Since our GA-assisted multiuser detector is based on
optimising the modified correlation metric of Equation 13, the
computational complexity is deemed to be acceptable, if there
is a significant amount of reduction in comparison to the opti-
mum multiuser detector, which requires 22X objective function
evaluations, in order to reach the optimum decision.
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Fig. 3. BER versus E}, /Ny performance of the various CM-GA-MUD

schemes for transmissions over the AWGN channels utilising the sim-
ulation parameters of Table I, IT and III. A codeword length of 1000
symbols and a spreading factor of 31 chips were employed.
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Fig. 4. BER versus E,/No performance of the various CM-GA-MUD
schemes for transmissions over the uncorrelated Rayleigh fading chan-
nels utilising the simulation parameters of Table I, IT and III. A code-
word length of 1000 symbols and a spreading factor of 31 chips were
employed.

The BER versus Signal to Noise Ratio (SNR) per bit, namely
E, /Ny, performance of the CM-GA-MUD schemes is shown in
Figures 3 and 4 for transmissions over AWGN channels and
uncorrelated Rayleigh fading channels, respectively. The sim-
ulation parameters were summarised in Table I, IT and III. A
"codeword length’ of 1000 symbols and a spreading factor of 31
chips were employed. As determined by the ’codeword length’,
the turbo interleaver of TTCM and the internal bit interleavers
of BICM and BICM-ID had a memory of 1000 symbol duration.



The employment of an uncorrelated Rayleigh fading channel
implies ideal channel interleaving, which has an infinitely long
interleaver depth.

It is widely recognised that a QPSK signal consists of two
orthogonal BPSK signals in a single user scenario and that the
associated BERs of BPSK and QPSK are identical in terms of
Ey,/No. Hence the single user bounds for QPSK modulation
shown in Figure 3 for AWGN channels and Figure 4 for uncor-
related Rayleigh fading channels, are identical to that of the
BPSK modulation. However, the orthogonality of the in-phase
and quadrature-phase BPSK signals is corrupted by the MAI
when a QPSK signal is transmitted in a CDMA system. Hence
the BER of QPSK signal is not identical to that of BPSK signals
in the context of a MAI-limited CDMA environment. There-
fore, the uncoded QPSK performance of a K = 10-user CDMA
system is worse than that of the single user bounds illustrated
in Figures 3 and 4.

Note that the computational complexity of the GA-

MUD is % = 1310.72 times lower, than that of the op-
timum MUD, when supporting K = 10 users employing
QPSK modulation in this study. The penalty for this com-
plexity reduction is the BER error floor experienced by the GA-
MUD schemes at high SNRs, as shown in the Figures 3 and 4.
However, this disadvantage is eliminated, when the CM schemes
are utilised. In particular, the TTCM assisted GA-MUD con-
stitutes the best candidate, followed by the BICM-ID assisted
GA-MUD, as evidenced in Figures 3 and 4 for transmissions
over the AWGN and uncorrelated Rayleigh fading channels en-
countered. More specifically, for a throughput of 1 BPS and
a target BER of 10™*, the K = 10-user TTCM-GA-MUD as-
sisted CDMA system is capable of providing SNR gains of about
4 and 25 dBs in AWGN and perfectly interleaved narrowband
Rayleigh fading channels, respectively, against the single-user
bounds of the uncoded BPSK scheme.

IV. CONCLUSION

In this contribution, TCM, TTCM, BICM and BICM-ID as-
sisted GA-based MUD schemes were proposed and evaluated
in performance terms when communicating over the AWGN
and narrowband Rayleigh fading channels encountered. It was
shown that the GA-MUD is capable of significantly reducing
the computational complexity of the optimum-MUD, but ex-
periences an error floor at high SNRs due to invoking an in-
sufficiently large population size and a low number of genera-
tions. However, with the advent of the bandwidth efficient CM
schemes proposed, this problem is eliminated. When comparing
the four CM schemes at the same decoding complexity, TTCM
was found to be the best candidate for assisting the operation
of the GA-MUD system.
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