
Received May 14, 2014, accepted May 26, 2014, date of publication June 4, 2014, date of current version June 10, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2327596

Quantum-Assisted Routing Optimization for
Self-Organizing Networks
DIMITRIOS ALANIS, (Student Member, IEEE), PANAGIOTIS BOTSINIS, (Student Member, IEEE),
SOON XIN NG, (Senior Member, IEEE), AND LAJOS HANZO, (Fellow, IEEE)
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

Corresponding author: L. Hanzo (lh@ecs.soton.ac.uk)

This work was supported in part by the EPSRC under the grant EP/L018659/1, in part by RC-UK under the India-UK Advanced
Technology Centre (IU-ATC), in part by the EU under the CONCERTO Project and that of the European Research Council, Advanced
Fellow Grant, and in part by the Royal Society’s Wolfson Research Merit Award.

ABSTRACT Self-organizing networks act autonomously for the sake of achieving the best possible
performance. The attainable routing depends on a delicate balance of diverse and often conflicting quality-
of-service requirements. Finding the optimal solution typically becomes an nonolynomial-hard problem,
as the network size increases in terms of the number of nodes. Moreover, the employment of user-defined
utility functions for the aggregation of the different objective functions often leads to suboptimal solutions.
On the other hand, Pareto optimality is capable of amalgamating the different design objectives by providing
an element of elitism. Although there is a plethora of bioinspired algorithms that attempt to address
this optimization problem, they often fail to generate all the points constituting the optimal Pareto front.
As a remedy, we propose an optimal multiobjective quantum-assisted algorithm, namely the nondominated
quantum optimization algorithm (NDQO), which evaluates the legitimate routes using the concept of Pareto
optimality at a reduced complexity. We then compare the performance of the NDQO algorithm to the
state-of-the-art evolutionary algorithms, demonstrating that the NDQO algorithm achieves a near-optimal
performance. Furthermore, we analytically derive the upper and lower bounds of the NDQO algorithmic
complexity, which is of the order of O(N ) and O(N

√
N ) in the best and worst case scenario, respectively.

This corresponds to a substantial complexity reduction of the NDQO from the order of O(N 2) imposed by
the brute-force method.

INDEX TERMS SONs, quantum computing, Pareto optimality, Grover’s QSA, BBHT-QSA, NDQO, ACO,
NSGA-II, complexity reduction.

NOMECLATURE

ACO Ant Colony Optimization
BBHT Boyer, Brassard, Høyer and Tapp
BER Bit Error Ratio
BF Brute Force
BSC Binary Symmetric Channel
CD Classical Domain
CF Cost Function
CFE Cost Function Evaluation
CLT Central Limit Theorem
CNOT Controlled-NOT quantum gate
DAF Decode And Forward
DCCP Dynamic Coverage and Connectivity

Problem
DHA Durr-Høyer-Algorithm
DN Destination Node
DSS Direct-Sequence Spreading

HGR Hybrid Geographic Routing
HYMN HYbrid Multihop Network
MMAS Min-Max Ant System
MODE Multi-Objective Differential Evolution
MUD Multi-User Detection
NDS Non-Dominated Sort
NDQO Non-dominated QuantumOptimization
NP Non-Polynomial
NSGA-II Non-dominated Sort Genetic Algorithm II
OF Objective Function
OPF Optimal Pareto Front
OW Oracle Workspace
PF Pareto Front
PLR Packet Loss Ratio
QACO Quantum Ant Colony Optimization
QAE Quantum Amplitude Estimation
QCR Quantum Control Register
QD Quantum Domain
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QIR Quantum Index Register
QMA Quantum Mean Algorithm
QoS Quality of Service
QP Quantum Parallelism
QSA Quantum Search Algorithm
QWSA Quantum Weighted Sum Algorithm
RN Relay Node
SN Source Node
SO Soft-Output
UF Utility Function
VoIP Voice over Internet Protocol
WSN Wireless Sensor Network
XOR Exclusive OR gate.

I. INTRODUCTION

SELF-ORGANIZING Networks (SONs) [1] are capable
of reorganizing their structure in order to improve their

performance. Their operations include self-configuration,
which allows uninitialized ad hoc nodes to be seamlessly
inserted in a SONwithout any service disruptions, while their
self-optimization and self-healing capabilities improve the
network’s robustness. One of their salient self-optimization
procedures is routing. The concept of SONs may be readily
applied in both ad hoc networks [2] and in Wireless Sensor
Networks (WSNs) [3], which are usually based on mobile
nodes. Each node has a restricted amount of power and
typically aims for minimizing the Bit-Error-Ratio (BER) or
Packet-Loss-Ratio (PLR). Moreover, the transmission power
of each link as well as the end-to-end delay should also be
given cognizance, according to the Quality of Service (QoS)
requirements. Consequently, routing optimization is essen-
tial for satisfying these requirements. However, as the net-
work size increases, the total number of legitimate paths
increases exponentially [4], potentially rendering routing a
Non-Polynomial Hard (NP-hard) problem, which requires
highly sophisticated optimization methods.

A. RELATED WORK
Our literature review is based on a pair of parallel orientations.
On the one hand, we will present the classical comput-
ing approaches conceived for solving the multi-objective
optimization problems. On the other hand, we survey the
advances in quantum computing, which facilitate the employ-
ment of Quantum Search Algorithms (QSA) [5], [6].

1) CLASSICAL ROUTING APPROACHES
Zhu et al. [7] have introduced a protocol, in which the nodes
of aWSN are organized into clusters using Hausdorff cluster-
ing [7] forminimizing the energy consumption. Chen et al. [8]
proposed a Hybrid Geographic Routing (HGR) scheme
for satisfying the end-to-end delay requirements consid-
ered, while optimizing the energy dissipation. Furthermore,
Abdulla et al. [9] conceived a range of HYbrid Multihop
Network (HYMN) performance metrics for minimizing the
power consumption and hence for maximizing the lifetime of
WSNs.

Numerous single-objective approaches have been advocated
in the literature, because focusing on a single requirement
may unduly degrade the remaining metrics. This problem
may be avoided [10] by using a multi-objective approach.
Likewise, all the requirements considered may be optimized
jointly without the need for user-defined parameters in order
to aggregate the different design objectives [11].
In fact, there is a plethora of comprehensive studies

in the literature [4], [12]–[15], which investigate diverse
aspects of WSNs using the multi-objective approach relying
on evolutionary algorithms. For example, Yetgin et al. [4]
used both the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and the Multiobjective Differential Evolution
Algorithm (MODE) for optimizing the transmission routes in
terms of their end-to-end delay and power dissipation. They
used the concept of Pareto Optimality [16] for evaluating
the fitness of multi-objective problems. While considering a
similar context, Camelo et al. [12] employed the NSGA-II
in order to satisfy the same QoS requirements for both the
ubiquitous Voice over Internet Protocol (VoIP) and for file
transfer. Moreover, Perez et al. [13] used a multi-objective
model for optimizing both the number of sensor nodes used
in a WSN and the total energy dissipation of the network,
which allowed the minimization of the WSN’s deployment
cost. Martins et al. [14] employed a hybrid multi-objective
evolutionary algorithm for solving the Dynamic Coverage
and Connectivity Problem (DCCP) of WSNs subjected to
node failures.
Among the evolutionary algorithms, the so-called Ant

Colony Optimization (ACO) conceived by Dorigo and
Di Caro [17], [18] has been extensively used for optimizing
routing problems. In the so-calledAnt Network (AntNet) [18],
each ant representing a legitimate route travels from a source
node (SN) to the destination node (DN), while traversing
a different number of nodes. Each ant moving from one
node to another deposits an amount of pheromone across
its route depending on the heuristic value of the Objective
Function (OF) that is being optimized. To elaborate further,
as the value of the OF increases throughout the route-search,
the intensity of the pheromone would increase as well. Based
on the deposited pheromone, the ant in nature are capable of
sensing in binary fashion, whether a specific route is leading
up to the source of food or not.Meritorious routes attract more
ants and as additional ants choose to follow a specific link
between two nodes, the pheromone they deposit is cumula-
tively superimposed so that the optimal routes would have
the highest pheromone intensity. An additional factor, namely
the so-called intrinsic affinity, was introduced for avoiding
premature convergence to local optima, which particularly
corresponds to the a priori probability of each solution being
the globally optimum solution.
Further extensions of the AntNet model have also been pro-

posed. Both Golshahi et al. [19] and Chandra et al. [20] have
implemented a routing protocol using the AntNet model; two
types of agents have been used: a forward-oriented one which
would seek to explore the network and a backward-oriented
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one, which would perform the ACO operations including
the pheromone update and fitness-evaluation of the routes.
Finally, Wang and Wu [21] developed an ACO routing
algorithm for optimizing the performance of fault tolerant
Hypercube Networks at reduced complexity by exploiting the
regularities exhibited by these networks. Additionally, Pinto
et al. introduced the concept of Pareto Optimality in [15] for
conceiving a Multiobjective Max-Min Ant System (MMAS)
for solving the multi-objective mutlicast routing problem.

Finally, a quantum-inspired version of the ACO (QACO)
algorithm has been proposed by Wang et al. [22].
Jiang et al. [23] invoked an enhanced version of the QACO
design for increasing the lifetime of a WSN by minimizing
its energy consumption.

2) ADVANCES IN QUANTUM COMPUTING
The advances of the most recent decades in Quantum
Computing [5] provide us with substantial new insights
on the design of quantum search algorithms and on
quantum communications [24]–[26]. In particular, in 1981
Feynman [26] proposed a framework in which a quantum
computer simulated the evolution of quantum states. Then in
1985, Deutch [27] proposed a quantum algorithm for finding
a global maximum or minimum of a function f : {0, 1} →
{0, 1} whilst relying on a single call of the function f by
exploiting the so-called Quantum Parallelism (QP) [5], [6].
Later in 1992, Deutch and Jozsa [28] extended this algorithm
to functions having n-bit binary arguments f : {0, 1}n →
{0, 1} for determining, whether f is balanced or constant1.
These innovations prepared the ground for the development
of more sophisticated quantum algorithms.

In 1996 Grover [29] proposed a Quantum Search
Algorithm (QSA), which would find a particular solution2 in
an unsorted database by relying on as few as O(

√
N ) calls to

the database. The theoretical proof of this algorithm has been
provided by Boyer et al. [30], who also proposed an extension
of this algorithm in the same treatise for the case, where the
number of solutions is not known. Moreover, Zalka in [31]
proved that Grover’s QSA is optimal in terms of the number
of database calls. A further improved extension to the original
algorithm proposed by Boyer et al. [30] has been provided by
Durr and Høyer [32] in form of the so-called Durr-Høyer-
Algorithm (DHA), which is capable of finding the index of
the minimum value of a database in quadratic time.
Apart from QSAs, a range of further important contribu-

tions have been made in the field of computation. In 1994,
Shor [33] introduced an algorithm, which would perform
the factorization of a polynomizal into its prime functions
in polynomial time. This invention eventually led to the
concept of Quantum Amplitude Estimation (QAE) and to the
Quantum Counting Algorithm [34]. Based on these

1A function is called constant iff for all the possible input values the same
binary value is output.

2Given a known value y, an argument x of a function f is termed as a
solution, iff f (x) = y.

principles, Brassard et al. proposed the Quantum Mean
Algorithm (QMA) [35] for calculating the mean of the values
in a database at a reduced complexity. Botsinis et al. [36]
expanded the QMA by proposing theQuantumWeighted Sum
Algorithm (QWSA), which calculates the weighted sum of a
function f : {0, . . . , 2n − 1} → {0, 1}. Moreover, the same
authors [37] investigated the impact of reduced-complexity
early termination of the DHA using deterministic inputs on
the attainable performance of Multi-User Detection (MUD)
conceived for multiple access wireless systems. A further
improved version of the algorithm was used by the same
authors in [38] for implementing an optimal Soft-Output (SO)
MUD scheme for Direct-Sequence Spreading (DSS) and
Slow Subcarrier-Hopping (SSH) aided Space-Division
Multiple Access - Orthogonal Frequency Division Multiplex-
ing (SDMA-OFDM) systems.
In a nutshell, quantum computing offers a well-equipped

parallel-processing toolbox for solving NP-hard problems,
such as the multi-objective routing problem.

B. CONTRIBUTIONS AND PAPER STRUCTURE
The classical computing methods mentioned in the previous
subsection are suboptimal. To elaborate further, not only they
fail to spot all the paths that belong to the Optimal Pareto
Front (OPF) [39], but they also often mistakenly identify
others which are not optimal, since theymay converge to local
minima. In this paper we propose a QSA, which addresses
these problems and at the same time exploit the property
of QP, resulting in a beneficial complexity reduction.
In particular, our contributions may be summarized as

follows:

1) We have proposed a novel quantum-assisted
algorithm, namely the Non-dominated Quantum Opti-
mization (NDQO) algorithm, which optimizes the
multi-objective routing problem using the exponen-
tial search algorithm of [30]. We have also improved
the latter algorithm and derived the NDQO algo-
rithm’s complexity upper- and lower-bounds by taking
into consideration the classical cost function evalua-
tions (CFE) invoked by this algorithm.

2) We have solved of the OPF partial generations, by
ensuring that all the optimal legitimate routes will be
identified despite imposing a reduced complexity.

3) We have characterized the performance versus com-
plexity of the NDQO algorithm and have demonstrated
that it achieves the optimal performance at a complex-
ity, which is on the order of O(N 3/2) in the worst-case
scenario.

The rest of this paper is organized as follows. In Section II,
we will detail the assumptions concerning the network inves-
tigated. In Section III we will introduce the quantum com-
puting framework of the NDQO algorithm, which is then
analysed in Section IV. Finally, the evaluation of the NDQO
in terms of its performance versus complexity is presented in
Section V.
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FIGURE 1. Exemplified network topology for an 8-node SON.

II. SYSTEM OVERVIEW
A. NETWORK SPECIFICATIONS
As far as the network architecture is concerned, a fully inter-
connected network has been assumed. The coverage area was
assumed to be a (100 × 100) m2 square block. The relay
node (RN) locations were generated using a uniform random
distribution within this area, whereas the SN and the DN
were located at the two opposite corners of this square block.
Moreover, each path is assumed to traverse through each
node at most once. In this way, unnecessary loops, which
would result in potentially excessive PLR, may be avoided.
An illustrative example of the topology considered is shown
in Fig. 1, where the formation of all the legitimate paths for
an 8-node SON is shown. We note that although the SN is
capable of transmitting its message towards all nodes, it is
not possible for the other nodes to send their message back to
the SN, due to the previous assumption. Therefore, the reverse
principle would apply for the DN.

According to the physical layer model considered, each
message transmission uses QPSK modulation over an uncor-
related Rayleigh fading environment [40], where theBit Error
Ratio (BER), Pe, versus the Bit-to-Noise power Ratio, Eb/N0,
relationship is given by [41]:

Pe =
1
2

(
1−

√
Eb/N0

Eb/N0 + 1

)
. (1)

In the multiple access layer, each RN is capable of
retransmitting the received messages using the classic
decode-and-forward (DAF) scheme [42]. More specifically,
each node decodes the received messages and then performs
encoding and modulation in order to forward it to the next
node. As the received message may be corrupted by errors
due to erroneous detection at the previous nodes and also
since QPSK is used, the channel can be modelled by a two-
stage Binary Symmetric Channel (BSC) [40] as presented in
Fig. 2. The RN corresponds to the intermediate node of Fig. 2
and the route has two BER values, one for each of the two
links established. It is possible to transform this channel into a
single-stage one, whichwould be described by a single overall

FIGURE 2. Two stage Binary Symmetric Channel for the case of an
intermediate node.

BER Pe,12, given by:

Pe,12 = Pe,1 + Pe,2 − 2Pe,1Pe,2. (2)

The last term in (2) corresponds to the propagated errors, i.e.
to the errors that were introduced by the first link and have
been erroneously ‘‘corrected’’ by the introduction of another
error within the second link.
Additionally, (2) may be used for recursively calculat-

ing the overall BER of a particular route. Owing to the
Central Limit Therorem (CLT) [41] the interference caused
by multiple users accessing the same channel may be treated
as Additive White Gaussian Noise (AWGN) at each node.
To elaborate further, during the network’s initialization a
second random process obeying a normal distribution has
been invoked for assigning a specific noise level to each node.
The mean of this noise was set to −90 dBm with a standard
deviation of 10 dB.
Furthermore, another factor to be considered is the

network’s delay. In the proposed system the delays are intro-
duced by the DAF scheme, since a finite time-duration would
be required for a RN to perform all the necessary opera-
tions before forwarding a message. For simplicity, the service
queue is assumed to have zero length, hence the messages
would be forwarded almost instantly with a short delay equal
to the DAF signal processing operation duration. Hence, the
total delay of the route would be proportional to its number
of established hops.
Moreover, as far as the power consumption is concerned,

only the free-space path-loss of each link has been considered.
In particular, the path loss exponent was set to α = 3. Hence,
the path loss L of single link may be formulated as [40]:

L = PTx,dB − PRx,dB = 10α log10

(
4πd
λc

)
[dB], (3)

where PTx,dB, PRx,dB, d and λc stand for the transmitted
power, the received power, the distance between the nodes
of a link and the carrier wavelength respectively. The trans-
mission power was set to 20 dBm for each link, while the
carrier frequency was set to 1.8 GHz, which would result in a
wavelength of 0.1667 m.
Last but not least, bearing in mind all the above

assumptions, an N -node network may be modelled as a
graph G(E,V ) having E edges and V vertices, which is
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formulated as:

vi,j =


[
SNRi,j,Li,j,Di.j

] ∀i, j ∈ E : i 6= j,
j 6= 1, i 6= N ,

∅ otherwise,
(4)

where vi.j stands for the transition weight, SNRi,j is the
received SNR, Li,j denotes the power losses due to path loss
and Di.j represents the delay of forwarding a message from
node i to node j. Additionally, the symbol ∅ in Eq. (4)
corresponds to a transition that is not legitimate. Moving on
to the route fitness evaluation, assuming a legitimate path x,
which belongs to the set of all the possible legitimate routes
S, its Utility Function (UF) f(x) is described by a vector
formulated as:

f(x) =
[
Pe,x , CLx , CDx

]
, (5)

where Pe,x , CLx , CDx stand for the overall BER, the cumula-
tive linear-domain sum of the path losses and the cumulative
sum of the delays for route x respectively. Finally, the system
parameters considered are summarized in Table 1.

TABLE 1. SON Network Parameters.

B. PARETO OPTIMALITY
Since the proposed approach is a multi-objective one accord-
ing (5), the optimality of the route-solution vectors should
be defined. The principle of Pareto Optimality introduced
by Pareto for solving multi-objective maximization prob-
lems [16] will be employed for examining the optimality of
a route-solution vector. However, Deb et al. [10] extended its
employment for minimization problems as well. The Pareto
Optimality may be summarized using Definitions 1, 2 [4]
and 3.
Definition 1 (Pareto Dominance): A particular solution

vector f(x1) = [f1(x1), f2(x1), . . . , fn(x1)] is said to dom-
inate another particular solution vector f(x2) = [f1(x2),
f2(x2), . . . , fn(x2)] if and only if f(x1) � f(x2); explicitly for
∀ i ∈ 1, 2, . . . , n, we have fi(x1) ≤ fi(x2)∧ ∃i ∈ 1, 2, . . . , n :
fi(x1) < fi(x2), where n is the number of optimization objec-
tives considered in the optimization problem.

To elaborate further, let us assume having a pair of solution
vectors f(x1) and f(x2), which are shown in Fig. 3(b) as well
another particular solution f(x3), which may be located in
each of the patterned areas of the f1f2 plane. If f(x3) resides in
the plain white area, then no dominance relationship exists

FIGURE 3. (a) Optimal Pareto Front for two objective functions and
(b) dominance relationship between a front of two solutions.

since we have either f1(x3) < f1(xi) and f2(x3) > f2(xi)
or f1(x3) > f1(xi) and f2(x3) < f2(xi) where i ∈ {1, 2}.
In prose, no dominance relationship exists, when none of
the solutions has coordinates, all of which are lower than
their corresponding counterparts in the others. Moreover, if
f(x3) resides in the single-line-patterned area, it will then be
dominated by either the f(x1) or f(x2) vectors, while it will
not dominate the other one. By contrast, if the solution f(x3)
resides in the four-line-patterned area, it will then dominate
only one of the f(x1) and the f(x2) vectors. Finally, if it resides
in the two-line-patterned area, it will dominate both solutions,
since we have f1(x3) < f1(xi) and f2(x3) < f2(xi), where
i ∈ {1, 2}.
Definition 2 (Pareto Optimality): A particular route-

solution vector f(x1) is said to be Pareto Optimal, if and only
if, there is no route-solution vector x, which dominates f(x1).
Using Definition 1, the dominance relationship for all the

route-solution vectors may be extracted. This facilitates the
grouping of the route-solution vectors into so-called Pareto
Fronts (PFs) [10]. The specific points, which belong to the
same PF, share the characteristic of being dominated by the
same number of points. Therefore, according to Definition 2,
the specific PF which contains the particular route-solution
vectors that are not dominated by any other route-solution
vector is the optimal one and it is hence termed as the Opti-
mal Pareto Front (OPF). An example of grouping the route-
solution vectors into PFs is presented in Fig. 3(a), where the
route-solution vectors in F1 form the OPF, while the ones
in F2 share the property of being dominated by exactly 3
route-solution vectors. This property of the PFs facilitates
the quantitative evaluation of a specific route-solution vector
leading to the OPF.
Definition 3 (Pareto Distance):Given a set of route-

solutions S and a particular route-solution xi, belonging to the
set xi ∈ S, its distance from the OPF may be defined as the
probability Pd of being dominated by the other solutions of
S. This is formally formulated as:

Pd (xi) =
#{f(xj) � f(xi) ∀j, i ∈ {0, 1, . . . , |S| − 1}}

|S|
, (6)

where the operator #{·} quantifies the number of times that the
condition in the curly brackets is satisfied, while the operator
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|·| represents the total number of elements of a set and f(·) is
the UF vector defined in (5).

According to Definition 3, the Pareto Distance function
Pd ( ) is limited to the range [0, 1]. Naturally, the points
belonging to the OPF will have the minimum possible dis-
tance, which is equal to 0, whereas the non-optimal points
would have higher distances. Therefore, the optimization
problem takes the form of:

find x

s. t. x ∈ S, Pd (x) = 0. (7)

Finally, let us define the complexity metric invoked for
the quantification of the computational complexity. Since
the calculation of the Pareto Distance in (6) requires the
invocation of the dominance operator (�), we will define the
Cost Function (CF) of our optimization problem as a single
application of this operator between two solution vectors. The
calculation of each route-solution vector requires a single UF
evaluation, based on (5).

Let us now apply the principles of Pareto Optimality to
our SON model. Based on the definition of the route-solution
vector in (5), we attempt to jointly optimize the performance
of our SON in terms of the time delay, the BER and the energy
dissipation. Since these performance metrics conflict with
each other, the OPF consists of each performance metric’s
global minimum and the specific routes corresponding to
route solution vectors, which lie in the space defined by the
global minima and they are not dominated by any other route-
solution vector. Ourmain interest lies in determining the latter
solutions rather than the three global minima. For instance,
the optimal route in terms of the time delay would be the
direct route from the SN to the DNwithout traversing through
any RNs. However, this link would potentially suffer from
an excessive power dissipation, since the distance between
the SN and the DN may be long, potentially leading to a
low Eb/N0 as well. Similar disadvantages may apply in the
general case for all the global minima of each parameter.

Furthermore, as mentioned in the previous section, deter-
mining all the OPF routes provides us with useful information
about the trade-offs of the diverse parameters considered [10],
hence resulting in a more beneficial design in terms of the
various QoS requirements. For this reason, all the legitimate
routes have to be examined in terms of their Pareto Distance
for the sake of identifying those that have a Pareto Distance
of zero. Assuming that |S| = N , where N corresponds to
the total number of legitimate routes, the examination of a
single route would invoke the dominance operator N/2 times
on average and N times in the worst-case scenario. The total
number of legitimate routes increases exponentially with the
number of nodes Nnodes, and it is equal to [4]:

N =
Nnodes−2∑
i=0

(Nnodes − 2)!
(Nnodes − 2− i)!

. (8)

Since this operation is carried out for every legitimate
route, the resultant average and maximum brute force (BF)

complexity, LavgBF and Lmax
BF respectively, are equal to :

LavgBF = N 2/2 = O(N 2),

Lmax
BF = N 2

= O(N 2). (9)

Hence, sophisticated searchmethods are required for deter-
mining the OPF in polynomial time. As already mentioned in
Section I, this ambitious goal may be achieved with the aid of
QSAs.

III. FUNDAMENTALS OF QUANTUM COMPUTING
Before proceeding with the portrayal of the proposed QSA,
the four postulates of quantum mechanics should be men-
tioned, [5]:
1) State Space: A quantum system’s state is given by:

|φ〉 =
∑M−1

i=0 ϕi |φi〉 = (ϕ0, ϕ1, . . . , ϕM−1)T , (10)

where the complex valued ϕi represents the amplitude of the
basis state |φi〉 and there are M = 2K basis states in total.
The squared modulus |ϕi|2 of the amplitude corresponds to
the probability of observing the quantum system being in the
state |φi〉, the probability of observing one of the states the
quantum system is superimposed in should naturally be equal
to 1, as encapsulated in:

M−1∑
i=0

|ϕi|
2
= 1. (11)

Moreover, for the complex conjugate transpose of |φ〉 the
notation used is 〈φ|, which is equal to:

〈φ| = |φ〉† = (ϕ∗0 , ϕ
∗

1 , . . . , ϕ
∗

M−1) . (12)

Since the amplitudes assume complex values, the system
state’s argument would lie within the Hilbert space. An inter-
esting aspect observed from (10) is that given a quantum
register (QR) of Lqr qubits, the QR may assume all states
simultaneously, which is often termed as being in the superpo-
sition of basis states. It is exactly this fact, which the quantum
algorithms take advantage of and hence they are capable of
carrying out operations in parallel.
2) Time Evolution: The evolution of a physical system

states versus time may be characterized by a set of unitary
transformations, which is formulated as:

|ψ〉 = U |φ〉 , (13)

where U is a unitary matrix, In other words, we have
U−1 = U†, where U† is the complex conjugate transpose
of U . Eq. (13) stems from the Schrödinger equation [5].
Unitary matrices are linear ones and this assumption of lin-
earity assists in preventing the occurrence of some ‘‘strange’’
phenomena such as time travel [5] due to non-linearities.
Moreover, this property enables us to break down the oper-
ations encapsulated in Eq. (13) into simpler ones using quan-
tum gates, hence assisting in reducing the complexity of
quantum algorithms. In fact, there is a suite of components
having a unitary response. Some of the most common single-
qubit quantum gates which are important components of
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the proposed quantum-assisted algorithm are the Hadamard
gate H and the Rotation gate Rθ . Their single-qubit transfer
matrices are [5]:

H =
1
√
2

[
1 1
1 −1

]
, Rθ =

[
cos θ − sin θ
sin θ cos θ

]
. (14)

The Hadamard gate is mainly used for mapping the ground
state |0〉 to the superposition of the states |0〉 and |1〉, while the
Rotation gate rotates the qubit state by an angle of θ . These
operations are formally expressed as:

|0〉
H
−→

1
√
2
(|0〉 + |1〉) ≡ |+〉 , (15)

|1〉
H
−→

1
√
2
(|0〉 − |1〉) ≡ |−〉 , (16)

|0〉
Rθ
−→ cos θ |0〉 − sin θ |1〉 . (17)

Apart from these simple operations, it is possible to carry
out controlled operations. A commonly used gate belonging
to this family of components is the Controlled-NOT (CNOT)
gate [6]. It performs the Exclusive OR (XOR) operation of
its two inputs storing the output on the second qubit or QR.
Thus, it is equivalent to the classic XOR gate and its function
is formulated as:

|c〉 |t〉
CNOT
−→ |c〉 |c⊕ t〉 , (18)

FIGURE 4. Quantum circuit implementing a specific function f (x); the
subscripts of the ‘‘kets’’ are used in order to distinguish the two input QRs
and the hashed line denotes the entanglement between the two
output QRs.

where the state |c〉 is often referred to as the control register,
while |t〉 is the target register. In fact, the CNOT gate is a
special case of a family of quantum gates, which are com-
monly known unitary operators Uf [5]. They are capable of
implementing a binary function f : {0, 1, . . . ,N − 1} →
{0, 1} in the quantum domain. Their quantum circuit is shown
in Fig. 4; due to the superposition of states of the QR |x〉1 it
is possible to carry out the function’s calculations in parallel,
which is the main advantage of quantum computing. Their
operation may be formulated as:

|x〉1 |0〉2
Uf
−→|x〉1 |0⊕ f (x)〉2 ≡ |x〉1 |f (x)〉2 . (19)

We note that the subscripts of the ‘‘kets’’ are used for distin-
guishing the two inputs of the QRs. These unitary operator
are the main component for the construction of Quantum
Oracles [5]. Therefore, the QR |x〉1 is often referred to as a
Quantum Index Register (QIR), since it points to the indices
of the input states, while the second input is commonly known
as the Oracle Workspace (OW), since all the Oracle opera-
tions are carried out in this QR.

3) Measurement: Quantum measurements may be
described by a vector of measurement operators {Mm}, which
are applied to the state space, when the system is subjected
to a ‘‘measurement’’ or observation. The index m indicates
that the measurement’s outcome will be equal to m and the
probability p(m) of this outcome is given upon assuming a
general initial state of |ψ〉 as:

p(m) = |ψ〉M†
mMm 〈ψ | , (20)

where the state of the related qubit after the above-mentioned
measurement procedure becomes:∣∣ψ ′〉 = Mm |ψ〉

√
p(m)

. (21)

In the special case, where there are two basis states, namely
M0 = |0〉 〈0| and M1 = |1〉 〈1| and an arbitrary state of the
qubit |ψ〉 = a |0〉 + b |1〉, we may arrive at:

p(0) = |ψ〉M†
0M0 〈ψ | = |a|2 , (22)

p(1) = |ψ〉M†
1M1 〈ψ | = |b|2 , (23)

where the post-measurement state will be respectively:∣∣ψ ′〉m=0 = M0 |ψ〉

|a|
=
a |0〉
|a|

, (24)∣∣ψ ′〉m=1 = M1 |ψ〉

|b|
=
b |1〉
|b|

. (25)

It may be observed from (24) and (25) that the qubit
collapses into a classical bit state after the measurement
operation on the computational basis of {|0〉 , |1〉}.
4) Composite Systems: The fourth postulate of quantum

mechanics describes the state of a length K QR, which is
composed by individual QRs of length 1. The resultant state
can be expressed as the tensor product of the individual
register states. For instance, in case of a length-2 QR, the
resultant state will become:

|ψ〉 = |ψ1〉1 |ψ2〉2 (26)

= (α |0〉1 + β |1〉1) (γ |0〉2 + δ |1〉2) (27)

= αγ︸︷︷︸
a00

|00〉 + αδ︸︷︷︸
a01

|01〉 + βγ︸︷︷︸
a10

|10〉 + βδ︸︷︷︸
a11

|11〉 , (28)

with ∑
∀i,j

∣∣aij∣∣2 = 1. (29)

Some notable consequences constituted by the above pos-
tulates are the no cloning theorem [5] and entaglement [6].
The first imposes the constraint that only qubits having known
and/or orthogonal states may be copied. This theorem pro-
vides security in quantum communications and it is the main
idea ofQuantum Key Distribution (QKD) [43]. The latter one
expresses a linkage between single qubits of a multiple qubit
state, when the multiple qubit state is an entangled one. This
linkage occurs even when these single qubits are delivered to
two arbitrary remote locations.
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IV. NON-DOMINATED QUANTUM
OPTIMIZATION ALGORITHM
A. ORACLE CONSTRUCTION
Calculating the Pareto distance for each point is a rather
demanding task in terms of CF evaluations, since it would
require N 2 CF evaluations, which is equal to the clas-
sic exhaustive search complexity. Although some complex-
ity reduction is offered by the Quantum Mean Algorithm
of [35], [36], the accuracy of the algorithm is affected. To
elaborate further, assuming l qubits to be in the Quantum
Control Register (QCR), which is used for the parallel calcu-
lation of the nominator in (6), an error ε ∈ O(1/l) [35] would
be introduced and increasing l for the sake of minimizing this
error would result in an excessive complexity.

This imperfection may be mitigated, if we inspect the
concept of Pareto Optimality in a more meticulous manner,
given in Definition 2. In fact, the calculation of the Pareto
distance itself is unnecessary. In other words, a particular
route would belong to the OPF, if and only if there is no
other route which would dominate it. From this perspective,
our problem is simplified to an existence problem and all we
have to find is a route, which would dominate the examined
one. If the search is unsuccessful and, consequently, there is
no legitimate route which would dominate the examined one,
the latter would belong to the OPF.

Our new approach would involve ‘‘asking’’ the oracle gate
O whether a particular route-solution vector is dominated by
the other route-solution vectors. Assuming that the particular
route corresponds to the state |i〉, let us now define the oracle
function g(i, x), which the QSA would query as follows:

g(i, x) =
{
1 f(x) � f(i)
0 otherwise

. (30)

FIGURE 5. Quantum circuit of the quantum oracle gate O, which
implements the utility binary function g(i, x); even though O would alter
the phase of |−〉2 due to the entanglement it would be valid to
assume that |x〉1 [(−1)g(i,x) |−〉2] = [(−1)g(i,x) |x〉1] |−〉2 [44]. These
quantum oracle gates belong to the family of Phase-Kickback Quantum
Circuits [6] as they alter the phase of some selected states.

It may be observed from (30) that the oracle function would
require two inputs: a classic state |i〉, which would point to
a specific route, and a quantum state |x〉 initialized to the
equally weighted superposition of all the states. Hence, the
oracle gate O implementing g(i, x) would map the state |x〉
to − |x〉 if and only if the respective route dominates the
examined route i. The quantum circuit ofO is shown in Fig. 5
and it should be noted that the classic control input |i〉3 corre-
sponds to the examined route. Therefore, for each examined

route it is possible to construct a database containing the
dominance relationship of the rest of the routes with respect
to the examined one.
Additionally, we note that a single activation of the oracle

gate O would impose a single CFE, since the dominance
operator would be employed only once. The function of this
gate can be simulated in a classical computer. To elaborate
further, simulating the oracle gate in a classical computer
results in checking serially whether each of the legitimate
routes dominates the reference route with index i and ‘‘mark-
ing’’ the specific routes that indeed dominate it. However, in
this case the actual number of CFEs imposed would be equal
to the number of the legitimate routes in the absence of QP.

B. QUANTUM SEARCH ALGORITHMS
Having constructed a database containing the specific routes
which dominate each route by the application of the quantum
oracle gate O, we may employ a QSA [29], [30], [44] for
finding the routes that correspond to the minimum Pareto
distance. A search algorithm succeeds in finding the specific
index x in a database or the argument for which the function
g satisfies g(i, x) = δ, which is termed as the solution. In a
search maze of size N , Grover’s QSA [29] finds a solution
with ∼ 100% probability after O(

√
N ) database queries or

function evaluations, provided that the number of solutions t
is equal to t = 1. Hence, it achieves a quadratic reduction in
the computational complexity, when compared to the optimal
BF search in unsorted databases. The most recent Boyer,
Brassard, Høyer and Tapp (BBHT) QSA [30] is based on a
successive application of Grover’s QSA and finds a solution
to the search problem with ∼ 100% probability, even if
multiple solutions exist, which is achieved without requiring
a priori knowledge about the exact value of t . Explicitly,
the BBHT-QSA succeeds in finding a solution after 4.5

√
N

database queries in the worst-case scenario. Naturally, in both
Grover’s QSA and in BBHT-QSA, the value δ has to be
known. However, inmany communication applicationswhere
the index xmin minimizing the cost function f is required to
be found, the exact value of f (xmin) cannot be known until
after all the possible CF values have been evaluated. As for
the solution, the Dürr-Høyer Algorithm (DHA) [32] employs
the BBHT-QSA multiple times and manages to find xmin
representing the minimum entry of a database, even if the
value of that particular entry is not known beforehand and
also if we have t ≥ 1. The DHA performs a minimum of
4.5
√
N and a maximum of 22.5

√
N database queries in the

best-case and the worst-case scenario, respectively.
In our specific application we have to find a route that

dominates the examined one in the previously constructed
database. Since the particular nature of our problem, we know
that the intended entry is equal to δ = 1 and that multiple
routes may dominate a single route. Hence, the BBHT-QSA is
themost appropriate quantum algorithm for finding a solution
xs in our application. It should be noted that the DHAwill also
succeed in finding a solution, since we have xs = xmin but it
will introduce more unnecessary database queries. Let us now
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proceed by introducing Grover’s QSA, the BBHT-QSA and,
finally, the NDQO algorithm.

1) GROVER’S QUANTUM SEARCH ALGORITHM
Grover’s QSA [29] assumes having t = 1 solution and
initially creates an equiprobable superposition of n = log2 N
qubits in the |0〉 state by passing them through a Hadamard
gate H [5], which results in

|ψ〉 =

N−1∑
x=0

1
√
N
|x〉 . (31)

The Grover operator G = HP0H · O is applied Lopt =⌊
π/4
√
N/t

⌋
successive times to the quantum state |x〉 in (31),

where H is the Hadamard gate H [5], while P0 [29] is a
unitary operator that maps |x〉 to − |x〉 if and only if we have
|x〉 6= |0〉⊗n and leaves the state |x〉 = |0〉⊗n unaltered.
Finally, O is the Oracle Gate [29], which is a quantum circuit
that considers the database’s entries in parallel andmaps |x〉 to
− |x〉 if and only if the entry with index x is equal to δ. When
the final state of the system is measured after Lopt iterations∣∣ψf 〉 = GLopt |ψ〉, the probability Ps of finding a solution xs is
equal to [30]:

Ps = sin2
[(
2Lopt + 1

)
θ
]
, (32)

where we have θ = arcsin
√
t/N .

2) BBHT QUANTUM SEARCH ALGORITHM
The number of solutions t of a problem does affect the
number Lopt of optimal Grover iterations. Since the BBHT-
QSA [29], [36] assumes having no a priori knowledge about
the number of solutions S in the database, it employs Grover’s
operator a pseudo-random number of consecutive times in a
structured way. In our routing application we have δ = 1,
but we are unaware of the number of routes t that domi-
nate the i-th route. The BBHT-QSA applied in our system
is formally stated in Algorithm 1 [36]. The BBHT-QSA
applies the Grover operator L consecutive times to the initial
equiprobable superposition of states in (31) (Step 1.43) and
then measures the resultant QR

∣∣xf 〉 (Step 1.5). The extraction
of the database’s entry that corresponds to the observed index
will verify whether the observed state |j〉 is a solution or not
(Step 1.8). If the latter case is true, the process described is
repeated after an update of the parameters (Steps 1.11–1.16)
until a solution is found or a predeterminedmaximum number
LQD, max
BBHT of affordable Grover iterations has been reached.

The algorithm keeps track of the total number LQDBBHT of CF
evaluations in the Quantum Domain (QD) and the total num-
ber LCDBBHT of CF evaluations in the Classical Domain (CD)
(Step 1.7). Naturally, the QD CFEs would be increased from
the total number of Grover iterations L with each BBHT-QSA
iteration, and the number of CD CFEs would are based on the
check of Step 1.8. The function implemented by the Oracle’s
action is invoked in the CD.

3The notation refers to Step 4 of Algorithm 1.

Algorithm 1: BBHT-QSA in NDQO Algorithm

1: Import reference route index i.
2: Set m← 1, λ← 6/5 and LQDBBHT ← 0, LCDBBHT ← 0.
3: Choose L uniformly from the set {0, . . . , bmc}.
4: Apply the G operator L times starting from the initial state
|ψ〉 in (31), resulting in the final state

∣∣xf 〉 = GL |ψ〉.
5: Observe

∣∣xf 〉 in the QD and obtain |j〉.
6: Compute g(i, j) in the CD.
7: Update LCDBBHT ← LCDBBHT + 1 and LQDBBHT ← LQDBBHT + L.

8: if g(i, j) = δ = 1 or LQDBBHT ≥ L
QD, max
BBHT then

9: Set xs ← j, output xs, LCDBBHT , L
QD
BBHT and exit.

10: else
11: Set m← min

{
λm,
√
N
}
.

12: if m =
√
N then

13: Choose L uniformly from the set {1, . . . , bmc} and go
to step 4.

14: else
15: Go to step 3.
16: end if
17: end if

An improvement the original BBHT-QSA in [30] is pro-
posed, as detailed in Section V. To elaborate briefly, as soon
as the upper limit m of the range, from which the number of
Grover iterations is selected, becomes higher than or equal to
√
N (Step 1.11), i.e. higher than the value which corresponds

to the worst case scenario of having only a single solution, a
bias is imposed on it for excluding the value 0 from the range
(Step 1.13). This stage of the BBHT-QSA is often referred as
the critical stage [30], since there is at least 25% probability
of finding a solution, as long as there exists one.
By applying the BBHT-QSA to the database constructed

by the oracle gate O of Eq. (30), we will be able to identify a
route, if there exists one, that would dominate the input one
with ∼ 100% probability, while using a number of O(

√
N )

database queries. If there is no route that dominates the input
one, the BBHT-QSA will output a random route xs,r from the
search database, which could be disregarded with a simple
final check. This check, which is similar to the first check
of Step 1.8, may be invoked after the completion of the
BBHT-QSA process for identifying at the expense of a single
CFE as to whether the index exported from the BBHT-QSA
corresponds to a valid route-solution, i.e. whether the condi-
tion g(i, xs,r ) = δ = 1 is satisfied. Therefore, it is possible
to avoid the identification of false solutions stemming from a
potential BBHT-QSA QD-CFE time-out.

3) NDQO ALGORITHM
Having defined the core procedure of finding a route, which
dominates the examined one, we may now proceed to the
presentation of our proposed approach. We will exploit the
observation [29] that if there is no solution for which we have
δ = 1, then O will mark no solutions and a single application
of the G operator will leave the probabilities of the routes
unaltered. Consequently, as the BBHT-QSA will not find any
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FIGURE 6. Probability Ps of successfully finding a solution versus the number of solutions t and the number of Grover iterations Lopt for the database of
Table 2, based on Eq. (32). The number of Grover iterations Lopt is varied in the range {0, 1, ..,

√
N}; the upper bound of the range corresponds to the optimal

number of Grover iterations, where only a single solution is available. In our example, we have
√

N =
√

16 = 4.

Algorithm 2 NDQO Algorithm

1: Initialize solution flag vector, F , to zero.
2: Initialize OPF = ∅.
3: for i = 0 to N − 1 do
4: if Fi = 0 then
5: if |OPF | > Lmax

BBHT or @j ∈ OPF : f(j) � f(i) then
6: Set l ← i.
7: repeat
8: Set k ← l.
9: Define the oracle function g(k, x) from (30).
10: Invoke the BBHT-QSA with input g(k, x) and

output xs.
11: Set l ← xs and Fk ← 1.
12: until f(l) � f(k).
13: Append xk into the OPF .
14: end if
15: end if
16: end for
17: Output the OPF and exit.

solutions, it will reach its time-out after Lmax
BBHT =

⌊
4.5
√
N
⌋

Grover iterations and output a random route from the total set
of routes chosen randomly. At this point, let us check whether
the output of the BBHT-QSA dominates i; the i-th route will
belong to theOPF if and only if the check outcome is false, i.e.
we have g(i, xs) = 0, which implies that there is no solution
dominating it. Otherwise, if the BBHT-QSA outcome domi-
nates the solution examined, we can proceed with checking
whether the outcome is optimal. This action may be repeated
until an OPF route-solution is extracted, which would then
terminate this chain of BBHT activations. Having extracted
either a single or multiple route-solutions from the OPF, it
becomes possible to avoid an excessive number of CFEs by
checking whether the solution examined is dominated by the
OPF generated so far. Naturally, the solutions that are dom-
inated by the OPF generated so far have a high probability
of outputting an already generated OPF point, which would
imply having unnecessary BBHT chain activations.

Having provided all the necessary discussions concerning
the NDQO subroutines, we may now proceed to its detailed
description relying on Algorithm 2. We will define a binary
check flag vector F which would indicate whether a specific
route has already been processed and it is initialized to a
vector of zeros. Then, for each route we will check whether
it has already been considered. In this case, if the specific
route is not dominated by the already generated OPF, then
a BBHT-QSA chain will be activated relying on the examined
route as its initial input. The BBHT-QSA chain will be then
terminated, when an OPF route-solution is examined and the
flags of the routes processed by the chain are set equal to 1.
This procedure is repeated until all the legitimate routes have
been processed either by the OPF dominance check or by the
BBHT-QSA chain and, thus, all the OPF route-solutions are
exported. The goal of this procedure is to extract possible the
entire OPF as promptly as possible.

C. A DETAILED 5-NODE EXAMPLE
Let us now provide an illustrative example portraying the
main concepts of our proposed algorithm. We will consider a
5-node network obeying the architecture of in Fig. 7(a) along
with the respective node interference imposed. The legitimate
route-solutions produced by this setup along with their UFs
are shown in Table 2. We note that only the BER and the CL
are taken into account for simplifying the solutions’ graphical
representation, which is shown in Fig. 7(b). Moreover, the
actual routes are assumed to be stored in a list in ascending
lexicographical order. This routing operation may be imple-
mented using the Lehmer Encoding/Decoding technique of
[45]. Furthermore, we present in Fig. 6 the probability Ps
of successfully finding a route-solution, when using Grover’s
QSA, versus the number of solutions t present and the num-
ber of G applications for our 5-node SON routing problem
example of Fig. 7(a). The respective probabilities have been
calculated using Eq. (32).
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FIGURE 7. (a) Exemplified architecture for a 5-node SON, and (b) its optimization process using the NDQO algorithm. In this example only two UF are used
per solution for the sake of simplicity. The routes that belong to the OPF are noted with a square marker (�), the routes that have already been processed
as intermediate points in BBHT-QSA chains and will be skipped in the serial parsing step (Step 2.4) are marked with a triangle (4), whereas those that have
not been processed and, at the same time, are not dominated by the generated OPF initiating a BBHT-QSA chain are marked with a circle (◦). Moreover, the
route-solutions, which have not already been processed but are dominated by the hitherto generated OPF and thus they will be skipped, are marked with a
cross (×). Moreover, the indices of the routes as shown in Table 2 are marked in (b). Finally, the round arrows in (b) denote that a BBHT-QSA has been
activated with input the respective point but in the absence of potential route-solutions a random route is output by the BBHT-QSA, classifying the input
route-solution as Pareto Optimal (Step 2.13). The current problem solution is not the unique one; different solutions could be derived depending on the
BBHT-QSA chain intermediate outcomes.

TABLE 2. Routes along with their UFs and indices for the exemplified 5-node SON of Fig. 7.

Moreover, all the steps carried out by the NDQO algorithm
for exporting the OPF are shown in Fig. 7(b), where the
solution4 transitions that are facilitated by the BBHT-QSA are
represented by the arrows. Moreover, the routes that belong to
the OPF are indicated by a square marker (�). Furthermore,
the points that have already been processed as intermediate
points in the BBHT-QSA chains and hence will be skipped
during the serial parsing step (Step 2.4) are marked by a tri-
angle (4). Still referring to Fig. 7(b), those points that have not
been processed and, at the same time, are not dominated by
the generated OPF initiating a BBHT-QSA chain are marked
with a circle (◦). Additionally, the points that have not yet
been processed but are dominated by the generated OPF and
thus are skipped are marked by a cross (×). Moreover, the
transitions that are carried out by the BBHT-QSA chains of
Steps 2.6 – 2.11 are indicated by arrows. Additionally, arrows
of different color has been used for each BBHT-QSA chain.

4We define a solution as an output route of the BBHT-QSA that dominates
the input one.

Let us now proceed with a more detailed description of the
NDQO algorithm.
The algorithm will initialize the binary check flag vector

F to a vector of zeros and the OPF to an empty set (∅),
according to Step 2.2. Then, the 1st route of Table 2, {1 5},
is checked. Since its flag value is equal to zero and the OPF
set is empty, the BBHT-QSA process of Alg. 1 is initiated
with this specific route as its input. The legitimate successful
outputs of the BBHT-QSA, i.e. the solutions that dominate
{1 5}, are located within the rectangle of Fig. 7(b) which
has the solution argument and the zero point of coordinates
as its opposite corners, as indicated by the doted lines. Our
database length is equal to N = 16, while the number of
present solutions,, which are located within the aforemen-
tioned rectangle, is equal to t = 7. Each of these solutions
will have the same probability of becoming the single output.
According to Fig. 6, the optimal number of G applications
would be for Lopt = 3, which gives a 88.45% probability
of finding a route-solution that dominates the direct route.
The BBHT-QSA process initializes the upper bound of the

624 VOLUME 2, 2014



D. Alanis et al.: Quantum-Assisted Routing Optimization

Lopt selection range to m = 1 (Step 1.2) and the specific Lopt
value is chosen from the set {0, 1}. Assuming that Lopt = 0
is chosen, based on Eq. (32), the probability of successfully
finding a solution would be equal to Ps = 43.75%. The
quantum algorithm then observes its QIR (Step 1.5) and
outputs j = 13, i.e the route {1 4 3 2 5}. A check is then
performed whether the 13th route dominates the direct one
(Step 1.8), which is unsuccessful, since Pe,1 < Pe,13 and
CL1 < CL13 and hence g(1, 13) = 0. Then parameter m is
increased to m = λm = 6/5 (Step 1.11) and the upper bound
is modified to bmc = b6/5c = 1, while the range remains
the same as in the previous iteration, i.e. the parameter Lopt
will be selected from the set {0, 1}. At this point, assuming
that Lopt = 1 is chosen, the probability of successfully
finding a route-solution that dominates the input one would
be equal to Ps = 68.36%. Let us assume that the output of the
BBHT-QSA is the 3rd route (i = 3), {1 3 5}, of Table 2. Once
again, this route will be checked whether it dominates the
input route and since it lies within the rectangle of Fig. 7(b),
it will indeed dominate it. The transition between the direct
route and the third one is noted using a blue coloured arrow
in Fig. 7(b).

Then, the input solution flag value is set to F1 = 1
and hence a new BBHT-QSA process is invoked with the
output of the previous BBHT-QSA as its input. Again, the
successful BBHT-QSA outputs will be located within the
rectangle defined with the new reference point and the center
of coordinate axes in its opposite corners; after the completion
of the BBHT-QSA of Alg. 1, the flag value of the input route
is set to one, i.e. to F3 = 1. Following a similar procedure
as in the first BBHT-QSA iteration, the algorithm outputs the
14th route, {1 3 4 2 5}, of Fig 7(b) which dominates the input
and happens to be a Pareto Optimal solution. A BBHT-QSA
will be invoked with this route as its input and since no
solutions would exist which dominate the new reference, the
BBHT-QSA will reach its time-out after at a minimum of
LQD, max
BBHT Grover operator G applications and it will hence

output a random route-solution selected from the set of all
the legitimate ones. Upon applying the dominance operator
to the BBHT-QSA output, its response will become false,
which would indicate that no point dominating the input route
exists, which, in turn, would imply that the route belongs to
the OPF. Hence, the route with index i = 14 in Fig. 7(b) is
appended to the OPF. Moreover, its flag value will be set to
F14 = 1. This transition is noted in marked Fig. 7(b) with the
blue round arrow, since the NDQO algorithm will return to
the input route-solution and classify it as optimal.

Then, the second route with index i = 2 of Table 2 will
be checked (Step 2.3). Since we have F2 = 0 and this route
is not dominated by the route with index i = 14 (Steps 2.4
and 2.5), the BBHT-QSA process of Alg. 1 will be initiated
with the second route as its input. The possible successful
outcomes of the BBHT-QSA would be the 7th (i = 7) and
the 9th (i = 9) routes with 50% probability, both of which
happen to be Pareto Optimal. Following the same process as
the very first BBHT-QSA activation, wemay now assume that

the 9th route is the output of the BBHT-QSA, and since it
will indeed dominate the input route, the flag value of the
input route is toggled to F2 = 1. The respective transition
is noted in Fig. 7(b) using a red arrow. A new BBHT-QSA
process will be invoked with the 9th route of Fig. 7(b) as
its input, which would exhaust the maximum number of G
applications, therefore outputting a random solution from the
solution space. Hence, the 9th route is incorporated into the
OPF and its flag value will be modified accordingly. This
operation corresponds to the round red arrow seen in Fig. 7(b).
Afterwards, the 3rd route will be skipped, because we have
F3 = 1. Additionally, the rest of the routes until the 7th route
of Fig. 7(b) will be discarded as they are dominated by the
9th route and, thus, are not Pareto Optimal (Step 2.5). As for
the 7th route, since it has not been processed (F7 = 0) and
will not be dominated by any solution due to the fact that
it is Pareto Optimal, the BBHT-QSA process of Alg. 1 will
be invoked with its input given by this route. This process
will exhaust the maximum number of G applications and will
hence output a random solution, thus leading to appending the
7th route-solution to the OPF. Moving back to Fig. 7(b), this
step corresponds to the round green arrow. Finally, the rest of
the solutions will be discarded, since albeit they have not been
processed, they will be dominated by the OPF generated.
In the exemplified description of the NDQO algorithm we

have not mentioned the CF evaluations. Thus, the complexity
the BBHT-QSA will be discussed in the next section, where
a variety performance metrics will be introduced.

D. BENCHMARKING ALGORITHMS
Apart from the classical BF method, we will use two addi-
tional benchmarking algorithms, namely the NSGA-II [4],
[39] and the ACO algorithm [17]. As far as the first is con-
cerned, we have used the exact the algorithm proposed in [4]
by Yetgin et al.. The only deviation from approach of [4] was
the fact that the number of generations involved was set to
the population of the parents and the children at each gener-
ation. For the ACO algorithm, a similar approach to that of
[15] was followed. To elaborate further, the intrinsic affinity
matrix was extracted by using a Non-Dominated Sort (NDS)
across all the legitimate node-transitions for each RN and the
SN, exporting the number of node-transitions N dom

i,j in the
network, which dominate a specific node-transition vi,j, as it
was defined in (4). As for the intrinsic affinity ηi,j of each
transition, we followed a similar approach to [46] and it would
be equal to:

ηi,j = e−N
dom
i,j . (33)

As for the pheromone update also defined in [47], multi-level
pheromones were used, since the concept of Pareto Optimal-
ity was relied upon. However, they we were combined into
a single-level pheromone for exporting the probabilities of
the node-transitions circumventing the need for aggregation
of the objectives. Once again, an NDS was used across all
the possible transitions exporting the number of transitions
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N τ,domi,j , which dominate a specific multilevel pheromone τi,j.
Consequently, the combined pheromone will be equal to:

Ti,j = e−N
τ,dom
i,j . (34)

Then, the transition probability Pi,j will become [18]:

Pi,j =
Nnodes−1∑
k=0

(
Ti,j
)α (

ηi,j
)β(

Ti,k
)α (

ηi,k
)β , (35)

where α corresponds to the combined pheromone weight
and β is the intrinsic affinity weight. In both algorithms, a
classical NDS is used at the end of each generation in order
to extract the OPF. Assuming that the NSGA-II is confined for
NG generations and Npop individuals in the initial population
and the ACO is initialized to have 4 generations and ζ ants,
their complexities will be:

LNSGA−II = NG (2Npop)2, (36)

LACO = 4 ζ 2. (37)

For the sake of simplicity, we will set the number of
NSGA-II individuals evaluated by the end of each gener-
ation equal to the number of generations, i.e. we rely on
NG = 2Npop and 4 = ζ . Assuming now that the maximum
complexity of the NDQO algorithm is max

{
L totCFE

}
, in order

to match the complexities of the NDQO, the ACO and the
NSGA-II will rely on:

NG = 4 =
3
√
max

{
L totCFE

}
. (38)

Finally, the input parameters of the NSGA-II and the ACO
used in our comparative case study are shown in Table 3.

V. COMPUTATIONAL ACCURACY VERSUS COMPLEXITY
In this section, we will provide simulation results concerning
the accuracy of the NDQO algorithm versus its complexity.
Before delving into the presentation of the results, the com-
plexity of the classical BF algorithm should be quantified.
In the classical domain, each route is compared to all the other
legitimate routes for determining whether it is dominated by
any solutions. According to Eq. (9), this would impose a
complexity on the order of O(N 2). However, this operation,
which we will refer to as naive-BF, would find the OPF route-
solutions alongwith sorting all legitimate routes into PFs. The
latter operation is not performed by our proposed algorithm,
making their comparison rather unfair.

For the sake of fairness, we will also use another version
of the BF which exports only the OPF, as stated formally in
Alg. 3. This is the same as the NDQO algorithm stated in
Alg. 2. The only difference would be that a BF serial search
is used instead of the BBHT-QSA chains for identifying,
whether a solution is optimal. The actual complexity of this
BF method is random and would explicitly depend on the
number of OPF route-solutions and on their order of appear-
ance in the solution space. Therefore, due to the complex
structure of the SONs examined we will derive its complexity

Algorithm 3 BF Method

1: Initialize OPF = ∅.
2: for i = 0 to N − 1 do
3: Set f ← 0
4: if @j ∈ OPF : f(j) � f(i) then
5: for k = 0 to N − 1 do
6: if f(k) � f(i) then
7: Set f ← 1 and terminate inner loop.
8: end if
9: end for
10: if f = 0 then
11: Append i into the OPF .
12: end if
13: end if
14: end for
15: Output the OPF and exit.

using Monte Carlo simulations and compare it to the respec-
tive complexity of the NDQO algorithm for the same SON
setups. Moreover, both the upper and the lower bounds of this
BF method may be derived. The upper bound corresponds to
the rather unrealistic case, where all the legitimate routes are
optimal. In this case, the direct route would require N CFEs
for its identification as an optimal route-solution, the second
route in the database will require in turn (N+1) CFEs, since it
will be checked against the OPF generated, which consists of
a single solution. Finally, the last one will be checked against
all the solutions forming part of the OPF, which would consist
of (N − 1) route-solutions and another N CFEs would be
required for its identification as an optimal route-solution.
Therefore, the resultant maximum complexitymay be derived
by exploiting the following property of the sum of arithmetic
series as:

Lmax
BF = N 2

+

N−1∑
i=0

i = N 2
+
N
2
(N − 1) =

3
2
N 2
−

1
2
N . (39)

Hence, the upper bound of the BF complexity is still on the
order of O(N 2). On the other hand, assuming that there is
only a single optimal path, which happens to be the first in
our database, namely the direct route, the BF method would
require N CFEs for classifying this route as an optimal one
(Steps 3.5-3.12) and another (N −1) CFEs for classifying the
rest of the routes as suboptimal. As a result, the lower bound
of the BF complexity is equal to:

Lmin
BF = 2N − 1 = O(N ). (40)

Therefore, the BF method would involve a complexity on
the order of O(N ) and O(N 2) for the best- and the worst-case
scenario, respectively.
Additionally, we note that the simulation results presented

in this section have been generated using the Monte Carlo
simulation method and they have been averaged over 108

runs. Finally, since we had no quantum computer at our
disposal, the simulations of the QSAs were carried out using
a classical cluster. Explicitly, since the quantum Oracle O
calculates in parallel the UF vectors of all the legitimate
routes in the QD, they were pre-calculated. We note that
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TABLE 3. Input Parameters of the Benchmarking Algorithms.

this results in an actual complexity higher than that of the
BF method. Therefore, the deployment of the NDQO in a
quantum computer is essential for observing a complexity
reduction stemming from the QP. Hence, in our simulations,
we have made the assumption of employing a quantum com-
puter for our algorithm and we count the total number of
O-activations for quantifying the NDQO’s complexity. This
number would be the same for both classical and quantum
implementations. Let us now proceed by characterizing the
complexity of the NDQO algorithm.

A. NDQO COMPLEXITY PERFORMANCE
Within the BBHT-QSA iterations, each quantum oracle appli-
cation would result in a single QD-CFE, whereas the val-
idation check of Step 1.4 would require a single CD-CFE.
We note that the complexity of a single CD-CFE and of a
single QD-CFE are assumed to be identical for simplicity.
The total complexity L totCFE may be derived as the sum of the
number of G applications LQDNDQO, that of the total classic com-
parison activations within the BBHT-QSA iterations LCDNDQO
and that of the comparisons with the route-solutions of the
already generated OPF LOPFNDQO, yielding:

L totCFE = LQDNDQO + L
CD
NDQO + L

OPF
NDQO. (41)

Therefore, in order to derive both the upper and lower
bounds of complexity in terms of the number of CFEs in both
the quantum and classic domains, we have to consider two
extreme cases, which are identical to the ones considered for
the BF method. For the lower bound, we will assume that
the optimization problem has only a single solution, which
happens to be the first route in the solution database, namely
the direct route. The NDQO algorithm will exhaust the max-
imum affordable complexity of LQD, max

BBHT =

⌊
4.5
√
N
⌋
for

the first route and the rest of the routes will be discarded,
since they will be dominated by the first one. Since we are
examining the lower bound, each of the terms in the sum
of (41) needs to be minimized. In terms of LQDNDQO, only the
first route will invoke the BBHT-QSA process which will
reach the maximum number of G applications and the lowest
possible number would be:

LQD, min
NDQO =

⌊
4.5
√
N
⌋
+ 1 > 4.5

√
N . (42)

Hence, the minimum number of the G applications would
be for LQD, min

NDQO = 4.5
√
N . As for the CD-CFEs, we could

can a greedy approach in order to find the associated mini-
mum value: we may assume that the maximum number of G

iterations dme is selected in Step 1.2. In this way, the maxi-
mum number of G applications will be reached with as few
CD-CFEs as possible. Under this perspective, we would get:

LQD,min
NDQO −1∑
i=0

λim ≥ LQD, max
BBHT ≡ 4.5

√
N , (43)

where λ and m are the BBHT-QSA initialization parameters.
Therefore, in order to find the minimum value, all that has to
be done is to solve Eq. (43) in terms of Nmin

QD , yielding:

LCD,min
NDQO = logλ

(
4.5

λ− 1
m

√
N + 1

)
+ 1. (44)

As for the comparisons with the hitherto generated OPF,
all the routes except for the first one will be dominated by the
direct route leading to LOPF, min

NDQO = N − 1 and hence all but
the first routes will be discared. Finally, the lower bound of
the NDQO algorithm’s complexity may be expressed as:

L tot,min
CFE = 4.5

√
N + logλ

(
4.5

λ− 1
m

√
N + 1

)
+ N

= O(N ). (45)

Consequently, the lower bound complexity of the NDQO
algorithm is on the order ofO(N ) providing a quadratic speed-
up down from O(N 2).
As far as the complexity upper bound is concerned, we will

consider the extreme case, where all the routes are optimal.
Naturally, having that many route-solutions in the OPF would
result in excessive an excessive number of CFEs in the sub-
process of the NDQO algorithm, where a particular route-
solution is examined to ascertain whether it is dominated by
the OPF generated. Hence, a restriction should be imposed
on the grounds that this process should not exceed the
BBHT-QSA maximum number of activations. To elaborate
further, since the BBHT-QSA involves in the worst case
4.5
√
N CFEs in the quantum domain, it is reasonable to

impose an upper bound also on the number of the classic
domain CFEs, which may be set to the number of compar-
isons with the generated OPF for maintaining the number
of classic CF evaluations. In our approach this upper bound
was set to the BBHT-QSA time-out of LQD, max

BBHT = 4.5
√
N .

Therefore, if the length of the generated OPF is higher than
or equal to the BBHT-QSA time-out, the examined solution
will not be compared to the generated OPF and a BBHT-QSA
chainwill be invoked directly, since it would involve fewer CF
evaluations. Under this perspective, the number of CD-CFEs
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due to OPF comparisons would be upper bounded by:

LOPF, max
NDQO =

4.5
√
N∑

i=1

i = 2.25
√
N
(
1+ 4.5

√
N
)
, (46)

involves a complexity on the order of O(N ). As for the
BBHT-QSA, an additional restriction should be imposed.
There exists an extreme case, when only zero G applications
are ‘‘chosen’’ to be applied. In this case, since the time-out
is quantified in terms of the number of oracle queries, there
is an extremely low probability that the algorithm will fall
into an infinite loop, where L = 0 is continuously chosen in
Step 1.2. This event would yield an upper bound of infinity.
In fact, the effect of this exceptional case could be mitigated.
Upon reaching the critical stage5 [30] of the algorithm, a valid
solution would be output with a probability equal to 25%.
Hence, it may seem reasonable to exclude from the range the
specific event of ‘‘choosing’’ 0 G applications for avoiding
the infinite loop trap. Additionally, the probability of suc-
cess upon reaching the critical stage will remain unaltered.
Under this perspective, the worst case scenario, as far as
the CD-CFEs of the inner BBHT-QSA iterations are con-
cerned, would be to ‘‘choose’’ L = 0 in Step 1.3, until the
critical stage (condition in Step 1.12) is reached and where
L = 1 is selected in Step 1.13 4.5

√
N − 1 times, or in other

words until we are a single QD-CFE away from the time-out
condition, and at

√
N G applications during the last iteration,

following a greedy approach. Consequently, this operation
will be repeated for each solution yielding a complexity of:

LCD, max
NDQO = N

(
logλ
√
N + 4.5

√
N
)
, (47)

LQD, max
NDQO = N

(
5.5
√
N − 1

)
. (48)

Finally, the upper bound of the NDQO algorithm’s complex-
ity may be quantified by substituting Eqs. (46-48) into (41),
yielding:

L tot,max
CFE = 9.5N

√
N + N logλ

√
N + 9.125N + 2.25

√
N

= O(N
√
N )

= O(N 3/2). (49)

Therefore, the upper boundwould involve a complexity on the
order ofO(N 3/2), which is still lower than that of the classical
BF, which is O(N 2).
The average complexity of the NDQO algorithm E

[
L totCFE

]
is shown in Fig. 8 for SONs consisting of Nnodes = 2 to
Nnodes = 9 nodes. These average complexities are also com-
pared to both the upper and the lower bound of (49) and (45)
respectively, as well as to the respective complexity of the
classical BF algorithm, as they were derived in Eqs. (39)
and (39). The average complexity of the NDQO algorithm
is presented in Fig. 8 with the aid of boxes surrounding the
bold dots and having different aspect ratios in order to portray
its stochastic nature. Explicitly, the upper and lower edges of

5The critical stage will be reached at exactly
⌈
logλ
√
N
⌉
BBHT-QSA

iterations [30].

FIGURE 8. Evolution of complexity of the NDQO algorithm compared to
the respective complexity imposed by the BF method of Alg. 3; the mean
number of CF evaluations is shown along with the upper and the lower
bounds, as they were derived in (45) and (49) and they are compared to
the naive-BF complexity and upper and lower bounds of the BF method
of Alg. 3, based on Eqs. (39) and (40) respectively. Both the NDQO
algorithm and the BF method average complexities are presented using
box plots; the upper and lower bounds of the boxes correspond to the
75% and 25% quartiles respectively. In addition, maximum and minimum
observed complexity values are presented using horizontal lines. The
mean complexity results have been averaged over 108 runs.

the box boundaries at each SON size represent the 25% and
75% quartiles, while the vertical bars correspond to the max-
imum and minimum value of L totCFE found by our simulations.
Observe in Fig. 8 that, naturally, the interquartile distance
will increase as the number of SON nodes increases. In fact,
the increase in the total number of routes would entail a
higher variation in the number of routes belonging to the OPF
yielding a higher variation in the number of BBHT-QSA time-
outs needed in order to check the entire solution space. Addi-
tionally, the average NDQO complexity tends to be closer
to its upper bound for SONs up to Nnodes = 5 nodes. This
could be justified by the fact that, since three optimization
objectives were used in our case based on Eq. (5), the OPF
would be formed by at least three routes, namely one for
the minimum of each objective. Furthermore, the 4-node and
5-node SONs involve N = 5 and N = 16, routes in total
respectively based on Eq. (8), hence then approach the worst
case scenario. However, as the network size is increased, the
ratio of the number of optimal routes over the number of the
total legitimate ones will decay, hence approaching the lower
bound.
Furthermore, it may be observed from from Fig. 8 that

the NDQO tends to require less CFEs than the classi-
cal BF method for SONs having more than Nnode =

6 nodes. Explicitly, the NDQO algorithm becomes more
efficient for realistic practical databases, where a com-
plexity reduction would be achieved by the use of the
BBHT-QSA quantified in terms of the QD-CFEs. This is
achieved, if the BBHT-QSA’s complexity is lower than
that of its respective classical BF counterpart, which
would serially check whether there exists a route-solution
that dominates the examined one, implying that the
minimum required size of a database should satisfy the
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condition of L totBBHT < N , where L totBBHT corresponds to
the complexity imposed by a single BBHT-QSA activation.
Based on Eqs. (42) as well as (44) for the lower bound and on
Eqs. (48) as well as (47) for the upper bound, the respective
complexities of a single BBHT-QSA activation will be equal
to:

L tot,min
BBHT = 4.5

√
N + logλ

(
4.5

λ− 1
m

√
N + 1

)
+ 1, (50)

L tot,max
BBHT = 10

√
N + logλ

√
N − 1. (51)

Therefore, based on Eqs. (50) and (51), the minimum
database required size for achieving a complexity reduction
would be N best

min > 39 and Nworst
min > 123 routes for the

best- and theworst-case scenarios, respectively. In our routing
application, this condition becomes valid for the best-case
scenario in SONs having six or more nodes, where the total
number of routes is N = 656, whereas in the 4-node and
5-node SONs it would be equal to N = 5 and N = 16 routes,
respectively, according to Eq. (8). Hence, we observe in Fig. 8
that some complexity reduction is offered by theNDQO lower
bound for SONs consisting of seven nodes.

Moreover, as far as the complexity upper bound is con-
cerned, the condition for achieving a complexity reduction by
the BBHT-QSA is satisfied for SONs having seven or more
nodes. This may be verified by the change in trend of the
upper bound complexities observed in Fig. 8 for the SONs
consisting of Nnodes = 7 nodes. Explicitly, the upper bound
of the NDQO algorithm is seen to impose a lower complexity
quantified in terms of CFEs compared to the BF and the naive-
BF methods. Furthermore, we observe in Fig. 8 that the BF
method’s complexity upper bound imposes a higher number
of CFEs compared to the naive-BF one. As for the NDQO
lower bound, where the only optimal route is the direct one,
we will achieve a better performance with respect to the
BF method for SONs having more than four nodes.

Additionally, as for the average complexity, observe in
Fig. 8 that the same average complexity is imposed for both
the average NDQO algorithm and the BF method for SONs
consisting of six nodes. This is justified by considering the
fact that even though a beneficial complexity reduction is
offered by the BBHT-QSA chains, there is a computational
overhead which is imposed by padding our database so that it
has a size equal to a power of 2. Hence, the NDQO algorithm
has a slightly higher average complexity than the BF method.
On the other hand, a substantial complexity reduction of about
50.5% is offered on average for a 7-node SON, while for the
8-node and 9-node SONs we have a complexity reduction
of about 78.6% and 89% respectively, and it increases as
the SON becomes larger. This complexity reduction may be
translated into a routing-latency reduction of 202%, 466%
and 908% for SONs consisting of seven, eight and nine nodes,
respectively.

6A database of N = 128 entries is used for the 6-node SON, since the
database length has to be explicitly a power of 2 due to the binary nature of
qubits.

Last but not least, a substantial complexity reduction is
offered by the NDQO algorithm compared to the naive-BF
method for SONs consisting of five ormore nodes. According
to Fig. 8, a complexity reduction of about an order of mag-
nitude is offered by the NDQO algorithm for 6-node SONs,
which is increased to several orders of magnitude for SONs
supporting more than six nodes.

B. NDQO COMPUTATIONAL ACCURACY
Before delving into the related NDQO accuracy discussions,
the three metrics of computational accuracy that were used
should be defined. To begin with, the optimization accuracy
may be quantified by the distance from the OPF, which is
equal to the average Pareto distance E[Pd (x)] of the OPF
exported from the true OPF. Assuming that the exported OPF
routes form a set S0 having a length of |S0|, the average Pareto
Distance E[Pd (x)] from the OPF becomes:

E[Pd (x)] =
∑
x∈S0

Pd (x)
|S0|

. (52)

Its physical interpretation is given by the average probability
of a route belonging to the hitherto generated OPF being
dominated by the rest of the legitimate routes. Inherently, if
the generated OPF consists exclusively of routes of the true
OPF, which is generated by the BF method, the value of this
metric would be equal to zero. On the other hand, should the
OPF consist of suboptimal points, its value will be bounded
by the range (0, 1]. Consequently, it becomes plausible that
as its value decays and tends to zero, the generated OPF
approaches the true OPF.
Additionally, the accuracy may also be quantified in terms

of the average normalized euclidean distance between the
exported routes, that are erroneously included in the exported
OPF, and the specific routes of the true OPF that are closer
to the particular erroneous one and they dominate them at the
same time. Assuming an exported route xi from the OPF and
another xj, which corresponds to its counterpart from the true
OPF, the related error function e(xi) can be formulated as:

e(xi) =
1
√
NUF

√√√√NUF∑
k=1

(
fk (xi)− fk (xj)

fk (xi)

)2

, (53)

where NUF is the total number of UFs. From this perspective,
the average error E[e(x)] would be equal to:

E[e(x)] =
∑
x∈S0

e(x)
|S0|

. (54)

This metric has the advantage that its value becomes inde-
pendent from the distribution of the routes within the higher-
rank Pareto Fronts. This is desirable, because there may
exist route-solutions, which would potentially belong to a
suboptimum PF, which is pretty close to the OPF, while their
solution vectors are rather distant from those of their OPF
counterparts. However, its value in Eq. (54) would inherently
depend on the actual values of the route solution vector.
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This is in contrast to the average Pareto distance. Explicitly,
the value of Eq. (54) would be bounded by the range [0, 1].
The third metric considered is what we refer as theOptimal

Pareto Front Completion C , which is defined as follows.
Assuming that the optimization process has generated anOPF
of length equal to |OPF | and that the number of erroneous
points not belonging to the true OPF is equal to |OPF |e, the
Optimal Pareto Front Completion C may be defined as:

C =
|OPF | − |OPF |e
|TOPF |

, (55)

where |TOPF | is the length7 of the TOPF. Naturally, this
metric is bounded to the range [0, 1] and should the entire
true OPF be successfully generated it will be equal to unity.

Having defined these metrics, let us now carry out a
comparative case study: we will evaluate the OPF gener-
ated by the NSGA-II, the ACO and the NDQO algorithms.
For the NSGA-II and the ACO the evaluation of the hith-
erto generated OPF will be provided at the end of each
generation process. For the NDQO algorithm, there is no
notion of generations, hence the evaluation process will be
invoked each time a route is appended to the OPF (right after
Step 2.13). However, since the total number of CFEs required
by the BBHT-QSA chains is a rather stochastic process upper
bounded by Lmax

BBHT CFEs as defined in Eq. (51), the evaluation
process will be activated at different L totCFE values. We will
assume that between these evaluation processes the metrics
remain constant, which results in a sum of step functions for
each simulation.We can then extract a continuous distribution
of these metrics versus the number of CFEs by performing an
averaging operation.

The accuracy metrics are shown in Fig. 9 a 7-node SON.
As far as the average Pareto distance E[Pd (x)] is concerned,
it becomes clear from Fig. 9(a) that the NDQO algorithm
exhibits a far better performance than the NSGA-II and the
ACO algorithm. Explicitly, observe in Fig. 9(a) that for the
7-node SON the NDQO performs optimally for 502 CFEs
and then the average Pareto distance E[Pd (x)] would be
about 10−8. The order of these values suggests that our
NDQO algorithm attains a near-optimal performance com-
pared to the BF method, while its complexity is a about
an order of magnitude lower than the complexity of the BF
method. Moreover, according to Fig. 9(a), the computational
accuracy in terms of the average Pareto distance is several
orders of magnitude lower than that of both the NSGA-II
and of the ACO algorithm. It should be noted that the asso-
ciated errors of the NDQO algorithm arise from the inclu-
sion of suboptimal route-solutions into OPF. To elaborate
further, the BBHT-QSA involves a small arbitrary error [30],
which would imply that there is a slight possibility that a
BBHT-QSA time-out will result in a suboptimal route owing
to it inability to find another dominating route, which
results in misinterpreting it as the optimal one. However,

7The length of a PFmay be defined as the number of route-solution, which
it consists of.

FIGURE 9. Perfomance comparison between the NDQO and the
benchmarking State-of-the-Art algorithms NSGA-II and ACO for 7-node
SONs in terms of the Average Pareto Distance E [Pd (x)] (a), Average Error
E [e(x)] (b) and Optimal Pareto Front Completion E [C ] (c). For the sake of
fairness, the comparison is made for the number of CFEs for all the
algorithms examined. For both the NSGA-II and the ACO, the number of
agents has been chosen equal to the number of the generations, which, in
turn, is equal to the cubic root of the maximum NDQO complexity.
Therefore, they will be set equal to 19. The maximum observed
complexity of the BF method is equal to 13058 CFEs, as it may be seen in
Fig 8. The results have been averaged over 108 runs.

the inclusion of the entire true OPF route set is guaranteed,
because all the routes will be explicitly considered. This
leads to a generated OPF which consists of all the true
OPF routes along with with some low-probability suboptimal
ones.
This trend is shown in Fig. 9(c) in terms of their Opti-

mal Pareto Front Completion C . To elaborate further, it
may be observed that although the NSGA-II and the ACO
algorithm fail to converge to unity, the NDQO algorithm
succeeds in exporting all the routes consisting the true
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OPF after 5575 CFEs, yielding a 234.22% and 1906.30%
improvement for our 7-node SON compared to the BF
and the naive-BF methods, respectively. This gain is fur-
ther increased the number of nodes increases. This prop-
erty of the NDQO algorithm is of great importance, since
it enables the reconstruction of the OPF by invoking a
classical NDS for discarding the erroneous route-solutions.
Nevertheless, this operation would require additional CFEs.
This action cannot be invoked for our benchmarking algo-
rithms, since their completeness does not converge to unity
and, consequently, they will fail to export all the tue OPF
route-solutions.

As far as the average error E[e(x)] is concerned, iden-
tical trends to these seen for the average Pareto distance
are observed in Fig. 9(b); however, the value of this met-
ric is higher than that of the E[Pd (x)]. Quantitatively, they
are on the order of 10−5 for our 7-node SON. This error
is four orders of magnitude lower than the the respec-
tive error of both the NSGA-II and the ACO algorithm.
Explicitly, our proposed algorithm has a near-optimal accu-
racy, since each generated OPF route would differ from the
closest true OPF, which would potentially dominate it, by
about 0.001%.

VI. CONCLUSIONS
We have proposed an optimal algorithm for multi-objective
routing in SONs using Pareto Optimality. The theoretical
upper and lower complexity bounds of the NDQO algo-
rithm have been analytically derived, yielding a complex-
ity between O(N )) and O(N

√
N ). This implies a significant

CFE reduction compared to the classical BF method, which
exhibits a complexity on the order of O(N 2) in the worst-
case scenario. Naturally, this complexity reduction becomes
more significant, as the number of nodes increases. As far
as its accuracy is concerned, we have demonstrated that the
NDQO algorithm exhibits a near-optimal performance whilst
attaining several orders of magnitude better accuracy than
the state-of-the-art classical evolutionary NSGA-II and ACO
algorithms.
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