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Construction of Quantum LDPC Codes From Classical
Row-Circulant QC-LDPCs

Zunaira Babar, Panagiotis Botsinis, Dimitrios Alanis, Soon Xin Ng, and Lajos Hanzo

Abstract—Classical row-circulant quasi-cyclic (QC) low-density
parity check (LDPC) matrices are known to generate efficient
high-rate short and moderate-length QC-LDPC codes, while the
comparable random structures exhibit numerous short cycles of
length-4. Therefore, we conceive a general formalism for con-
structing nondual-containing Calderbank–Shor–Steane (CSS)-
type quantum low-density parity check (QLDPC) codes from
arbitrary classical row-circulant QC-LDPC matrices. We apply
our proposed formalism to the classical balanced incomplete block
design (BIBD)-based row-circulant QC-LDPC codes for demon-
strating that our designed codes outperform their dual-containing
CSS-type counterparts as well as the entanglement-assisted (EA)-
QLDPC codes.

Index Terms—Quantum error correction, low density parity
check codes, iterative decoding.

I. INTRODUCTION

Q UANTUM-domain parallel processing provides a
plausible solution for achieving full-search based

multi-stream detection [1], which is vital for future gigabit-
wireless systems. The peculiar laws of quantum mechanics
have also spurred interest in the absolutely-secure quantum-
based communication systems [2], [3]. Unfortunately, quantum
decoherence imposes a hitherto insurmountable impairment
on the practical implementation of quantum computation as
well as on quantum communication systems. More specifically,
decoherence perturbs the fragile quantum states, which may
be characterized either by bit-flips or phase-flips - or in fact
possibly both - inflicted on the constituent qubits. Analogously
to the classical error correction codes, these detrimental effects
of decoherence may be overcome with the aid of efficient
quantum error correction codes (QECCs).

Meritorious families of QECCs can be constructed from
the known classical binary as well as quaternary codes by
invoking the stabilizer formalism [4]. In particular, the astound-
ing performance of the classical low density parity check
(LDPC) codes achieved at an affordable decoding complexity
has inspired the community to construct their stabilizer-based
quantum counterparts, i.e. quantum low density parity check

Manuscript received June 22, 2015; accepted October 20, 2015. Date of
publication December 9, 2015; date of current version January 7, 2016. The
financial support of the European Research Council’s Advance Fellow Grant
and that of the EPSRC UK is gratefully acknowledged. The associate editor
coordinating the review of this paper and approving it for publication was H.
Saeedi.

The authors are with the School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
zb2g11@ecs.soton.ac.uk; pb8g10@ecs.soton.ac.uk; da4g11@ecs.soton.ac.uk;
sxn@ecs.soton.ac.uk; lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/LCOMM.2015.2494020

(QLDPC) codes. In this letter, we focus our attention on
the construction of QLDPC codes from the family of clas-
sical row-circulant quasi-cyclic (QC)-LDPC matrices, which
are known to generate efficient high-rate short and moderate-
length QC-LDPC codes [5]–[7]. The balanced incomplete
block design (BIBD) [6] and the cyclic difference family
based LDPC code structures [7] are particularly significant
in this respect. The resultant classical codes have at least
a girth of 6, while the randomly constructed LDPC codes
of comparable code length have numerous cycles of length
4, which impair the performance of the associated decoding
algorithm.

In [8], Mackay et al. presented generalized methods, namely
‘bicycle’ and ‘unicycle’ codes, for constructing dual-containing
Calderbank-Shor-Steane (CSS)-type QLDPC codes from arbi-
trary classical LDPCs. Later Djordjevic [9] extended these
ideas for constructing the family of BIBD-based high-rate
QLDPC codes. Unfortunately, these dual-containing CSS struc-
tures have numerous unavoidable short cycles of length-
4. Inspired by the concept of entanglement-assisted (EA)-
QLDPC codes [10], which do not exhibit the unavoidable
length-4 cycles in the binary formalism, Djordjevic [11] con-
ceived the EA counterparts of the BIBD-based designs of
[9]. The resultant EA-QLDPC codes required a single pre-
shared entangled qubit (ebit), which constitutes a valuable
resource, because maintaining a noiseless entangled state is
not a trivial task. Furthermore, both the dual-containing CSS
codes as well as the EA-QLDPC codes of [9] constitute
a class of homogeneous CSS codes, which have numerous
short cycles in the Galois field GF(4) formalism. In con-
trast to these developments, we propose a general formalism
for constructing non-dual-containing CSS-type QLDPC codes
from arbitrary classical row-circulant QC-LDPC matrices. The
proposed construction brings with it the following plausible
benefits:

• Since the constructed codes are non-dual-containing, they
do not suffer from having unavoidable short cycles in the
binary formalism and have fewer short cycles in the GF(4)
formalism than their homogeneous counterparts.

• Pre-shared ebits are not required.
We apply our proposed methodology to the family of classical

BIBD-based row-circulant QC-LDPC codes for evaluating the
performance of the resultant QLDPC codes.

This letter is organized as follows. In Section II, we review
the BIBD-based classical row-circulant QC-LDPC codes, while
the proposed construction method is presented in Section III.
Our results are discussed in Section IV, while our conclusions
are offered in Section V.
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II. CLASSICAL BIBD-BASED ROW-CIRCULANT

QC-LDPCS

The BIBD constructions proposed by Bose [12] constitute
the family of classical row-circulant QC-LDPC codes. A BIBD
characterized by the parameters (v, b, r , k, λ) divides all the v
elements of a set V into b blocks of size k so that each pair
of elements occurs in exactly λ of the blocks, whilst every ele-
ment occurs in exactly r blocks and the number of elements k in
each block is small as compared to the size v of the set V . Based
on this notation, Bose proposed the following BIBD [12] con-
structions, which are suitable for conceiving the row-circulant
QC-LDPCs [6].

1) Type-I Bose BIBDs: Given that t is a positive integer so
that (12t + 1) is a power of a prime, then there exists a prime
Galois field GF(12t + 1) having elements ranging from 0 to
12t, which constitute the finite set V of the BIBD. Furthermore,
let α be the primitive element of GF(12t + 1), which satisfies
the following condition:

α4t − 1 = αc, (1)

where c is an integer in the range 0 < c < 12t + 1. Based
on this notation, Bose [12] proposed that there exists a BIBD
having the parameters v = (12t + 1), b = t(12t + 1), r = 4t,
k = 4 and λ = 1, whose t base blocks are given by:

Bi = {0, α2i , α2i+4t, α2i+8t}, (2)

for 0 ≤ i < t. We can then proceed by creating (12t + 1)
blocks from the base block Bi by adding each element of the
Galois field to each element of the base block, hence creating a
total of t(12t + 1) blocks. The incidence matrix of this BIBD
is a (12t + 1) × t(12t + 1) matrix, which is as follows:

HBIBD = (H0, H1, . . . , Ht−1) , (3)

where the i th submatrix Hi is a (12t + 1) × (12t + 1)-
element circulant matrix corresponding to the base block Bi .
Furthermore, the matrix HBIBD has a row weight of 4t and a col-
umn weight of 4. Since the incidence matrix of Eq. (3) has the
required properties of a QC-LDPC matrix, a subarray of HBIBD,
having m submatrices for 0 < m < t, can be used for construct-
ing a classical row-circulant (12t + 1) × m(12t + 1)-element
QC-LDPC matrix. The minimum distance of the resultant
LDPC code is at least 5 and the coding rate is approximately
(m − 1)/m.

2) Type-II Bose BIBDs: Let t be a positive integer so that
(20t + 1) is a power of a prime, then there exists a prime
Galois field GF(20t + 1) having elements ranging from 0 to
20t, which constitute the finite set V of the BIBD. In contrast
to Eq. (1), the primitive element α of GF(20t + 1) has to satisfy
the condition:

α4t + 1 = αc, (4)

where c is an integer in the range 0 < c < 20t + 1. Bose [12]
proposed that we can construct a BIBD having the parameters
of v = (20t + 1), b = t(20t + 1), r = 5t, k = 5 and λ = 1,
whose t base blocks are given by:

Bi = {α2i , α2i+4t, α2i+8t, α2i+12t, α2i+16t}, (5)

for 0 ≤ i < t. Similar to the Type-I design, (12t + 1) blocks
can be constructed for each base block Bi . The incidence matrix
of the resultant BIBD is a (20t + 1) × t(20t + 1)-element
matrix, which is formed by t submatrices, as previously shown
in Eq. (3). For the Type-II design, the matrix HBIBD has a row
weight of 5t and a column weight of 5. Again, we can construct
a row-circulant QC-LDPC of size (20t + 1) × m(20t + 1) by
using a subarray of HBIBD.

III. PROPOSED QLDPC CODE CONSTRUCTION

The family of CSS codes, invented independently by
Calderbank and Shor [13] as well as by Steane [14], con-
stitute a special class of stabilizer codes, which facilitate the
design of quantum codes from a pair of classical binary codes.
More explicitly, an [n, k1 − k2] CSS code, which is capable
of correcting (d − 1)/2 bit-flips as well as phase-flips, can be
constructed from the classical linear block codes C1(n, k1) and
C2(n, k2), provided that we have C2 ⊂ C1, and that C1 as well
as the dual of C2, i.e. C⊥

2 , have a minimum Hamming distance
of d. If Hz and Hx are the parity check matrices (PCMs) of C1
and C⊥

2 , respectively, then the resultant CSS code assumes the
following form [8]:

(
Hz 0
0 Hx

)
. (6)

More explicitly, Hz is used for bit-flip correction, while Hx cor-
rects the phase-flips. Furthermore, since C2 ⊂ C1, the PCMs
Hz and Hx must satisfy the symplectic criterion, which may be
defined as:

Hz H T
x = 0. (7)

When Hz = Hx , the constraint of Eq. (7) reduces to Hz H T
z =

0, which is referred to as a ‘dual-containing’ CSS code. In
the context of the QLDPC codes, this dual-containing structure
results in numerous unavoidable short cycles in the associated
Tanner graph, which in turn degrade the performance of the
decoding algorithm. Furthermore, if the symplectic criterion is
not intrinsically satisfied, then pre-shared ebits may be used.
The resultant codes constitute the family of EA codes.

We may also view the PCM of Eq. (6) in the GF(4) formalism
as [15]:

Ĥ =
(

ωHz

Hx

)
, (8)

where {0, 1, ω, ω} ∈ GF(4). When both Hz and Hx are the
same, as in the family of dual-containing CSS and EA-QLDPC
codes1, we may refer to them as homogeneous CSS codes. The
(m × n)-element2 PCM Ĥ of a homogeneous code exhibits
numerous short cycles in its Tanner graph, because the i th and
(i + m/2)th rows completely overlap, i.e. they have non-zero
values at the same indices. These short cycles, resulting from

1To the best of our knowledge, all the CSS-type EA-QLDPC codes proposed
to date are homogeneous.

2Please note that m denotes the number of rows of the PCM Ĥ , while m
represents the number of submatrices of HBIBD used in an LDPC matrix.
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the global homogeneous code structure, appear in addition to
the short cycles within the local structures of the PCMs Hz and
Hx , or, equivalently, in addition to the short cycles observed
in the binary formalism of Eq. (6). It is pertinent to mention
here that short cycles in the GF(4) formalism are a by-product
of the symplectic criterion of Eq. (7), which cannot be com-
pletely eliminated even if both Hz and Hx have a girth of 6
in the binary formalism [16]. However, the number of short
cycles may be reduced by adopting a non-dual-containing (or
equivalently non-homogeneous) design, having Hx �= Hz .

In contrast to both the dual-containing and to the EA struc-
tures, which suffer from numerous unavoidable short cycles,
non-dual-containing codes may be designed, so that they have
at least a girth of 6 in the binary formalism of Eq. (6) and
fewer short cycles in the GF(4) formalism of Eq. (8) by virtue
of their non-homogeneous nature. Therefore, we focus our
attention on the non-dual-containing structure for constructing
QLDPC codes from the pair of classical row-circulant QC-
LDPC matrices Hz and Hx , each having a girth of at least 6.
Let us consider a row-circulant QC-LDPC matrix H , which is
a subarray of HBIBD of Eq. (3), assuming that it consists of an
even number of square circulant submatrices. Inspired by the
non-dual-containing CSS-type QC-QLDPC codes of [17], we
propose that if we formulate Hz and Hx as follows:

Hz = H,

Hx =
(

H T
m
2
, H T

m
2 +1, . . . , H T

m−1, H T
0 , H T

1 , . . . , H T
m
2 −1

)
, (9)

where m is even, then the resultant CSS code satisfies the sym-
plectic criterion of Hz H T

x = 0. This may be readily shown as
follows:

(
H0, H1, . . . , Hm

2 −1, Hm
2
, Hm

2 +1, . . . , Hm−1

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hm
2

Hm
2 +1
...

Hm−1
H0
H1
...

Hm
2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= H0 Hm
2

+ H1 Hm
2 +1 + · · · + Hm

2 −1 Hm−1

+ Hm
2

H0 + Hm
2 +1 H1 + · · · + Hm−1 Hm

2 −1. (10)

Since the multiplication of circulant matrices is commuta-
tive, the two parts of Eq. (10), i.e. (H0 Hm

2
+ H1 Hm

2 +1 +
· · · + Hm

2
Hm) and (Hm

2
H0 + Hm

2 +1 H1 + · · · + Hm−1 Hm
2 −1)

are equal. Hence, the modulo 2 addition of Eq. (10) yields
0; thus, satisfying the symplectic criterion. Furthermore, the
resultant quantum coding rate is approximately (m − 2)/m.

Let us now scrutinize the girth of the PCMs Hz and Hx

in the binary formalism. The constituent (l × l)-element circu-
lant submatrix Hi of Eq. (3), which has a row weight and a
column weight of γ , is uniquely and unambiguously charac-
terized by the polynomial hi (x) = xdi,0 + xdi,1 + · · · + xdi,γ−1 ,
where di, j denotes the column index of the j th non-zero entry
in the first row of Hi . For example, if the first row of Hi

Fig. 1. Comparison of the achievable WER/QBER performance of our pro-
posed [2534, 2172] QLDPC code (labeled ‘Proposed’) with the bicycle code
of Eq. (11) (labeled ‘BiC’) and the EA-QLDPC code of Eq. (12) (labeled ‘EA’)
over a quantum depolarizing channel.

has a 1 at index 0, 5 and 8, then the polynomial is given by
1 + x5 + x8. The PCM H has a girth of at least 6 if every
difference (di, j1 − di, j2) modulo l, for 0 ≤ i ≤ (m − 1) and
0 ≤ j1, j2 ≤ (γ − 1), is a unique integer between 0 and (l − 1).
Furthermore, the polynomial transpose is defined as hi (x)T =
xl−di,1 + xl−di,2 + · · · + xl−di,γ−1 , which would yield the same
differences as hi (x). Hence, since in Eq. (9) we are taking the
transpose of all the sub-matrices Hi and just permuting their
location, the differences (di, j1 − di, j2) for Hz and Hx are the
same and consequently they both have the same girth3.

IV. RESULTS AND DISCUSSIONS

To evaluate the performance of our proposed design, we con-
sidered the Type-I design of Eq. (2) having t = 15 and the
primitive root α = 2. Since our design requires m to be even, we
arbitrarily chose m = 14, which yields a [2534, 2172] QLDPC
code having a coding rate of 0.857. We compare our design both
to an equivalent bicycle QLDPC code, whose PCM is given by:

Hx = Hz = [H0, H1, . . . , Hm
2 −1, H T

0 , H T
1 , . . . , H T

m
2 −1],

(11)

and to a comparable EA-QLDPC, which requires a single ebit
and has:

Hx = Hz = [H0, H1, . . . , Hm−1]. (12)

Fig. 1 compares the word error rate (WER) as well as the qubit
error rate (QBER) performance of our QLDPC code (labeled
‘Proposed’) to that of the bicycle code of Eq. (11) (labeled
‘BiC’) and to that of the EA-QLDPC code of Eq. (12) (labeled
‘EA’), when operating over a quantum depolarizing channel.
We have evaluated the performance of both the binary as well as
the non-binary QLDPC decoder, which operate over the PCMs
of Eq. (6) and Eq. (8), respectively. We invoked a maximum

3Following the usual convention [6], we assume that each row of Hi is a
cyclic right-shift of the row above it. However, if the direction of cyclic shift is
reversed, then the resulting PCM Hi is symmetric and therefore H T

i = Hi .
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Fig. 2. Comparison of the achievable WER/QBER performance of our pro-
posed [3934, 3372] QLDPC code (labeled ‘Proposed’) with the bicycle code of
Eq. (11) (labeled ‘BiC’) and the EA-QLDPC code of Eq. (12) (labeled ‘EA’)
over a quantum depolarizing channel.

of 100 iterations. Each decoding algorithm iterates until either
a valid error is found or the maximum number of iterations is
reached. Furthermore, the WER metric here counts the detected
as well as the undetected block errors. We may observe in
Fig. 1 that the performance of the designed QLDPC is exactly
the same as that of the EA-QLDPC code for binary decoding,
while that of the bicycle QLDPC code is slightly worse, which
is due to the presence of length-4 cycles. By contrast, when
non-binary decoding is invoked, then the performance of our
proposed design improves significantly as compared to both the
bicycle code as well as the EA-QLDPC. More specifically, the
bicycle code achieves a WER of 10−4 at p = 0.00055, which
increases to p = 0.0007 when an EA-QLDPC is used. By con-
trast, our construction exhibits a WER of 10−4 at p = 0.00215,
which is almost three times better than that of the EA-QLDPC.
As discussed in Section III, unlike the bicycle and EA-QLDPC
codes, which have numerous short cycles in their GF(4) formal-
ism by virtue of their homogeneous nature, non-homogeneous
structures have fewer short cycles in the GF(4) formalism.
Consequently, our QLDPC outperforms its comparable bicycle
and EA counterparts, when non-binary decoding is invoked.

As an another example, we construct a QLDPC code using
the Type-II design of Eq. (2) having t = 14 and the primi-
tive root α = 3. The resultant QLDPC code has dimensions
of [3934, 3372] and a coding rate of 0.857, when m = t .
Fig. 2 compares the performance of our non-dual-containing
[3934, 3372] QLDPC code both to the comparable bicycle code
and to the EA-QLDPC codes. It may be observed that the per-
formance curves of Fig. 2 exhibit the same trend as those of
Fig. 1.

V. CONCLUSIONS

In this letter, we have conceived a generalized formalism
for constructing non-dual-containing CSS-type QLDPC codes
from the known classical row-circulant high-rate QC-LDPC

codes, which operate efficiently at short and moderate lengths.
Since our design is merely based on the transpose and column
permutation operations, the characteristics of the underlying
classical LDPC matrix are not compromised. In particular, we
applied our formalism to the BIBD-based classical LDPCs for
evaluating their performance. Furthermore, we invoked both
binary as well as non-binary decoding. It was demonstrated
that our QLDPC codes have the same performance as the EA-
QLDPC codes, when binary decoding is invoked, while they
outperform their EA counterparts in case of non-binary decod-
ing. As compared to a dual-containing code, our QLDPC codes
exhibit a superior performance both for binary as well as for
non-binary decoding.
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