Construction of Quantum LDPC Codes From Classical Row-Circulant QC-LDPCs

Zunaira Babar, Panagiotis Botsinis, Dimitrios Alanis, Soon Xin Ng, and Lajos Hanzo

Abstract—Classical row-circulant quasi-cyclic (QC) low-density parity check (LDPC) matrices are known to generate efficient high-rate short and moderate-length QC-LDPC codes, while the comparable random structures exhibit numerous short cycles of length-4. Therefore, we conceive a general formalism for constructing nondual-containing Calderbank–Shor–Steane (CSS)-type quantum low-density parity check (QLDPC) codes from arbitrary classical row-circulant QC-LDPC matrices. We apply our proposed formalism to the classical balanced incomplete block design (BIBD)-based row-circulant QC-LDPC codes for demonstrating that our designed codes outperform their dual-containing CSS-type counterparts as well as the entanglement-assisted (EA)-QLDPC codes.

Index Terms—Quantum error correction, low density parity check codes, iterative decoding.

I. INTRODUCTION

Quantum-domain parallel processing provides a plausible solution for achieving full-search based multi-stream detection [1], which is vital for future gigabit-wireless systems. The peculiar laws of quantum mechanics have also spurred interest in the absolutely-secure quantum-based communication systems [2], [3]. Unfortunately, quantum decoherence imposes a hitherto insurmountable impairment on the practical implementation of quantum computation as well as on quantum communication systems. More specifically, decoherence perturbs the fragile quantum states, which may be characterized either by bit-flips or phase-flips - or in fact possibly both - inflicted on the constituent qubits. Analogously to the classical error correction codes, these detrimental effects of decoherence may be overcome with the aid of efficient quantum error correction codes (QECCs).

Meritorious families of QECCs can be constructed from the known classical binary as well as quaternary codes by invoking the stabilizer formalism [4]. In particular, the astounding performance of the classical low density parity check (LDPC) codes achieved at an affordable decoding complexity has inspired the community to construct their stabilizer-based quantum counterparts, i.e. quantum low density parity check (QLDPC) codes. In this letter, we focus our attention on the construction of QLDPC codes from the family of classical row-circulant quasi-cyclic (QC)-LDPC matrices, which are known to generate efficient high-rate short and moderate-length QC-LDPC codes [5]–[7]. The balanced incomplete block design (BIBD) [6] and the cyclic difference family based LDPC code structures [7] are particularly significant in this respect. The resultant classical codes have at least a girth of 6, while the randomly constructed LDPC codes of comparable code length have numerous cycles of length-4, which impair the performance of the associated decoding algorithm.

In [8], Mackay et al. presented generalized methods, namely ‘bicycle’ and ‘unicycle’ codes, for constructing dual-containing Calderbank–Shor–Steane (CSS)-type QLDPC codes from arbitrary classical LDPCs. Later Djordjevic [9] extended these ideas for constructing the family of BIBD-based high-rate QLDPC codes. Unfortunately, these dual-containing CSS structures have numerous unavoidable short cycles of length-4. Inspired by the concept of entanglement-assisted (EA)-QLDPC codes [10], which do not exhibit the unavoidable length-4 cycles in the binary formalism, Djordjevic [11] conceived the EA counterparts of the BIBD-based designs of [9]. The resultant EA-QLDPC codes required a single pre-shared entangled qubit (ebit), which constitutes a valuable resource, because maintaining a noiseless entangled state is not a trivial task. Furthermore, both the dual-containing CSS codes as well as the EA-QLDPC codes of [9] constitute a class of homogeneous CSS codes, which have numerous short cycles in the Galois field GF(4) formalism. In contrast to these developments, we propose a general formalism for constructing non-dual-containing CSS-type QLDPC codes from arbitrary classical row-circulant QC-LDPC matrices. The proposed construction brings with it the following plausible benefits:

- Since the constructed codes are non-dual-containing, they do not suffer from having unavoidable short cycles in the binary formalism and have fewer short cycles in the GF(4) formalism than their homogeneous counterparts.
- Pre-shared ebits are not required.

We apply our proposed methodology to the family of classical BIBD-based row-circulant QC-LDPC codes for evaluating the performance of the resultant QLDPC codes.

This letter is organized as follows. In Section II, we review the BIBD-based classical row-circulant QC-LDPC codes, while the proposed construction method is presented in Section III. Our results are discussed in Section IV, while our conclusions are offered in Section V.
II. CLASSICAL BIBD-BASED ROW-CIRCULANT QC-LDPCs

The BIBD constructions proposed by Bose [12] constitute the family of classical row-circulant QC-LDPC codes. A BIBD characterized by the parameters \((v, b, r, k, \lambda)\) divides all the \(v\) elements of a set \(V\) into \(b\) blocks of size \(k\) so that each pair of elements occurs in exactly \(\lambda\) of the blocks, whilst every element occurs in exactly \(r\) blocks and the number of elements \(k\) in each block is small as compared to the size \(v\) of the set \(V\). Based on this notation, Bose proposed the following BIBD [12] constructions, which are suitable for conceiving the row-circulant QC-LDPCs [6].

1) Type-I Bose BIBDs: Given that \(t\) is a positive integer so that \((12t + 1)\) is a power of a prime, then there exists a prime Galois field \(GF(12t + 1)\) having elements ranging from 0 to 12t, which constitute the finite set \(V\) of the BIBD. Furthermore, let \(\alpha\) be the primitive element of \(GF(12t + 1)\), which satisfies the following condition:

\[
\alpha^{4t} - 1 = \alpha^c,
\]

where \(c\) is an integer in the range \(0 < c < 12t + 1\). Based on this notation, Bose [12] proposed that there exists a BIBD having the parameters \(v = (12t + 1), b = t(12t + 1), r = 4t, k = 4\) and \(\lambda = 1\), whose \(t\) base blocks are given by:

\[
B_i = \begin{Bmatrix}
\alpha^{2i}, \alpha^{2i+4t}, \alpha^{2i+8t}, \alpha^{2i+12t}, \alpha^{2i+16t}\end{Bmatrix},
\]

for \(0 \leq i < t\). We can then proceed by creating \((12t + 1)\) blocks from the base block \(B_i\) by adding each element of the Galois field to each element of the base block, hence creating a total of \(t(12t + 1)\) blocks. The incidence matrix of this BIBD is a \((12t + 1) \times t(12t + 1)\) matrix, which is as follows:

\[
H_{\text{BIBD}} = (H_0, H_1, \ldots, H_{t-1}),
\]

where the \(i\)th submatrix \(H_i\) is a \((12t + 1) \times (12t + 1)\)-element circulant matrix corresponding to the base block \(B_i\). Furthermore, the matrix \(H_{\text{BIBD}}\) has a row weight of \(4t\) and a column weight of 4. Since the incidence matrix of Eq. (3) has the required properties of a QC-LDPC matrix, a subarray of \(H_{\text{BIBD}}\), having \(m\) submatrices for \(0 < m < t\), can be used for constructing a classical row-circulant \((12t + 1) \times m(12t + 1)\)-element QC-LDPC matrix. The minimum distance of the resultant LDPC code is at least 5 and the coding rate is approximately \((m - 1)/m\).

2) Type-II Bose BIBDs: Let \(t\) be a positive integer so that \((20t + 1)\) is a power of a prime, then there exists a prime Galois field \(GF(20t + 1)\) having elements ranging from 0 to 20t, which constitute the finite set \(V\) of the BIBD. In contrast to Eq. (1), the primitive element \(\alpha\) of \(GF(20t + 1)\) has to satisfy the condition:

\[
\alpha^{4t} + 1 = \alpha^c,
\]

where \(c\) is an integer in the range \(0 < c < 20t + 1\). Bose [12] proposed that we can construct a BIBD having the parameters \(v = (20t + 1), b = t(20t + 1), r = 5t, k = 5\) and \(\lambda = 1\), whose \(t\) base blocks are given by:

\[
B_i = \begin{Bmatrix}
\alpha^{2i}, \alpha^{2i+4t}, \alpha^{2i+8t}, \alpha^{2i+12t}, \alpha^{2i+16t}\end{Bmatrix},
\]

for \(0 \leq i < t\). Similar to the Type-I design, \((20t + 1)\) blocks can be constructed for each base block \(B_i\). The incidence matrix of the resultant BIBD is a \((20t + 1) \times t(20t + 1)\)-element matrix, which is formed by \(t\) submatrices, as previously shown in Eq. (3). For the Type-II design, the matrix \(H_{\text{BIBD}}\) has a row weight of \(5t\) and a column weight of 5. Again, we can construct a row-circulant QC-LDPC of size \((20t + 1) \times m(20t + 1)\) by using a subarray of \(H_{\text{BIBD}}\).

III. PROPOSED QLDPC CODE CONSTRUCTION

The family of CSS codes, invented independently by Calderbank and Shor [13] as well as by Steane [14], constitute a special class of stabilizer codes, which facilitate the design of quantum codes from a pair of classical binary codes. More explicitly, an \([n, k_1 - k_2]\) CSS code, which is capable of correcting \((d - 1)/2\) bit-flips as well as phase-flips, can be constructed from the classical linear block codes \(C_1(n, k_1)\) and \(C_2(n, k_2)\), provided that we have \(C_2 \subset C_1\), and that \(C_1\) as well as the dual of \(C_2\), i.e. \(C_2^\perp\), have a minimum Hamming distance of \(d\). If \(H_x\) and \(H_z\) are the parity check matrices (PCMs) of \(C_1\) and \(C_2^\perp\), respectively, then the resultant CSS code assumes the following form [8]:

\[
\begin{pmatrix}
H_z & 0 \\
0 & H_x
\end{pmatrix}.
\]

More explicitly, \(H_z\) is used for bit-flip correction, while \(H_x\) corrects the phase-flips. Furthermore, since \(C_2 \subset C_1\), the PCMs \(H_z\) and \(H_x\) must satisfy the symplectic criterion, which may be defined as:

\[
H_z H_x^T = 0,
\]

When \(H_z = H_x\), the constraint of Eq. (7) reduces to \(H_z H_x^T = 0\), which is referred to as a ‘dual-containing’ CSS code. In the context of the QLDPC codes, this dual-containing structure results in numerous unavoidable short cycles in the associated Tanner graph, which in turn degrade the performance of the decoding algorithm. Furthermore, if the symplectic criterion is not intrinsically satisfied, then pre-shared ebits may be used. The resultant codes constitute the family of EA codes.

We may also view the PCM of Eq. (6) in the GF(4) formalism as [15]:

\[
\hat{H} = \begin{pmatrix}
\omega H_z \\
H_x
\end{pmatrix},
\]

where \([0, 1, \omega, \bar{\omega}] \in GF(4)\). When both \(H_z\) and \(H_x\) are the same, as in the family of dual-containing CSS and EA-QLDPC codes\(^1\), we may refer to them as homogeneous CSS codes. The \((m \times n)\)-element\(^2\) PCM \(\hat{H}\) of a homogeneous code exhibits numerous short cycles in its Tanner graph, because the \(i\)th and \((i + m/2)\)th rows completely overlap, i.e. they have non-zero values at the same indices. These short cycles, resulting from

\(^1\)To the best of our knowledge, all the CSS-type EA-QLDPC codes proposed to date are homogeneous.

\(^2\)Please note that \(m\) denotes the number of rows of the PCM \(\hat{H}\), while \(m\) represents the number of submatrices of \(H_{\text{BIBD}}\) used in an LDPC matrix.
the global homogeneous code structure, appear in addition to the short cycles within the local structures of the PCMs H_{γ} and H_x, or, equivalently, in addition to the short cycles observed in the binary formalism of Eq. (6). It is pertinent to mention here that short cycles in the GF(4) formalism are a by-product of the symplectic criterion of Eq. (7), which cannot be completely eliminated even if both H_{γ} and H_x have a girth of 6 in the binary formalism [16]. However, the number of short cycles may be reduced by adopting a non-dual-containing (or equivalently non-homogeneous) design, having $H_x \neq H_{\gamma}$.

In contrast to both the dual-containing and to the EA structures, which suffer from numerous unavoidable short cycles, non-dual-containing codes may be designed, so that they have at least a girth of 6 in the binary formalism of Eq. (6) and fewer short cycles in the GF(4) formalism of Eq. (8) by virtue of their non-homogeneous nature. Therefore, we focus our attention on the non-dual-containing structure for constructing QLDPC codes from the pair of classical row-circulant QC-LDPC matrices H_{γ} and H_x, each having a girth of at least 6. Let us consider a row-circulant QC-LDPC matrix H_x which is a subarray of H_{rand} of Eq. (3), assuming that it consists of an even number of square circulant submatrices. Inspired by the non-dual-containing CSS-type QC-QLDPC codes of [17], we propose that if we formulate H_{γ} and H_x as follows:

$$H_{\gamma} = H,
H_x = \left(H^T_{\gamma}, H^T_{\gamma+1}, \ldots, H^T_{m-1}, H^T_0, H^T_1, \ldots, H^T_{\frac{m}{2}-1} \right),$$

(9)

where m is even, then the resultant CSS code satisfies the symplectic criterion of $H_{\gamma}H^T_x = 0$. This may be readily shown as follows:

$$\begin{pmatrix}
H^T_{\gamma} \\
\vdots \\
H^T_{m-1} \\
H^T_0 \\
\vdots \\
H^T_{\frac{m}{2}-1}
\end{pmatrix} = H_0 H^{\frac{m}{2}} + H_1 H^{\frac{m}{2}+1} + \cdots + H^{\frac{m}{2}-1} H_{m-1}
+ H^{\frac{m}{2}} H_0 + H^{\frac{m}{2}+1} H_1 + \cdots + H_{m-1} H^{\frac{m}{2}-1}.
$$

(10)

Since the multiplication of circulant matrices is commutative, the two parts of Eq. (10), i.e. $(H_0 H^{\frac{m}{2}} + H_1 H^{\frac{m}{2}+1} + \cdots + H^{\frac{m}{2}-1} H_{m-1})$ and $(H^{\frac{m}{2}} H_0 + H^{\frac{m}{2}+1} H_1 + \cdots + H_{m-1} H^{\frac{m}{2}-1})$ are equal. Hence, the modulo 2 addition of Eq. (10) yields 0; thus, satisfying the symplectic criterion. Furthermore, the resultant quantum coding rate is approximately $(m-2)/m$.

Let us now scrutinize the girth of the PCMs H_{γ} and H_x in the binary formalism. The constituent $(l \times l)$-element circulant submatrix H_i of Eq. (3), which has a row weight and a column weight of γ, is uniquely and unambiguously characterized by the polynomial $h_i(x) = x^{d_{i,0}} + x^{d_{i,1}} + \cdots + x^{d_{i,\gamma-1}}$, where $d_{i,j}$ denotes the column index of the jth non-zero entry in the first row of H_i. For example, if the first row of H_i has a 1 at index 0, 5 and 8, then the polynomial is given by $1 + x^5 + x^8$. The PCM H has a girth of at least 6 if every difference $(d_{i,j} - d_{i,j+1})$ modulo l, for $0 \leq i \leq (m-1)$ and $0 \leq j_1, j_2 \leq (\gamma-1)$, is a unique integer between 0 and $(l-1)$. Furthermore, the polynomial transpose is defined as $h_i(x)^T = x^{l-d_{i,1}} + x^{l-d_{i,2}} + \cdots + x^{l-d_{i,\gamma-1}}$, which would yield the same differences as $h_i(x)$. Hence, since in Eq. (9) we are taking the transpose of all the sub-matrices H_i and just permuting their location, the differences $(d_{i,j} - d_{i,j+1})$ for H_x and H_{γ} are the same and consequently they both have the same girth.

IV. RESULTS AND DISCUSSIONS

To evaluate the performance of our proposed design, we considered the Type-I design of Eq. (2) having $t = 15$ and the primitive root $\alpha = 2$. Since our design requires m to be even, we arbitrarily chose $m = 14$, which yields a [2534, 2172] QLDPC code having a coding rate of 0.857. We compare our design both to an equivalent bicycle QC-LDPC code, whose PCM is given by:

$$H_x = H_{\gamma} = [H_0, H_1, \ldots, H^{\frac{m}{2}-1}, H^T_0, H^T_1, \ldots, H^T_{\frac{m}{2}-1}].$$

(11)

and to a comparable EA-QLDPC, which requires a single ebit and has:

$$H_x = H_{\gamma} = [H_0, H_1, \ldots, H_{m-1}].$$

(12)

Fig. 1 compares the word error rate (WER) as well as the qubit error rate (QBER) performance of our QLDPC code (labeled ‘Proposed’) with the bicycle code of Eq. (11) (labeled ‘BiC’) and the EA-QLDPC code of Eq. (12) (labeled ‘EA’) over a quantum depolarizing channel.

1Following the usual convention [6], we assume that each row of H_i is a cyclic right-shift of the row above it. However, if the direction of cyclic shift is reversed, then the resulting PCM H_i is symmetric and therefore $H_i^T = H_i$.
of 100 iterations. Each decoding algorithm iterates until either a valid error is found or the maximum number of iterations is reached. Furthermore, the WER metric here counts the detected as well as the undetected block errors. We may observe in Fig. 1 that the performance of the designed QLDPC code is exactly the same as that of the EA-QLDPC code for binary decoding, while that of the bicycle QLDPC code is slightly worse, which is due to the presence of length-4 cycles. By contrast, when non-binary decoding is invoked, then the performance of our proposed design improves significantly as compared to both the bicycle code as well as the EA-QLDPC. More specifically, the bicycle code achieves a WER of 10^{-4} at $p = 0.00055$, which increases to $p = 0.0007$ when an EA-QLDPC is used. By contrast, our construction exhibits a WER of 10^{-3} at $p = 0.00215$, which is almost three times better than that of the EA-QLDPC. As discussed in Section III, unlike the bicycle and EA-QLDPC codes, which have numerous short cycles in their GF(4) formalism, non-homogeneous structures have fewer short cycles in the GF(4) formalism. Consequently, our QLDPC outperforms its comparable bicycle and EA counterparts, when non-binary decoding is invoked.

As an another example, we construct a QLDPC code using the Type-II design of Eq. (2) having $t = 14$ and the primitive root $\alpha = 3$. The resultant QLDPC code has dimensions of [3934, 3372] and a coding rate of 0.857, when $m = t$. Fig. 2 compares the performance of our non-dual-containing [3934, 3372] QLDPC code both to the comparable bicycle code and to the EA-QLDPC codes. It may be observed that the performance curves of Fig. 2 exhibit the same trend as those of Fig. 1.

V. CONCLUSIONS

In this letter, we have conceived a generalized formalism for constructing non-dual-containing CSS-type QLDPC codes from the known classical row-circulant high-rate QC-LDPC codes, which operate efficiently at short and moderate lengths. Since our design is merely based on the transpose and column permutation operations, the characteristics of the underlying classical LDPC matrix are not compromised. In particular, we applied our formalism to the BIBD-based classical LDPCs for evaluating their performance. Furthermore, we invoked both binary as well as non-binary decoding. It was demonstrated that our QLDPC codes have the same performance as the EA-QLDPC codes, when binary decoding is invoked, while they outperform their EA counterparts in case of non-binary decoding. As compared to a dual-containing code, our QLDPC codes exhibit a superior performance both for binary as well as for non-binary decoding.

REFERENCES

