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Abstract—High detection complexity is the main impediment4
in future gigabit-wireless systems. However, a quantum-based5
detector is capable of simultaneously detecting hundreds of user6
signals by virtue of its inherent parallel nature. This, in turn,7
requires near-capacity quantum error correction codes for pro-8
tecting the constituent qubits of the quantum detector against9
undesirable environmental decoherence. In this quest, we appro-10
priately adapt the conventional nonbinary EXtrinsic Information11
Transfer (EXIT) charts for quantum turbo codes (QTCs) by12
exploiting the intrinsic quantum-to-classical isomorphism. The13
EXIT chart analysis not only allows us to dispense with the14
time-consuming Monte Carlo simulations but facilitates the design15
of near-capacity codes without resorting to the analysis of their16
distance spectra as well. We have demonstrated that our EXIT17
chart predictions are in line with the Monte Carlo simulation18
results. We have also optimized the entanglement-assisted QTC19
using EXIT charts, which outperforms the existing distance-spec-20
tra-based QTCs. More explicitly, the performance of our opti-21
mized QTC is as close as 0.3 dB to the corresponding hashing22
bound.23

Index Terms—EXtrinsic Information Transfer (EXIT) charts,24
near-capacity design, quantum error correction, turbo codes.25

I. INTRODUCTION26

MULTIUSER multiple-input multiple-output (MU-27

MIMO) [1], [2] and massive MIMO [3] schemes28

are promising candidates for the future-generation gigabit-29

wireless system. However, the corresponding detection30

complexity exponentially increases with the number of users31

and antennas, when aiming for approaching the optimum32

maximum-likelihood (ML) performance. An attractive solution33

to this exponentially escalating complexity problem is to34

perform the ML detection in the quantum domain, since35

quantum computing allows parallel evaluations of a function36

at a complexity cost that is equivalent to a single classical37

evaluation [4], [5]. However, a quantum detector requires38

powerful quantum error correction codes (QECCs) for39

stabilizing and protecting the fragile constituent quantum40
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bits (qubits) against undesirable quantum decoherence, when 41

they interact with the environment [4], [6]. Furthermore, 42

quantum-based wireless transmission is capable of supporting 43

secure data dissemination [4], [7], where any ‘measurement’ 44

or “observation” by an eavesdropper will destroy the quantum 45

entanglement, hence instantly intimating the parties concerned 46

[4]. However, this requires powerful QECCs for the reliable 47

transmission of qubits across the wireless communication 48

channels. Hence, near-capacity QECCs are the vital enabling 49

technique for future generations of wireless systems, which 50

are both reliable and secure and yet operate at an affordable 51

detection complexity. 52

Classical turbo codes operate almost arbitrarily close to 53

the Shannon limit, which inspired researchers to achieve a 54

comparable near-capacity performance for quantum systems 55

[8]–[12]. In this quest, Poulin et al. developed the theory 56

of quantum turbo codes (QTCs) in [8] and [9], based on 57

the interleaved serial concatenation of quantum convolutional 58

codes (QCCs) [13]–[16], and investigated their behavior on a 59

quantum depolarizing channel.1 It was found in [8] and [17] 60

that the constituent QCCs cannot be simultaneously recursive 61

and noncatastrophic. Since the recursive nature of the inner 62

code is essential for ensuring an unbounded minimum distance, 63

whereas the noncatastrophic nature is required to achieve de- 64

coding convergence, the QTCs in [8] and [9] had a bounded 65

minimum distance. More explicitly, the design of Poulin et al. 66

[8], [9] was based on nonrecursive and noncatastrophic con- 67

volutional codes. Later, Wilde and Hseih [10] extended the 68

concept of preshared entanglement to QTCs, which facilitated 69

the design of QTCs having an unbounded minimum distance. 70

Wilde et al. also introduced the notion of extrinsic information 71

to the iterative decoding of QTCs and investigated various code 72

structures in [11]. 73

The search for the optimal components of a QTC has been 74

so far confined to the analysis of the constituent QCC distance 75

spectra, followed by intensive Monte Carlo simulations for 76

determining the convergence threshold of the resultant QTC, 77

as detailed in [9] and [11]. While the distance spectrum dom- 78

inates a turbo code’s performance in the bit error rate (BER) 79

floor region, it has a relatively insignificant impact on the 80

convergence properties in the turbo-cliff region [18]. Therefore, 81

having a good distance spectrum does not guarantee having a 82

1A quantum channel can be used for modeling imperfections in quantum
hardware, namely, faults resulting from quantum decoherence and quantum
gates. Furthermore, a quantum channel can also model quantum-state flips
imposed by the transmission medium, including free-space wireless channels
and optical fiber links, when qubits are transmitted across these media.
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near-capacity performance; in fact, there is often a tradeoff83

between them. To circumvent this problem and to dispense84

with time-consuming Monte Carlo simulations, in this paper,85

we extend the application of EXtrinsic Information Transfer86

(EXIT) charts to the design of QTCs.87

More explicitly, we have the following contributions.88

• We have appropriately adapted the conventional nonbi-89

nary EXIT-chart-based design approach to the family of90

QTCs based on the underlying quantum-to-classical iso-91

morphism. Similar to the classical codes, our EXIT chart92

predictions are in line with the Monte Carlo simulation93

results.94

• We have analyzed the behavior of both an unassisted (non-95

recursive) and an entanglement-assisted (recursive) inner96

convolutional code using EXIT charts for demonstrating97

that, similar to their classical counterparts, recursive inner98

quantum codes constitute families of QTCs having an99

unbounded minimum distance.100

• For the sake of approaching the achievable capacity, we101

have optimized the constituent inner and outer components102

of QTC using EXIT charts. In contrast to the distance-103

spectra-based QTCs in [11], whose performance is within104

0.9 dB of the hashing bound, our optimized QTC operates105

within 0.3 dB of the capacity limit. However, our intention106

was not to carry out an exhaustive code search over107

the potentially excessive parameter space but, instead, to108

demonstrate how our EXIT-chart-based approach may be109

involved for quantum codes. This new design approach110

is expected to stimulate further interest in the EXIT-111

chart-based near-capacity design of various concatenated112

quantum codes.113

This paper is organized as follows. Section II provides a114

rudimentary introduction to quantum stabilizer codes (QSCs)115

and QTCs. We will then present our proposed EXIT-chart-116

based approach conceived for QTCs in Section III. Our results117

will be discussed in Section IV, and our conclusions are offered118

in Section V.119

II. PRELIMINARIES120

The constituent convolutional codes of a QTC belong to the121

class of stabilizer codes [19], which are analogous to classical122

linear block codes. Here, we will briefly review the basics of123

stabilizer codes to highlight this relationship for the benefit of124

readers with background in classical channel coding. This will125

be followed by a brief discussion on QTCs.126

A. Stabilizer Codes127

Qubits collapse to classical bits upon measurement [5], [6].128

This prevents us from directly applying classical error cor-129

rection techniques for reliable quantum transmission. QECCs130

circumvent this problem by observing the error syndromes131

without reading the actual quantum information. Hence, QSCs132

invoke the syndrome decoding approach of classical lin-133

ear block codes for estimating the errors incurred during134

transmission.135

Let us first recall some basic definitions [6].136

Pauli Operators: The I, X, Y, and Z Pauli operators are 137

defined by the following matrices: 138

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)

Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(1)

where the X, Y, and Z operators anticommute with each other. 139

Pauli Group: A single-qubit Pauli group G1 consists of all 140

the Pauli matrices of (1), together with the multiplicative factors 141

±1 and ±i, i.e., we have 142

G1 ≡ {±I, ±iI, ±X, ±iX, ±Y, ±iY, ±Z, ±iZ}. (2)

The general Pauli group Gn is an n-fold tensor product of G1. 143

Depolarizing Channel: The depolarizing channel character- 144

ized by probability p inflicts an n-tuple error P ∈ Gn on n 145

qubits, where the ith qubit may experience either a bit flip (X), 146

a phase flip (Z), or both (Y) with a probability of p/3. 147

An [n, k] QSC, constructed over a code space C, is defined 148

by a set of (n − k) independent commuting n-tuple Pauli oper- 149

ators gi, for 1 ≤ i ≤ (n − k). The corresponding encoder then 150

maps the information word (logical qubits) |ψ⟩ ∈ C2k
onto the 151

codeword (physical qubits) |ψ⟩ ∈ C2n
, where Cd denotes the d- 152

dimensional Hilbert space. More specifically, the corresponding 153

stabilizer group H contains both gi and all the products of gi 154

for 1 ≤ i ≤ (n − k) and forms an Abelian subgroup of Gn. A 155

unique feature of these operators is that they do not change the 156

state of valid codewords, while yielding an eigenvalue of −1 157

for corrupted states. Consequently, the eigenvalue is −1 if the 158

n-tuple Pauli error P anticommutes with the stabilizer gi, and 159

it is +1 if P commutes with gi. More explicitly, we have 160

gi|ψ̂⟩ =

{
|ψ⟩, giP = Pgi

−|ψ⟩, giP = −Pgi
(3)

where P is an n-tuple Pauli error, and |ψ⟩ ∈ C and |ψ̂⟩ = P|ψ⟩ 161

is the received codeword. The resultant ±1 eigenvalue gives the 162

corresponding error syndrome, which is 0 for an eigenvalue of 163

+1 and 1 for an eigenvalue of −1. It must be mentioned here 164

that Pauli errors that differ only by the stabilizer group have 165

the same impact on all the codewords and, therefore, can be 166

corrected by the same recovery operations. This gives quantum 167

codes the intrinsic property of degeneracy [20]. 168

As detailed in [21] and [22], QSCs may be characterized 169

in terms of an equivalent binary parity-check matrix notation 170

satisfying the commutativity constraint of stabilizers. This can 171

be exploited for designing quantum codes with the aid of 172

known classical codes. The (n − k) stabilizers of an [n, k] 173

stabilizer code can be represented as a concatenation of a pair of 174

(n − k) × n binary matrices Hz and Hx, resulting in the binary 175

parity-check matrix H as given in the following equation: 176

H = [Hz|Hx]. (4)

More explicitly, each row of H corresponds to a stabilizer of 177

H, so that the ith column of Hz and Hx corresponds to the 178

ith qubit, and a binary 1 at these locations represents a Z 179
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and X Pauli operator, respectively, in the corresponding stabi-180

lizer. Moreover, the commutativity requirement of stabilizers is181

transformed into the orthogonality of rows with respect to the182

symplectic product defined in [22], as follows:183

HzH
T
x + HxH

T
z = 0. (5)

Conversely, two classical linear codes Hz and Hx can be used184

to construct a QSC H of (4) if Hz and Hx meet the symplectic185

criterion of (5).186

In line with this discussion, a Pauli error operator P can be187

represented by the effective error P , which is a binary vector188

of length 2n. More specifically, P is a concatenation of n bits189

for Z errors, followed by another n bits for X errors, and the190

resultant syndrome is given by the symplectic product of H191

and P , which is equivalent to H[Px : Pz]T . In other words,192

the Pauli-X operator is used for correcting Z errors, whereas193

the Pauli-Z operator is used for correcting X errors [6]. Thus,194

the quantum-domain syndrome is equivalent to the classical-195

domain binary syndrome, and a basic quantum-domain decod-196

ing procedure is similar to the syndrome-based decoding of the197

equivalent classical code [22]. However, due to the degenerate198

nature of quantum codes, quantum decoding aims at finding the199

most likely error coset, whereas classical syndrome decoding200

finds the most likely error.201

B. QTCs202

Analogous to classical serially concatenated (SC) turbo203

codes, QTCs are obtained from the interleaved serial concate-204

nation of QCCs, which belong to the class of stabilizer codes.205

However, it is more convenient to exploit the circuit-based206

representation of the constituent codes, rather than the con-207

ventional parity-check-matrix-based syndrome decoding [23].208

Before proceeding with the decoding algorithm, we will briefly209

review the circuit-based representation. This discussion is based210

on [9].211

Let us consider an (n, k) classical linear block code con-212

structed over the code space C, which maps the information213

word c ∈ Fk
2 onto the corresponding codeword c ∈ Fn

2 . In the214

circuit-based representation, code space C is defined as follows:215

C = {c = (c : 0n−k)V } (6)

where V is an (n × n)-element invertible encoding matrix over216

F2. Similarly, for an [n, k] QSC, the quantum code space C is217

defined as218

C =
{
|ψ⟩ = V (|ψ⟩ ⊗ |0n−k⟩)

}
(7)

where V is an n-qubit Clifford transformation2 and |ψ⟨∈ C2k
.219

The corresponding binary encoding matrix V is a unique (2n ×220

2n)-element matrix such that for any P ∈ Gn, we have [9]221

[VPV†] = [P]V (8)

2Clifford transformation V is a unitary transformation, which maps an
n-qubit Pauli group Gn onto itself under conjugation [24], i.e.,

VGnV† = Gn.

Fig. 1. Quantum transmission model.

Fig. 2. Circuit representation of the inverse encoder PV −1 = (L : S).

where [P] = P , and [.] denotes the effective Pauli group Gn 222

such that [P] differs from P by a multiplicative constant, i.e., 223

we have [P] = P/{±1, ±i}. The rows of V , which are denoted 224

as Vi for 1 ≤ i ≤ 2n, are given by Vi = [VZiV†] = [Zi]V for 225

1 ≤ i ≤ n and Vi = [VXiV†] = [Xi]V for n < i ≤ 2n. Here, 226

Xi and Zi represent the Pauli X and Z operators acting on 227

the ith qubit. Furthermore, any codeword in C is invariant 228

by VZiV†, for k < i ≤ n, which therefore corresponds to the 229

stabilizer generators gi of (3). More explicitly, the rows Vi, for 230

k < i ≤ n, constitute the (n − k) × 2n parity-check matrix H 231

of (4), which meets the symplectic criterion of (5). 232

At the decoder, the received codeword |ψ̂⟩ = P|ψ⟩ is passed 233

through the inverse encoder V†, which yields the corrupted 234

transmitted information word L|ψ⟩ and the associated syn- 235

drome S|0n−k⟩, which is formulated as 236

V†P|ψ⟩ = V†PV (|ψ⟩ ⊗ |0n−k⟩)

= (L|ψ⟩) ⊗ (S|0n−k⟩) (9)

where L denotes the error imposed on the logical qubits, 237

whereas S represents the error inflicted on the remaining (n − 238

k) qubits. This transmission process is summarized in Fig. 1. 239

Since stabilizer codes are analogous to linear block codes, 240

syndrome decoding is employed at the receiver to find the most 241

likely error coset L given the syndrome S . This is efficiently 242

achieved by exploiting the equivalent binary encoding matrix 243

V of (8), which decomposes the effective n-qubit error imposed 244

on the physical qubits P = [P] into the effective k-qubit error 245

inflicted on the logical qubits L = [L] and the corresponding ef- 246

fective (n − k)-qubit syndrome S = [S], as portrayed in Fig. 2, 247

and mathematically represented as 248

PV −1 = (L : S). (10)

More explicitly, P ∈ Gn, L ∈ Gk, and S ∈ Gn−k. 249

For an [n, k, m] QCC, the encoding matrix V is constructed 250

from repeated use of the seed transformation U shifted by 251

n qubits, as shown in [9, Fig. 6]. More specifically, U is 252

the binary equivalent of an (n + m)-qubit symplectic matrix. 253

Furthermore, (10) may be modified as follows [9]: 254

(Pt : Mt)U
−1 = (Mt−1 : Lt : St) (11)

where t and (t − 1) denote the current and previous time 255

instants, respectively, whereas M is the effective m-qubit 256

error on the memory states. Furthermore, 2(n − k)-element 257

binary vector S of (10) and (11) can be decomposed into two 258



4 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Fig. 3. Schematic of the quantum turbo decoder. Pa
i (.), Pe

i (.), and Po
i (.) are

the a priori, extrinsic, and a posteriori probabilities related to the ith decoder;
Pi and Li denote the error on the physical and logical qubits, whereas Sx

i
represents the syndrome sequence for the ith decoder.

components, yielding S = Sx + Sz , where Sx and Sz are259

the X and Z components of syndrome S, respectively. The260

(n − k)-binary error syndrome computed using the parity-261

check matrix H only reveals Sx but not Sz [9]. Therefore,262

those physical errors that only differ in Sz do not have to263

be differentiated, since they correspond to the same logical264

error L and can be corrected by the same operations. These265

are the degenerate errors, which only differ by the stabilizer266

group, as discussed in Section II-A. Consequently, a quantum267

turbo decoding algorithm aims at finding the most likely error268

coset acting on the logical qubits, i.e., L, which satisfies the269

syndrome Sx.270

Similar to the classical turbo codes, quantum turbo decoding271

invokes an iterative decoding algorithm at the receiver for272

exchanging extrinsic information [11], [25] between the pair of273

SC soft-in soft-out (SISO) decoders, as shown in Fig. 3. These274

SISO decoders employ the degenerate decoding approach in275

[9]. Let Pi and Li denote the error imposed on the physical and276

logical qubits, whereas Sx
i represents the syndrome sequence277

for the ith decoder. Furthermore, Pa
i (.), Pe

i (.), and Po
i (.)278

denote the a priori, extrinsic, and a posteriori probabilities [25]279

related to the ith decoder. Based on this notation, the turbo280

decoding process can be summarized as follows.281

• The inner SISO decoder uses the channel information282

Pch(P1), the a priori information gleaned from the outer283

decoder Pa
1(L1) (initialized to be equiprobable for the first284

iteration), and the syndrome Sx
1 to compute the extrinsic285

information Pe
1(L1).286

• Pe
1(L1) is passed through a quantum interleaver3 (π) to287

yield a priori information for the outer decoder Pa
2(P2).288

• Based on the a priori information Pa
2(P2) and on the289

syndrome Sx
2 , the outer SISO decoder computes both290

the a posteriori information Po
2(L2) and the extrinsic291

information Pe
2(P2).292

• Pe
2(P2) is deinterleaved to obtain Pa

1(L1), which is fed293

back to the inner SISO decoder. This iterative procedure294

continues until convergence is achieved or the maximum295

affordable number of iterations is reached.296

• Finally, a qubit-based MAP decision is made to determine297

the most likely error coset L2.298

3An N -qubit quantum interleaver is an N -qubit symplectic transformation,
which randomly permutes the N qubits and applies single-qubit symplectic
transformations to the individual qubits [9].

III. APPLICATION OF EXTRINSIC INFORMATION TRANSFER 299

CHARTS TO QUANTUM TURBO CODES 300

Here, we will extend the application of EXIT charts to the 301

quantum domain, by appropriately adapting the conventional 302

nonbinary EXIT chart generation technique to the circuit-based 303

quantum syndrome decoding approach. Some of the informa- 304

tion presented here might seem redundant to the experts of 305

classical channel coding theory. However, since EXIT charts 306

are not widely known in the quantum community, this introduc- 307

tion was necessary to make this treatise accessible to quantum 308

researchers. 309

A. EXIT Charts 310

EXIT charts [18], [25], [26] are capable of visualizing the 311

convergence behavior of iterative decoding schemes by ex- 312

ploiting the input/output relations of the constituent decoders 313

in terms of their average mutual information (MI) characteris- 314

tics. They have been extensively employed for designing near- 315

capacity classical codes [27], [28], [29]. Let us recall that the 316

EXIT chart of an SC scheme visualizes the exchange of the 317

following four MI terms: 318

• average a priori MI of the inner decoder, I1
A; 319

• average a priori MI of the outer decoder, I2
A; 320

• average extrinsic MI of the inner decoder, I1
E ; 321

• average extrinsic MI of the outer decoder, I2
E . 322

More specifically, I1
A and I1

E constitute the EXIT curve of 323

the inner decoder, whereas I2
A and I2

E yield the EXIT curve 324

of the outer decoder. The MI transfer characteristics of both 325

the decoders are plotted in the same graph, with the x- and 326

y-axes of the outer decoder swapped. The resultant EXIT chart 327

quantifies the improvement in the MI as the iterations proceed, 328

which can be viewed as a staircase-shaped decoding trajectory. 329

Having an open tunnel between the two EXIT curves ensures 330

that the decoding trajectory reaches the (1, y) point of perfect 331

convergence. 332

B. Quantum-to-Classical Isomorphism 333

Before proceeding with the application of EXIT charts for 334

quantum codes, let us elaborate on the quantum-to-classical 335

isomorphism encapsulated in (4), which forms the basis of 336

our EXIT-chart-aided approach. As discussed in Section II-A, 337

a Pauli error operator P experienced by an N -qubit frame 338

transmitted over a depolarizing channel can be modeled by an 339

effective error vector P , which is a binary vector of length 2N . 340

The first N bits of P denote Z errors, whereas the remaining N 341

bits represent X errors, as shown in Fig. 4. More explicitly, an 342

X error imposed on the first qubit will yield a 0 and a 1 at the 343

first and (N + 1)th index of P , respectively. Similarly, a Z error 344

imposed on the first qubit will give a 1 and a 0 at the first and 345

(N + 1)th index of P , respectively, whereas a Y error on the 346

first qubit will result in a 1 at both the first and (N + 1)th index 347

of P . Since a depolarizing channel characterized by probability 348

p incurs X, Y and Z errors with an equal probability of p/3, 349

the effective error vector P reduces to two binary symmetric 350

channels (BSCs) having a crossover probability of 2p/3, where 351

we have one channel for the Z errors and the other for the 352
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Fig. 4. Effective error (P ) corresponding to the error imposed on an N -qubit
frame (P).

TABLE I
CORRELATION BETWEEN X AND Z ERRORS ON THE iTH QUBIT IN
TERMS OF THE CORRESPONDING PROBABILITY OF OCCURRENCE

X errors. Hence, a quantum depolarizing channel has been353

considered analogous to a BSC [22], [30], whose capacity is354

given by355

CBSC = 1 − H2(2p/3) (12)

where H2 is the binary entropy function. Using (4), we can356

readily infer that the code rate RQ of an [n, k] QSC is related to357

the equivalent classical code rate RC as follows [22], [31]:358

RC =
1
2
(1 + RQ). (13)

Consequently, the corresponding quantum capacity is as fol-359

lows [22], [31]:360

CQ
BSC = 1 − H2(2p/3). (14)

361

However, the two BSCs constituting a quantum depolarizing362

channel are not entirely independent. There is an inherent363

correlation between the X and Z errors [22], which is charac-364

terized in Table I. This correlation is taken into account by the365

turbo decoder in Fig. 3. Alternatively, a quantum depolarization366

channel can also be considered equivalent to a 4-ary symmetric367

channel. More explicitly, the ith and the (N + i)th index of368

P constitute the 4-ary symbol. The corresponding classical369

capacity is equivalent to the maximum rate achievable over each370

half of the 4-ary symmetric channel, as follows [22], [31]:371

C4−ary =
1
2

[2 − H2(p) − p log2(3)] . (15)

Therefore, using (13), the corresponding quantum capacity can372

be readily shown to be [22], [31]373

CQ
4−ary = 1 − H2(p) − p log2(3) (16)

which is known as the hashing bound.4374

Recall that a quantum code is equivalent to a classical code375

through (4). More specifically, as mentioned in Section II-A,376

the decoding of a quantum code is essentially carried out377

with the aid of the equivalent classical code by exploiting378

the additional property of degeneracy. Quantum codes employ379

4The hashing bound determines the code rate at which a random quantum
code facilitates reliable transmission for a particular depolarizing probability
p [11].

Fig. 5. System model for generating the EXIT chart of the inner decoder.

syndrome decoding [23], which yields information about the 380

error sequence rather than the information sequence or coded 381

qubits, hence avoiding the observation of the latter sequences, 382

which would collapse them back to the classical domain. 383

Since a depolarizing channel is analogous to the BSC and 384

a QTC has an equivalent classical representation, we employ 385

the EXIT chart technique to design near-capacity QTCs. The 386

major difference between the EXIT charts conceived for the 387

classical and quantum domains is that while the former models 388

the a priori information concerning the input bits of the inner 389

encoder (and, similarly, the output bits of the outer encoder), 390

the latter models the a priori information concerning the corre- 391

sponding error sequence, i.e., the error sequence related to the 392

input qubits of the inner encoder L1 (and, similarly, the error 393

sequence related to the output qubits of the outer encoder P2). 394

This will be dealt with further in the following section. 395

C. EXIT Charts for QTCs 396

Similar to the classical EXIT charts, in our design, we 397

assume that the interleaver length is sufficiently high to ensure 398

that [18], [25] 399

• the a priori values are fairly uncorrelated; 400

• the a priori information has a Gaussian distribution. 401

Fig. 5 shows the system model used for generating the 402

EXIT chart of the inner decoder. Here, a quantum depolarizing 403

channel having a depolarizing probability of p generates the 404

error sequence P1, which is passed through the inverse inner 405

encoder V −1
1 . This yields both the error imposed on the logical 406

qubits L1 and the syndrome Sx
1 according to (10). The a priori 407

channel block then models the a priori information Pa
1(L1) 408

such that the average MI between the actual error L1 and 409

the a priori probabilities Pa
1(L1) is given by IA(L1) [18], 410

[25], [26]. More explicitly, we have IA(L1) = I[L1,Pa
1(L1)], 411

where I denotes the average MI function. As discussed in 412

Section III-B, the ith and (N + i)th bits of the effective error 413

vector L1 can be visualized as 4-ary symbols. Consequently, 414

similar to classical nonbinary EXIT charts [32], [33], the 415

a priori information is modeled using an independent Gaussian 416

distribution with zero mean and variance σ2
A, assuming that the 417

X and Z errors constituting the 4-ary symbols are independent. 418

Using the channel information Pch(P1), syndrome Sx
1 and the 419

a priori information, the inner SISO decoder yields the extrinsic 420

information Pe
1(L1) based on the classic forward–backward 421

recursive coefficients αt and βt as follows [9]: 422

• For a coded sequence of duration N , let P1 = [P1,1, P1,2, 423

. . . , P1,t,. . . ,P1,N ]andL1=[L1,1,L1,2,. . . ,L1,t,. . . ,L1,N ], 424

where P1,t ∈ Gn, and L1,t ∈ Gk. More explicitly, 425
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P1,t=[P 1
1,t, P

2
1,t, . . . , P

n
1,t], and L1,t =[L1

1,t,L
2
1,t,. . . ,L

k
1,t].426

For ease of clarification, we will ignore the first sub-427

script, which represents the decoder, in the algorithm428

given below, i.e., we have P1 = P and L1 = L. Similarly,429

Sx
1 = Sx.430

• Let U = (UP : UM ) so that UP is the binary matrix431

formed by the first 2n columns of U of (11), whereas UM432

is the binary matrix formed by the last 2m columns of U .433

Therefore, we have434

Pt = (Mt−1 : Lt : St)UP (17)

Mt = (Mt−1 : Lt : St)UM . (18)

• Let αt(Mt) be the forward recursive coefficient, which is435

defined as follows:436

αt(Mt)
∆
=P

(
Mt|Sx

≤t

)

∝
∑

µ,λ,σ

Pa(Lt = λ)Pch(Pt)αt−1(µ) (19)

where µ ∈ Gm, λ ∈ Gk and σ ∈ Gn−k, while σ = σx +437

σz , having σx = Sx
t . Furthermore, we have Pt = (µ : λ :438

σ)UP and Mt = (µ : λ : σ)UM . The channel information439

Pch(Pt) is computed assuming that each qubit is indepen-440

dently transmitted over a quantum depolarizing channel441

having a depolarizing probability of p, whose channel442

transition probabilities are given by [9]443

Pch

(
P i

t

)
=

{
1 − p, if Pi

t = I
p/3, if Pi

t ∈ {X,Z,Y}.
(20)

• Let βt(Mt) be the backward recursive coefficient, which444

is defined as follows:445

βt(Mt)
∆
=P (Mt|Sx

>t)

∝
∑

λ,σ

Pa(Lt = λ)Pch(Pt+1)βt+1(Mt+1) (21)

where Pt+1 = (Mt : λ : σ)UP , and Mt+1 = (Mt : λ :446

σ)UM .447

• Finally, we have the a posteriori probability Po(Lt),448

which is given by449

Po(Lt)
∆
=P(Lt|Sx)

∝
∑

µ,σ

Pa(Lt)Pch(Pt)αt−1(µ)βt(Mt) (22)

where Pt = (µ : Lt : σ)UP and Mt = (µ : Lt : σ)UM .450

• Marginalized probabilities Po(Lj
t ) for j ∈ {0, k − 1} are451

then computed from Po(Lj
t ), and the a priori information452

is removed to yield the extrinsic probabilities [11], i.e.,453

we have454

ln
[
Pe

(
Lj

t

)]
= ln

[
Po

(
Lj

t

)]
− ln

[
Pa

(
Lj

t

)]
. (23)

Finally, the extrinsic average MI between L1 and Pe
1(L1) is455

computed, i.e., IE(L1) = I[L1,Pe
1(L1)]. Since the equivalent456

classical capacity of a quantum channel is given by the capacity457

Fig. 6. System model for generating the EXIT chart of the outer decoder.

achievable over each half of the 4-ary symmetric channel as 458

depicted in (15), IE(L1) is the normalized MI of the 4-ary 459

symbols, which can be computed based on [33] and [34] as 460

IE(L1) =
1
2

(
2 + E

[
3∑

m=0

Pe
1

(
Lj(m)

1

)
log2 Pe

1

(
Lj(m)

1

)])

(24)

where E is the expectation (or time average) operator, and 461

Lj(m)
1 is the 4-ary mth hypothetical error imposed on the 462

logical qubits. More explicitly, since the error on each qubit 463

is represented by an equivalent pair of classical bits, Lj(m)
1 464

is a 4-ary classical symbol with m ∈ {0, 3}. The process is 465

repeated for a range of IA(L1) ∈ [0, 1] values for obtaining the 466

extrinsic information transfer characteristics at the depolarizing 467

probability p. The resultant inner EXIT function T1 of the 468

specific inner decoder may be defined as follows: 469

IE(L1) = T1 [IA(L1), p] (25)

which is dependent on the depolarizing probability p of the 470

quantum channel. 471

The system model used for generating the EXIT chart of 472

the outer decoder is shown in Fig. 6. As inferred from the 473

figure, the EXIT curve of the outer decoder is independent of 474

the channel’s output information. The a priori information is 475

generated by the a priori channel based on P2 (error on the 476

physical qubits of the second decoder) and IA(P2), which is 477

the average MI between P2 and Pa
2(P2). Furthermore, as for the 478

inner decoder, P2 is passed through the inverse outer encoder 479

V −1
2 to compute Sx

2 , which is fed to the outer SISO decoder to 480

yield the extrinsic information Pe
2(P2). Based on (19) and (21), 481

this may be formulated as follows [9]: 482

Po(Pt)
∆
=P(Pt|Sx)

∝
∑

µ,λ,σ

P(Pt)P(Lt = λ)αt−1(µ)βt(Mt) (26)

where Pt = (µ : λ : σ)UP , and Mt = (µ : λ : σ)UM . The re- 483

sultant probabilities are marginalized, and the a priori informa- 484

tion is removed similar to (23). The average MI between P2 and 485

Pe
2(P2) is then calculated using (24). The resultant EXIT chart 486

is characterized by the following MI transfer function: 487

IE(P2) = T2 [IA(P2)] (27)

where T2 is the outer EXIT function, which is dependent on the 488

specific outer decoder but is independent of the depolarizing 489

probability p. 490
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Fig. 7. EXIT curves of a QTC parametrized by the increasing depolarizing
probability p. Rate-1/9 QTC having PTO1R as both the inner and outer
components was used.

Finally, the MI transfer characteristics of both decoders491

characterized by (25) and (27) are plotted in the same graph,492

with the x- and y-axes of the outer decoder swapped.493

IV. RESULTS AND DISCUSSIONS494

A. Accuracy of EXIT Chart Predictions495

To verify the accuracy of our EXIT-chart-based approach,496

we have analyzed the convergence behavior of a rate-1/9 QTC,497

consisting of two identical rate-1/3 QCCs. More specifically,498

for both the inner and outer decoders, we have used the con-499

figuration termed as “PTO1R” in [10] and [11], which is a500

noncatastrophic but quasi-recursive code.501

Our first aim was to predict the convergence threshold using502

EXIT charts, which would otherwise require time-consuming503

word error rate/qubit error rate (WER/QBER) simulations.504

The convergence threshold can be determined by finding the505

maximum depolarizing probability p, which yields a marginally506

open EXIT tunnel between the EXIT curves of the inner and507

outer decoders, hence facilitating an infinitesimally low QBER.508

Fig. 7 shows the EXIT curves for the inner and outer decoders,509

where the area under the EXIT curve of the inner decoder510

decreases upon increasing p. Eventually, the inner and outer511

curves cross over, when p is increased to p = 0.13. More512

explicitly, increasing p beyond 0.125 closes the EXIT tunnel.513

Hence, the convergence threshold is around p = 0.125.514

Fig. 8 shows two decoding trajectories superimposed on the515

EXIT chart in Fig. 7 at p = 0.125. We have used a 30 000-qubit516

long interleaver. As shown in Fig. 8, the trajectory successfully517

reaches the (x, y) = (1, y) point of the EXIT chart. This, in518

turn, guarantees an infinitesimally low QBER at p = 0.125 for519

an interleaver of infinite length.520

We have further verified the validity of our EXIT chart521

predictions using QBER simulations. Fig. 9 shows the QBER522

performance curve for an interleaver length of 3000 qubits.523

The performance improves upon increasing the number of524

Fig. 8. EXIT chart of a QTC with decoding trajectories at p = 0.125. Rate-1/9
QTC having PTO1R as both the inner and outer components with an interleaver
length of 30 000 qubits was used.

Fig. 9. QBER performance curve with an increasing iteration number for an
interleaver length of 3000 qubits. Rate-1/9 QTC having PTO1R as both the
inner and outer components was used.

iterations. More specifically, the turbo-cliff region starts around 525

p = 0.125, whereby the QBER drops as the iterations proceed. 526

Therefore, our EXIT chart predictions closely follow the Monte 527

Carlo simulation results. 528

B. Entanglement-Assisted and Unassisted Inner Codes 529

All noncatastrophic convolutional codes are nonrecursive 530

[9]. Therefore, the resultant families of QTCs have a bounded 531

minimum distance and do not have a true iterative threshold. 532

To circumvent this limitation of QTCs, Wilde et al. [10], [11] 533

proposed to employ entanglement-assisted inner codes, which 534

are recursive and noncatastrophic. The resulting families of 535

entanglement-assisted QTCs have an unbounded minimum dis- 536

tance [10], [11], i.e., their minimum distance increases almost 537

linearly with the interleaver length. Here, we verify this by ana- 538

lyzing the inner decoder’s EXIT curves for both the unassisted 539
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Fig. 10. Comparison of the inner EXIT curves of both unassisted and
entanglement-assisted QCCs, which are labeled as PTO1R and PTO1REA,
respectively.

(nonrecursive) and entanglement-assisted (recursive) inner con-540

volutional codes.541

For classical recursive inner codes, the inner decoder’s EXIT542

curve reaches the (x, y) = (1, 1) point,5 which guarantees543

perfect decoding convergence to a vanishingly low QBER544

as well as having an unbounded minimum distance for the545

infinite family of QTCs [9] based on these inner codes. Con-546

sequently, the resulting families of QTCs have unbounded547

minimum distance, and hence, an arbitrarily low QBER can548

be achieved for an infinitely long interleaver. This also holds549

true for recursive QCCs, as shown in Fig. 10. In this figure,550

we compare the inner decoder’s EXIT curves of both the551

unassisted and the entanglement-assisted QCCs in [10], which552

are labeled “PTO1R” and “PTO1REA,” respectively. For the553

PTO1R configuration, decreasing the depolarizing probability554

from p = 0.14 to p = 0.12 shifts the inner decoder’s EXIT555

curve upward and toward the (1,1) point. Hence, the EXIT556

curve will manage to reach the (1,1) point only at very low557

values of depolarizing probability. By contrast, the EXIT curve558

of PTO1REA always terminates at (1,1), regardless of the value559

of p. Therefore, provided that an open EXIT tunnel exists560

and the interleaver length is sufficiently long, the decoding561

trajectories of an entanglement-assisted QTC will always reach562

the (1,1) point, thus guaranteeing an arbitrarily low QBER for563

the infinite family of QTCs based on these inner codes. In564

other words, the performance improves upon increasing the565

interleaver length, thus implying that the minimum distance566

increases upon increasing the interleaver length, and therefore,567

the resultant QTCs have an unbounded minimum distance.568

5Note that we only need (x, y) = (1, y) to achieve decoding convergence
to an infinitesimally low QBER. However, this requires an outer code having
a sufficiently large minimum distance for the sake of ensuring that the outer
code’s EXIT curve does not intersect with that of the inner code before reaching
the (1, y) point. Unfortunately, an outer code having a large minimum distance
would result in an EXIT curve having a large open-tunnel area. Thus, it will
operate far from the capacity.

C. Optimized QTC Design 569

The QTC design in [10] and [11] characterized in Fig. 8 570

exhibits a large area between the inner and outer decoder’s 571

EXIT curves. The larger the “open-tunnel” area, the farther 572

the QBER performance curve from the achievable capacity 573

limit [25]. Consequently, various distance-spectra-based QTCs 574

investigated in [11] operate within 0.9 dB of the hashing bound. 575

For the sake of achieving a near-capacity performance, we 576

minimize the area between the inner and outer EXIT curves, 577

so that a narrow but still marginally open tunnel exists at 578

the highest possible depolarizing probability. Our aim was to 579

construct a rate-1/9 QTC relying on an entanglement-assisted 580

inner code (recursive and noncatastrophic) and an unassisted 581

outer code (noncatastrophic) having a memory of 3 and a rate 582

of 1/3. The resultant QTC has an entanglement consumption 583

rate of 6/9, for which the corresponding maximum tolera- 584

ble depolarizing probability was shown to be pmax = 0.3779 585

in [11]. 586

For the sake of designing a near-capacity QTC operating 587

close to the capacity limit of pmax = 0.3779, we randomly 588

selected both inner and outer encoders from the Clifford group 589

according to the algorithm in [35] to find the inner and outer 590

components, which minimize the area between the correspond- 591

ing EXIT curves. Based on this design criterion, we found 592

an optimal inner and outer code pair whose seed transforms6 593

(decimal representation) are given by 594

Uinner = {4091, 3736, 2097, 1336, 1601, 279

3093, 502, 1792, 3020, 226, 1100} (28)

Uouter = {1048, 3872, 3485, 2054, 983, 3164

3145, 1824, 987, 3282, 2505, 1984}. (29)

Fig. 11 shows the corresponding EXIT chart at the convergence 595

threshold of p = 0.35. As observed in Fig. 11, a marginally 596

open EXIT tunnel exists between the two curves, which fa- 597

cilitates for the decoding trajectories to reach the (1,1) point. 598

Hence, our optimized QTC has a convergence threshold of p = 599

0.35, which is only [10 × log10(0.35/0.3779)] = 0.3 dB from 600

the maximum tolerable depolarizing probability of 0.3779. The 601

corresponding QBER performance curves recorded for our op- 602

timized design are given in Fig. 12. A maximum of 15 iterations 603

were used, while the interleaver length was increased from 604

1500 to 12 000. Similar to classical turbo codes, increasing 605

the interleaver length for p < 0.35 improves the attainable per- 606

formance. Furthermore, Fig. 12 also compares our optimized 607

design with the rate-1/9 QTC in [11] for an interleaver length of 608

3000, which is labeled “PTO1REA-PTO1R” in the figure. For 609

the “PTO1REA-PTO1R” configuration, the turbo-cliff region 610

emerges around 0.31, which is within 0.9 dB of the capacity 611

limit. Therefore, our EXIT-chart-based QTC outperforms the 612

QTC design based on the distance spectrum [11]. More specif- 613

ically, the “PTO1REA-PTO1R” configuration yields a QBER 614

of 10−3 at p = 0.2925, whereas our optimized QTC gives a 615

6See [11] for the details of this representation.
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Fig. 11. EXIT chart of the optimized rate-1/9 QTC (Interleaver length =
30 000 qubits).

Fig. 12. QBER performance curves of the optimized rate-1/9 QTC for varying
interleaver lengths and a maximum of 15 iterations.

QBER of 10−3 at p = 0.3275. Hence, our optimized QTC616

outperforms the “PTO1REA-PTO1R” configuration by about617

[10 × log10(0.2925/0.3275)] = 0.5 dB at a QBER of 10−3.618

However, our main design objective was to not carry out an619

exhaustive code search but to demonstrate the explicit benefit620

of our EXIT-chart-based approach in the context of quantum621

codes. It must also be observed in Fig. 12 that a relatively high622

error floor exists for our optimized design, which is gradually623

reduced upon increasing the interleaver length. This is because624

the outer code has a low minimum distance of only 3. Its625

truncated distance spectrum is as follows:626

D(x) = 2x3 + 19x4 + 108x5 + 530x6 + 2882x7 + 14179x8

+ 62288x9+243234x10+845863x11+1165784x12

+ 2501507x13 + 744394x14.

By contrast, the truncated distance spectrum of “PTO1R,” 627

which has a minimum distance of 5, is given by [11] 628

D(x) = 11x5 + 47x6 + 253x7 + 1187x8 + 6024x9

+30529x10 + 153051x11 + 771650x12.

Consequently, as gleaned from Fig. 12, the “PTO1REA- 629

PTO1R” configuration has a much lower error floor (< 10−6), 630

since the outer code “PTO1R” has a higher minimum distance. 631

However, this enlarges the area between the inner and outer 632

decoder’s EXIT curves, thus driving the performance farther 633

away from the achievable capacity, as shown in Fig. 8. Hence, 634

there is a tradeoff between the minimization of the error floor 635

and achieving a near-capacity performance. More specifically, 636

while the distance-spectrum-based design primarily aims at 637

achieving a lower error floor, the EXIT-chart-based design 638

strives for achieving a near-capacity performance. 639

V. CONCLUSION 640

In this paper, we have extended the application of classical 641

nonbinary EXIT charts to the circuit-based syndrome decoder 642

of QTCs, to facilitate the EXIT-chart-based design of QTCs. 643

We have verified the accuracy of our EXIT chart generation 644

approach by comparing the convergence threshold predicted 645

by the EXIT chart to the Monte Carlo simulation results. 646

Furthermore, we have shown with the aid of EXIT charts 647

that entanglement-assisted recursive QCCs have an unbounded 648

minimum distance. Moreover, we have designed an optimal 649

entanglement-assisted QTC using EXIT charts, which outper- 650

forms the distance-spectra-based QTC in [11] by about 0.5 dB 651

at a QBER of 10−3. 652

ACKNOWLEDGMENT 653

The authors would like to thank Dr. M. M. Wilde for the 654

valuable discussions and the anonymous reviewers for their 655

insightful advice and comments. 656

REFERENCES 657

[1] S. X. Ng and L. Hanzo, “On the MIMO channel capacity of multidimen- 658
sional signal sets,” IEEE Trans. Veh. Technol., vol. 55, no. 2, pp. 528–536, 659
Mar. 2006. 660

[2] J.-M. Chung, J. Kim, and D. Han, “Multihop hybrid virtual MIMO scheme 661
for wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 61, no. 9, 662
pp. 4069–4078, Nov. 2012. 663

[3] J. Lee and S.-H. Lee, “A compressed analog feedback strategy for 664
spatially correlated massive MIMO systems,” in Proc. IEEE VTC Fall, 665
2012, pp. 1–6. 666

[4] S. Imre and F. Balazs, Quantum Computing and Communications: An 667
Engineering Approach. Hoboken, NJ, USA: Wiley, 2005. 668

[5] P. Botsinis, S. X. Ng, and L. Hanzo (2013). Quantum search algo- 669
rithms, quantum wireless, a low-complexity maximum likelihood it- 670
erative quantum multi-user detector design. IEEE Access [Online]. 671
vol. 1, pp. 94–122. Available: http://ieeexplore.ieee.org/xpl/articleDetails. 672
jsp?arnumber=6515077 673

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum 674
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000. 675

[7] X. Zhou and M. McKay, “Secure transmission with artificial noise over 676
fading channels: Achievable rate and optimal power allocation,” IEEE 677
Trans. Veh. Technol., vol. 59, no. 8, pp. 3831–3842, Oct. 2010. 678

[8] D. Poulin, J.-P. Tillich, and H. Ollivier, “Quantum serial turbo-codes,” in 679
Proc. IEEE ISIT , Jul. 2008, pp. 310–314. 680

[9] D. Poulin, J. Tillich, and H. Ollivier, “Quantum serial turbo codes,” IEEE 681
Trans. Inf. Theory, vol. 55, no. 6, pp. 2776–2798, Jun. 2009. 682

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6515077
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6515077


10 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

[10] M. M. Wilde and M.-H. Hsieh, “Entanglement boosts quantum turbo683
codes,” in Proc. IEEE ISIT , Aug. 2011, pp. 445–449.684

[11] M. Wilde, M.-H. Hsieh, and Z. Babar, “Entanglement-assisted quantum685
turbo codes,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 1203–1222,686
Feb. 2014.687

[12] Z. Babar, S. X. Ng, and L. Hanzo, “Near-capacity code design for688
entanglement-assisted classical communication over quantum depolariz-689
ing channels,” IEEE Trans. Commun., vol. 61, no. 12, pp. 4801–4807,690
Dec. 2013.691

[13] H. Ollivier and J.-P. Tillich (2003, Oct.). Description of a quantum con-692
volutional code. Phys. Rev. Lett. [Online]. vol. 91, no. 17, pp. 177 902-1–693
177 902-4. Available: http://link.aps.org/doi/10.1103/PhysRevLett.91.694
177902695

[14] quant-ph/0401134 H. Ollivier and J. P. Tillich, Quantum Convolutional696
Codes: Fundamentals 2004, quant-ph/0401134.697

[15] G. D. Forney, M. Grassl, and S. Guha, “Convolutional and tail-biting698
quantum error-correcting codes,” IEEE Trans. Inf. Theory, vol. 53, no. 3,699
pp. 865–880, Mar. 2007.700

[16] M. Grassl and M. Rotteler, “Constructions of quantum convolutional701
codes,” in Proc. IEEE ISIT , Jun. 2007, pp. 816–820.702

[17] M. Houshmand and M. Wilde, “Recursive quantum convolutional en-703
coders are catastrophic: A simple proof,” IEEE Trans. Inf. Theory, vol. 59,704
no. 10, pp. 6724–6731, Oct. 2013.705

[18] S. ten Brink, “Convergence behavior of iteratively decoded parallel con-706
catenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737,707
Oct. 2001.708

[19] D. Gottesman, “Class of quantum error-correcting codes saturating the709
quantum Hamming bound,” Phys. Rev. A, At. Mol. Opt. Phys., vol. 54,710
no. 3, pp. 1862–1868, Sep. 1996.711

[20] E. Pelchat and D. Poulin, “Degenerate Viterbi decoding,” IEEE Trans. Inf.712
Theory, vol. 59, no. 6, pp. 3915–3921, Jun. 2013.713

[21] R. Cleve (1997, Jun.). Quantum stabilizer codes and classical linear codes.714
Phys. Rev. A, At. Mol. Opt. Phys. [Online]. vol. 55, no. 6, pp. 4054–4059.715
Available: http://link.aps.org/doi/10.1103/PhysRevA.55.4054716

[22] D. J. C. Mackay, G. Mitchison, and P. L. Mcfadden, “Sparse-graph codes717
for quantum error-correction,” IEEE Trans. Inf. Theory, vol. 50, no. 10,718
pp. 2315–2330, Oct. 2003.719

[23] Z. Babar, S. X. Ng, and L. Hanzo, “Reduced-complexity syndrome-based720
TTCM decoding,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1220–1223,721
Jun. 2013.722

[24] J. Dehaene and B. De Moor (2003, Oct.). Clifford group, stabilizer states,723
linear and quadratic operations over GF(2). Phys. Rev. A, At. Mo. Opt.724
Phys. [Online]. vol. 68, no. 4, pp. 042318-1–042318-10. Available: http://725
link.aps.org/doi/10.1103/PhysRevA.68.042318726

[25] L. Hanzo, T. H. Liew, B. L. Yeap, R. Y. S. Tee, and S. X. Ng, Turbo727
Coding, Turbo Equalisation and Space–Time Coding: EXIT-Chart-Aided728
Near-Capacity Designs for Wireless Channels, 2nd ed. New York, NY,729
USA: Wiley, Mar. 2011.730

[26] M. El-Hajjar and L. Hanzo, “EXIT charts for system design and analysis,”731
IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 1–27, May 2013.732

[27] S. Ten Brink, “Rate one-half code for approaching the Shannon limit by733
0.1 dB,” Electron. Lett., vol. 36, no. 15, pp. 1293–1294, Jul. 2000.734

[28] L. Kong, S. X. Ng, R. Maunder, and L. Hanzo, “Maximum-throughput735
irregular distributed space–time code for near-capacity cooperative com-736
munications,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1511–1517,737
Mar. 2010.738

[29] S. Ibi, T. Matsumoto, R. Thoma, S. Sampei, and N. Morinaga, “EXIT739
chart-aided adaptive coding for multilevel BICM with turbo equaliza-740
tion in frequency-selective MIMO channels,” IEEE Trans. Veh. Technol.,741
vol. 56, no. 6, pp. 3757–3769, Nov. 2007.742

[30] M. M. Wilde, Quantum Information Theory. Cambridge, USA:743
Cambridge Univ. Press, May 2013. [Online]. Available: http://arxiv.org/744
abs/1106.1445745

[31] P. Tan and J. Li, “Efficient quantum stabilizer codes: LDPC and LDPC-746
convolutional constructions,” IEEE Trans. Inf. Theory, vol. 56, no. 1,747
pp. 476–491, Jan. 2010.748

[32] A. Grant, “Convergence of non-binary iterative decoding,” in Proc. IEEE749
Global Telecommun. Conf., 2001, vol. 2, pp. 1058–1062.750

[33] J. Kliewer, S. X. Ng, and L. Hanzo, “Efficient computation of EXIT func-751
tions for non-binary iterative decoding,” IEEE Trans. Commun., vol. 54,752
no. 12, pp. 2133–2136, Dec. 2006.753

[34] S. X. Ng, O. Alamri, Y. Li, J. Kliewer, and L. Hanzo, “Near-capacity754
turbo trellis coded modulation design based on EXIT charts and union755
bounds,” IEEE Trans. Commun., vol. 56, no. 12, pp. 2030–2039,756
Dec. 2008.757

[35] D. P. Divincenzo, D. Leung, and B. Terhal, “Quantum data hiding,” IEEE758
Trans. Inf. Theory, vol. 48, no. 3, pp. 580–598, Mar. 2002.759

Zunaira Babar received the B.Eng. degree in elec- 760
trical engineering from the National University of 761
Science and Technology, Islamabad, Pakistan, in 762
2008 and the M.Sc. degree (with distinction) in 763
wireless communications from the University of 764
Southampton, Southampton, U.K., in 2011, where 765
she is currently working toward the Ph.D. degree 766
with the Communications, Signal Processing, and 767
Control Group, School of Electronics and Computer 768
Science. 769

Her research interests include quantum error cor- 770
rection codes, channel coding, coded modulation, iterative detection, and 771
cooperative communications. 772

Soon Xin Ng (S’99–M’03–SM’08) received the 773
B.Eng. degree (first-class honors) in electronics en- 774
gineering and the Ph.D. degree in wireless com- 775
munications from the University of Southampton, 776
Southampton, U.K., in 1999 and 2002, respectively. 777

From 2003 to 2006, he was a Postdoctoral Re- 778
search Fellow working on collaborative European 779
research projects known as SCOUT, NEWCOM, 780
and PHOENIX. Since August 2006, he has been 781
a member of the academic staff with the School 782
of Electronics and Computer Science, University of 783

Southampton. He is involved in the OPTIMIX and CONCERTO European 784
projects, as well as the IU-ATC and UC4G projects. He is currently a Senior 785
Lecturer with the University of Southampton. He has published over 170 papers 786
and coauthored two John Wiley/IEEE Press books in his areas of interest. 787
His research interests include adaptive coded modulation, coded modulation, 788
channel coding, space–time coding, joint source and channel coding, iterative 789
detection, orthogonal frequency-division multiplexing, multiple-input multiple- 790
output, cooperative communications, distributed coding, quantum error correc- 791
tion codes, and joint wireless-and-optical-fiber communications. 792

Dr. Ng is a Chartered Engineer and a Fellow of the Higher Education 793
Academy in the United Kingdom. 794

Lajos Hanzo (M’91–SM’92–F’04) received the 795
M.S. degree in electronics and the Ph.D. degree from 796
Budapest University of Technology and Economics 797
(formerly, Technical University of Budapest), 798
Budapest, Hungary, in 1976 and 1983, respectively; 799
the D.Sc. degree from the University of 800
Southampton, Southampton, U.K., in 2004; and the 801
“Doctor Honoris Causa” degree from Budapest 802
University of Technology and Economics in 2009. 803

During his 38-year career in telecommunications, 804
he has held various research and academic posts in 805

Hungary, Germany, and the U.K. Since 1986, he has been with the School 806
of Electronics and Computer Science, University of Southampton, where he 807
holds the Chair in Telecommunications. He is currently directing a 100-strong 808
academic research team, working on a range of research projects in the field of 809
wireless multimedia communications sponsored by industry, the Engineering 810
and Physical Sciences Research Council of U.K., the European Research 811
Council’s Advanced Fellow Grant, and the Royal Society Wolfson Research 812
Merit Award. During 2008–2012, he was a Chaired Professor with Tsinghua 813
University, Beijing, China. He is an enthusiastic supporter of industrial and 814
academic liaison and offers a range of industrial courses. He has successfully 815
supervised more than 80 Ph.D. students, coauthored 20 John Wiley/IEEE Press 816
books on mobile radio communications totaling in excess of 10 000 pages, 817
published more than 1400 research entries on IEEE Xplore, and presented 818
keynote lectures. He has more than 19 000 citations. His research is funded by 819
the European Research Council’s Senior Research Fellow Grant. For further 820
information on research in progress and associated publications, see http:// 821
www-mobile.ecs.soton.ac.uk. 822

Dr. Hanzo is a Fellow of the Royal Academy of Engineering, The Institution 823
of Engineering and Technology, and the European Association for Signal 824
Processing. He is also a Governor of the IEEE Vehicular Technology Society. 825
He has served as the Technical Program Committee Chair and the General Chair 826
of IEEE conferences, has presented keynote lectures, and has been awarded a 827
number of distinctions. During 2008–2012, he was the Editor-in-Chief of the 828
IEEE Press. 829

http://link.aps.org/doi/10.1103/PhysRevLett.91.177902
http://link.aps.org/doi/10.1103/PhysRevLett.91.177902
http://link.aps.org/doi/10.1103/PhysRevA.55.4054
http://link.aps.org/doi/10.1103/PhysRevA.68.042318
http://link.aps.org/doi/10.1103/PhysRevA.68.042318
http://arxiv.org/abs/1106.1445
http://arxiv.org/abs/1106.1445
http://www-mobile.ecs.soton.ac.uk
http://www-mobile.ecs.soton.ac.uk

