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ABSTRACT Quantum turbo codes (QTCs) are known to operate close to the achievable Hashing bound.
However, the sequential nature of the conventional quantum turbo decoding algorithm imposes a high
decoding latency, which increases linearly with the frame length. This posses a potential threat to quan-
tum systems having short coherence times. In this context, we conceive a fully-parallel quantum turbo
decoder (FPQTD), which eliminates the inherent time dependences of the conventional decoder by executing
all the associated processes concurrently. Due to its parallel nature, the proposed FPQTD reduces the
decoding times by several orders of magnitude, while maintaining the same performance. We have also
demonstrated the significance of employing an odd–even interleaver design in conjunction with the proposed
FPQTD. More specifically, it is shown that an odd–even interleaver reduces the computational complexity
by 50%, without compromising the achievable performance.

INDEX TERMS Quantum error correction, turbo codes, fully-parallel decoding, iterative decoding.

ACRONYMS
EXIT EXtrinsic Information Transfer
FPTD Fully-Parallel Trubo Decoder
FPQTD Fully-Parallel Quantum Trubo Decoder
MAP Maximum A Posteriori
PCM Parity Check Matrix
QBER QuBit Error rate
QCC Quantum Convolutional Code
QECC Quantum Error Correction Code
QIRCC Quantum IRregular Convolutional Code
QTC Quantum Turbo Code
SISO Soft-In Soft-Out

I. INTRODUCTION
Quantum Error Correction Codes (QECCs) are
indispensable for the reliable transmission of fragile
quantum information (or qubits) over noisy quantum
channels. In its literal sense, a quantum channel can be
a transmission medium, including free-space channels and
optical fiber links, which may find application in quantum
key distribution systems [1], [2], quantum teleportation [3],
quantum secure direct communication [4], [5] as well as
distributed quantum computing networks [6], [7]. Further-
more, a noisy quantum channel may also be interpreted as

the imperfections in quantum computing hardware, namely
quantum flips inflicted by quantum decoherence and faulty
quantum gates. In this context, efficient QECCs are essential
for the practical realization of quantum communication as
well as quantum computing systems. From the perspective
of classic communications, this is also particularly important
because the quantum domain parallel computations offer
a potential solution to the joint optimization in large-scale
communication systems [8]–[10].

Analogous to the realm of classical code design [11], [12],
which aims for approaching Shannon’s capacity limit,
QECCs are designed to operate close to the quantum chan-
nel’s capacity [13]–[15], or more specifically to the Hashing
bound, which constitutes a lower bound on the achievable
capacity of a quantum channel. In pursuit of this objec-
tive, quantum-domain counterparts of the capacity-achieving
classical turbo codes [16] were conceived in [17] and [18].
The proposed Quantum Turbo Codes (QTCs) are based
on the serial concatenation of Quantum Convolutional
Codes (QCCs) [19]–[22]. Later, Wilde and Hseih [23]
extended the concept of pre-shared entanglement to QTCs for
the sake of designing codes having an unbounded minimum
distance, implying that the minimum distance increases with
the frame length. In [24] Wilde et al. improved the quantum
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turbo decoding algorithm by introducing the notion of
extrinsic information. The QTC designs of [17], [18],
[23], and [24] are based on the tedious analysis of the dis-
tance spectra of QCCs. To dispense with this time-consuming
design approach, in [25] we appropriately adapted the clas-
sical non-binary EXtrinsic Information Transfer (EXIT)
charts [26] for designing QTCs. Finally, in [27] we conceived
Quantum IRregular Convolutional Code (QIRCC) for facili-
tating a Hashing bound approaching QTC design.

Owing to the astounding performance of QTCs and
motivated by the recently proposed fully-parallel decoder
conceived for classical turbo codes [28]–[31], in this paper we
focus on improving the latency associated with the iterative
quantum turbo decoding process. If the decoding times are
significant as compared to the coherence time, then the qubits
may decohere faster than they can be corrected. This would
in turn render the error correction procedure useless. Against
this background, our novel contributions are:
• We have conceived the Fully-Parallel Quantum Turbo
Decoder (FPQTD) counterpart of the classical Fully-
Parallel Turbo Decoder (FPTD) of [28], which circum-
vents the sequential nature of the conventional quantum
turbo decoding algorithm of [17] and [18], thereby
incurring a lower latency. In addition to the plausible
benefit of imposing a reduced processing delay and
hence an increased throughput, having a low latency is
particularly crucial in the quantum domain because of
the short coherence time of the qubits.

• We have benchmarked the performance of the proposed
FPQTD against the conventional quantum turbo decoder
in terms of its achievable QuBit Error Rate (QBER) as
well as the required decoding time periods. In particular,
our results demonstrate that the fully-parallel architec-
ture reduces the total decoding time periods by a factor
of 0.8N1 for the rate-1/9 QTC of [24], where N1 is the
input frame length. Hence, the benefits accrued increase
with the frame length.

• We demonstrate the explicit benefit of using an
odd-even interleaver design in the context of quantum
turbo decoding. It is shown that an odd-even interleav-
ing pattern reduces the computational complexity by
50%, while exhibiting the same QBER performance.

The rest of the paper is organized as follows. Section II
provides a rudimentary introduction to stabilizer codes.
We then present the general structure of QTCs in Section III.
This is followed by a description of the conventional quantum
turbo decoder in Section IV-A, while our proposed FPQTD
is detailed in Section IV-B. Finally, the performance of our
proposed scheme is quantified in Section V, followed by our
conclusions in Section VI.

II. REVIEW OF STABILIZER CODES
QTCs belong to the family of stabilizer codes, which
are inherently similar to the classical linear block codes.
We commence our discourse with a brief review of the sta-
bilizer formalism. For a detailed description, please refer

to [27] and [32]. Let us first recall some fundamental
definitions from [33].

A. PAULI OPERATORS
The I,X,Y andZ Pauli operators are defined by the following
matrices:

I =
(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =
(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (1)

where the X, Y and Z operators anti-commute with each
other.

B. PAULI GROUP
A single qubit Pauli group G1 is a group formed by the Pauli
matrices of Eq. (1), which is closed under multiplication.
Therefore, it consists of all the Pauli matrices together with
the multiplicative factors ±1 and ±i, which may be formu-
lated as:

G1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (2)

The general Pauli group Gn is an n-fold tensor product of G1.

C. DEPOLARIZING CHANNEL
A depolarizing channel, which is characterized by the proba-
bility p, inflicts an errorP ∈ Gn on n qubits, where each qubit
may independently experience either a bit-flip (X), a phase-
flip (Z) or both (Y) with a probability of p/3 each, when
considering the so-called symmetric depolarizing channel
having identical flip probabilities.

An [n, k] stabilizer code, constructed over a code space C,
maps the information word (logical qubits) |ψ〉 ∈ C2k onto
the codeword (physical qubits) |ψ〉 ∈ C2n , where Cd denotes
the d-dimensional Hilbert space. The resultant stabilizer code
is defined by the stabilizer group H, which may be uniquely
characterized by a set of (n−k) independent commuting Pauli
generators gj ∈ Gn , for 1 ≤ j ≤ (n − k). More explicitly,
the stabilizer groupH contains both gj and all the products of
gj for 1 ≤ j ≤ (n − k) and forms an abelian subgroup of Gn.
A unique feature of these stabilizer generators is that they do
not perturb the state of valid codewords, while yielding an
eigenvalue of −1 for the invalid codewords. Consequently,
the eigenvalue is −1 if the channel error P ∈ Gn anti-
commutes with the stabilizer gj, while it is+1 ifP commutes
with gj. Hence, the operation of jth stabilizer generator may
be expressed as:

gj|ψ̂〉 =

{
|ψ〉, gjP = Pgj
−|ψ〉, gjP = −Pgj,

(3)

where |ψ̂〉 = P|ψ〉 is the received codeword. The ±1
eigenvalues give the corresponding error syndrome, when
observed using auxiliary qubits. The resultant syndrome is 0
for an eigenvalue of+1, while it is 1 for an eigenvalue of−1.
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FIGURE 1. General schematic of quantum turbo codes. Pa
i (.), Pe

i (.) and Po
i (.) denote the

a-priori, extrinsic and a-posteriori probabilities related to the ith decoder.

Hence, stabilizer codes observe the error syndromes with-
out reading the actual quantum information. The classical
syndrome decoding approach [34] may then be invoked for
estimating the errors incurred during transmission. However,
errors, which differ only by an element of the stabilizer group,
have the same impact on the codewords and therefore can
be corrected by the same recovery operations. This gives
quantum codes the intrinsic property of degeneracy [35].

The Pauli operators I, X, Y and Zmay also be represented
as two binary digits, i.e. we have:

I → I ≡ (0, 0), X→ X ≡ (0, 1),

Y → Y ≡ (1, 1), Z→ Z ≡ (1, 0), (4)

which constitute the effective Pauli group G1. Similarly,
an n-qubit Pauli operator may be mapped onto a 2n-bit vec-
tor belonging to the effective Pauli group Gn, such that the
first n bits represent the Z operator, while the next n bits
represent the X operator. The elements of the effective Pauli
group Gn differ from the corresponding elements of the Pauli
group Gn by a multiplicative constant, implying that we have:

Gn = [Gn] = Gn/{±1± i}, (5)

where [.] denotes the effective Pauli group. Based on this
Pauli-to-binary isomorphism, stabilizer codes may be char-
acterized in terms of an equivalent binary Parity Check
Matrix (PCM) notation, which satisfies the commutativity
constraint of the stabilizer generators [36], [37]. The (n− k)
stabilizers of an [n, k] stabilizer code constitute the rows of
the binary PCM H , which is a concatenation of a pair of
(n− k)× n binary matrices Hz and Hx , as given below:

H = (Hz|Hx) . (6)

Each row ofH corresponds to an independent stabilizer ofH,
so that the ith columns ofHz andHx act on the ith qubit. Given
the matrix notation of Eq. (6), the commutative property of
stabilizer generators is transformed into the orthogonality of

rows with respect to the symplectic product (also referred to
as a twisted product), which is formulated as:

HzHT
x + HxH

T
z = 0. (7)

Based on the mapping of Eq. (4), a channel error P can be
represented by the effective error P = [Pz : Px], which
is a concatenation of n bits for Z errors represented by Pz,
followed by another n bits for X errors denoted by Px .
The resultant syndrome is given by the symplectic product
of H and P, which is equivalent to H [Px : Pz]T . Thus,
the quantum-domain syndrome is equivalent to the classical-
domain binary syndrome and a basic quantum-domain decod-
ing procedure is similar to the syndrome based decoding
of the equivalent classical code [37]. However, due to the
degenerate nature of quantum codes, quantum decoding aims
for finding the most likely error coset, while the classical
syndrome decoding finds the most likely error.

III. SYSTEM ARCHITECTURE OF QUANTUM
TURBO CODES
Fig. 1 shows the general schematic of the encoder and
decoder of a QTC, relying on a pair of serially concate-
nated stabilizer codes. In our setting, the outer code C1 is
an [n1, k1,m1] QCC, while the inner code is an [n2, k2,m2]
QCC, resulting in an overall coding rate of (k1k2/n1n2).
At the transmitter, the outer encoder V1 encodes the logical
qubits |ψ1〉 into the physical qubits |ψ1〉, with the aid of
(n1 − k1) auxiliary qubits, which are initialized to state |0〉.
This encoding process may be modeled as:

|ψ1〉 = V1

(
|ψ1〉 ⊗ |0〉⊗n1−k1

)
. (8)

The physical qubits |ψ1〉 are then interleaved by the quantum
interleaver (π ) before being fed to the inner encoder. More
specifically, the interleaved qubits |ψ2〉 constitute the logical
qubits for the inner encoder V2, which encodes them into
|ψ2〉 using (n2 − k2) auxiliary qubits analogous to Eq. (8).
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FIGURE 2. Encoder V of an [n, k, m] quantum convolutional code.

The n physical qubits |ψ2〉 of the inner encoder, where we
have n = n1n2, are then transmitted to the receiver over a
depolarizing channel, which imposes an n-tuple error
P2 ∈ Gn on the transmitted stream.

Both the encoders V1 and V2 are Clifford unitary
operators [38], acting on n1 and n2 qubits, respectively.
In general, such Clifford encoders may be implemented using
the Hadamard (H), phase (S) and controlled-NOT (C-NOT)
gates, which are defined as follows [33]:

H =
1
√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
,

C-NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (9)

A unique property of Clifford operations is that they preserve
the elements of the Pauli group under conjugation such that
for P ∈ Gn, we have [38]:

VPV†
∈ Gn. (10)

This in turn ensures that the Clifford encoding operation
intrinsically preserves the commutativity of the associated
stabilizer generators depicted in Eq. (7). It is pertinent to
mention here that the Clifford encoder V of an [n, k,m] QCC,
having m memory qubits |φ〉, may be constructed from an
(n+ m)-qubit seed transformation U , as illustrated in Fig. 2.
More specifically, the encoder V consists of repeated appli-
cations of the seed transformation U such that the adjacent
seed transformations have an overlap of m memory qubits.
At time instant t , the sub-encoder U of Fig. 2 takes as its input
the previous memory state |φ〉t−1 as well as the logical qubits
|ψ〉t and the auxiliary qubits to generate the updated memory
state |φ〉t for the next time instant as well as the physical
qubits |ψ〉t . More explicitly, analogous to the classical con-
volutional codes, the memory qubits |φ〉t−1 are flushed out
of the shift registers as part of the physical qubits, while the
incoming information is fed into the registers.1 The overall
encoder may be formulated as:

V = U[1,...,n+m]U[n+1,...,2n+m] . . .U[(N−1)n+1,...,Nn+m],

=

N∏
t=1

U[(t−1)n+1,...,tn+m], (11)

1Please refer to [39, Chapter 9] for further details about the implementa-
tion of quantum circuits with shift registers.

where N is the length of the convolutional code and
U[(t−1)n+1,...,tn+m] acts on (n+m) qubits, i.e.mmemory qubits
|φ〉t−1, k logical qubits |ψ〉t and (n− k) auxiliary qubits.

At the receiver, the received physical information
|ψ̂2〉 = P2|ψ2〉 is processed by the inverse inner encoder

2 V†
2 ,

yielding the logical information and auxiliary qubits. Since
the input of the inverse encoder is perturbed by transmission
errors, both the output logical information and the auxiliary
qubits are also corrupted. More explicitly, we have:

V†
2P2|ψ2〉 = V†

2P2V2(|ψ〉 ⊗ |0〉⊗n2−k2 )

= (L2|ψ2〉)⊗ (S2|0〉⊗n2−k2 ), (12)

where L2 is the error imposed on the logical qubits of the
inner encoder, while S2 is the error inflicted on the (n2 − k2)
auxiliary qubits. The resultant logical information is then
de-interleaved to serve as the input P1|ψ1〉 of the outer
inverse encoder. Analogous to the inverse encoder of Eq. (12),
the inverse encoder V†

1 generates the erroneous logical qubits
L1|ψ1〉 of the outer encoder and the associated erroneous
auxiliary qubits S1|0〉⊗n1−k1 as its output.

Recall that stabilizer codes invoke the syndrome decod-
ing approach for estimating the channel errors. The auxil-
iary qubits S2|0〉⊗n1−k1 and S1|0〉⊗n2−k2 of the inner and
outer inverse encoders, respectively, are measured before
being fed to the corresponding syndrome-based Soft-In
Soft-Out (SISO) decoders. Upon measurement the auxiliary
qubits collapse to the classical syndromes Sx2 and Sx1 , which
only depend on the X-component of the errors S2 and S1,
respectively. More precisely, the syndrome sequence
|0〉⊗n1−k1 (and similarly |0〉⊗n2−k2 ) is invariant
to the Z-component of S, since Z|0〉 = |0〉. There-
fore, the syndrome-based SISO decoders of Fig. 1 engage
in degenerate iterative decoding [18] for estimating the
error coset L̃1 imposed on the logical qubits of the outer
decoder, given only the X-component of S. More explic-
itly, the inner SISO decoder of Fig. 1 exploits the channel
information Pch(P2), the a-priori information Pa2(L2) gleaned
from the outer decoder (initialized to be equiprobable for
the first iteration) and the syndrome Sx2 for computing the
extrinsic information pertaining to the error imposed on the
logical qubits of the inner decoder, which may be denoted
as Pe2(L2). The resultant extrinsic information Pe2(L2) is
de-interleaved (π−1), so that the permuted output Pa1(P1)
serves as the a-priori information pertaining to the error
imposed on the physical qubits of the outer decoder. Then
the outer SISO decoder of Fig. 1 computes both the
a-posteriori information Po1(L1) as well as the extrinsic infor-
mation Pe1(P1) using the a-priori information Pa1(P1) and
the syndrome Sx1 . The output Pe1(P1) is then interleaved to
yield Pa2(L2), which is fed back to the inner SISO decoder
of Fig. 1. This iterative procedure continues, until either
convergence to a vanishingly low QBER is achieved or the

2In contrast to an encoder, which encodes logical qubits onto the physical
qubits, an inverse encoder carries out the inverse operation by mapping
physical qubits onto the corresponding logical qubits.
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maximum affordable number of iterations is reached. Finally,
a Maximum A Posteriori (MAP) decision is made based on
the a-posteriori information Po1(L1) for estimating the most
likely error coset L̃1 imposed on the logical qubits of the
outer decoder. A recovery operationR, which is based on the
estimated error coset L̃1, may then be applied to the erroneous
logical qubits L1|ψ1〉 of the outer inverse decoder, yielding
the estimated logical information |ψ̃1〉.

IV. QUANTUM TURBO DECODER
A. CONVENTIONAL DECODER
The quantum turbo decoder of Fig. 1 operates over
the equivalent classical representation of the Clifford
encoders V1 and V2. More explicitly, an n-qubit encoder,
acting on a 2n-dimensional Hilbert space, has a 2n × 2n uni-
tary matrix, which describes the evolution of the associated
n-qubit system. However, according to the Heisenberg repre-
sentation of Gottesman-Knill theorem [40], the 2n×2n matrix
may be simplified for Clifford encoders by only tracking the
evolution of the operators {Z1,Z2, . . . ,Zn,X1,X2, . . . ,Xn},
where Zj and Xj represents the Pauli Z and X operator,
respectively, acting on the jth qubit and the identity I on
all other qubits. Consequently, the operation of a Clifford
encoder may be completely defined by specifying its action
under conjugation on the Pauli-X and Z operators acting on
each of the n qubits. Another point to notice here is that
two Clifford encoders V and V ′, which are related through
a global phase such that V ′ = ejθV , yield the same out-
put under conjugation. Therefore, the global phase can be
ignored, since it has a trivial impact. This in turn implies
that the n-qubit encoder V can be completely defined by its
action on the binary equivalent (Eq. (4)) of the Pauli operators
{Z1,Z2, . . . ,Zn,X1,X2, . . . ,Xn}, which may be denoted as
{Z1,Z2, . . . ,Zn,X1,X2, . . . ,Xn}. Hence, the Clifford trans-
formation V has an equivalent 2n × 2n binary symplectic
matrix V for which we have:

[VPV†] = [P]V = PV . (13)

The n-qubit operators {Z1,Z2, . . . ,Zn,X1,X2, . . . ,Xn},
which are used for characterizing V , are known as the
unencoded operators. In particular, the unencoded operators
{Zk+1, . . . ,Zn} stabilize the unencoded state of Eq. (8), i.e.
(|ψ〉⊗|0n−k 〉), and are therefore termed as the unencoded sta-
bilizer generators. By contrast, the operators {Xk+1, . . . ,Xn}
anti-commute with the corresponding unencoded stabi-
lizer generator Zj, resulting in an error syndrome of 1.
They may be referred to as the pure errors. Furthermore,
the unencoded logical operators acting on the logical qubits
are {Z1,X1, . . . ,Zk ,Xk}, which commute with the unen-
coded stabilizers {Zk+1, . . . ,Zn}. The encoder V maps the
unencoded operators {Z1,X1, . . . ,Zn,Xn} onto the encoded
operators {Z1,X1, . . . ,Zn,Xn}, which may be represented
as follows:

X j =
[
Xj

]
=

[
VXjV†

]
= XjV ,

Z j =
[
Zj
]
=

[
VZjV†

]
= ZjV . (14)

Let us recall that Clifford operations preserve the com-
mutativity of the stabilizer generators. Hence, the resultant
encoded stabilizers {Z k+1, . . . ,Zn} constitute the stabiliz-
ers of Eq. (3), while {X k+1, . . . ,Xn} are the pure errors tj
of the resultant stabilizer code, which trigger a non-trivial
syndrome. Moreover, {Z1,X1, . . . ,Z k ,X k} are the encoded
logical operators, which commute with all the stabilizers.
In particular, the logical operators map one codeword onto the
other codeword within the codespace of the stabilizer code.
The (2n× 2n)-element binary symplectic encoding matrix V
is therefore given by:

V =



Z1
...

Z k
Z k+1
...

Zn
X1
...

X k
X k+1
...

Xn



≡



Z1
...

Z k
g1
...

gn−k
X1
...

X k
t1
...

tn−k



, (15)

where {Z k+1, . . . ,Zn} constitute the binary PCM of Eq. (6).
Based on the equivalent binary encoder of Eq. (15),

the operation of the ith inverse encoder V†
i depicted in

Eq. (12) may be expressed as:

PiV
−1
i = (Li : Si) , (16)

where we have Pi = [Pi], Li = [Li] and Si = [Si].
Similarly, when the inner and outer components of a QTC
are convolutional codes, their seed transformations are
2(n + m) × 2(n + m)-element symplectic matrices, which
may be denoted as Ui for the ith encoder. For the ith inverse
encoder, the operation of Eq. (16) at time instant t may be
reformulated as:(

Mi,t−1 : Li,t : Si,t
)
=
(
Mi,t ,Pi,t

)
U−1i , (17)

where M denotes the effective m-qubit error inflicted on
the memory qubits. More explicitly, for an [ni, ki,mi] QCC,
we have Mi,t = [M1

i,t ,M
2
i,t , . . . ,M

mi
i,t ], Li,t = [L1i,t ,L

2
i,t , . . . ,

Lkii,t ], Si,t = [S1i,t , S
2
i,t , . . . , S

ni−ki
i,t ] and Pi,t = [P1i,t ,P

2
i,t , . . . ,

Pnii,t ] for 1 ≤ t ≤ Ni. For clarity, we will ignore the
subscript ‘i’ wherever our discussions apply to both the inner
as well as the outer decoders.

The quantum turbo decoder of Fig. 1 consists of two seri-
ally concatenated SISO decoders, each obeying the general
schematic of Fig. 3.

In Fig. 3, the Pauli operators P , L and S are replaced by
the effective operators P, L and Sx , respectively. Please note
that [S] = S, which may be represented as S = Sx + Sz,
where Sx and Sz are the X and Z components of S.
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FIGURE 3. General schematic of a SISO decoder. P̄
a

(.), P̄
e
(.) and P̄

o
(.)

denote the a-priori, extrinsic and a-posteriori logarithmic probabilities.

Recall from Section III that the measurement of S only
reveals the syndrome Sx . Therefore, the syndrome-based
SISO decoder of Fig. 3 only depends on Sx . Furthermore,
for the sake of avoiding any potential numerical instability as
well as for reducing the computational complexity, we have
used logarithmic probabilities in Fig. 3, which are denoted
as P̄ in contrast to the probabilities P of Fig. 1, i.e. we have:

P̄(x) = ln (P(x)) . (18)

Classical SISO decoders rely on the trellis of the constituent
convolutional codes. By contrast, the SISO decoder of Fig. 3
invoked for quantum turbo decoding operates over the circuit-
based representation of Eq. (16) or equivalently Eq. (17),
as detailed in [18]. We may further decompose the seed
transformation as U = (UM : UP), where UM is the binary
matrix formed by the first 2m columns of U , while UP is the
binary matrix formed by the last 2n columns ofU . Therefore,
we have:

Mt = (Mt−1 : Lt : St)UM , (19)

Pt = (Mt−1 : Lt : St)UP. (20)

Using the circuit-based representation of Eq. (20) and
Eq. (20), the SISO decoder of Fig. 3 computes the extrinsic
probabilities as follows:

1) The process begins by calculating the a-priori transi-
tion metric γ̄t for all valid transitions using:

γ̄t (Mt−1,Lt , St) = P̄
a
(Lt)+ P̄

a
(Pt) , (21)

where we have Pt = (Mt−1 : Lt : St )UP. In the
classical convolutional codes, all transitions present
in their state transition diagram are defined as being
valid. By contrast, in the circuit-based representation
of QCCs, all possible combinations of (Mt−1 = µ,

Lt = λ, St = σ ), for µ ∈ Gm, λ ∈ Gk and
σ = (σ x+σ z) ∈ Gn−k , having σ x = Sxt , are considered
as valid transitions.

2) The a-priori transition metric of Eq. (21) and
the a-priori forward state metric ᾱt−1, gleaned from the
previous time instant, are then used for calculating the

extrinsic forward state metric ᾱt as3:

ᾱt (Mt) , P̄
(
Mt |Sx≤t

)
= max*
{µ∈Gm,λ∈Gk ,σ∈Gn−k |

σ x=Sxt ,Mt=(µ,λ,σ )UM }

× [γ̄t (µ, λ, σ )+ ᾱt−1 (µ)] , (22)

where we have Sx≤t ,
(
Sxj
)
0≤j≤t

. Eq. (22) is a recur-

sive formula, which ensures that the resultant extrinsic
forward state metric ᾱt constitutes the a-priori infor-
mation for the next time instant. This implies that for
calculating ᾱt ′ we first have to calculate the forward
state metric for all the previous time instances t < t ′.
Hence, the calculation of Eq. (22) spans over N time
periods for t = N .

3) Next, the extrinsic backward state metric β̄t−1 is com-
puted using the a-priori transition metric γ̄t of Eq. (21)
and the a-priori backward state metric β̄t gleaned from
the time instant (t + 1) as follows:

β̄t−1 (Mt−1) , P̄
(
Mt−1|Sx>t−1

)
= max*
{λ∈Gk ,σ∈Gn−k |

σ x=Sxt }

×
[
γ̄t (Mt−1, λ, σ )+ β̄t (Mt)

]
, (23)

where we have Mt = (Mt−1 : µ : σ )UM and
Sx>t ,

(
Sxj
)
t<j≤N

. The resultant extrinsic information

β̄t−1 is employed as the a-priori information for the
time instant t − 2. Hence, similar to the computation
of the forward recursive coefficients ᾱt of Eq. (22),
the processing of the backward coefficients is also
spread over N time periods. However, unlike the for-
ward coefficients, which are computed in the direction
of increasing t , i.e. from t = 1 to t = N , the backward
coefficients are calculated in the reverse direction, i.e.
from t = N to t = 1.

3 We exploit the Jacobian logarithm, which is defined as [41]:

max* [ρ̄1, ρ̄2] , ln
(
eρ̄1 + eρ̄2

)
= max(ρ̄1, ρ̄2)+ ln

(
1+ e−|ρ̄1−ρ̄2|

)
= max(ρ̄1, ρ̄2)+ fc (|ρ̄1 − ρ̄2|) .

For more than two operands, Jacobian logarithm can be extended using the
associative property. For the sake of reducing the computational complexity,
the correction function fc can be approximated using a pre-computed look-
up table, resulting in an approximate-log function [41]. Alternatively, if the
difference between ρ̄1 and ρ̄2 is significant, the exact-log may also be
approximated as max-log, yielding [41]:

max* [ρ̄1, ρ̄2] ≈ max(ρ̄1, ρ̄2).

The complexity reduction associated with the max-log comes at the cost
of a modest performance degradation. However, the performance of the
approximate-log based decoder is similar to that of the exact-log based
decoder, despite its reduced complexity.
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FIGURE 4. Schematic of a conventional quantum turbo decoder. The algorithmic blocks are processed in the
order of the bold arrows. The inner and outer components are assumed to be rate-1/3 convolutional codes.

4) Finally, the a-posteriori transition metric δ̄t is
computed for all valid transitions using:

δ̄t (Mt−1,Lt , St) = γ̄t (Mt−1,Lt , St)

+ ᾱt−1 (Mt−1)+ β̄t (Mt) , (24)

where we have Mt = (Mt−1 : Lt : St )UM . Eq. (24)
combines the a− priori transition metric γ̄t with the
extrinsic forward state coefficient ᾱt−1 gleaned from
the previous time instant and the extrinsic backward
state coefficient β̄t gleaned from (t + 1). If the forward
and backward coefficients are already available, the
a-posteriori transition metric can be calculated in
parallel for the entire frame.

5) Based on Eq. (24), the a-posteriori logarithmic
probabilities pertaining to the logical error Lt and the
physical error Pt are given by:

P̄
o
(Lt) , P̄

(
Lt |Sx

)
= max*
{µ∈Gm,σ∈Gn−k |

σ x=Sxt }

[
δ̄t (µ,Lt , σ )

]
, (25)

P̄
o
(Pt) , P̄

(
Pt |Sx

)
= max*
{µ∈Gm,λ∈Gk ,σ∈Gn−k |
σ x=Sxt ,Pt=(µ,λ,σ )UP}

[
δ̄t (µ,Lt , σ )

]
, (26)

where we have Sx ,
(
Sxt
)
0≤t≤N .

6) The corresponding extrinsic logarithmic probabilities
may then be calculated using:

P̄
e
(Lt) = P̄

o
(Lt)− P̄

a
(Lt) , (27)

P̄
e
(Pt) = P̄

o
(Pt)− P̄

a
(Pt) . (28)

Both the inner as well as the outer SISO decoders
of Fig. 1 execute the SISO algorithm encapsulated in Eq. (21)
to Eq. (28) during each decoding iteration. Explicitly, as seen
in Fig. 1, the channel information and the a-priori informa-
tion P̄

a (
L2,t

)
gleaned from the outer SISO decoder constitute

the inputs of the inner SISO decoder, which is driven by the
syndrome sequence Sx2 . The channel information gives the
a-priori information pertaining to the error on the physical
qubits of the inner decoder P2, which is computed by assum-
ing that each qubit is independently transmitted over a quan-
tum depolarizing channel having a depolarizing probability
of p. For the jth qubit at time instant t , we have:

P̄
a
(
Pj2,t

)
= P̄ch

(
Pj2,t

)
=

{
ln(1− p), if Pi2,t = I

ln(p/3), if Pi2,t ∈ {X ,Z ,Y },
(29)

where 1 ≤ j ≤ n2, while 1 ≤ t ≤ N2. During each iteration,
the inner SISO decoder calculates the extrinsic information
for each k2-qubit L2,t using Eq. (21) to Eq. (25) and Eq. (27).
This has to be carried out sequentially for 1 ≤ t ≤ N2 due
to the time-dependencies exhibited in Eq. (22) to Eq. (24).
Intuitively, we may consider the SISO decoder to be com-
posed of N2 algorithmic blocks, which are capable of exe-
cuting Eq. (21) to Eq. (28), as demonstrated in the schematic
of Fig. 4. During the first N2 time periods, the N2 algorith-
mic blocks operate sequentially from the first block to the
last block for processing Eq. (21) and Eq. (22), as shown
in Fig. 4 with bold arrows. During the next N2 time periods,
the N2 algorithmic blocks execute the rest of the algorithm,
commencing from the last block. Hence, the processing time
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of the inner SISO algorithm of a conventional quantum turbo
decoder spans over 2N2 time periods for each decoding
iteration.

Thereafter, the extrinsic information P̄
e
(L2) is

de-interleaved, yielding P̄
a
(P1), which is fed to the outer

SISO decoder for computing the extrinsic information P̄
e
(P1)

using Eq. (21) to Eq. (28). It may be noticed here that a qubit-
based interleaver/de-interleaver is used in the configuration
of Fig. 1. Consequently, the logarithmic probabilities P̄

e
(L2,t )

are marginalized to P̄
e
(L j2,t ), for 1 ≤ j ≤ k2, before the

de-interleaver and then they are recombined thereafter,
assuming that the constituent qubits are independent. The
operation of the outer SISO decoder, consisting of N1 algo-
rithmic blocks, requires another 2N1 time periods. This
results in a total of (2N1+2N2) time periods for each iteration.
The two SISO decoders exchange their information itera-
tively, until either convergence to a vanishingly low QBER
is achieved or the maximum number of decoding iterations is
reached. After the last decoding iteration, a MAP decision is
made based on the a-posteriori information P̄

o
(L1), produced

by the outer SISO decoder, for estimating themost likely error
coset L̃1.

B. FULLY-PARALLEL DECODER
As a counterpart of the conventional quantum turbo decoding
algorithm, which requires (2N1 + 2N2) time periods for each
decoding iteration, we conceive a Fully-Parallel Quantum
Turbo Decoder (FPQTD), which dispenses with the time
dependencies associated with the conventional decoding pro-
cess. More explicitly, all the N2 algorithmic blocks of the
inner SISO decoder as well as the N1 algorithmic blocks
of the outer decoder operate concurrently in each decoding
iteration, as illustrated in Fig. 5. For the sake of achieving
this parallelism, the conventional SISO algorithm of Eq. (21)
to Eq. (26) is modified as follows:

1) The process commences by calculating the a-posteriori
transition metric δ̄t for all valid transitions using:

δ̄t (Mt−1,Lt , St) = P̄
a
(Lt)+ P̄

a
(Pt)

+ ᾱt−1 (Mt−1)+ β̄t (Mt) , (30)

where we have Pt = (Mt−1 : Lt : St )UP, while
Mt = (Mt−1 : Lt : St )UM . For executing all algo-
rithmic blocks concurrently, the a-priori information
pertaining to the logical error Lt and the physical error
Pt as well as the a-priori forward state metric ᾱt−1
and the a-priori backward state metric β̄t are gleaned
from the previous decoding iteration. By contrast, the δ̄t
of Eq. (24) relies on the updated a-priori forward
and backward state metrics received from the adjacent
(t − 1)st and (t + 1)st algorithmic blocks, respectively,
resulting in sequential processing.

2) The a-posteriori transition metric δ̄t of Eq. (30) may
then be invoked for calculating the extrinsic probabil-
ities using Eq. (25) to Eq. (28), which serve as the
a-priori information for the other SISO decoder in

the next decoding iteration, hence eliminating the time
dependencies between the two decoders.

3) Since in the fully-parallel architecture the algorithmic
blocks exploit the a-priori information received during
the previous decoding iteration, we substitute Eq. (24)
in Eq. (22), which yields:

ᾱt (Mt) = max*
{µ∈Gm,λ∈Gk ,σ∈Gn−k |
σ x=Sxt ,Mt=(µ,λ,σ )UM }

×
[
δ̄t (µ, λ, σ )

]
− β̄t (Mt) . (31)

Each algorithmic block updates the extrinsic forward
state metric ᾱt using Eq. (31), which is fed to the
(t + 1)st algorithmic block for use in the next iteration.

4) Similarly, the extrinsic backward state metric β̄t−1 is
updated using:

β̄t−1 (Mt−1) = max*
{λ∈Gk ,σ∈Gn−k |

σ x=Sxt }

[
δ̄t (Mt−1, λ, σ )

]
− ᾱt−1 (Mt−1) , (32)

which is fed to the (t − 1)st algorithmic block for use
in the next iteration.

Hence, in the proposed FPQTD, relying on Eq. (30) to
Eq. (32), both the inner as well as the outer decoders oper-
ate on the basis of the a-priori information gathered from
the previous decoding iteration and the resultant extrinsic
information is utilized during the next decoding iteration.
Consequently, the time dependencies exhibited in the conven-
tional turbo decoding algorithm are broken down, since all
the operations of the (N1+N2) algorithmic blocks rely on the
a-priori information of the previous iteration. The resultant
parallel architecture only requires a single time period for
processing all the (N1 + N2) algorithmic blocks.
It is pertinent to mention here that a-priori information is

not available for the first decoding iteration. Following the
usual convention, the a-priori information P̄

a (
L2,t

)
of the

inner SISO decoder and P̄
a (
P1,t

)
of the outer SISO decoder is

initialized to be equiprobable, or equivalently to [0, 0, . . . , 0],
for all algorithmic blocks. Similarly, the a-priori forward
state metric ᾱt−1 of the algorithmic blocks having indices
t ∈ [2,N ] and the a-priori backward state metric β̄t of the
algorithmic blocks having indices t ∈ [1,N − 1] are set
to [0, 0, . . . , 0]. Recall that the syndrome decoding process
outputs information pertaining to the errors rather than to
the actual information. Therefore, in all decoding iterations,
the a-priori forward state metric ᾱ0 of the first algorithmic
block is set according to the actual error inflicted on the
memory qubits. More explicitly, once all the physical qubits
are processed by the inverse encoder, the memory registers
are measured, which reveals the X -component of the error
inflicted on it. Then ᾱ0 may be initialized on the basis of
the measured error. Furthermore, for all decoding iterations,
the a-priori backward state metric β̄N2 of the inner decoder is
initialized according to the channel model, while β̄N1 of the
outer decoder is initialized on the basis of P̄

a (
P1,N1

)
.
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FIGURE 5. Schematic of a fully-parallel quantum turbo decoder. The inner and outer components are assumed
to be rate-1/3 convolutional codes.

Analogous to the classic FPTD [28]–[31], an odd-even
interleaver can be used for further reducing the com-
putational complexity of the FPQTD. More specifically,
an odd-even interleaving pattern can be exploited to con-
nect the odd numbered algorithmic blocks of the inner
decoder with the odd numbered blocks of the outer decoder,
while the inner algorithmic blocks having an even index are
only connected to the outer algorithmic blocks having an
even index, as shown in Fig. 5. In essence, the inner and
outer algorithmic blocks are divided into two independent
sets, which are marked as black and white in Fig. 5. Let
us assume that the inner and outer components of Fig. 1
are rate-1/3 QCCs. Then the encoded output of the outer
encoder consists of three qubits, which may be represented
as |ψ1,t 〉

123 for the tth output. The odd-even connection of
Fig. 5 can be achieved by re-arranging the output of the
outer encoder before the interleaver, so that we have {|ψ1,1〉

1

|ψ1, 2〉
1 . . . |ψ1,N1

〉
1
|ψ1, 1〉

2
|ψ1, 2〉

2 . . . |ψ1, N1〉
2
|ψ1, 1〉

3

|ψ1,2〉
3 . . . |ψ1,N1〉

3
}. Similarly, the output of the

de-interleaver at the decoder is also re-arranged before being
fed to the outer inverse encoder. When the inner and outer
algorithmic blocks are discretely distributed in the odd and
even sets, then the FPQTD procedure may bemodified so that
each decoding iteration consumes two time periods. During
the first time period, all odd blocks of the inner decoder
and all even blocks of the outer decoder, which are marked
in black in Fig. 5, operate concurrently. During the next
time period, all even blocks of the inner decoder and all
odd blocks of the outer decoder, which are marked in white
in Fig. 5, operate using the a-priori information gleaned from
the previous time period. This doubles the rate of conver-
gence, as the extrinsic information propagates faster between

the algorithmic blocks as well as between the inner and
outer decoders. Consequently, while each decoding iteration
consumes two time periods, the total number of decoding
iterations is reduced to half, as it will be demonstrated in
Section V-B. Hence, the complexity is reduced by 50%, while
the latency/throughput remains the same.

V. RESULTS AND DISCUSSIONS
In this section, we quantify the explicit benefits of our
proposed FPQTD by analyzing the performance of a
rate-1/9 QTC, consisting of two serially concatenated
[3, 1, 3] QCCs. In particular, for both the inner as well as
the outer components, we have used the configuration termed
as ‘‘PTO1R’’ in [23] and [24], whose seed transformation
(decimal notation) is:

U = {1355, 2847, 558, 2107, 3330, 739, 2009, 286, 473,

1669, 1979, 189}decimal (33)

More explicitly, the elements of Eq. (33) represent the
decimal equivalent of the rows of the (12 × 12)-element
binary seed transformationU corresponding to the Pauli seed
transformation U of Eq. (11). Furthermore, we have used
approximate-log for evaluating the max* operator.4

A. PERFORMANCE COMPARISON WITH
CONVENTIONAL DECODER
In Fig. 6, we compare the QBER performance of the proposed
FPQTD to that of the conventional decoder for an interleaver
length of 3, 000 qubits. Since we have used rate-1/3 QCCs,
an interleaver length of 3, 000 qubits implies that we have

4Please refer to Footnote 3.
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FIGURE 6. Achievable QBER performance for I ∈ {1, 2, 4, 6, 8} iterations of the conventional decoder, while I ∈ {10, 20, 40, 60, 80} iterations are used for
the fully-parallel turbo decoder. (a) Interleaver length of 3, 000 qubits. (b) Interleaver length of 1, 500 qubits.

N1 = 1000, while N2 = 3000. Hence, the conventional quan-
tum turbo decoding would require (2N1 + 2N2) = 4000 time
periods for each decoding iteration. In Fig. 6, the performance
of the conventional decoder is plotted for I ∈ {1, 2, 4, 6, 8}
decoding iterations, while I ∈ {10, 20, 40, 60, 80} iterations
are invoked for the FPQTD. It may be observed that at a
higher iteration index (or equivalently close to convergence),
the FPQTD requires about ten times more iterations than
the conventional decoder for the sake of achieving a similar
performance. We further compare the average number of
decoding iterations invoked by the proposed FPQTD to that
of the conventional decoder in Table 1. It may be observed
in Table 1 that the FPQTD requires on average about
10 to 12 times more iterations than the conventional scheme.

TABLE 1. Average number decoding iterations required for the
conventional and fully-parallel quantum turbo decoder.

The slower convergence of FPQTD is imposed by its
parallel nature. More explicitly, since the information is not
propagated through the algorithmic blocks as well as to the
other decoder in the same decoding iteration, the FPQTD
requires significantly more decoding iterations for propagat-
ing the information, thus imposing a higher computational
complexity, which is quantified in Table 1 in terms of the
average number of decoding iterations required for attaining
convergence. Nevertheless, the FPQTD brings with it huge
benefits in terms of the total number of time periods required
for decoding.More explicitly, while the conventional decoder
requires a total of (2N1+2N2)×I time periods, i.e. 8000×I
when N1 = 1000 and N2 = 3000, the number of time periods

required by the fully-parallel scheme is as low as the number
of decoding iterations. This is because our FPQTD scheme
requires a single time period for each decoding iteration.
Since the FPQTD requires about ten times more iterations, it
reduces the total number of decoding time periods by a factor
of 800, thereby reducing the associated latency (or equiva-
lently increasing themaximum tolerable clock-rate and hence
the throughput).

FIGURE 7. Distance from the Hashing bound for conventional (I = 8) and
full-parallel turbo decoder (I = 80) at QBER = 10−4.

Let us now extend our analysis to an interleaver length
of 1, 500 qubits in Fig. 6, which exhibits the same trend as
that of Fig. 6. Hence, regardless of the interleaver length,
the fully-parallel scheme converges to the same QBER per-
formance as that of the conventional decoder by invoking
around ten times more iterations. We further compare the
performance of the two schemes in Fig. 7 by quantify-
ing their discrepancy from the Hashing bound at a QBER
of 10−4 for different interleaver lengths. It may be observed
in Fig. 7 that the FPQTD exhibits the same performance as
that of the conventional scheme for all interleaver lengths,
provided that ten times more iterations are invoked. Hence,
the FPQTD is likely to reduce decoding times by a factor of
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(2N1 + 2N2)/10 = 0.8 N1 for any input frame length N1 of
the rate-1/9 QTC of [24].

FIGURE 8. Achievable QBER performance of a fully-parallel quantum
turbo decoder, when a random and an odd-even interleaver are used.
I ∈ {10, 20, 40, 60, 80} iterations are invoked for the random interleaver,
while I ∈ {5, 10, 20, 30, 40} iterations are used for the odd-even
interleaver.

TABLE 2. Average number decoding iterations required for the
fully-parallel quantum turbo decoding with random and odd-even
interleavers.

B. IMPACT OF ODD-EVEN INTERLEAVER
In Fig. 8, we quantify the benefits of exploiting the
knowledge of the odd-even interleaving pattern in the fully-
parallel architecture. More specifically, we compare the per-
formance of FPQTD having a random interleaver to that
of an odd-even interleaver. Fig. 8 portrays the performance
of the random interleaver for I ∈ {10, 20, 40, 60, 80} iter-
ations, while I ∈ {5, 10, 20, 30, 40} iterations are used
for the odd-even interleaver. As observed in Fig. 8, the
odd-even interleaving pattern yields faster decoding conver-
gence without compromising the achievable QBER perfor-
mance. In particular, the odd-even interleaving gives around
50% reduction in the number of decoding iterations, which
is also seen from the average number of decoding iterations
tabulated in Table 2. Furthermore, since an odd-even QFPTD
decoder uses two time slots for each decoding iteration,
the total latency is the same as that of QFPTD relying on a ran-
dom interleaver. However, the overall complexity is reduced
to half.

VI. CONCLUSIONS
In this contribution, we have conceived a fully-parallel
architecture for quantum turbo decoding. The proposed

scheme circumvents the inherent time dependencies asso-
ciated with the conventional quantum turbo decoding by
allowing all the constituent algorithmic blocks to operate
concurrently. Consequently, while the decoding delay or
latency of the conventional sequential decoding is a func-
tion of the frame length, the decoding delay incurred by
the proposed QFPTD is independent of the frame length.
We have demonstrated that QFPTD reduces the total number
of decoding time periods by a factor of 800 for a frame length
of 1, 000 qubits. This is particularly important for quantum
systems, which have low coherence times at the time of
writing. We have also quantified the benefits of employing
an odd-even interleaver pattern in conjunction with FPQTD.
More specifically, the odd-even interleaver design reduces
the computational complexity by half, while exhibiting the
same QBER.
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