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ABSTRACT The tradeoff between the quantum coding rate and the associated error correction capability
is characterized by the quantum coding bounds. The unique solution for this tradeoff does not exist, but
the corresponding lower and the upper bounds can be found in the literature. In this treatise, we survey
the existing quantum coding bounds and provide new insights into the classical to quantum duality for the
sake of deriving new quantum coding bounds. Moreover, we propose an appealingly simple and invertible
analytical approximation, which describes the tradeoff between the quantum coding rate and the minimum
distance of quantum stabilizer codes. For example, for a half-rate quantum stabilizer code having a code
word length of n = 128, the minimum distance is bounded by 11 < d < 22, while our formulation yields a
minimum distance of d = 16 for the above-mentioned code. Ultimately, our contributions can be used for
the characterization of quantum stabilizer codes.

INDEX TERMS Quantum error correction codes, quantum stabilizer codes, quantum coding bound.
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CSS Calderbank-Shor-Steane
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I. INTRODUCTION
Moore’s Law has remained valid for five decades, but based
on its prediction at the time of writing the classical integrated
circuits are expected to enter the nano-scale domain, where
the laws of quantum mechanics prevail [1], [2]. Quantum
computers potentially offer substantial benefits over clas-
sical computers owing to their inherent parallel processing
capability [3]–[14]. However, quantum computers are sus-
ceptible to the deleterious effect of quantum decoherence.
Hence, quantum error correction codes (QECCs) have been
proposed for correcting the bit-flips and phase-flips imposed
by the decoherence effects. Furthermore, the employment of
QECC in quantum computers is also capable of extending
the coherence time of qubits [15]. The concept of protecting
quantum information is similar to that of its classical coun-
terpart by attaching redundancy to the information, which is
then invoked later for error correction. The quest for finding
the ‘‘good’’ QECCs was inspired by Shor, who introduced
the 9-qubit code, which is often referred to as the Shor’s
code [16]. Shor’s code encodes a single information qubit,
which is also referred to as ’’logical qubit’’, into nine encoded
qubits or ‘‘physical qubits’’. The Shor’s code construction
is capable of protecting the nine physical qubits from any
type of single qubit error. Following the discovery of Shor’s
code, another QECC scheme, namely the Steane’s code, was
proposed [17]. The latter is capable of protecting any single
qubit error by encoding a single logical qubit into seven
physical qubits, instead of nine qubits. The question about
what the minimum number of physical qubits is required
in order to protect the physical qubits from any type of
single qubit error was answered when Laflamme et al. pro-
posed the 5-qubit quantum code [18]. This 5-qubit code may
be referred to as Laflamme’s code or also shown as the
‘‘perfect code’’, since the code construction achieves the
quantumHamming bound, which is the upper bound of quan-
tum coding rate given the minimum diatance of any QECC
construction [19], [20].

The field of QECCs entered its golden age following the
invention of quantum stabilizer codes (QSCs) [21], [22].
The QSC paradigm allows us to transform the classical
error correction codes into their quantum counterparts. The
QSCs also circumvent the problem of estimating both the
number and the position of quantum-domain errors imposed
by quantum decoherence without observing the actual quan-
tum states, since observing the quantum states would col-
lapse the qubits into classical bits. This extremely beneficial
error estimation was achieved by introducing the syndrome-
measurement based approach [21], [22]. In classical error
correction codes, the syndrome-measurement based approach
has been widely exploited for invoking the error detection and
correction procedure. Therefore, the formulation of QSCs
expanded the search space of good QECCs to a broader
horizon. This new paradigm of incorporating the classical to
quantum isomorphisms, led to the transformation of classical
codes to their quantum domain duals, such as Quantum
Bose-Chaudhuri-Hocquenghem (QBCH) codes [23], [24],

Quantum Reed-Solomon (QRS) codes [25], Quantum
Reed-Muller (QRM) codes [26], Quantum Convolu-
tional Codes (QCC) [27], [28], Quantum Low-Density
Parity-Check (QLDPC) codes [29], Quantum Turbo
Codes (QTC) [30] and Quantum Polar Codes (QPC) [31].
Apart from exploiting the above isomorphism, there are
also significant contributions on directly developing code
constructions solely based on the pure quantum topol-
ogy and homology, as exemplified by the family of toric
codes [32]–[34], surface codes [35], [36], colour codes [37],
cubic codes [38], hyperbolic surface codes [39], [40], hyper-
bolic color codes [41], hypergraph product codes [42]–[44]
and homological product codes [45]. A timeline that portrays
the milestones of QSCs, at a glance is depicted in Fig. 1.
Although the QSC formulation creates an important class of
QECCs, we note that there are also other classes of QECCs
beside the QSCs, such as the class of decoherence-free
subspace (DFS) codes. DFS codes can be viewed as passive
QECCs, while the QSCs are a specific example of the active
ones. To elaborate a little further, DFS codes constitute a
highly degenerate class of QECCs, which rely on the fact that
the error patterns may preserve the state of physical qubits
and therefore they do not neccessarily require a recovery
procedure [46]. Due to their strong reliance on the degeneracy
property exhibited by QECCs without a classical counterpart,
the class of DFS codes bears no resemblance to any classical
error correction codes. Therefore, in this treatise we focus our
discussions purely on QSCs, which exhibit strong analogies
with classical error correction codes.

Even though intensive research efforts have been invested
in exploring the QSCs field, one of the mysteries still remains
unresolved. Since the development of the first QSC, one of
the open problems has been how to determine the realistically
achievable size of the codebook |C| = 2k , given the number
of physical qubits n, the minimum distance of d , and the
quantum coding rate of rQ = k/n, where k denotes
the number of logical qubits. The minimum distance d is the
parameter that defines the error correction capability of the
corresponding code. The complete formulation of the realis-
tically achievable minimum distance d , given the number of
physical qubits n and the quantum coding rate rQ is unknown
at the time of writing, but several theoretical lower and upper
bounds can be found in the literature. Naturally, finding code
constructions associated with growing minimum distances
upon reducing the coding rate is desirable, since an increased
minimum distance improves the reliability of quantum
computation [60]–[64]. From the implementational perspec-
tive, the so-called quantum topological codes are popular in
the field of fault-tolerant quantum computing. Nonetheless,
one of the substantial drawbacks of quantum topological
codes is their potentially very low quantum coding rate, tends
towards zero for long codewords. Another class suitable for
fault-tolerant QSCs is constituted by the family of QLDPC
codes, which is a benefit of their sparse parity check matri-
ces (PCMs), since the sparseness of the PCM guarantees
having a limited error propagation of the qubits within a
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FIGURE 1. Timeline of important milestones in QECC field, specifically in the development of QSCs. The code construction is highlighted with bold fonts,
while the associated code type is printed in italics.

codeword. Although the QLDPC codes are capable of achiev-
ing a good performance at an adequate coding rate, they
actually have a modest minimum distance [29]. The trade-off

between the quantum coding rate and the minimum distance
as well as the codeword length is widely recognized, but the
achievable minimum distance d of a quantum code given the
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quantum coding rate rQ and codeword length n still remained
unresolved. For example, for a given codeword length of
n = 128 and quantum coding rate of rQ = 1/2, the achievable
minimum distance is losely bounded by 11 < d < 22,
while for n = 1024 and rQ = 1/2, the achievable minimum
distance is bounded by 78 < d < 157. Naturally, having such
a wide range of minimum distance is undesirable. For binary
classical codes, this problem has been circumvented by the
closed-form approximation proposed by Akhtman et al. [65].

The challenge of creating the quantum counterpart of
error correction codes lies in the fact that QSC constructions
have to mitigate not only bit-flip errors, but also phase-
flip errors or in fact both bit-flip and phase-flip errors.
Based on how we mitigate those different types of errors,
we can simply categorize QSCs as being in the class of
Calderbank-Shor-Steane (CSS) codes [17], [66], [67] or as
being non-CSS codes [22]. The CSS codes handle the qubit
errors by treating the bit-flip errors and phase-flip errors as
separate entities. By contrast, the class of non-CSS codes
treat both bit-flip errors and phase-flip errors simultaneously.
Since the CSS codes treat the bit-flip and phase-flip error
correction procedures separately, in general, they exhibit a
lower coding rate than their non-CSS counterparts having
the same error correction capability. Furthermore, if we also
consider the presence of quantum entanglement, wemay con-
ceive more powerful quantum code constructions. To elabo-
rate, the family of entanglement-assisted quantum stabilizer
codes (EA-QSCs) is capable of operating at a higher quan-
tum coding rate than the unassisted QSC constructions
at a given error correction capability, provided that error-
free maximally-entangled qubits have already been pre-
shared [48], [49].

Against this background, our contributions are summa-
rized as follows:
• We provide a survey of the existing quantum coding
bounds found in the literature, along with their relation-
ship to the existing quantum stabilizer code construc-
tions. Moreover, to bridge the gap between the classical
and quantum coding bounds, we provide further insights
into the classical to quantum isomorphism in the context
of the associated coding bound formulations.

• We formulate a simple invertible formulation of r(n, δ)
characterizing the relationship between the quantum
coding rate and the associated achievable minimum dis-
tance of quantum stabilizer codes. The resultant closed-
form approximation of quantum coding bound is suit-
able both for idealized infinite and practical finite-
length codewords. More specifically, we show that using
our closed-form approximation, we become able to esti-
mate the realistically achievable minimum distance of
quantum stabilizer codes.

• We then derive the bounds for maximally-entangled
quantum stabilizer codes in conjunction with arbitrary
entanglement ratios and relate them to those of unas-
sisted quantum stabilizer codes. More explicitly, for
the entanglement ratio of θ = 0, we arrive at the

FIGURE 2. The structure of the paper.

bounds of unassisted quantum stabilizer codes while for
θ = 1, we generate the quantum coding bounds for their
maximally-entangled counterparts.

The structure of the paper is described in Fig. 2 and the
rest of this paper is organized as follows. In Section II,
we commence with a brief fundamentals background on
quantum states. A review of QSC constructions is presented
in Section III, followed by Section IV, where we illustrate the
Pauli-to-Binary isomorphism in the context of QSCs that are
capable of correcting single qubit errors. By incorporating the
classical to quantum duality, we show how to derive quantum
coding bounds from their classical counterparts and we also
contrast them in Section V. We then proceed with the study
of quantum coding bounds derived both for asymptotical infi-
nite and practical finite-length codewords in Section VI and
Section VII, respectively. We then provide further insights
into the quantum coding bounds of entanglement-assisted
quantum stabilizer codes in Section VIII. Finally, we con-
clude in Section IX.

II. A BRIEF INTRODUCTION TO QUANTUM
INFORMATION PROCESSING
In classical computation, the information is conveyed by a
binary digit or ‘‘bit’’. Each bit has a value of either logical
‘‘0’’ or ‘‘1’’. Similarly, in a quantum computer, a single ele-
ment of information is represented by a quantum bit (qubit).
Each of the qubits is in a superposition of the ‘‘0’’ and ‘‘1’’.
The state of a single qubit can be represented mathematically
as

|ψ〉 = α0|0〉 + α1|1〉, (1)
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where we have α0, α1 ∈ C and |α0|2+|α1|2 = 1. For a single
qubit in the state of Eq. (1), the probability of obtaining |0〉
upon observation is P0 = |α0|2 and for the state |1〉, it is P1 =
|α1|

2. Representing the state of a qubit as shown in Eq. (1) is
also known as the Dirac notation or ‘‘bra-ket’’ notation [68].
Apart from using the Dirac notation, we may represent the
state of a single qubit as a 2-component vector as follows:

|ψ〉 = α0|0〉 + α1|1〉

= α0

(
1
0

)
+ α1

(
0
1

)
=

(
α0
α1

)
. (2)

Basically, a single qubit system may be viewed as a two-
component vector in the two-dimensional Hilbert space
and correspondingly an N -qubit string lies within the
2N -dimensional Hilbert space. More specifically, for exam-
ple, a two-qubit operand is in a superposition of four states
of 00, 01, 10, and 11 simultaneously, which can be written as

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉, (3)

where the constraints of α00, α01, α10, α11 ∈ C and |α00|2 +
|α01|

2
+|α10|

2
+|α11|

2
= 1 still hold. If the binary represen-

tations of 00, 01, 10 and 11 are translated to their decimal
representations of 0, 1, 2 and 3 respectively, the resultant
N -qubit state can be encapsulated as

|ψ〉 =

2N−1∑
i=0

αi|i〉 where αi ∈ C,
2N−1∑
i=0

|αi|
2
= 1. (4)

The Pauli group G1 defines the unitary transformation of a
single qubit, which is closed under multiplication. The Pauli
group G1 is defined as

G1 = {eP : P ∈ {I,X,Y,Z}, e ∈ {±1,±i}}, (5)

where I,X,Y and Z are the Pauli matrices, which manipulate
the two-dimensional single qubit state and each of them is
defined as follows:

I =
(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =
(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (6)

In the context of quantum information processing, each Pauli
matrix represents the discrete set of errors that may cor-
rupt a single qubit state. Physically, they represent a bit-flip
error (X), a phase-flip error (Z), as well as a joint bit-flip and
phase-flip error (iXZ = Y), while Pauli-I represents the iden-
tity operator corresponding to the absence of errors. However,
it is always important to bear in mind that the nature of
quantum decoherence is continuous and it can be modeled as
a linear combination of X, Z, and Y type errors. Fortunately,
due to the effect of stabilizer measurement, we can model the
continuous nature of quantum decoherence with the aid of the
bit-flip (X), phase-flip (Z), as well as a simultaneous bit-flip
and phase flip (Y) errors.

For an N -qubit operator, the general Pauli group Gn is
represented by an n-fold tensor product of G1, as defined
below:

Gn = {P1 ⊗ P2 · · · ⊗ Pn|Pj ∈ G1}. (7)

The Pauli channel inflicts an error P ∈ Gn on an N -qubit
string, where each qubit may independently experience either
a bit-flip error (X), a phase-flip error (Z), or both bit-flip
and phase-flip error (iXZ = Y). For instance, let us assume
having a single qubit in the state of |ψ〉 = α0|0〉 + α1|1〉.
A Pauli matrix X transforms a single qubit in the state of |ψ〉
into the following state:

|ψ ′〉 = X|ψ〉

=

(
0 1
1 0

)
.

(
α0
α1

)
=

(
α1
α0

)
≡ α1|0〉 + α0|1〉. (8)

The transformation by the Pauli matrix Z of a single qubit
state results in a phase-flip, which is defined by

|ψ ′〉 = Z|ψ〉

=

(
1 0
0 −1

)
.

(
α0
α1

)
=

(
α0
−α1

)
≡ α0|0〉 − α1|1〉. (9)

By following the same method, we can readily determine the
manipulated state of a single qubit by the Pauli matrix Y
resulting both in a simultaneous bit-flip and phase-flip as
follows:

|ψ ′〉 = Y|ψ〉

=

(
0 −i
i 0

)
.

(
α0
α1

)
=

(
iα1
−iα0

)
≡ iα1|0〉 − iα0|1〉, (10)

Let us now proceed by applying the unitary transformation
to a multi-qubit state of Eq. 7. For instance, let us assume
a two-qubit operand in the state of Eq. 3, which can be
represented as a 4-element vector as follows:

|ψ〉 =


α00
α01
α10
α11

 . (11)

For example, the quantum decoherence inflicts the two-qubit
unitary transformation of (X⊗ I)1 upon a two-qubit state,

1For the sake of simplifying the notation, a set of Pauli matrices for
defining a multi-qubit unitary transformation usually does not include the
‘‘⊗’’ operator. For example, a unitary transformation (X⊗ Z⊗ X⊗ I) act-
ing upon a 4-qubit operand can simply be rewritten as XZXI. In the rest of
the paper, the latter representation is used.
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which can be described as follows:

|ψ ′〉 = (X⊗ I) |ψ〉

=

((
0 1
1 0

)
⊗

(
1 0
0 1

))
.


α00
α01
α10
α11



=

 0
(
1 0
0 1

)
(
1 0
0 1

)
0

 .

α00
α01
α10
α11



=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

α00
α01
α10
α11



=


α10
α11
α00
α01


≡ α10|00〉 + α11|01〉 + α00|10〉 + α01|11〉. (12)

The final state of Eq. (12) can also be obtained without
expanding the tensor product of the unitary transformation
by flipping the state of the first qubit, since the unitary
transformation of XI means that a bit-flip error occurs on
the first qubit, while the second qubit does not experience
any impairment. More explicitly, due to the unitary transfor-
mation XI, the state of |00〉 is changed to state of |10〉. The
same transformation is also applied to the states of |01〉, |10〉,
and |11〉, where they are transformed to the states of |11〉,
|00〉, |10〉, respectively. Hence, the magnitude associated with
the state of |00〉 is no longer α00 and now it becomes α10.
Therefore, the magnitudes associated with the states of |01〉,
|10〉, and |11〉 are α11, α00, and α01, respectively.

Since we focus our discussions on the family of QSCs,
the quantum coding bounds can be derived from their classi-
cal counterparts. Even thoughmost of the well-known bounds
on quantum codes are derived on the basis of the classical-to-
quantum isomorphism, the pure quantum code constructions
not relying on the classical-to-quantum isomorphism, but
rather based on topological and homological orders still obey
to these quantum coding bounds, provided that they belong
to the family of non-degenerate quantum codes. To elaborate
a little further, degeneracy is one of the distinctive charac-
teristics of quantum codes, which cannot be found in their
classical counterpart. More explicitly, quantum codes inher-
ently exhibit a degeneracy property implying that different
error patterns of P ∈ Gn may yield an identical corrupted
state. For example, let us assume a two-qubit operand in the
following state:

|ψ〉 =
1
√
2
(|00〉 + |11〉) , (13)

and consider two different error patterns, which can be
described as a pair of two-qubit unitary transformations given
by E1 = IZ and E2 = ZI. The resultant state after the

error pattern E1 is imposed to the two-qubit system can be
described as follows:

|ψ ′1〉 = IZ|ψ〉

=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .


1
√
2
0
0
1
√
2

 =


1
√
2
0
0

−
1
√
2


≡

1
√
2
(|00〉 − |11〉) , (14)

while the acts of E2 upon the state of |ψ〉 will result in the
following state:

|ψ ′2〉 = ZI|ψ〉

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .


1
√
2
0
0
1
√
2

 =


1
√
2
0
0

−
1
√
2


≡

1
√
2
(|00〉 − |11〉) . (15)

Since the error patterns E1 = IZ and E2 = ZI yield
an identical corrupted states |ψ ′1〉 and |ψ

′

2〉, they undoubtly
require an identical recovery procedure. Indeed, exploiting
the degeneracy property may potentially increase the error
correction capability of quantum codes. However, the ques-
tion as to whether there exist degenerate quantum codes
that are capable of operating beyond the quantum Hamming
bound remains unresolved at the time of writing. Therefore,
we limit our discussions in this treatise to the non-degenerate
QSCs, although some research on finding the bounds of
degenerate quantum codes can be found in [19], [69],
and [70].

III. A BRIEF REVIEW OF QUANTUM STABILIZER
CODE CONSTRUCTIONS
Let us recall the fact that qubits collapse to classical bits upon
measurement [71]. This prevents us from directly transplant-
ing the classical error correction procedures to the quantum
domain. Inspired by the PCM-based syndrome decoding phi-
losophy, the notion of QSCswas introduced in [21], where the
terminology of quantum stabilizer codes (QSCs) represents
the quantum domain counterpart of syndrome-based classical
error correction codes. Almost at the same time, an inde-
pendent framework of transforming classical error correction
codes to QECCs was proposed in [47] and later the extended
version was presented in [22]. The aforementioned proposals
are similar in terms of their concept and the terminology
of quantum stabilizer codes (QSCs) is widely recognized,
unifying both framewoks. The QSCs formulation allows us
to transform every PCM-based classical error correction code
into its quantum counterpart. Considering that QSCs have
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to handle several different types of errors, namely bit-flip
errors (X), phase-flip errors (Z), as well as both bit-flip and
phase-flip errors (iXZ = Y), the PCM of C[n, k]2 of QSCs,
in general, can be formulated as

H = (Hz|Hx) . (16)

The stabilizer formalism given in Eq. (16), can be inter-
preted as a pair of binary PCMs Hz and Hx . However,
a pair of Hz and Hx only can be translated into quantum
stabilizer codes, if they satisfy the symplectic criterion given
by [21], [22]

HzHT
x +HxHT

z = 0. (17)

The CSS codes constitute a special class of QSCs. More
specifically, the construction of a C[n, k1 − k2] CSS code,
which is capable of correcting t qubit errors including the
bit-flip as well as phase-flip errors, can be derived from the
pair of classical linear block codes C1(n1, k1) and C2(n2, k2)
if C2 ⊂ C1, where both C1 and the dual pair of C2,3 denoted
by C⊥2 , are capable of correcting t bit errors. For the CSS code
constructions, the PCM Hz is obtained from the PCM of C1
invoked for handling bit-flip errors, while the the PCM Hx is
obtained from the dual C⊥2 is used for correcting the phase-flip
errors. Since the phase-flip and bit-flip errors are treated sepa-
rately in quantum CSS code constructions, the corresponding
PCMs for stabilizer matrices of Hz and Hx are given by

Hz =

(
H′z
0

)
and Hx =

(
0
H′x

)
, respectively. Consequently,

the binary PCM H is defined as

H =
(
H′z 0
0 H′x

)
. (18)

Moreover, since we have C2 ⊂ C1, the symplectic crite-
rion of Eq. (17) can be reduced to H′zH

′
x
T
= 0. Further-

more, if the construction satisfies H′z = H′x , the resul-
tant codes are defined as dual-containing quantum CSS
codes, or self-orthogonal quantum CSS codes because
H′zH

′
z
T
= 0, or equivalent to C⊥1 ⊂ C1.

Again, the classical code constructions can be readily
transformed into their quantum version provided that they
satisfy the symplectic criterion of Eq. (17). The latter con-
straint prevents us from transplanting some well-known clas-
sical codes into the quantum domain. However, fortunately
this limitation can be relaxed by utilizing the family of
entanglement-assisted quantum stabilizer codes (EA-QSCs)
[48], [49]. The luxury of being able to transform every
type of classsical codes into quantum codes does not come
without cost. Invoking the EA-QSC construction requires
preshared maximally-entangled qubits before encoding

2To avoid ambiguity concerning the classical and quantum coding nota-
tion, the notation C(n, k) will be used to address classical codes and C[n, k]
for quantum codes.

3The dual pair of the linear binary code C1 ⊂ Fn2 is defined by a linear
binary code C2 = {c2 ∈ Fn2|〈c1, c2〉 = 0,∀c1 ∈ C1}, where 〈c1, c2〉
represents the inner product between c1 and c2.

FIGURE 3. The classification and characterization of QSCs, where CSS
stands for Calderbank-Shor-Steane and EA for entanglement assisted.

procedure as detailed in [49]. However, the mechanism of
presharing the maximally-entangled qubits allows us to trans-
form a set of non-symplectic QSCs into their symplectic
counterpart. For a crystal clear illustration, the classification
and characterization of the QSCs is summarized in Fig. 3.
For more a detailed history and important milestones of the
QSCs field, please refer to [55] and [58].

IV. PROTECTING A SINGLE QUBIT: DESIGN EXAMPLES
In Section I, we have already mentioned the three pioneering
contributions on QSCs, which are only capable of handling a
single qubit error, while in Section III, we briefly highlighted
the different types of QSC constructions. In this section,
we will link up both ideas in a more concrete context.

A. CLASSICAL AND QUANTUM 1/3-RATE
REPETITION CODES
Before we delve deeper into the aforementioned QSCs, let us
commence with a simple 1/3-rate classical repetition codes,
which maps a binary digit of ‘‘0’’ or ‘‘1’’ into a vector that
contains three replicas of each binary digit as

0
G
−→

(
0 0 0

)
,

1
G
−→

(
1 1 1

)
. (19)

In classical codes, the mapping of information words into
codewords may be described using the generator matrix G
as encapsulated below:

y = x ∗G, (20)

where y denotes the vector of an n-bit codeword, x is the
k-bit original information word and ∗ represents the matrix
multiplication over modulo-2. Hence, the generator matrixG
is a (k × n)-element matrix, which may be decomposed into
a systematic form as

G = (Ik |P) , (21)

where Ik is a (k × k) identity matrix and P is a k × (n −
k)-element matrix. The form given in Eq. (21) represents
systematic linear block codes since, the codeword consists
of k-bit information word followed by (n−k) parity bits. Each
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generator matrix G corresponds to an (n − k) × n-element
PCM H, which is defined as

H =
(
PT |In−k

)
. (22)

The PCM of H is constructed for ensuring that y is a valid
codeword if and only if

y ∗HT
= 0. (23)

A received word ŷ may be contaminated by an error vector e
due to the channel impairments, so that ŷ = y+ e. The error
syndrome s is a vector of length (n − k) that is obtained by
following calculation:

s = ŷ ∗HT
= (y+ e) ∗HT

= y ∗HT
+ e ∗HT

= 0+ e ∗HT

= e ∗HT . (24)

In simple terms, we have 2k legitimate codewords represent-
ing k information bits, 2n possible received bit patterns of ŷ,
and 2(n−k) syndromes of s each unambiguously identifying
one of the 2(n−k) error patterns, including the error-free
scenario.

Hence, from this brief description of basic classical codes,
the mapping in Eq. (19) can be encapsulated into a generator
matrix G as given below:

G =
(
1 1 1

)
. (25)

From the generator matrix G given in Eq. (25) and the PCM
formulation given in Eq. (21), we obtain the PCM H for a
1/3-rate classical repetition code encapsulated by

H =
(
1 1 0
1 0 1

)
, (26)

where the first row returns the first bit of the two bits
syndrome value and acccordingly the second row evaluates
the second bit. Thus, it can be easily checked by using the
syndrome computation of Eq. (24) that the syndrome value
of (0 0) is obtained if the received word ŷ is equal to the valid
codeword, either (0 0 0) or (1 1 1). The syndrome computa-
tion yields a syndrome vector with (n − k)-element and in
this case for a 1/3-rate classical repetition code, it generates a
synfrome vector with two elements. Therefore, there are four
possible outcomes from the syndrome computation and one
of them indicates the error-free received word, which is the
(0 0) syndrome. Since a 1/3-rate classical repetition code is
considered as a short block code, the syndrome computation
and the associated error pattern is readily checked using a
look-up table, namely Table. 1.

Next, we proceed with with a simple 1/3-rate quantum
repetition code that capable of recovering a bit-flip error. Let
us assume that we have a quantum state |ψ〉 = α0|0〉+α1|1〉.
As the consequence of the No Cloning Theorem of quantum
mechanics, there is no unitary transformation U capable
of mapping an arbitrary quantum state |ψ〉 onto a state of
|ψ〉 = |ψ〉⊗3. Hence, the code mapping of quantum

TABLE 1. Syndrome computation and the associated error pattern for a
1/3-rate classical repetition code.

state |0〉 and |1〉 by a unitary transformation U is defined
by

|0〉 → |000〉,

|1〉 → |111〉. (27)

In a more general scenario, the mapping of k logical qubits to
n physical qubits is encapsulated as follows:

|ψ〉 ⊗ |0〉⊗(n−k)
U
−→ |ψ〉 = α0|0〉L + α1|1〉L , (28)

where |0〉L denotes the encoded state of the logical qubit
|0〉, |1〉L denotes the encoded state of logical qubit |1〉,
while |0〉⊗n−k represents the auxiliary or the redundant
qubits (ancillas), and the superscript of ⊗ (n − k) repre-
sents (n − k)-fold of tensor products. Hence, for 1/3-rate
quantum repetition codes, the state of the logical qubit |ψ〉
corresponds to the state of the physical qubit |ψ〉 as given
by

(α0|0〉 + α1|1〉)⊗ |0〉⊗2
U
−→ |ψ〉 = α0|000〉 + α1|111〉,

(29)

where the |000〉 defines the encoded logical qubit |0〉L and
|111〉 defines the |1〉L . Again, it is important to bear in mind
that the state of |ψ〉 = α0|000〉 + α1|111〉 is not equal to
|ψ〉 = |ψ〉⊗3. More explicitly, this relationship can also be
expressed as |ψ〉 = α0|000〉 + α1|111〉 6= |ψ〉⊗3. The state
of the physical qubits of the 1/3-rate quantum repetition code
is stabilized, or synonymously ’parity-checked’ by the pair
of stabilizer operators g1 = ZZI and g2 = ZIZ. A valid
codeword or a valid encoded state, which is not affected
by the stabilizer operators g1 and g2, has an input state of
|ψ〉 and returns the state of |ψ〉, hence it yields the so-
called eigenvalues of +1, and more explicitly, it is described
below:

g1|ψ〉 = α0|000〉 + α1|111〉 ≡ |ψ〉,

g2|ψ〉 = α0|000〉 + α1|111〉 ≡ |ψ〉. (30)

By contrast, if the stabilizer operators g1 and g2 are applied
to the corrupted states |ψ̂〉, they both yield eigenvalues that
are not in the all one state. For instance, let us assume
that we received a corrupted state having a bit-flip error
imposed on the first qubit of |ψ〉 yielding |ψ̂〉 = α0|100〉 +
α1|011〉. Then, upon applying the stabilizer operators g1 =
ZZI and g2 = ZIZ to the state of |ψ̂〉, it may be read-
ily showed after few steps that we arrive at the following
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TABLE 2. Single qubit bit-flip errors along with the associated eigenvalues in 1/3-rate quantum repetition where the eigenvalues act similarly with the
syndrome values in classical linear block codes.

eigenvalues:

g1|ψ̂〉

= ZZI(α0|100〉 + α1|011〉)

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.



0
0
0
α1
α0
0
0
0



=



0
0
0
−α1
−α0
0
0
0


≡ −α0|100〉 − α1|011〉 ≡ −|ψ̂〉, (31)

g2|ψ̂〉

= ZIZ(α0|100〉 + α1|011〉)

=



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


.



0
0
0
α1
α0
0
0
0



=



0
0
0
−α1
−α0
0
0
0


≡ −α0|100〉 − α1|011〉 ≡ −|ψ̂〉. (32)

The resultant eigenvalues of ±1 act similarly to the syn-
drome vector of classical codes, where the eigenvalue +1
is associated with the classical syndrome value 0 and the
eigenvalue −1 with the classical syndrome value 1. More
explicitly, the single qubit error patterns imposed on the

1/3-rate quantum repetition codes and the associated eigen-
values are portrayed in Table. 2. However, this specific
construcion is only capable of detecting and correcting a
single bit-flip error imposed by the Pauli channel on the
physical qubits, but no phase-flips.
Since the physical qubits may experience not only bit-

flip errors, but also phase-flip errors as well as both bit-flip
and phase-flip errors, different mapping is necessitated to
protect the physical qubits from phase-flip error. In order to
protect the physical qubits from a phase-flip error, we may
require a different basis but we can still invoke a similar
approach. To elaborate further, the Hadamard transforma-
tion (H) maps the computational basis of {|0〉, |1〉} onto the
Hadamard basis of {|+〉, |−〉}, where the state of |+〉 and |−〉
are defined as

|+〉 ≡ H|0〉 =
1
√
2
(|0〉 + |1〉), (33)

|−〉 ≡ H|1〉 =
1
√
2
(|0〉 − |1〉), (34)

and the unitary Hadamard transformation H, which acts on a
single qubit state, is given by

H =
1
√
2

(
1 1
1 −1

)
. (35)

A phase-flip error defined over the Hadamard basis of
{|+〉, |−〉} acts similarly to the bit-flip error defined over the
computational basis of {|0〉, |1〉}. Hence, for handling of a
single phase-flip error, the codemapping of 1/3-rate quantum
repetition codes are given by

|0〉 → | + ++〉,

|1〉 → | − −−〉. (36)

Hence, the logical qubit of |ψ〉 corresponding to the physical
qubits |ψ〉 is given by

|ψ〉 ⊗ |0〉⊗2
U
−→ |ψ〉 = α0| + ++〉 + α1| − −−〉. (37)

The state of physical qubits given in Eq. (37) can be stabilized
by the operators g1 = XXI and g2 = XIX. The detection and
correction of a phase flip error can be carried out in analogy
with the 1/3-rate quantum repetition code for handling the
bit-flip error.

As seen in Eq. (16), the stabilizer operators can be
derived from the classical PCM H by mapping the Pauli
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FIGURE 4. The circuit representation of the CNOT unitary transformation.

matrices I, X, Y and Z onto (F2)2 as follows:

I →
(
0 | 0

)
,

X →
(
0 | 1

)
,

Y →
(
1 | 1

)
,

Z →
(
1 | 0

)
. (38)

Each row ofH is associated with a stabilizer operator gi ∈ H,
where the i-th column of both Hz and Hx corresponds to the
i-th qubit and the binary 1 locations represent the Z and X
positions in the PCMs Hz and Hx , respectively. For instance,
for the 1/3-rate quantum repetition code, which is stabilized
by the operators g1 = ZZI and g2 = ZIZ, the PCM H is
given as follows:

H =
(
1 1 0 0 0 0
1 0 1 0 0 0

)
. (39)

Since the 1/3-rate quantum repetition code in this example
can only correct a bit-flip (X) error, which is stabilized by the
Z operators, the PCM Hx contains only zero elements. The
same goes for a 1/3-rate quantum repetition code conceived
for handling a phase-flip (Z) error, which is stabilized by
the operators g1 = XXI and g2 = XIX. The PCM H
corresponding to this particular QSC is defined as follows:

H =
(
0 0 0 1 1 0
0 0 0 1 0 1

)
. (40)

It is clearly shown in Eq. (39) and (40) that the PCM of
a 1/3-rate quantum repetition code is similar to that of the
1/3-rate classical repetition code given in Eq. (26).

In order to encode the logical qubits into physical qubits,
we require the unitary transformation U acting as the quan-
tum encoding circuit. To represent the quantum encoding
circuit, one of the essential components is the controlled-NOT
(CNOT) quantum gate. A CNOT quantum gate manipulates
the state of a two-qubit system and it can be represented by a
unitary transformation as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (41)

The circuit representation of the CNOT quantum gate is
depicted in Fig 4, which manipulates the state of two qubits
and it can be formulated as follows:

CNOT(|a0, a1〉) ≡ |a0, (a0 ⊕ a1)〉, (42)

FIGURE 5. The encoding circuit of the 1/3-rate quantum repetition code
protecting the physical qubits from a bit-flip error.

where the notation of ⊕ represents the modulo-2 addition.
For instance, by using the CNOT representation in Eq. (41),
a logical qubit in the superimposed state of |ψ〉 = α0|0〉 +
α1|1〉 and a qubit in the pure state of |0〉 are manipulated by
the quantum CNOT gate into following state:

CNOT(|ψ〉, |0〉) = CNOT(α0|0〉 + α1|1〉, |0〉)

= CNOT(α0|00〉 + α1|10〉)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

α00
0
α10
0



=


α0
0
0
α1

 ≡ α0|00〉 + α1|11〉. (43)

Similarly, we may also use the CNOT definition given in
Eq. (42) to determine the resultant state as described below:

CNOT(|ψ〉, |0〉) = CNOT(α0|0〉 + α1|1〉, |0〉)

= CNOT(α0|00〉 + α1|10〉)

= α0|0, (0⊕ 0)〉 + α1|1, (1⊕ 0)〉

= α0|00〉 + α1|11〉. (44)

In this configuration, the first qubit is referred to as the control
qubit, while the second one is referred to as the target qubit.
The value of the target qubit is flipped if the value of the
control qubit is equal to ‘‘1’’. We can observe that the CNOT
quantum gate behaves similarly to the exclusive OR (XOR)
gate of the classical computer.

For the sake of creating the encoded state of 1/3-rate
quantum repetition code, we require a single logical qubit and
two ancillas prepared in the pure state of |0〉, as described in
Eq. (29). In the first step, the CNOT unitary transformation
is performed between the logical qubit and the first ancilla,
in which the logical qubit acts as the control qubit and the
ancilla as the target qubit. The same step is repeated during
the second stage between the logical qubit and the second
ancilla, where the second ancilla is also preserved as the target
qubit. Therefore, the encoding circuit of the 1/3-rate quantum
repetition code can be represented as in Fig 5, which was

11566 VOLUME 5, 2017



D. Chandra et al.: Quantum Coding Bounds and a Closed-Form Approximation

FIGURE 6. The encoding circuit of the 1/3-rate quantum repetition code
protecting the physical qubits from a phase-flip error.

designed for protecting the physical qubits from a single bit-
flip error, as also seen in the mapping given in Eq. (27). For
its 1/3-rate quantum repetition code counterpart protecting
the physical qubits from a phase-flip error, we require the
Hadamard transformation to obtain the mapping given in
Eq. (36). Hence, we can readily create the encoding circuit for
a 1/3-rate quantum repetition code for protecting the physi-
cal qubits from a phase-flip error by placing the Hadamard
transformations after the second stage as portrayed in Fig. 6.

B. SHOR’s 9-QUBIT CODE
Since, we have elaborated briefly on the construction of QSCs
along with the Pauli to binary isomorphism, we may now
proceed with the corresponding examples of different QSC
constructions conceived for protecting the physical qubits
from any type of a single qubit error. Firstly, we start with the
Shor’s code [16]. In order to protect the qubits from any type
of single qubit error, a logical qubit is mapped onto nine phys-
ical qubits. This code may also be viewed as a concatenated
version of two 1/3-rate quantum repetition codes, where the
first stage is dedicated to the protection of the physical qubits
from phase-flip errors, while the second stage is invoked for
handling the bit-flip errors. To elaborate further, at the first
stage of Shor’s code, the state of a logical qubit is encoded by
using the followingmapping: |0〉 → |+++〉, |1〉 → |−−−〉.
At the second stage, we encode each of the states of |+〉 to the
state of (|000〉 + |111〉) /

√
2, while the state of |−〉 is mapped

to the state of (|000〉 − |111〉) /
√
2. Therefore, the final state

of the encoded logical qubits |0〉L and |1〉L are encapsulated
as follows:

|0〉L =
1
√
2
(|000〉 + |111〉)⊗

1
√
2
(|000〉 + |111〉)

⊗
1
√
2
(|000〉 + |111〉)

=
1

2
√
2
(|000000000〉 + |000000111〉 + |000111000〉

+ |000111111〉 + |111000000〉 + |111000111〉

+ |111111000〉 + |111111111〉), (45)

|1〉L =
1
√
2
(|000〉 − |111〉)⊗

1
√
2
(|000〉 − |111〉)

⊗
1
√
2
(|000〉 − |111〉)

FIGURE 7. The encoding circuit of Shor’s 9-qubit code.

TABLE 3. The eight stabilizer operators g1 to g8 of Shor’s 9-qubit code,
which stabilizes a single logical qubit with the aid of eight auxiliary
qubits.

=
1

2
√
2
(|000000000〉 − |000000111〉 − |000111000〉

+ |000111111〉 − |111000000〉 + |111000111〉

+ |111111000〉 − |111111111〉). (46)

Based on the given description, the encoding circuit of Shor’s
code is portrayed in Fig. 7. The state determined by the nine
physical qubits of Shor’s code, where the latter defined in
Eq. (45) and (46), is stabilized by the eight stabilizer operators
which are listed in Table 3.

To elaborate a little further, Shor’s code is a member of the
class of non-dual-containing CSS codes. Explicitly, it belongs
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to the class of CSS codes because the stabilizer formalism of
Shor’s code implies that the code handles the Z error and the
X error separately, whilst it is a non-dual-containing because
the PCMs Hz and Hx are not identical. Based on the list of
stabilizer operators given in Table 3, the PCM H of Shor’s
code is given in Eq. (47), as shown at the bottom of this
page, where each row of the PCM corresponds to each of the
stabilizer operators listed in Table 3.

The quantum coding rate (rQ) of a quantum code C[n, k]
is defined by the ratio of the number of logical qubits k to
the number of physical qubits n, which can be formulated
as

rQ =
k
n
. (48)

Hence again, for a Shor’s 9-qubit code the quantum coding
rate is rQ = 1/9.

C. STEANE’s 7-QUBIT CODE
Steane’s code was proposed to protect a single qubit from any
type of error by mapping a logical qubit onto seven physical
qubits, instead of nine qubits. In contrast to Shor’s code,
Steane’s code is a dual-containing CSS code, since the PCMs
Hz andHx are equal to that of clasical Hamming codeHHam,
which is given by

HHam =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 . (49)

It can be confimed that the classical Hamming code is
a dual-containing code, because it satisfies the condition
HHam.HT

Ham = 0. Therefore, the PCM H of Steane’s code
is defined as shown in Eq. (50), as shown at the bottom of
this page.

Since Steane’s code is a member of the dual-containing
CSS codes, the encoded state of the logical qubit |0〉L and
|1〉L may be determined from its classical code counterpart.
Let C1(7, 4) be the Hamming code and C2(7, 3) be its dual.
Both of the codes are capable of corrrecting one bit error.

TABLE 4. The code space of C1 and C2 for determining the encoded state
of the Steane’s code.

Hence, the resultant CSS quantum code derived from these
codes, namely the C[n, k1 − k2] = C[7, 1], also capable of
correcting a single qubit error. For Steane’s code the states of
encoded logical qubit of |0〉L and |1〉L are defined as follows:

|0〉L =
1
√
|C2|

∑
x∈C1,C2

|x〉, (51)

|1〉L =
1
√
|C2|

∑
x∈C1,x /∈C2

|x〉. (52)

Since C2 is the dual of C1, by definition the PCM of C2,
denoted by H(C2) is the generator matrix of C1, denoted by
G(C1). Hence, the parity-check matrix of C2 can be written
as

H(C2) = G(C1) =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

. (53)

Based on the PCMgiven in Eq. (49) and (53), we can define
the code space of C1 and C2, which is described in Table 4.
Finally, using Eq. (51), (52), and also the code space given
in Table 4, the encoded states of the logical qubit |0〉L

HShor =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1


. (47)

HSteane =

(
HHam 0
0 HHam

)
=


1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 1 1 0 0 1

 . (50)
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TABLE 5. The stabilizer formalism of the Steane’s 7-qubit code.

TABLE 6. The stabilizer formalism of the perfect 5-qubit code.

and |1〉L of the Steane’s code are as follows:

|0〉L =
1

2
√
2
(|00000000〉 + |0111001〉 + |1011010〉

+ |1100011〉 + |1101100〉 + |1010101〉

+ |0110110〉 + |0001111〉), (54)

|1〉L =
1

2
√
2
(|1111111〉 + |1000110〉 + |0100101〉

+ |0011100〉 + |0010011〉 + |0101010〉

+ |1001001〉 + |1110000〉). (55)

It can be readily seen that the quantum coding rate of Steane’s
7-qubit code is 1/7. The encoding circuit of the Steane’s
1/7-rate code can be found in [72].

D. LAFLAMME’s 5-QUBIT CODE - THE PERFECT CODE
Laflamme’s code maps a single logical qubit onto a five
physical qubits. Laflamme’s code is also referred to as the
‘‘perfect code’’, because it has been proven that in order to
protect a logical qubit, the lowest number of physical qubits
required is five [19], [20]. The perfect 5-qubit code is a non-
CSS code, since the stabilizer formalism is designed to handle
the Z errors and X errors simultaneously. There are several
existing designs related to the perfect 5-qubit code [18], [71]
and in this treatise, we use the PCM formulation given
in [71]. Explicitly, its non-CSS characteristics can be readily
observed from the PCM Hperfect of the 5-qubit perfect code,
which is specified as follows:

Hperfect =


0 1 1 0 0 1 0 0 1 0
0 0 1 1 0 0 1 0 0 1
0 0 0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 0 1 0

 .
(56)

Hence, the stabilizer operators of the 5-qubit code may be
explicitly formulated as in Table 6. In general, the states of

TABLE 7. List of valid stabilizer operators for determining the encoded
state of the 5-qubit code.

encoded logical qubit of QSCs are defined as follows:

|0〉L =
∑
gi∈S

gi|0〉⊗N , (57)

|1〉L = X|0〉L . (58)

The stabilizers gi ∈ S includes all the valid stabilizer
operators of the quantum code C, which covers not only the
stabilizer operators that are listed in Table 6. Because of the
commutative property of the stabilizer formalism, the prod-
uct of any two stabilizer operators generates another valid
stabilizer operator. Table 7 provides a list of all the possible
combinations of the stabilizer operators, which includes the
stabilizer operator of g0 = IIIII, and also the respective
transformation upon the state of |0〉⊗5 = |00000〉. The
notation ofX denotes the logical operatorX. Explicitly, in this
case for the 5-qubit code the logical operator representing
the encoded state of the logical qubit is X = XXXXX. The
logical operator is represented by an N -fold application of
Pauli matrices that commutes with all stabilizer operators, but
it is not a part of the set of valid stabilizer operators S. The
resultant quantum coding rate of the 5-qubit code is rQ = 1/5.
The encoded state mapping for the 5-qubit quantum code
based on the Eq. (57), (58). Hence, the corresponding states,
which are described in Table 7, are defined below:

|0〉L =
1
4
(|00000〉 + |10010〉 + |01001〉 + |10100〉

+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉), (59)

|1〉L =
1
4
(|11111〉 + |01101〉 + |10110〉 + |01011〉

+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉 + |11010〉). (60)

The same method can be utilized for determining the
encoded state of logical qubit for Shor’s code and Steane’s
code. However, both Shor’s code and Steane’s code offer a
more simplistic approach for determining their correspond-
ing encoded states. The description for the efficient encod-
ing circuit of the 1/5-rate Laflamme’s code can be found
in [18], [73], and [74].
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FIGURE 8. QBER performance of the QSCs protecting a single qubit,
namely Shor’s 9-qubit code, Steane’s 7-qubit code, and the perfect
5-qubit code, recorded for the quantum depolarizing channel. The
similarity of performances is due to the fact that all of the QSCs rely on
hard-decision syndrome decoding and they all have the same error
correction capabilities.

Based on the aforementioned constructions, we evaluated
the performance of the QSCs by simulation, in the context of
quantum depolarizing channel. The performance of 9-qubit
Shor’s code, 7-qubit Steane’s code and 5-qubit Laflamme’s
code are portrayed in Fig. 8 in terms of the qubit error
rate (QBER) on given depolarizing probability (p). From the
simulation result, it can be observed clearly that the perfor-
mance of all three QSCs are quite similar. The similarity in
performances are expected because all of the codes have the
same error correction capability of correcting single qubit
error. In addition, they utilize the hard decision decoding
based on syndrome measurement. From this result, we may
conclude that for different codes with the same error correc-
tion capability, where in classical coding theory it will be
translated into the minimum distance property, they are asso-
ciated with similar performances eventhough all of the codes
have different codeword length. In this case, all of the QSCs
have a single qubit error correction capability (t = 1), and it
may be translated as the minimum distance of three (d = 3),
but having different codeword length, 9-qubit, 7-qubit and
5-qubit for Shor’s code, Steane’s code and Laflamme’s code,
respectively. Another fact that we should point out that the
three codes exhibit different code constructions. Shor’s code
belongs to non dual-containing CSS codes, while Steane’s
code is a member of dual-containing CSS codes, and finally,
Laflamme’s code or the perfect 5-qubit code has a construc-
tion of non-CSS codes.

V. ON CLASSICAL TO QUANTUM CODING BOUNDS
In this section, we present the classical to quantum transfor-
mation of the most well-known coding bounds, namely the
Singleton bound [75] and Hamming bound [76], which serve
as the upper bounds, as well as the Gilbert-Varshamov (GV)
bound [77], which acts as the lower bound. Although, there
are several ways of deriving the coding bounds in the quan-
tum domain, we are interested exploring the duality of cod-
ing bounds in classical and quantum domain. Therefore,

we present the derivation of quantum coding bounds using the
classical to quantum isomorphism approach and demonstrate
that the final results agree with the coding bounds that are
derived from a purely quantum domain perspective.

A. SINGLETON BOUND
The Singleton bound of classical binary code constructions
C(n, k) is defined as

n− k ≥ d − 1, (61)

where the notation n denotes the codeword length, k for
the length of information bits, and d for minimum distance
amongst the codewords in codebook C. Singleton bound acts
as an upper bound in classical code constructions. The bound
implies that the number of rows in a PCM associated with
the length of syndrome vector, which is equal to (n− k), has
to be greater than (d − 1). For the QSC C[n, k], the rows of
PCM correspond to the number stabilizer operators. Since the
stabilizer formalism has to correct both the bit-flip errors and
the phase-flip errors, the classical Singleton bound of Eq. (61)
can be readily transformed into the quantum Singleton bound
as follows:

n− k ≥ 2(d − 1), (62)

where n nowmay also be referred to as the number of physical
qubits and k as the number of logical qubits. In order to show
explicitly the trade-off between theminimumdistance and the
quantum coding rate, Eq. (62) can be modified to

k
n
≤ 1− 2

(
d − 1
n

)
. (63)

In the quantum domain, the Singleton bound is also known
as the Knill-Laflamme bound [78]. The QSCs achieving the
quantum Singleton bound by satisfying the equality are clas-
sified as the quantum Maximum Separable Distance (MDS)
codes. One of the well-known QSCs having a minimum
distance d = 3 that reaches the quantum Singleton bound
is the perfect 5-qubit code C[n, k, d] = C[5, 1, 3].

B. HAMMING BOUND
In classical binary coding, a codebook C(n, k) maps the infor-
mation words containing k bits into a codeword of length n
bits. The maximal number of errors, which is denoted by t
that can be corrected by codebook C is given by

t = b
d − 1
2
c. (64)

Therefore the maximum size of a binary codebook |C| = 2k

is bounded by the sphere-packing bound which is defined as:

2k ≤
2n

t=b d−12 c∑
j=0

(n
j

) . (65)

Since the QSCs have to correct three different types of error
namely the bit-flip errors (X), phase-flip errors (Z), as well
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as both bit-flip and phase-flip errors (Y), the size of the
codebook for a quantum code C[n, k] is now bounded by

2k ≤
2n

t=b d−12 c∑
j=0

(n
j

)
3j

. (66)

By modifying Eq. (66), we can express explicitly the bound
of the quantum coding rate as a function of the minimum
distance d and codeword length n, as shown below:

k
n
≤ 1−

1
n
log2

t=b d−12 c∑
j=0

(
n
j

)
3j

 . (67)

If n tends to∞, we obtain

k
n
≤ 1−

(
d
2n

)
log2 3− H

(
d
2n

)
, (68)

where H (x) is the binary entropy of x formulated as H (x) =
−x log2 x − (1 − x) log2(1 − x). Equation (67) and (68) are
also known as the quantum Hamming bound [20], which also
constitutes the upper bound of quantum code constructions.

C. GILBERT-VARSHAMOV BOUND
The same analogy exploited to derive the quantum Ham-
ming bound may also be used for transforming the classical
Gilbert-Varshamov (GV) bound, namely the lower bound for
classical code constructions, into its quantum counterpart.
In the classical domain, the GV bound is formulated as

2k ≥
2n

d−1∑
j=0

(n
j

) . (69)

Considering that the quantum codes have to tackle three
different types of errors, the size of the codebook C[n, k] is
bounded by

2k ≥
2n

d−1∑
j=0

(n
j

)
3j
. (70)

Hence, we can readily derive the quantum GV bound,
the lower bound of the quantum coding rate as a function of
the minimum distance d and codeword length n as follows:

k
n
≥ 1−

1
n
log2

d−1∑
j=0

(
n
j

)
3j

 . (71)

Again, if n aprroaches∞, we obtain

k
n
≥ 1−

(
d
n

)
log2 3− H

(
d
n

)
, (72)

where H (x) is the binary entropy of x. The quantum
GV bounds in Eq. (71) and (72) are valid for non-CSS
QSCs. However, a special case should be considered for
dual-containing quantum CSS codes. It will be shown in
Section VII that for some dual-containing CSS codes the

code constructions violate the quantum GV bound. Hence,
a special bound has to be derived to accomodate the dual-
containing CSS codes. In the classical domain, a binary code
C(n, k) maps a k-bit information word into an n-bit encoded
codeword. The number of syndrome measurement operators
is determined by the number of rows in the parity-check
matrix C(n, k), which is equal to (n− k). With a simple mod-
ification of Eq. (69), the number of syndrome measurement
operators in C(n, k) is bounded by

2(n−k) ≤

d−1∑
j=0

(
n
j

) . (73)

Recall that the dual-containing quantum CSS codes rely
on dual-containing classical binary codes, which satisfy the
symplectic criterion of Eq. (17) and also comply with the
constraint of Hz = Hx . Explicitly, half portion of the sta-
bilizer operators of C[n, k] are mapped onto Hz, while the
other half are mapped onto Hx . Therefore, the number of the
stabilizer operators of a dual-containing quantum CSS code
are bounded by

2
(n−k)
2 ≤

d−1∑
j=0

(
n
j

) . (74)

Based on Eq. (74), we may formulate the lower bound on the
quantum coding rate of a dual-containing quantum CSS code
as follows:

k
n
≥ 1−

2
n
log2

d−1∑
j=0

(
n
j

) . (75)

As n approaches ∞, we obtain the quantum GV bound for
CSS codes, as suggested in [66], which is formulated as

k
n
≥ 1− 2H

(
d
n

)
, (76)

where H (x) is the binary entropy of x. Based on the dis-
cussions above, we compare the asymptotic classical and
quantum coding bounds in Table. 8 as well as in Fig. 9. Since
the QSCs are designed to mitigate both bit-flip errors as well
as phase-flip errors, the bounds of QSCs are significantly
lower than those of their classical counterparts. Nevertheless,
the general conception still holds, the Singleton bound serves
as the loose upper bound, whilst the Hamming bound is the
tighter upper bound.

VI. QUANTUM CODING BOUNDS ON
ASYMPTOTICAL LIMIT
Although the classical to binary isomorphism assists us in
the development of QSCs from the well-known classical
code designs, the issue of determining the actual achieavable
minimum distance, given the coding rate and the codeword
length still remains unresolved. In the classical domain as
we described previously, finding the unique solution to the
realistically achievable minimum distance of binary classi-
cal codes is still an open problem, even though the upper
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TABLE 8. Comparison of various classical and quantum coding bounds.

TABLE 9. The coding bounds for classical code constructions, with a minor modification from [65].

FIGURE 9. The evolution from asymptotic classical binary coding bounds
to the asymptotic quantum coding bounds.

bound and lower bound of the quantum coding rate versus
the achievable minimum distance can be found in the litera-
ture [75]–[77], [79], [80]. The bounds for the classical code
constructions are listed in Table. 9, while the corresponding

asymptotic bounds are also plotted in Fig. 10. In the classical
domain, the tightest lower bound was derived by Gilbert [77].
The Hamming bound [76] serves as a tight upper bound for
high coding rates, while the McEliece-Rodemich-Rumsey-
Welch (MRRW) bound [79] serves as the tightest upper
bound for moderate and low coding rates. As seen in Fig. 10,
the gap between the tight upper bounds and the lower bound
is quite narrow. It was observed in [65] that a simple quadratic
expression r(δ) = (2δ− 1)2, where δ denotes the normalized
minimum distance d/n, satisfies all the known asymptotic
bounds.

The well-known bounds for QSC constructions are listed
in Table. 10 and they are also portrayed in Fig. 11. The
quantum Singleton bound serves as the loose upper bound,
the quantum Hamming bound as a tighter upper bound, and
quantum GV bound as the tightest lower bound. However,
a wide discrepancy can be observed between the upper bound
and the lower bound. For the sake of narrowing this gap,
the quantum Rain bound was derived using quantum weight
enumerators [81]. To elaborate a little further, the quantum
Rain bound states that any quantum code of length n can
correct at most b n−16 c errors. The resultant bound is only a
function of codeword length n. Hence, under the asymptotic
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TABLE 10. The well-known quantum coding bounds found in the literature.

FIGURE 10. The trade-off between classical coding rate r and normalized
minimum distance δ as described by classical binary coding bounds.
A simple quadratic function r (δ) = (2δ − 1)2, which satisfies all of the
bounds, acts as a closed-form approximation for classical binary error
correction codes as suggested in [65].

limit, the quantum Rain bound is a straigthline at δ = 1/3,
which does not exhibit any further trade-off between the
quantum coding rate and the minimum distance. In order to
enhance the accuracy of the quantum Rain bound, Sarvepalli
and Klappenecker derived a quantum version of Griesmer
bound [70]. By utilizing the quantum Griesmer bound and
also the quantum Rain bound, a stronger bound was created
for CSS type constructions. In this treatise we will refer to
this particular bound as the quantum Griesmer-Rain bound.
For the sake of tightening the upper bound, Ashikhmin and
Litsyn generalized the classical linear programming approach
to the quantum domain using theMacWilliams identities [82].
The resultant quantum linear programming boundwas proven
to be tighter than the quantum Hamming bound in the low
coding rate domain. As the quantum coding rate approaches
zero, the achievable mormalized minimum distance returned

by the quantum Griesmer-Rain bound becomes δ = 0.3333
and that of quantum linear programming bound becomes
δ = 0.3152.

Recall from Section III that the QSCs may exhibit either
a CSS or non-CSS structure. For CSS codes, the minimum
distance is upper-bounded by the quantum Hamming bound
for moderate to high quantum coding rates and by the quan-
tum Griesmer-Rain bound for low coding rates region, while
it is also lower-bounded by the quantum GV bound for CSS
codes. On the other hand, for non-CSS QSCs, the minimum
distance is upper-bounded by the quantum Hamming bound
for moderate to high coding rates and by the quantum linear-
programming bound for low coding rates. It is also lower-
bounded by the quantum GV bound for general quantum
stabilizer codes. Even though substantial efforts have been
invested tightening the gap between the upper and lower
bounds, a significant amount of discrepancy persists. Hence,
creating a simple approximation may be beneficial for giving
us further insights into the realistic construction of QSCs.

Analogous to the classical closed-form approximation
of [65], we also found that there exists a simple closed-form
quadratic approximation, which satisfies all the well-known
quantum coding bounds. Explicitly for quantum stabilizer
codes, the following quadratic function was found to satisfy
all the quantum coding bounds:

rQ (δ) =
32
9
δ2 −

16
3
δ + 1 for 0 ≤ δ ≤ 0.2197. (77)

We will further elaborate on the selection of this function
in Section VIII. It is important to note that the closed-form
approximation is subject to the asymptotical bound for either
CSS type or non-CSS type quantum code constructions. The
closed-form approximation in Eq. (77) offers the benefit of
simplicity and it has the inverse function as given by

δ(rQ) =
3
(√

2−
√
rQ + 1

)
4
√
2

for 0 ≤ rQ ≤ 1. (78)
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FIGURE 11. The trade-off between quantum coding rate rQ and
normalized minimum distance δ is characterized using quantum coding
bounds. A simple quadratic closed-form rQ (δ) =

32
9 δ

2 − 16
3 δ + 1 satisfies

all of the well-known quantum coding bounds, which is portrayed by
black solid lines. The blue dashed lines portrays the upper bounds, while
the red dashed lines denotes the lower bounds.

This closed-form approximation suggests that it is possible to
create a code construction whose minimum distance grows
linearly with the codeword length at the asymptotical limit
since for a given quantum coding rate rQ, it will correspond
to a unique constant value of δ.

VII. QUANTUM CODING BOUNDS ON
FINITE-LENGTH CODES
The asymptotic limits are only relevant for n → ∞. For
practical applications, we require code constructions with
shorter codeword length, which necessitates a different for-
mulation for the quantum coding bounds. Finding a closed-
form approximation will be beneficial for determining the
realistically attainable minimum distance for the given code
parameters. The well-known quantum coding bounds are
listed in Table 10 and also portrayed in Fig. 11. It is clearly
seen that a simple quadratic approximation can satisfy all
the well-known bounds. For the finite-length quantum codes,
we propose the closed-form approximation of

rQ(n, δ) = aδ2 + bδ + c. (79)

To arrive at the closed-form approximation in Eq. (79),
we have to determine three definitive points corresponding to
realistic quantum code constructions. As an example in this
treatise, we use three QSC constructions from the literature
as listed below:
• For uncoded logical qubits and unity rate codewords,
we have

rQ(n, δ) = r(n,
1
n
) = 1. (80)

• For a high coding rate, wewill use the construction given
in [19]. For n = 2j, there is a quantum stabilizer code
construction [n, k, d] = [n, n − j − 2, 3], which can

be used to correct t = 1 error. This code construction
reaches the quantum Hamming bound. For arbitrary n,
it can be written as

rQ(n, δ) = r(n,
3
n
) = 1−

1
n
log2(n)−

2
n
. (81)

• For a very low coding rate, we are using the quan-
tum stabilizer code constructions derived from quadratic
residues [83], [84]. By using simple linear regression,
we arrive at

rQ(n, δ) = r(n,
2
n
+

1
4
) =

1
n
. (82)

Using the three definitive points from the constructions
given in Eq. (80), (81) and (82), we arrive at a system of three
linear equations, which have a unique value of a, b and c for
an arbitrary value of n. More explicitly, we have

r1 = aδ21 + bδ1 + c, (83)

r2 = aδ22 + bδ2 + c, (84)

r3 = aδ23 + bδ3 + c. (85)

The analytical solution of Eq. (83), (84), and (85) is based on
the following unique parameter values:

a =
(r3 − r2) δ1 + (r1 − r3) δ2 + (r2 − r1) δ3

(δ2 − δ1) (δ3 − δ2) (δ1 − δ3)
, (86)

b =
(r2 − r3) δ21 + (r3 − r1) δ

2
2 + (r1 − r2) δ

2
3

(δ2 − δ1) (δ3 − δ2) (δ1 − δ3)
, (87)

c =
(r3δ2 − r2δ3) δ21 + (r1δ3 − r3δ1) δ

2
2 + (r2δ1 − r1δ2) δ

2
3

(δ2 − δ1) (δ3 − δ2) (δ1 − δ3)
.

(88)

Despite the cluttered appearance of the analytical solution,
it contains a simple closed-form approximation, because the
value of r1, r2, r3, δ1, δ2 and δ3 may be easily calculated
using Eq. (80), (81) and (82). Furthermore, the closed-form
approximation derived for finite-length codewords has an
inverse function of

δ(n, rQ) =
−b−

√
b2 − 4a(c− rQ)

2a
. (89)

The accuracy of the proposed method is now tested for
QSCs having codeword length of n = {31, 32, 63, 64,
127, 128} as shown in Fig. 12. The list of practical QSC
constructions which are used in these plots can be seen
in Table. 11.4 The closed-form approximation lies entirely
between the upper and the lower quantum coding bounds.
The practical QSCs are also plotted in the same figure to
show the relative position with respect to the quantum coding
bounds. The QSCs based on [22], [26] lays perfectly on
approximation curves, but it has been observed in [85] that
as the codeword length increases and the quantum coding
rate is reduced, the exact value of the minimum distance
becomes unclear. As depicted in Fig. 12b and 12c, we can

4A comprehensive list of practical quantum stabilizer codes can be found
online at [85]. In this treatise, we only consider quantum stabilizer codes with
definitive minimum distance in the list.
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TABLE 11. The list of QSC constructions that are used to plot practical code in Fig. 12.

hardly find definitive points associated with actual codes to
plot in the low quantum coding-rate region constructed from
quantum GF(4). Meanwhile, the QBCH code constructions
lie quite close to the GV lower bound for dual-containing
CSS codes. As predicted, since the constructions of QBCH
codes rely on dual-containing CSS type constructions, which
employ two separate PCMs for their stabilizer operators,
we expect a lower coding rate compared to their non-CSS
relatives.

The proposed closed-form approximation offers substan-
tial benefits for the development of QSCs.We can readily find
a fairly precise approximation of the realistically achievable
minimum distance for given code parameters. For instance,
for half-rate quantum stabilizer codes of length 128, the min-
imum distance is bounded by 11 < d < 22. By using our
formulation, we obtain d(n = 128, rQ = 1/2) = 16 from our
finite-length approximation. Likewise, for half-rate quantum
stabilizer codes of length 1024, the minimum distance is
bounded by 78 < d < 157. Using our method, we can
obtain d(n = 1024, rQ = 1/2) = 103 from our asymp-
totic bound approximation. One of the logical questions that
may arise concerns the existence of the corresponding codes.
For example, does a half-rate QSCs relying on n = 128
physical qubits and a minimum distance of d = 16 exist?
The answer to this question is not definitive. Let us refer to
the code table given in [85], which is mainly based on the
QSC constructions of [22]. Due to space limitations, we are
unable to capture the entire table and the associated PCM
formulation. However, it is shown in [85] that a half-rate QSC
relying on n = 128 physical qubits indeed exists, although the
minimum distance is only loosely specified by the bounds
of 11 < d < 20. The bound is similar to the quantum GV
bound and to the quantum Hamming bound of the minimum
distance given by 11 < d < 22. By contrast, upon using
our approximation, we have a minimum distance of d = 16,
which is again only an approximation and it does not imply
the existence of a quantum code having a similar minimum
distance. Nonetheless, we believe that our approximation is
beneficial for approximating the attainable QBER perfor-
mance of QSCs based on hard-decision syndrome decoding
for short to moderate codeword length as follows (without

considering degeneracy):

QBER(n, d, p) = 1−
t=b d−12 c∑
i=0

(
n
i

)
pi(1− p)n−i, (90)

where the realistically achievable value of d is obtained
from our approximation. In our view, the combination of
our closed-form approximation and the QBER of Eq. (90)
constitutes a useful benchmarker for the future develop-
ment of QSCs, since it quantifies the realistically achievable
QBER performance based on hard-decision syndrome-based
decoding.

The evolution of our closed-form approximation as the
codeword length increases for n = {31, 32, 63, 64, 127,
128} can be seen in Fig. 13. By using our example, it can
be clearly observed that as the codeword length increases,
the derived approximation for finite-length codes slowly
approaches the closed-form approximation of the asymp-
totic bound. However, inaccuracies emerge as the codeword
length increases. This phenomenon is due to the fact that
we do not have a definitive QSC constructions to rely on in
the low coding rate region. In our approximation example,
we are using the QSCs from quadratic residues construc-
tion for low coding rate region and the number of QSC
constructions are very limited only for a handful codeword
lengths. Meanwhile in the classsical domain, in the low cod-
ing rate region, we have the simple repetition codes, with con-
struction C(n, 1) having a normalized minimum distance of
δ(n, r) = δ(n, 1n ) = 1.
Albeit the finite and infinite-length-based approximation

curves start to deviate for a very long codeword n �
100, the minimum distance still grows as the codeword
length increases as portrayed in Fig. 14. Both the finite-
length approximation and asymptotic approximation follow
the same trend. For n � 100, we can simply utilize the
asymptotic formulation given in Eq. (77) for calculating the
quantum coding rate for a certain desired minimum dis-
tance, or the inverse of the asymptotic formulation in Eq. (78)
to determine the realistically achievable minimum distance
given the quantum coding rate. We can conclude from this
figure that it is indeed possible to have a QSC construction
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FIGURE 12. Quantum coding rate rQ versus normalized minimum
distance δ for finite-length QSCs. The points for portraying the practical
QSCs are taken from QBCH codes [23], QRM codes [26] and quantum
codes from GF (4) formulation [22]. (a) (n = 31) and (n = 32).
(b) (n = 63) and (n = 64). (c) (n = 127) and (n = 128).

with a growing minimum distance, as the codeword length
increases.

VIII. THE BOUNDS ON ENTANGLEMENT-ASSISTED
QUANTUM STABILIZER CODES
One of the distinctive characteristics of quantum systems,
which does not bear any resemblance with the classical

FIGURE 13. The evolution of our closed-form approximation for
finite-length codewords for various values of codeword length n.

FIGURE 14. The growth of achievable minimum distance for short block
QSCs as the codeword length increasing.

domain is the ability of creating entanglement. This unique
property can be exploited for increasing the achievable min-
imum distance of quantum codes, hence increasing the error
correction capability of QSCs. The EA-QSC constructions
are denoted by C(n, k; c), where c denotes the number of
preshared entangled qubits. It is important to note that even
though the EA-QSCs expand the Pauli group operators from
Gn into Gn+c, we only consider the error operators in Gn.
This is because the paradigm of EA-QSCs assumes that the
preshared entangled qubits are not subjected to transmission
error. Hence, for EA-QSCs, the quantum Hamming bound of
Eq. (66) can be modified to

2k ≤
2n+c

t=b dea−12 c∑
j=0

(n
j

)
3j

, (91)
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TABLE 12. The entanglement-assisted quantum coding bounds found in the literature.

TABLE 13. The asymptotic quantum coding bounds for EA-QSCs given the arbitrary entanglement ratios of θ .

where the notation dea denotes the minimum distance of
EA-QSCs. Equation (91), can be rewritten to show explicitly
the trade-off between quantum coding rate rQ and minimum
distance dea on EA-QSCs as follows:

k
n
≤ 1−

1
n
log2

t=b dea−12 c∑
j=0

(
n
j

)
3j

+ ( c
n

)
. (92)

When n tends to∞, we yield

k
n
≤ 1−

(
dea
2n

)
log2 3− H

(
dea
2n

)
+

( c
n

)
. (93)

As encapsulated in Eq. (93), an additional conflicting param-
eter is involved in determining the quantum coding bounds,
namely the entanglement consumption rate. The entangle-
ment consumption rate E is the ratio between the number
of preshared maximally entangled qubits c to the number of
physical qubits n as encapsulated below:

E =
c
n
. (94)

A maximally entangled5 QSCs requires c = n − k pre-
shared qubit pairs. Hence, for a maximally entangled QSCs,

5For a maximally-entangled QSCs, all of the auxiliary qubits required to
generate the encoded state are already preshared using maximally entangled
pair qubits. Hence, the maximal number of entangled pair qubits that can be
shared beforehand is equal to the total number of auxiliary qubits, which is
equal to (n− k).

the quantumHamming bound of Eq. (93) can be reformulated
as follows by substituting c = n− k into Eq. (93), yielding:

k
n
≤ 1−

1
2

((
dea
2n

)
log2 3− H

(
dea
2n

))
. (95)

Let us how consider the more general cases, where we may
have a range of different entanglement ratios 0 ≤ θ ≤ 1.
The entanglement ratio is defined as the ratio of preshared
qubits c to the maximally-entangled preshared qubits (n−k),
yielding:

θ =
c

n− k
. (96)

The quantum Hamming bound for EA-QSCs with arbitrary
entanglement ratios of θ is given by

k
n
≤ 1−

1
1+ θ

((
dea
2n

)
log2 3− H

(
dea
2n

))
. (97)

The rest of the quantum coding bounds can readily be
derived using the same analogy. The resultant entanglement-
assisted quantum coding bounds are portrayed in Fig. 15
and 16. By substituting the entanglement ratio of θ = 0,
we arrive again at the quantum coding bounds derived for
unassisted QSCs. By contrast, upon substituting into Eq. (97)
the entanglement ratio θ = 1, we have the quantum coding
bounds for maximally-entangled QSCs. Figure 15 portrays
the bounds on maximally-entangled QSCs. It is observed
in Fig. 15 that at the point (δ = 0.75), the quantum
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FIGURE 15. The asymptotic quantum coding bounds on EA-QSCs for
maximally-entangled constructions. A simple quadratic function
r (δ) = 16

9 δ
2 − 8

3 δ + 1 satisfies all of the quantum coding bounds.

GV bound (lower bound) intersects the quantum linear pro-
gramming bound (upper bound). Indeed, it is confirmed
by the quantum Plotkin bound for the maximally-entangled
QSC constructions shown in Table 13 that for asymptotical
maximally-entangledQSCs the highest normalizedminimum
distance that can be achieved is δ = 0.75. Hence, based
on this observation, we propose a simple quadratic function
as the closed-form approximation of entanglement-assisted
quantum stabilizer codes that will satisfy all of the well-
known bounds. A quadratic function associated with a sym-
metry line at (δ = 0.75) and crossing the point of (δ, r) =
(0, 1) is given by

rQ(δ) =
16
9
δ2 −

8
3
δ + 1 for 0 ≤ δ ≤ 0.75. (98)

The simple quadratic approximaton given in Eq. (98), can
also be inverted, yielding

δ(rQ) =
3
4
(1−
√
rQ) for 0 ≤ rQ ≤ 1. (99)

From the simple quadratic function in Eq. (98), we can also
derive a simple closed-form approximation for a given arbi-
trary entanglement ratio of 0 ≤ θ ≤ 1, as shown below:

rQ(δ) =
1

1+ θ

(
32
9
δ2 −

16
3
δ + 1+ θ

)
, (100)

for 0 ≤ δ ≤ 3
4

(
1−

√
1−θ
2

)
and 0 ≤ θ ≤ 1. The expression

given in Eq. (100) may be inverted to arrive at the following
equation:

δ(rQ) =
3(
√
2−

√
rQ(1+ θ )+ (1− θ )

4
√
2

, (101)

for 0 ≤ rQ ≤ 1 and 0 ≤ θ ≤ 1. The simple closed-
form approximation given in Eq. (100) and (101) satisfies all
entanglement-assisted quantum coding bounds for arbitrary

FIGURE 16. The asymptotic quantum coding bounds on EA-QSCs for
different entanglement ratios. (a) θ = 0.25. (b) θ = 0.5. (c) θ = 0.75.

entanglement ratios, as confirmed by Fig. 16. We should
point out at this stage that as we substitute the value of
θ = 0 into Eq. (100) and (101), we comeback with the
closed-form approximation presented in the Eq. (77) and (78)
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for unassisted asymptotic quantum coding bounds. Hence,
we completed our closed-form approximations conceived for
all of different constructions of quantum stabilizer codes.

IX. CONCLUSIONS
We have conducted a survey of quantum coding bounds,
which describe the trade-off between the quantum coding
rate and the error correction capability for a wide range of
QSC constructions. Furthermore, we provided insights on
their relationships with their classical counterparts. For the
family of unassisted QSCs, we have provided both lower and
upper bounds for both CSS and non-CSS code constructions.
For the EA-QSCs, we have presented the quantum coding
bounds for maximally-entangled constructions and also for
arbitrary entanglement ratios.

We also have proposed a closed-form approximation as a
beneficial tool for analyzing the performance of QSCs. The
resultant closed-form approximation may be indeed used as
a simple benchmark for developing QSCs, because the resul-
tant minimum distance δ and quantum coding rate rQ values
from our approximations are unambiguous. For instance, for
a half-rate quantum stabilizer code having a given codeword
length of n = 128, the minimum distance is bounded by
11 < d < 22. By using our approximation, we arrive at
d(n = 128, rQ = 1/2) = 16 from our finite-length approx-
imation. Likewise, for a half-rate quantum stabilizer code
having the codeword length of 1024, the minimum distance is
bounded by 78 < d < 157. By using our proposal, we have
an approximate minimum distance of d(n = 1024, rQ =
1/2) = 103 from our asymptotic bound approximation. Ulti-
mately, the proposed method can be utilized as an efficient
tool for the characterization of quantum stabilizer codes.
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