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ABSTRACT Large-scale quantum network coding (LQNC) is conceived for distributing entangled
qubits over large-scale quantum communication networks supporting both teleportation and quantum key
distribution. More specifically, the LQNC is characterized by detailing the encoding and decoding process
for distributing entangled pairs of qubits to M pairs of source-and-target users connected via a backbone
route of N hops. The LQNC-based system advocated is then compared with entanglement swapping-based
systems for highlighting the benefits of the proposed LQNC.

INDEX TERMS Quantum internet, entanglement distribution, quantum network coding, entanglement
swapping.

I. INTRODUCTION AND OVERVIEW
In the classical domain, network coding [1], [2] is capable
of increasing the throughput, while minimising the amount
of energy required per packet as well as the delay of packets
travelling through the network [3], [4]. This is achieved by
allowing the intermediate nodes of the network to combine
multiple data packets received via the incoming links before
transmission to the destination [5]. Due to its merits, the
concept of the network coding has been applied in diverse
disciplines [6].

Inspired by its classical counterpart [2], [7], [8], the ques-
tion arises if the quantum version of network coding exists.
Due to the inherent nature of quantum communications,
namely that cloning is impossible, negative answers to this
cardinal question were suggested in [9] and [10]. However,
further studies of Quantum Network Coding (QNC) confirm
that given the availability of extra resources, such as pre-
shared entanglement [11]–[18] or the abundance of low-cost
classical communications [10], [19]–[21], QNC can indeed
be made feasible. The important milestones of the QNC
history are summarised in Fig. 1.

Entanglement consitutes a valuable enabler of various
quantum protocols that are essential for various appli-

cations of quantum communications, such as quantum
teleportation [22], remote state preparation [23], quantum
remote measuring [24] and secret sharing [25]. Entanglement
refers to the fact that two or more photons have a very
special connection, whereby changing for example the spin
of a photon will instantaneously change that of its entangled
couterpart. Anecdotally, this phenomenon is referred to as a
‘‘spooky action at a distance’’ by Einstein et al. [26] due to
the fact that unlike in electromagnetism, interactions between
entangled photons occur instantaneously, regardless of how
far apart the photons are. By contrast, electromagnetic inter-
actions are bounded by the speed of light [27].

In such quantum protocols, the entangled qubits have to
be distributed to distant nodes. A particularly popular appli-
cation of the entanglement distribution is Quantum Key Dis-
tribution (QKD) [28], which has been gradually finding its
way into different practical scenarios, such as satellite com-
munications [29], [30], terrestrial communications [31], [32]
and over handheld communication [33], [34]. These advances
lay the foundations of the quantum Internet [35]–[37]. Entan-
glement distribution over a large-scale network consisting of
multiple-hops and multiple-nodes can be realised by Entan-
glement Swapping (ES) [38]–[40] or by QNC [13], [15],
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FIGURE 1. Milestones of Quantum Network Coding (QNC).

[41]. ES may be deemed to be similar to the classic Decode-
and-Forward (DF) techniques, which is outperformed by the
classical Network Coding (NC) in a number of practical sce-
narios [42]–[44]. This leads to another intriguing and crucial

question, namely whether the QNC is similarly capable of
providing a better performance than ES.

As mentioned in Fig. 1, in order to answer the second
question, Satoh et al. [13] provided quantitative comparisons
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between the QNC and the ES. Explicitly, it was shown that
the fidelity-performance of the ES-based system is superior to
that of the QNC-based system in a quantum communication
network having M = 2 pairs of source-to-target users that
are connected via a backbone link having N = 1 hop. In this
paper, we generalise the QNC of [13] and [15] to large-scale
quantum communication networks, in order to demonstrate
the benefits of our proposed LQNC over ES. Against the
above-mentioned background, the novel contribution of our
paper is as follows:

• We formulate the concept of Large-scale Quantum
Network Coding (LQNC) that can be used for sup-
porting quantum communication between M pairs of
source-to-target users via a backbone link having
N hops, where the values of M and N can be chosen
arbitrarily.

• We devise the general encoding/decoding processes of
LQNC that can be employed in large-scale quantum
networks.

• We provide the quantitative performance analyses of
both the individual encoding-and-decoding operations
as well as of the system-level encoding-and-decoding
processes.

• We provide quantitative comparisons to highlight the
benefits of the LQNC-based system over ES-based sys-
tems, when both the LQNC and ES systems are incorpo-
rated into large-scale quantum networks.

• We provide design guidelines for the LQNC in beneficial
scenarios of large-scale quantum networks.

The rest of this paper is organised as follows. The relevant
background concepts are summarised in Section II for facili-
tating the presentation of the encoding/decoding operations
in Section III. We consider low-complexity scenarios for
detailing the encoding/decoding processes and for charac-
terising the error propagation phenomena in Section IV-A
and Section V. The fidelity-performance of LQNC is quan-
titatively analysed in Section VII, in order to confirm the
superiority of LQNC over ES in beneficial scenarios. Finally,
our LQNC design guidelines are presented in Section VIII
along with our conclusions.

II. PRELIMINARY
A. THE BASIS, THE MEASUREMENT AND THE
SPIN-OPERATOR
For the basics of quantum information, [45]–[47] can be
used. For the sake of brevity, we would like to refer the
motivated reader to [45]–[47] for details of the CNOT and
Hadamard gates, which are the primary operations used in
the encoding/decoding process of our proposed LQNC. In
this section we briefly summarise the details related to the
measurement of qubits. In the general case, we may want to
measure the state of a qubit represented by |ϕ〉 = α|0〉+β|1〉
in a given I -base denoted by |I 〉 = I0|0〉+I1|1〉, where α, β, I0
and I1 are complex numbers. The measurement operator MI

associated with the I -base can be formulated as

MI = |I 〉〈I |, (1)

where we have

|I 〉 = I0|0〉 + I1|1〉 =
[
I0
I1

]
,

〈I | =
[
I∗0 I∗1

]
, (2)

with I∗0 and I∗1 being the complex conjugate versions of
I0 and I1, respectively.
Let us consider examples of the Z-basis and X-basis that

are later used in our discussions. The Z-basis consists of a pair
of bases, namely |Z+〉 and |Z−〉, which can be represented by

|Z+〉 = 1|0〉 + 0|1〉 =
[
1
0

]
,

|Z−〉 = 0|0〉 + 1|1〉 =
[
0
1

]
. (3)

Accordingly, the measurement operators in Z-basis are
defined by

MZ+ = |Z+〉〈Z+| =
[
1 0
0 0

]
, (4)

MZ− = |Z−〉〈Z−| =
[
0 0
0 1

]
. (5)

In the Z-basis, the spin operator δZ used for reflecting the
rotation in the Z-basis of an electron representing a qubit is
defined by

δZ =

[
1 0
0 −1

]
. (6)

When applying the spin operator of δZ to a qubit of
|ϕ〉 = α|0〉 + β|1〉, the qubit evolves to

|ϕ′〉 = δZ

[
α

β

]
=

[
α

−β

]
. (7)

Similarly, the X-basis is formed by the pair of bases
defined by

|X+〉 =
1
√
2
|0〉 +

1
√
2
|1〉 ≡


1
√
2
1
√
2

,

|X−〉 =
1
√
2
|0〉 −

1
√
2
|1〉 ≡


1
√
2

−
1
√
2

. (8)

Hence, the measurement operators in the X-basis are charac-
terised by

MX+ = |X+〉〈X+| =


1
2

1
2

1
2

1
2

, (9)

MX− = |X−〉〈X−| =

 1
2
−
1
2

−
1
2

1
2

. (10)
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Similarly, applying the spin operator δX in the X-basis
defined by

δX =

[
0 1
1 0

]
(11)

to a qubit of |ϕ〉 = α|0〉 + β|1〉 leads to

|ϕ′′〉 = δX

[
α

β

]
=

[
β

α

]
. (12)

If we want to measure a qubit of |ϕ〉 = α|0〉 + β|1〉, the
probability of a specific result obtained by the measurement
in the I -basis associated with the measurement operator MI
is calculated by

P(I ) = 〈ϕ|M
†
I MI |ϕ〉, (13)

whereM†
I is the Hermitian conjugate ofMI .

B. PERFORMANCE METRICS
Let us consider a pair of entangled qubits |AB〉, which can
represented by

|AB〉 = α|00〉AB + β|11〉AB, (14)

where α and β are complex numbers and we have
|α|2 + |β|2 = 1. When a Z-error occurs in the pair, we have

|AB〉 = α|00〉AB − β|11〉AB. (15)

Let us consider solely the Z-error, which is caused purely by
either qubit |A〉 or qubit |B〉, with the probability of Z(A) and
Z(B), respectively. Based on the assumption of the symmetry
of the entangled pair of qubits, it is reasonable to assume that
we have an equal error probability of Z(A) = Z(B) = ZAB [13].
However, in order to cover the more general case that may
have Z(A) 6= Z(B), we use the distinct error probabilities of
Z(A) and Z(B) for the pair of qubits |AB〉. Hence, the fidelity F
of the pair may be calculated by

F = 1− Z(A) − Z(B),

= 1− Z(A,B),

(16)

where Z(A,B) = Z(A) + Z(B).

III. ENCODING/DECODING OPERATIONS
Let us commence by detailing the encoding/decoding oper-
ations in this section as well as the encoding/decoding pro-
cesses of LQNC in following sections along with the propa-
gation of a Z-error, which is a likely source of errors imposed
by the recently developed quantum materials [48].

A. CONNECTION OPERATIONS SUBJECTED TO
Z-ERROR PROPAGATION
Let us consider an example of CONA

C−>D used for connecting
two entangled pairs of qubits, namely |AB〉 and |CD〉. The
operation CONA

C−>D is performed by the circuit portrayed
in Fig. 2(a), which carries out the steps listed in Fig. 2(b).

FIGURE 2. Connection (CON) operation. (a) Connection (CON) operation
principle, as detailed in Fig. 2(b). (b) CONnection manipulations
illustrated in Fig. 2(a).

According to Fig. 2(a) and Fig. 2(b), an initial state is
assumed to be as follows

|Ψ 〉init =
1
2
(|00〉AB + |11〉AB) (|00〉CD + |11〉CD). (17)

As mentioned in Section II-B, we assume to have a Z
error at either of the two qubits in a pair. Then, after Step
1 of Fig. 2(b) carrying out CNOTA−>C , the initial state is
changed to

|Ψ 〉C1 =
1
2
|00〉AB

|00〉CD+|11〉CD︸ ︷︷ ︸
Z(C,D)


+

1
2
|11〉AB︸ ︷︷ ︸
Z(A,B)

|10〉CD+|01〉CD︸ ︷︷ ︸
Z(C,D)

, (18)

where Z(A,B) and Z(C,D) are Z-errors contributed by qubit
|A〉, |B〉, |C〉 and |D〉, respectively. Explicitly, the notation
|01〉CD︸ ︷︷ ︸
Z(C,D)

represents the current state of qubits |CD〉 = |01〉,

which may contain a Z -error of qubit |C〉 and of qubit |D〉.
Then, as seen in Fig. 2(a), the Z-measurement of |C〉 is car-

ried out byMZ , and the measurement resultmr is transmitted
via an error-free classical channel to the location of qubit |D〉,
where the result mr is used for controlling the δX operator
acting on |D〉. As a result of the measurement in Section II-A,
a Z(C) error is inflicted upon the resultant state, when having
mr = 0, yielding

|Ψ 〉C2 =
1
√
2
|000〉ABD+

1
√
2
|111〉ABD︸ ︷︷ ︸

Z(A,B,C,D)

. (19)
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By contrast, in the case of having mr = 1, the state
becomes

|Ψ 〉C3 =
1
√
2
|00 1︸︷︷︸

Z(C,D)

〉ABD +
1
√
2
| 11︸︷︷︸
Z(A,B)

0〉ABD. (20)

Since we have mr = 1, δX is applied to |D〉 to convert |Ψ 〉C3
of Eq. (20) to

|Ψ 〉C4 =
1
√
2
|000〉ABD+

1
√
2
|111〉ABD︸ ︷︷ ︸

Z(A,B,C,D)

. (21)

Hence, regardless of the result of the Z-measurement mr , the
resultant state |Ψ 〉Cr after the CON operation becomes:

|Ψ 〉Cr =
1
√
2
|000〉ABD+

1
√
2
|111〉ABD︸ ︷︷ ︸

Z(A,B,C,D)

. (22)

If we assume the initial fidelity of each Bell pair to be
FAB = FCD = F , it can be readily seen from Eq. (22) that
Z-error occurs at |Ψ 〉Cr , when a Z-error happens either at |AB〉
or at |CD〉, which happens with the probability of 2F(1−F).
Accordingly, the fidelity FCON of the system after the CON
operation can be calculated by

FCON = 1− 2F(1− F). (23)

The CON operation can be generalised to the case, when
the initial state is in the following form [15]

|9〉init = (α|Ψ0〉|0〉A + β|Ψ1〉|1〉A) |9+〉CD|8〉, (24)

where |α|2 + |β|2 = 1 and |Ψ0〉, |Ψ1〉 and |8〉 are arbitrary
quantum states. After applying the CON operation to |9〉init
of Eq. (24), the following final state is obtained

|9〉Cf = (α|Ψ0〉|00〉AD + β|Ψ1〉|11〉AD) |8〉. (25)

B. ADD OPERATION WITH Z-ERROR PROPAGATION
Let us now consider an example of the ADDD,H

I−>J operation,
which uses multiple control qubits, namely |D〉 and |H〉, in
order to compress the quantum information of the control
qubits into the target qubit |I 〉. Then the compressed infor-
mation is transmitted over a quantum transmission link by
performing a measurement-and-control procedure, namely
the measurement in the Z-basis and the spin operator δX . The
circuit of the operation ADDD,H

I−>J is portrayed in Fig. 3(a),
which includes 3 steps, as detailed in Fig. 3(b).

Let us consider the example of an initial state as

|Ψ 〉Ai =
1

2
√
2

|00〉CD + |11〉CD︸ ︷︷ ︸
Z(C,D)


|00〉GH + |11〉GH︸ ︷︷ ︸

Z(G,H )


×

|00〉IJ + |11〉IJ︸ ︷︷ ︸
Z(I ,J )

. (26)

FIGURE 3. Addition operation. (a) Addition (ADD) operation principle, as
detailed in Fig. 3(b). (b) Addition manipulations illustrated in Fig. 3(a).

Step 1 of Fig. 3(b) is to perform CNOTD−>I that converts
the state |Ψ 〉Ai of Eq. (26) to

|Ψ 〉A1

=
1

2
√
2
|00〉CD

|00〉IJ + |11〉IJ︸ ︷︷ ︸
Z(I ,J )


|00〉GH + |11〉GH︸ ︷︷ ︸

Z(G,H )


+

1

2
√
2
|11〉CD︸ ︷︷ ︸
Z(C,D)

|10〉IJ + |01〉IJ︸ ︷︷ ︸
Z(I ,J )


|00〉GH + |11〉GH︸ ︷︷ ︸

Z(G,H )

.
(27)

Similarly, Step 2 of Fig. 3(b) performs CNOTH−>I that
changes the state |Ψ 〉A1 of Eq. (27) to

|Ψ 〉A2 =
1

2
√
2
|00〉CD|00〉GH

|00〉IJ + |11〉IJ︸ ︷︷ ︸
Z(I ,J )


+

1

2
√
2
|11〉CD︸ ︷︷ ︸
Z(C,D)

|00〉GH

|10〉IJ + |01〉IJ︸ ︷︷ ︸
Z(I ,J )


+

1

2
√
2
|00〉CD |11〉GH︸ ︷︷ ︸

Z(G,H )

|10〉IJ + |01〉IJ︸ ︷︷ ︸
Z(I ,J )


+

1

2
√
2
|11〉CD︸ ︷︷ ︸
Z(C,D)

|11〉GH︸ ︷︷ ︸
Z(G,H )

|00〉IJ + |11〉IJ︸ ︷︷ ︸
Z(I ,J )

. (28)
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Then, in Step 3 of Fig. 3(b), the qubit |I 〉 is measured in the
Z basis in order to use the measurement result mr to control
the spin operation δX acting on qubit |J〉. Accordingly, when
we have the measurement result of mr = 0, the state |Ψ 〉A2
of Eq. (28) becomes

|Ψ 〉A3 =
1
2

|00〉CD|00〉GH |0〉J + |11〉CD︸ ︷︷ ︸
Z(C,D)

|00〉GH |1〉J︸︷︷︸
Z(I ,J )


+

1
2

|00〉CD |11〉GH︸ ︷︷ ︸
Z(G,H )

|1〉J︸︷︷︸
Z(I ,J )

+ |11〉CD︸ ︷︷ ︸
Z(C,D)

|11〉GH︸ ︷︷ ︸
Z(G,H )

|0〉J


=

1
2

|00〉CD|00〉GH + |11〉CD︸ ︷︷ ︸
Z(C,D)

|11〉GH︸ ︷︷ ︸
Z(G,H )

 |0〉J
+

1
2

|11〉CD︸ ︷︷ ︸
Z(C,D)

|00〉GH + |00〉CD |11〉GH︸ ︷︷ ︸
Z(G,H )

 |1〉J︸︷︷︸
Z(I ,J )

.

(29)

By contrast, if mr = 1 is obtained, state |Ψ 〉A2 of Eq. (28)
evolves to

|Ψ 〉A4 =
1
2

|00〉CD|00〉GH |1〉J︸︷︷︸
Z(I ,J )

+ |11〉CD︸ ︷︷ ︸
Z(C,D)

|00〉GH |0〉J


+

1
2

|00〉CD |11〉GH︸ ︷︷ ︸
Z(G,H )

|0〉J + |11〉CD︸ ︷︷ ︸
Z(C,D)

|11〉GH︸ ︷︷ ︸
Z(G,H )

|1〉J︸︷︷︸
Z(I ,J )

.
(30)

Then, the spin operation δX is applied to |J〉 in Eq. (30) to
obtain the state

|Ψ 〉A5 =
1
2

|00〉CD|00〉GH |0〉J + |11〉CD︸ ︷︷ ︸
Z(C,D)

|00〉GH |1〉J︸︷︷︸
Z(I ,J )


+
1
2

|00〉CD |11〉GH︸ ︷︷ ︸
Z(G,H )

|1〉J︸︷︷︸
Z(I ,J )

+ |11〉CD︸ ︷︷ ︸
Z(C,D)

|11〉GH︸ ︷︷ ︸
Z(G,H )

|0〉J


= |Ψ 〉A3. (31)

It can be readily inferred from Eq. (29) and Eq. (31) that
after the ADD operation, the system will have no Z error
when Z(I ,J )+Z(G,H ) 6= 1 and Z(I ,J )+Z(C,D) 6= 1 and Z(I ,J )+
Z(C,D) 6= 1 is satisfied, which occurs with a probability of

FADD = F3
+ (1− F)3, (32)

where we assume that all three pairs have the same fidelity
FIJ = FCD = FGH .
Let us now generalise the ADD operation applying it to an

initial state as [15]

|Ψ 〉Ai = (α|Ψ0〉|0〉D + β|Ψ1〉|1〉D)

× (γ |Φ0〉|0〉H + δ|Φ1〉|1〉H ) |Ψ+〉IJ |8〉, (33)

where |α|2 + |β|2 = |γ |2 + |δ|2 = 1 and |Ψ0〉, |Ψ1〉, |Φ0〉,
|Φ1〉 and |8〉 are arbitrary quantum states. After applying the
ADDD,H

I−>J operation to |9〉Ai of Eq. (33), the following final
result is obtained [15]

|9〉Af

= (αγ |Ψ0〉|Φ0〉|00〉DH + βδ|Ψ1〉|Φ1〉|11〉DH ) |0〉J |8〉

+ (αδ|Ψ0〉|Φ1〉|01〉DH + βγ |Ψ1〉|Φ0〉|11〉DH ) |1〉J |8〉.

(34)

FIGURE 4. Fanout operation. (a) FANout (FAN) operation principle, as
detailed in Fig. 4(b). (b) FANout FANJ

K−>L,M−>N manipulations portrayed
in Fig. 4(a).

C. FANOUT OPERATION WITH Z-ERROR PROPAGATION
Let us now consider an example of the FANJ

K−>L,M−>N
operation, which is invoked for connecting a qubit |J〉 to
two pairs of entangled qubits, namely to |KL〉 and |MN 〉.
The implementation of the FANJ

K−>L,M−>N operation is
illustrated in Fig. 4(a), which can be summarised by the steps
in Fig. 4(b).

As seen in Fig. 4(a), let us assume the initial state before
applying the FAN operation to be

|Ψ 〉Fi =
1

2
√
2

|0〉J + |1〉J︸︷︷︸
ZJ


|00〉KL + |11〉KL︸ ︷︷ ︸

Z(K ,L)


×

|00〉MN + |11〉MN︸ ︷︷ ︸
Z(M ,N )

. (35)
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After Step 1 and Step 2 of Fig. 4(b), where CNOTJ−>K
and CNOTJ−>M are carried out, the state |Ψ 〉Fi of Eq. (35)
becomes

|Ψ 〉F1

=
1

2
√
2
|0〉J

|00〉KL + |11〉KL︸ ︷︷ ︸
Z(K ,L)


|00〉MN + |11〉MN︸ ︷︷ ︸

Z(M ,N )


+

1

2
√
2
|1〉J︸︷︷︸
ZJ

|10〉KL + |01〉KL︸ ︷︷ ︸
Z(K ,L)


|10〉MN + |01〉MN︸ ︷︷ ︸

Z(M ,N )

.
(36)

At Step 3 in Fig. 4(b), qubit |K 〉 is measured in the Z basis,
and then the measurement result is used for controlling the
spin operation δX acting on qubit |L〉. If the measurement
resultmr = 0 is obtained, the state |Ψ 〉F1 of Eq. (36) becomes

|Ψ 〉F3 =
1
2
|00〉JL

|00〉MN + |11〉MN︸ ︷︷ ︸
Z(M ,N )


+
1
2
|11〉JL︸ ︷︷ ︸
ZJ ,Z(K ,L)

|10〉MN + |01〉MN︸ ︷︷ ︸
Z(M ,N )

. (37)

By contrast, if the measurement result mr = 1 is obtained,
the state |Ψ 〉F1 of Eq. (36) evolves to

|Ψ 〉F4 =
1
2
|01〉JL︸ ︷︷ ︸
Z(K ,L)

|00〉MN + |11〉MN︸ ︷︷ ︸
Z(M ,N )


+
1
2
|10〉JL︸ ︷︷ ︸
ZJ

|10〉MN + |01〉MN︸ ︷︷ ︸
ZM

. (38)

Accordingly, the spin operation δX is applied to |L〉 of
Eq. (38) for arriving to the state

|Ψ 〉F5 =
1
2
|00〉JL

|00〉MN + |11〉MN︸ ︷︷ ︸
Z(M ,N )


+
1
2
|11〉JL︸ ︷︷ ︸
ZJ ,Z(K ,L)

|10〉MN + |01〉MN︸ ︷︷ ︸
Z(M ,N )

. (39)

After this step, we can readily see that |Ψ 〉F5 of Eq. (39)
becomes identical to |Ψ 〉F3 of Eq. (37).
Similarly, at Step 4 of Fig. 4(b), the qubit |M〉 is measured

in the Z basis in order to use the measurement result to control
δX that operates on qubit |N 〉. Regardless of the measurement
result of |M〉, the following state is obtained

|Ψ 〉F6 =
1
√
2

|000〉JLN + |111〉JLN︸ ︷︷ ︸
Z(J ,K ,L,M ,N )

. (40)

As a result, the fidelity of the system after the FANOUT
operator can be quantified by

FFAN = 1− (1− F)3 − 3(1− F)F2, (41)

where we assume that the fidelity value of the single qubit
(|J〉) and of the pairs (|KL〉 and |MN 〉) of qubits are equal,
F = FJ = FKL = FMN .

It can be generalised from Eq. (35) and Eq. (40) that given
an initial state of

|9〉Fi = (α|0〉J + β|1〉J ) |9+〉KL |9+〉MN , (42)

applying the FANJ
K−>L,M−>N operation to the initial state

leads to the following final state

|9〉Ff = α|000〉JLN + β|111〉JLN . (43)

FIGURE 5. Removal operation. (a) Removal (REM) operation principle, as
detailed in Fig. 5(b). (b) REMoval REMD−>A manipulations illustrated
in Fig. 5(a).

D. REMOVAL OPERATION SUBJECTED TO Z ERRORS
The REM operation is conceived for deleting a resource qubit
of a quantum state by applying a Hadamard gate and then a
Z-measurement of the resource qubit. Then, the measurement
result is used for controlling the δZ operation acting on the
associated target qubit. The REM operation is carried out by
the circuit illustrated in Fig. 5(a), which is summarised in
Fig. 5(b).

Let us consider an example of applying the REMD−>A
operation to an initial state as

|Ψ 〉Ri =
1
√
2

|000〉ABD + |111〉ABD︸ ︷︷ ︸
Z(A,B,D)

. (44)

Firstly, according to Fig. 5(b), theHadamard gate is applied
to qubit |D〉. As mentioned in Section II-A, the Hadamard
basis is denoted as

|+〉 = H (|0〉) =
1
√
2
(|0〉 + |1〉),

|−〉 = H (|1〉) =
1
√
2
(|0〉 − |1〉). (45)
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Then the state |Ψ 〉Ri of Eq. (44) is changed to

|Ψ 〉R1 =
1
√
2

|00+〉ABD + |11−〉ABD︸ ︷︷ ︸
Z(A,B,D)

. (46)

Secondly, as detailed in Fig. 5(b) and illustrated
in Fig. 5(a), qubit |D〉 is measured in the Z basis. If we have
the measurement result mr = 0, the state becomes

|Ψ 〉R2 =
1
√
2

|00〉AB + |11〉AB︸ ︷︷ ︸
Z(A,B,D)

. (47)

By contrast, if we have the measurement result mr = 1, the
state becomes

|Ψ 〉R3 =
1
√
2

|00〉AB − |11〉AB︸ ︷︷ ︸
Z(A,B,D)

. (48)

Given the measurement result mr = 1, the operation δZ is
applied to the target qubit |A〉 to convert the state |Ψ 〉R3 of
Eq. (48) to

|Ψ 〉R4 =
1
√
2

|00〉AB + |11〉AB︸ ︷︷ ︸
Z(A,B,D)

, (49)

where the δZ operation is detailed in Section II-A. Having
|Ψ 〉R2 ≡ |Ψ 〉R4 as the resultant state, we may generalise the
result of the REM operation applied to an initial state as

|Ψ 〉Ri = (α|00〉AD|Ψ0〉 + β|11〉AD|Ψ1〉) |8〉, (50)

where |α|2 + |β|2 = 1, |Ψ0〉, |Ψ1〉 and |8〉 are arbitrary
quantum states. After applying the operation REMD−>A to
the state |Ψ 〉Ri of Eq. (50), we obtain the following final
state [15]

|Ψ 〉Rf = (α|0〉A|Ψ0〉 + β|1〉A|Ψ1〉) |8〉. (51)

E. REMOVE-AND-ADD OPERATION SUBJECT TO Z ERRORS
The Remove-and-add (REMADD) operation may be used for
deleting the target qubit employed in the ADD operation. The
REMADD operation is carried out by the circuit detailed in
Fig. 6(a), which may be summarised in the following steps
detailed in Fig. 6(b).

Let us consider the example of applying the
REMADDA−>B,C operation illustrated in Fig. 6 to an initial
state as

|Ψ 〉RAi =
1
√
4

|00〉BC + |11〉BC︸ ︷︷ ︸
ZB,ZC

 |0〉A
+

1
√
4

|01〉BC︸ ︷︷ ︸
ZC

+ |10〉BC︸ ︷︷ ︸
ZB

 |1〉A︸︷︷︸
ZA

. (52)

FIGURE 6. Removal-and-add operation. (a) Principle of the remadd
(REMADD) operation, as detailed in Fig. 6(b). (b) REMADDA−>B,C
manipulations illustrated in Fig. 6(a).

Accordingly, at Step 1 of Fig. 6(b), where the Hadamard
gate is applied to qubit |A〉, the state of |Ψ 〉RAi becomes

|Ψ 〉RA1 =
1
√
4

|00〉BC + |11〉BC︸ ︷︷ ︸
ZB,ZC

 1
√
2
(|0〉A + |1〉A)

+
1
√
4

|01〉BC︸ ︷︷ ︸
ZC

+ |10〉BC︸ ︷︷ ︸
ZB

 1
√
2
(|0〉A − |1〉A)︸ ︷︷ ︸

ZA

.

(53)
Then, at Step 2 of Fig. 6(b) |A〉 is measured. If we have the

measurement result of mr = 0, the state is changed to

|Ψ 〉RA2 =
1
√
4

|00〉BC + |11〉BC︸ ︷︷ ︸
ZB,ZC


+

1
√
4

|01〉BC︸ ︷︷ ︸
ZC ,ZA

+ |10〉BC︸ ︷︷ ︸
ZB,ZA


=

1
√
4

|0〉B + |1〉B︸︷︷︸
ZB,ZA


|0〉C + |1〉C︸︷︷︸

ZC ,ZA

. (54)

By contrast, if we have the measurement result of mr = 1,
the state |Ψ 〉RA1 of Eq. (53) becomes

|Ψ 〉RA3 =
1
√
4

|00〉BC + |11〉BC︸ ︷︷ ︸
ZB,ZC


−

1
√
4

|01〉BC︸ ︷︷ ︸
ZC ,ZA

+ |10〉BC︸ ︷︷ ︸
ZB,ZA


=

1
√
4

|0〉B − |1〉B︸︷︷︸
ZB,ZA


|0〉C − |1〉C︸︷︷︸

ZC ,ZA

. (55)
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As a result of having the measurement result mr = 1, the
operation δZ is applied to the target qubit |B〉 and |C〉 to bring
the state |Ψ 〉RA3 of Eq. (55) to

|Ψ 〉RA4 =
1
√
4

|0〉B + |1〉B︸︷︷︸
ZB,ZA


|0〉C + |1〉C︸︷︷︸

ZC ,ZA

. (56)

Hence, |Ψ 〉RA2 ≡ |Ψ 〉RA4 is the resultant state.
It can be generalised from state |Ψ 〉RAi of Eq. (52) and

state |Ψ 〉RA4 of Eq. (56) that if the following initial state is
given

|Ψ 〉RAi = (αγ |00〉CB + βδ|11〉CB) |0〉A
+ (αδ|01〉CB + βγ |10〉CB) |1〉A, (57)

applying REMADDA−>B,C to the state |Ψ 〉RAi will lead to the
final state of [15]

|Ψ 〉RAf = (α|0〉B + β|1〉B) (γ |0〉C + δ|1〉C ). (58)

IV. N-HOP NETWORK SUPPORTING M = 2 PAIRS
OF USERS
In the following sections, we first detail the encoding/
decoding processes in the system detailed in
Section IV-A. The system is capable of distributing entan-
glement toM = 2 pairs of users via an N = 1 hop backbone
link, as portrayed in Fig. 7(a). Then, we further formulate
the system illustrated in Fig. 7(b) of Section IV-B, which
consists of an N -hop backbone and supports M = 2 pairs
of users, where the number of hops N may be arbitrarily cho-
sen. Ultimately, we generalised the system in Section IV-A
and Section IV-B, in order to introduce in Section V the
large-scale system associated with arbitrarily large number of
M -pairs and N -hops in Fig. 7(c). The system is termed
as the Large-scale Quantum Network Coding (LQNC)
system.

A. ENCODING/DECODING PROCESSES FOR SYSTEMS
HAVING N = 1 HOP SUPPORTING M = 2 PAIRS
Let us first detail the QNC system of Fig. 7(a) introduced
in [13] and [15], where M = 2 pairs of entangled qubits are
distributed in a network connected via an N = 1 hop back-
bone link. Accordingly, the encoding/decoding processes
used for the scheme are summarised in the seven phases
detailed in Table 1.

Initially, the system presented in Fig. 7(a) has seven entan-
gled pairs of qubits, hence we have the corresponding initial
system state of

|Ψ 〉init = |MN 〉|KL〉|IJ〉|GH〉|EF〉|CD〉|AB〉. (59)

1) PHASE 1 OF QNC(N=1,M=2)
is to carry out the operations in Table 1, namely
CONA

C−>D and CONE
G−>H , which converts |Ψ 〉init of

TABLE 1. Encoding/decoding process of QNC distributing M = 2
entangled pairs of qubits via the N = 1-hop backbone network
portrayed in Fig. 7(a).

Eq. (59) to

|Ψ 〉P1 = |MN 〉|KL〉|IJ〉
1
√
2

|000〉EFH +|111〉EFH︸ ︷︷ ︸
Z(E,F,G,H )


︸ ︷︷ ︸

From CONEG−>H

×
1
√
2

|000〉ABD+|111〉ABD︸ ︷︷ ︸
Z(A,B,C,D)


︸ ︷︷ ︸

From CONAC−>D

, (60)

where the details of CONA
C−>D and CONE

G−>H are presented
in Section III-A.

2) PHASE 2 OF QNC(N=1,M=2)

is to perform ADDD,H
I−>J of Table 1, in order to lead to the

resultant state as

|Ψ 〉P2 = |MN 〉|KL〉|000〉EFH |000〉ABD|0〉J
+ |MN 〉|KL〉 |111〉ABD|111〉EFH︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

|0〉J

+ |MN 〉|KL〉 |000〉EFH |111〉ABD︸ ︷︷ ︸
Z(A,B,C,D)

|1〉J︸︷︷︸
Z(I ,J )︸ ︷︷ ︸

From ADDD,HI−>J

+ |MN 〉|KL〉 |111〉EFH |000〉ABD︸ ︷︷ ︸
Z(E,F,G,H )

|1〉J︸︷︷︸
Z(I ,J )︸ ︷︷ ︸

From ADDD,HI−>J

,

(61)

where the details of the ADDD,H
I−>J operation are provided

in Section III-B.

3) PHASE 3 OF QNC(N=1,M=2)
FANJ

K−>L,M−>N in Table 1 is executed at R2,T1 and T2
for connecting qubit |J〉 to the entangled pairs of qubits,
namely to |KL〉 and |MN 〉, converting |Ψ 〉P2 of Eq. (61) to
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FIGURE 7. LQNC based schemes having an N-hop backbone link and supporting M pairs of users. (a) QNC: N = 1-hop and M = 2-pairs.
(b) LQNC: N > 1-hops and M = 2-pairs. (c) LQNC: N = 2-hops and M = 4-pairs.

the following state:

|Ψ 〉P3 = |000〉EFH |000〉ABD|000〉JNL
+ |111〉ABD|111〉EFH︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

|000〉JNL

+ |000〉EFH |111〉ABD︸ ︷︷ ︸
Z(A,B,C,D)

|111〉JLN︸ ︷︷ ︸
Z(I ,J ,K ,L,M ,N )︸ ︷︷ ︸

From FANJK−>L,M−>N

+ |111〉EFH |000〉ABD︸ ︷︷ ︸
Z(E,F,G,H )

|111〉JLN︸ ︷︷ ︸
Z(I ,J ,K ,L,M ,N )︸ ︷︷ ︸

From FANJK−>L,M−>N

, (62)

where the operator FANJ
K−>L,M−>N detailed in Section III-C

is applied.

4) PHASE 4 OF QNC(N=1,M=2)
is to perform CNOTL−>B at T1 and CNOTN−>F at T2
of Table 1, in order for the system state of Eq. (62) to
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evolve to

|Ψ 〉P4 = |000〉EFH |000〉ABD|000〉JNL
+ |111〉ABD|111〉EFH︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

|000〉JNL

+ |010〉EFH |101〉ABD︸ ︷︷ ︸
Z(A,B,C,D)

|111〉JLN︸ ︷︷ ︸
Z(I ,J ,K ,L,M ,N )

+ |101〉EFH |010〉ABD︸ ︷︷ ︸
Z(E,F,G,H )

|111〉JLN︸ ︷︷ ︸
Z(I ,J ,K ,L,M ,N )

. (63)

5) PHASE 5 OF QNC(N=1,M=2)
to perform REML−>J at R2 and T1 as well as REMN−>J at
R2 and T2 of Table 1 for arriving at the state of

|Ψ 〉P5 = |000〉EFH |000〉ABD|0〉J
+ |111〉ABD|111〉EFH︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

|0〉J

+ |010〉EFH |101〉ABD︸ ︷︷ ︸
Z(A,B,C,D)

|1〉J︸︷︷︸
Z(I ,J ,K ,L,M ,N )

+ |101〉EFH |010〉ABD︸ ︷︷ ︸
Z(E,F,G,H )

|1〉J︸︷︷︸
Z(I ,J ,K ,L,M ,N )

, (64)

when applying the general results of the REM operation
detailed in Section III-D.

6) PHASE 6 OF QNC(N=1,M=2)
to accomplish the operation REMADDJ−>D,H of Table 1 to
remove qubit |J〉 at R1 and R2 for getting to the state of

|Ψ 〉P6 = |000〉EFH |000〉ABD
+ |111〉ABD|111〉EFH︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

+ |010〉EFH |101〉ABD︸ ︷︷ ︸
Z(A,B,C,D,I ,J ,K ,L,M ,N )

+ |101〉EFH |010〉ABD︸ ︷︷ ︸
Z(E,F,G,H ,I ,J ,K ,L,M ,N )

, (65)

where we apply the manipulations of REMADDJ−>D,H
detailed in Section III-E.

7) PHASE 7 OF QNC(N=1,M=2)
is for carrying out REMD−>A of Table 1 at R1 and S1 as well
as REMH−>E of Table 1 at R1 and S2. As a result, state |Ψ 〉P6
of Eq. (65) is changed to the final state of

|Ψ 〉P7 = |00〉EF |00〉AB
+ |11〉AB|11〉EF︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

+ |01〉EF |10〉AB︸ ︷︷ ︸
Z(A,B,C,D,I ,J ,K ,L,M ,N )

+ |10〉EF |01〉AB︸ ︷︷ ︸
Z(E,F,G,H ,I ,J ,K ,L,M ,N )

, (66)

TABLE 2. Encoding process of LQNC associated with the system
portrayed in Fig. 7(b).

when we apply the REM manipulations detailed in
Section III-D. Hence, |Ψ 〉P7 of Eq. (66) becomes the final
state of

|Ψ 〉Pf = (|00〉AF + |11〉AF ) (|00〉BE + |11〉BE ). (67)

B. N = 2 HOPS AND M = 2 PAIRS
Let us now investigate the encoding process of an example
presented in Fig. 7(b), where two pairs of entangled qubits
are distributed across the network supportingM = 2 source-
target user-pairs connected via an N = 2-hop back-bone with
the aid of 8 pairs of entangled qubits. The encoding/decoding
processes are summarised in Table 2, which includes eight
phases, which include an extra phase, namely Phase 2, com-
pared to the encoding/decoding processes of the system hav-
ing N = 1, which was detailed in Table 1.
Accordingly, as seen in Fig. 7(b) the system has an initial

state of

|Ψ 〉init = |MN 〉|KL〉|I1J1〉|I2J2〉|GH〉|EF〉|CD〉|AB〉. (68)

When encountering the phases listed in Table 2, the states of
the system are changed as follows.

1) PHASE 1 OF LQNC(N=2,M=2)
is the same as Step 1 in Table 1, hence the state after the step
becomes

|Ψ 〉P1= |MN 〉|KL〉|I1J1〉|I2J2〉
1
√
2

|000〉EFH +|111〉EFH︸ ︷︷ ︸
Z(E,F,G,H )


︸ ︷︷ ︸

From CONEG−>H

×
1
√
2

|000〉ABD+|111〉ABD︸ ︷︷ ︸
Z(A,B,C,D)


︸ ︷︷ ︸

From CONAC−>D

.

(69)
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2) PHASE 2 OF LQNC(N=2,M=2)
is to connect two pairs in the backbone so that |I1J1〉|I2J2〉
is transformed into |I1J2〉. As detailed in Table 2, by apply-
ing the CON operation detailed in Section III-A and then
the REM operation presented in Section III-D, to |Ψ 〉P1 of
Eq. (69), we can arrive at

|Ψ 〉P1 =
1

2
√
2
|MN 〉|KL〉

|00〉I1J2 + |11〉I1J2︸ ︷︷ ︸
Z(I1,J1,I2,J2)


×

|000〉EFH +|111〉EFH︸ ︷︷ ︸
Z(E,F,G,H )


×

|000〉ABD+|111〉ABD︸ ︷︷ ︸
Z(A,B,C,D)

. (70)

3) PHASE 3-TO-PHASE 8 OF LQNC(N=2,M=2)
It can be assumed that |I1J2〉 in Table 2 plays a role similar
to that of |IJ〉 in Table 1. As a result, Phase 3 to Phase 8
of Table 2 is equivalent to Phase 2 to Phase 7 of Table 1.
Hence, by applying the results obtained throughout Phase 2
to Phase 7, which are detailed in Section IV-A, the state of
the system after Phase 8 of Table 2 may be represented as

|Ψ 〉P7 = |00〉EF |00〉AB
+ |11〉AB|11〉EF︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

+ |01〉EF |10〉AB︸ ︷︷ ︸
Z(A,B,C,D,I1,J1,I2,J2K ,L,M ,N )

+ |10〉EF |01〉AB︸ ︷︷ ︸
Z(E,F,G,H ,I1,J1,I2,J2,K ,L,M ,N )

, (71)

which leads to the final state to be

|Ψ 〉final = |AF〉|BE〉. (72)

C. N-HOPS AND M = 2 USERS
The formulation on the system having two hops can be
generalised for a larger system having an arbitrary number
of N hops, where the encoding/decoding processes are pre-
sented in Table 3.

Then, the final state of the system having N hops and
supportingM = 2 users becomes

|Ψ 〉final = |00〉EF |00〉AB
+ |11〉AB|11〉EF︸ ︷︷ ︸

Z(E,F,G,H ,A,B,C,D)

+ |01〉EF |10〉AB︸ ︷︷ ︸
Z(A,B,C,D,I1,J1,I2,J2,...,IN ,JN ,K ,L,M ,N )

+ |10〉EF |01〉AB︸ ︷︷ ︸
Z(E,F,G,H ,I1,J1,I2,J2,...,IN ,JN ,K ,L,M ,N )

. (73)

TABLE 3. Encoding process of LQNC having N hops and supporting M = 2
users.

V. M PAIRS OF SOURCE-AND-TARGET USERS IN
N-HOP SYSTEMS
We use an example in order to illustrate the encod-
ing/decoding process associated with the general system
supporting M pairs of source-and-target users connected
via an N -hop backbone link. Hence, let us now investigate
the encoding/decoding processes of the system presented
in Fig. 7(c), where M = 4 pairs of entangled qubits are
distributed across the network having an N = 2-hop back
bone. As readily seen in Fig. 7(c), (3M+MN/2) = 16 pairs of
entangled qubits are involved in the encoding/decoding pro-
cesses, which include the eight phases summarised in Table 4.
Then, the encoding/decoding processes are generalised for
covering the system havingN hops and supportingM source-
target user-pairs, where N and M can be arbitrarily large.

A. ENCODING/DECODING PROCESSES FOR SYSTEMS
HAVING N = 2 HOPS AND M = 4 PAIRS OF USERS
According to the phases listed in Table 4, the system has an
initial state of

|Ψ 〉init = |M2N2〉|K2L2〉|M1N1〉|K1L1〉|I22J22〉|I21J21〉
× |I12J12〉|I11J11〉|G2H2〉|E2F2〉|C2D2〉|A2B2〉
× |G1H1〉|E1F1〉|C1D1〉|A1B1〉. (74)

1) PHASE 1 OF QNC(N=2,M=4)
is to carry out the following operations
• CONA1

C1−>D1
at S1 and R1,

• CONA2
C2−>D2

at S2 and R1,
• CONE1

G1−>H1
at S4 and R1,

• CONE2
G2−>H2

at S3 and R1,

which transform |Ψ 〉init of Eq. (74) to

|Ψ 〉P1= |M2N2〉|K2L2〉|M1N1〉|K1L1〉|I22J22〉|I21J21〉|I12J12〉
× |I11J11〉|E2F2H2〉|A2B2D2〉|E1F1H1〉|A1B1D1〉,

(75)
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TABLE 4. Encoding process of the LQNC(N=2,M=4) portrayed in Fig. 7(c).

where the result of the CON operation detailed in
Section III-A is applied.

2) PHASE 2 OF QNC(N=2,M=4)
is to perform the following operations
• CONJ11

I12−>J12
at R2 and R3,

• REMJ11−>I11 at R1 and R2,
• CONJ21

I22−>J22
at R2 and R3,

• REMJ21−>I21 at R1 and R2,
in order evolve the system’s state to

|Ψ 〉P2 = |M2N2〉|K2L2〉|M1N1〉|K1L1〉|I21J22〉|I11J12〉
× |E2F2H2〉|A2B2D2〉|E1F1H1〉|A1B1D1〉. (76)

3) PHASE 3 OF QNC(N=2,M=4)
is to execute the following operations
• ADDD1,H1

I11−>J12
at R1 and R2;

• ADDD2,H2
I21−>J22

at R1 and R2.
As a result, the system’s state evolves from |Ψ 〉P2 of
Eq. (76) to

|Ψ 〉P2 = |M2N2〉|K2L2〉|M1N1〉|K1L1〉|Σ32〉|Σ31〉, (77)

where |Σ31〉 and |Σ32〉 are in the following forms

|Σ31〉 = |000〉E1F1H1 |000〉A1B1D1 |0〉J12
+ |111〉A1B1D1 |111〉E1F1H1︸ ︷︷ ︸

Z(E1,F1,G1,H1,A1,B1,C1,D1)

|0〉J12

+ |000〉E1F1H1 |111〉A1B1D1︸ ︷︷ ︸
Z(A1,B1,C1,D1)

|1〉J︸︷︷︸
Z(I11,J11,I12,J12)

+ |111〉E1F1H1 |000〉A1B1D1︸ ︷︷ ︸
Z(E1,F1,G1,H1)

|1〉J︸︷︷︸
Z(I11,J11,I12,J12)

, (78)

|Σ32〉 = |000〉E2F2H2 |000〉A2B2D2 |0〉J22
+ |111〉A2B2D2 |111〉E2F2H2︸ ︷︷ ︸

Z(E2,F2,G2,H2,A2,B2,C2,D2)

|0〉J22

+ |000〉E2F2H2 |111〉A2B2D2︸ ︷︷ ︸
Z(A2,B2,C2,D2)

|1〉J︸︷︷︸
Z(I11,J11,I12,J12)

+ |111〉E2F2H2 |000〉A2B2D2︸ ︷︷ ︸
Z(E2,F2,G2,H2)

|1〉J︸︷︷︸
Z(I21,J21,I22,J22)

, (79)

where for the sake of presentation, the indices i, j of |Σij〉

are used for indicating the jth intermediate term in the
ith phase.

4) PHASE 4 OF QNC(N=2,M=4)
proceeds by carrying out the following operations

• FANJ12
K1−>L1,M1−>N1

at R2,T1 and T2;
• FANJ22

K2−>L2,M2−>N2
at R2,T3 and T4.

By applying the results of the processes detailed in
Section IV-A.3, the state obtained becomes

|Ψ 〉P4 = |Σ42〉|Σ41〉, (80)

where |Π41〉 and |Π42〉 can be represented by

|Σ41〉 = |000〉E1F1H1 |000〉A1B1D1 |000〉J22N1L1

+ |111〉A1B1D1 |111〉E1F1H1︸ ︷︷ ︸
Z(E1,F1,G1,H1,A1,B1,C1,D1)

|000〉J12N1L1

+ |000〉E1F1H1 |111〉A1B1D1︸ ︷︷ ︸
Z(A1,B1,C1,D1)

|111〉J22N1L1︸ ︷︷ ︸
Z(I11,J11,I12,J12,K1,L1,M1,N1)

+ |111〉E1F1H1 |000〉A1B1D1︸ ︷︷ ︸
Z(E1,F1,G1,H1)

|111〉J22N1L1︸ ︷︷ ︸
Z(I11,J11,I12,J12,K1,L1,M1,N1)

.

(81)

|Σ42〉 = |000〉E2F2H2 |000〉A2B2D2 |000〉J22N2L2

+ |111〉A2B2D2 |111〉E2F2H2︸ ︷︷ ︸
Z(E2,F2,G2,H2,A2,B2,C2,D2)

|000〉J22N2L2

+ |000〉E2F2H2 |111〉A2B2D2︸ ︷︷ ︸
Z(A2,B2,C2,D2)

|111〉J22N2L2︸ ︷︷ ︸
Z(I11,J11,I12,J12,K2,L2,M2,N2)

+ |111〉E2F2H2 |000〉A2B2D2︸ ︷︷ ︸
Z(E2,F2,G2,H2)

|111〉J22N2L2︸ ︷︷ ︸
Z(I11,J11,I22,J12,K2,L2,M2,N2)

,

(82)

5) PHASE 5 OF QNC(N=2,M=4)
proceeds by carrying out the following operations

• CNOTN1,F1 at T4 ;
• CNOTN2,F2 at T3 ;
• CNOTL1,B1 at T1 ;
• CNOTL2,B2 at T2 ,

which leads to the following state

|Ψ 〉P5 = |Σ52〉|Σ51〉, (83)
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where the terms |Σ52〉 and |Σ51〉 are :

|Σ51〉 = |000〉E1F1H1 |000〉A1B1D1 |000〉J12N1L1
+ |111〉A1B1D1 |111〉E1F1H1︸ ︷︷ ︸

Z(E1,F1,G1,H1,A1,B1,C1,D1)

|000〉J12N1L1

+ |010〉E1F1H1 |101〉A1B1D1︸ ︷︷ ︸
Z(A1,B1,C1,D1)

|111〉J12N1L1︸ ︷︷ ︸
Z(I11,J11,I12,J12,K1,L1,M1,N1)

+ |101〉E1F1H1 |010〉A1B1D1︸ ︷︷ ︸
Z(E1,F1,G1,H1)

|111〉J12N1L1︸ ︷︷ ︸
Z(I11,J11,I12,J12,K1,L1,M1,N1)

,

(84)
|Σ52〉 = |000〉E2F2H2 |000〉A2B2D2 |000〉J22N2L2

+ |111〉A2B2D2 |111〉E2F2H2︸ ︷︷ ︸
Z(E2,F2,G2,H2,A2,B2,C2,D2)

|000〉J22N2L2

+ |010〉E2F2H2 |101〉A2B2D2︸ ︷︷ ︸
Z(A2,B2,C2,D2)

|111〉J22N2L2︸ ︷︷ ︸
Z(I11,J11,I12,J12,K2,L2,M2,N2)

+ |101〉E2F2H2 |010〉A2B2D2︸ ︷︷ ︸
Z(E2,F2,G2,H2)

|111〉J22N2L2︸ ︷︷ ︸
Z(I11,J11,I22,J12,K2,L2,M2,N2)

.

(85)

6) PHASE 6 OF QNC(N=2,M=4)
is performed by carrying out the following operations
• REMN1−>J12 at R3 and T4;
• REMN2−>J22 at R3 and T3;
• REML1−>J12 at R3 and T1;
• REML2−>J22 at R3 and T2.

As a result, the system state after Phase 6 of Table 4 becomes

|Ψ 〉P6 = |Σ62〉|Σ61〉, (86)

where the terms |Σ61〉 and |Σ62〉 are represented by

|Σ61〉 = |000〉E1F1H1 |000〉A1B1D1 |0〉J12 +
+ |111〉A1B1D1 |111〉E1F1H1︸ ︷︷ ︸

Z(E1,F1,G1,H1,A1,B1,C1,D1)

|0〉J12

+ |010〉E1F1H1 |101〉A1B1D1︸ ︷︷ ︸
Z(A1,B1,C1,D1)

|1〉J12︸ ︷︷ ︸
Z(I11,J11,I12,J12,K1,L1,M1,N1)

+ |101〉E1F1H1 |010〉A1B1D1︸ ︷︷ ︸
Z(E1,F1,G1,H1)

|1〉J12︸ ︷︷ ︸
Z(I11,J11,I12,J12,K1,L1,M1,N1)

,

(87)
|Σ62〉 = |000〉E2F2H2 |000〉A2B2D2 |0〉J22

+ |111〉A2B2D2 |111〉E2F2H2︸ ︷︷ ︸
Z(E2,F2,G2,H2,A2,B2,C2,D2)

|0〉J22

+ |010〉E2F2H2 |101〉A2B2D2︸ ︷︷ ︸
Z(A2,B2,C2,D2)

|1〉J22︸ ︷︷ ︸
Z(I11,J11,I12,J12,K2,L2,M2,N2)

+ |101〉E2F2H2 |010〉A2B2D2︸ ︷︷ ︸
Z(E2,F2,G2,H2)

|1〉J22︸ ︷︷ ︸
Z(I11,J11,I22,J12,K2,L2,M2,N2)

.

(88)

7) PHASE 7 OF QNC(N=2,M=4)
proceeds by performing the following operations
• REMADDJ12−>D1,H1 at R1 and R3;
• REMADDJ22−>D2,H2 at R1 and R3.

Accordingly, we have the following system state

|Ψ 〉P7 = |Σ72〉|Σ71〉, (89)

where the terms |Σ71〉 and |Σ72〉 are represented by

|Σ71〉 = |000〉E1F1H1 |000〉A1B1D1

+ |111〉A1B1D1 |111〉E1F1H1︸ ︷︷ ︸
Z(E1,F1,G1,H1,A1,B1,C1,D1)

+ |010〉E1F1H1 |101〉A1B1D1︸ ︷︷ ︸
Z(A1,B1,C1,D1,I11,J11,I12,J12,K1,L1,M1,N1)

+ |101〉E1F1H1 |010〉A1B1D1︸ ︷︷ ︸
Z(E1,F1,G1,H1,I11,J11,I12,J12,K1,L1,M1,N1)

, (90)

|Σ72〉 = |000〉E2F2H2 |000〉A2B2D2

+ |111〉A2B2D2 |111〉E2F2H2︸ ︷︷ ︸
Z(E2,F2,G2,H2,A2,B2,C2,D2)

+ |010〉E2F2H2 |101〉A2B2D2︸ ︷︷ ︸
Z(A2,B2,C2,D2,I11,J11,I12,J12,K2,L2,M2,N2)

+ |101〉E2F2H2 |010〉A2B2D2︸ ︷︷ ︸
Z(E2,F2,G2,H2,I11,J11,I22,J12,K2,L2,M2,N2)

. (91)

8) PHASE 8 OF QNC(N=2,M=4)
proceeds by carrying out the following operations
• REMD1−>A1 at R1 and S1;
• REMD2−>A2 at R1 and S2;
• REMH1−>E1 at R1 and S4;
• REMH2−>E2 at R1 and S3.

As a result, the final state of the system is as follows

|Ψ 〉final = |Σ82〉|Σ81〉, (92)

where the terms |Σ81〉 and |Σ82〉 are represented by

|Σ81〉 = |00〉E1F1 |00〉A1B1
+ |11〉A1B1 |11〉E1F1︸ ︷︷ ︸

Z(E1,F1,G1,H1,A1,B1,C1,D1)

+ |01〉E1F1 |10〉A1B1︸ ︷︷ ︸
Z(A1,B1,C1,D1,I11,J11,I12,J12,K1,L1,M1,N1)

+ |10〉E1F1 |01〉A1B1︸ ︷︷ ︸
Z(E1,F1,G1,H1,I11,J11,I12,J12,K1,L1,M1,N1)

, (93)

|Σ82〉 = |00〉E2F2 |00〉A2B2
+ |11〉A2B2 |11〉E2F2︸ ︷︷ ︸

Z(E2,F2,G2,H2,A2,B2,C2,D2)

+ |01〉E2F2 |10〉A2B2︸ ︷︷ ︸
Z(A2,B2,C2,D2,I11,J11,I12,J12,K2,L2,M2,N2)

+ |10〉E2F2 |01〉A2B2︸ ︷︷ ︸
Z(E2,F2,G2,H2,I11,J11,I22,J12,K2,L2,M2,N2)

. (94)

As a result, we have the corresponding final state :

|Ψ 〉final = |A1F1〉|A2F2〉|B1E1〉|B2E2〉. (95)
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B. LARGE-SCALE NETWORKS HAVING N-HOPS AND
SUPPORTING M-PAIRS
Based on the LQNC(N=2,M=4) system detailed Section V-A,
we can now formulate the general system having N -hops and
supporting M -pairs of entangled qubits, which has an initial
state of

|Ψ 〉init = |MM
2
NM

2
〉|KM

2
LM

2
〉 · · · |M1N1〉|K1L1〉

|IM
2 N
JM

2 N
〉 · · · |IM

2 1JM2 1〉 · · · · · ·

|I1N J1N 〉 · · · |I11J11〉

|GM
2
HM

2
〉|EM

2
FM

2
〉|CM

2
DM

2
〉|AM

2
BM

2
〉 · · ·

|G1H1〉|E1F1〉|C1D1〉|A1B1〉. (96)

Given the results of Section V-A, we can have the final state
of LQNC(N ,M )

|Ψ 〉final = |Σ8M2
〉 · · · |Σ81〉, (97)

where the terms |Σ8i〉, i = [1, . . . , M2 ] are represented by

|Σ8i〉 = |00〉EiFi |00〉AiBi
+ |11〉AiBi |11〉EiFi︸ ︷︷ ︸

Z(Ei,Fi,Gi,Hi,Ai,Bi,Ci,Di)

+ |01〉EiFi |10〉AiBi︸ ︷︷ ︸
Z(Ai,Bi,Ci,Di,Ii1,Ji1,··· ,IiN ,JiN ,Ki,Li,Mi,Ni)

+ |10〉EiFi |01〉AiBi︸ ︷︷ ︸
Z(Ei,Fi,Gi,Hi,Ii1,Ji1,··· ,IiN ,JiN ,Ki,Li,Mi,Ni)

. (98)

Hence, final state |Ψ 〉final of Eq. (97) is equivalent to

|Ψ 〉final = |AM
2
FM

2
〉|BM

2
EM

2
〉 · · · |A1F1〉|B1E1〉. (99)

VI. ENTANGLEMENT SWAPPING
Let us now consider the quantum domain network portrayed
in Fig. 8 having three nodes, namely source s, relay r and
target t . The ES protocol is invoked for establishing the entan-
glement between two far-end qubits, namely |A〉 and |D〉. The
realisation of the ES protocol can be divided into the two
phases detailed in Table 5.

FIGURE 8. Schematic of an entanglement swapping based system
detailed in Table 5.

The ES-based system of Fig. 8 may have an initial state of

|Ψ 〉init =
1
2
(|00〉AB + |11〉AB) (|00〉CD + |11〉CD). (100)

TABLE 5. ES protocol illustrated in Fig. 8.

Following the operation of CONB
C−>D in Phase 1 of

Table 5, the system’s state becomes

|Ψ 〉ES1 =
1
√
2
|000〉ABD+

1
√
2
|111〉ABD︸ ︷︷ ︸

Z(A,B,C,D)

, (101)

where the principles of CONB
C−>D are detailed in

Section III-A.
Following Phase 2 of Table 5, where the operation

REMB−>A is carried out, the system’s state evolves to

|Ψ 〉ES2 =
1
√
2
|00〉AD+

1
√
2
|11〉AD︸ ︷︷ ︸

Z(A,B,C,D)

, (102)

where the details of REMB−>A are illustrated in Section III-D.
The probability of having no errors in state |Ψ 〉ES2 of
Eq. (102) is equal to the probability of actually ending up
with no errors caused by the combined error Z(A,B,C,D) as
a benefit of the errors cancelling each other. In ES-based
systems having (N + 2) hops, where |AB〉 and |CD〉 are
connected by an N -hop backbone link constructed from N
pairs of entangled qubits, namely |I1J1〉 · · · |IN JN 〉, the phases
in Table 5 are repeated, hence resulting in the final state of

|Ψ 〉ESf =
1
√
2
|00〉AD +

1
√
2
|11〉AD︸ ︷︷ ︸

Z(A,B,I1,J1,...,IN ,JN ,C,D)

. (103)

TABLE 6. Probabilities of having no errors in the ES-based systems
associated with N = [1, 2, 3, 4].

Accordingly, the probability of having no errors then can be
generated from Eq. (103) for some examples, as listed in
Table 6. It should be noted that the PES0(M=1) of Table 6 is valid
for the system supporting an M = 1 source-target user-pair.
Hence, for the system supporting an arbitrary number of M
pairs the corresponding probability is calculated by

PES0(M ) =

[
PES0(M=1)

]M
. (104)

17302 VOLUME 5, 2017



H. V. Nguyen et al.: Toward the Quantum Internet

VII. PERFORMANCE COMPARISONS
A. Error pattern
Let us recall the encoding example of the QNC(N=1,M=2)
from Section IV-A, where the final state |Ψ 〉P7 of Eq. (66)
contains potential Z-errors, namely

Z1
= Z(E,F,G,H ,A,B,C,D)

Z2
= Z(A,B,C,D,I ,J ,K ,L,M ,N )

Z3
= Z(E,F,G,H ,I ,J ,K ,L,M ,N ). (105)

Based on the Z-error conditions of Eq. (105), we may deter-
mine the no-error/error patterns associated with every possi-
ble Z-errors imposed on each of the Y = 3M + MN/2 = 7
pairs of entangled qubits. As a result, focusing on the no-error
pattern, the fidelity of the system’s final state is equivalent to
the probability of having no-error in the final state |Ψ 〉P7 of
Eq. (66)

P0 = F7
+ 5F5(1− F)2 + 12F4(1− F)3 + 7F3(1− F)4

+ 4F2(1− F)5 + 3F(1− F)6, (106)

where F is the fidelity of an entangled pair in the network
detailed in Section II-B. For the ease of explanation, we
assume all the pairs in the system to have the same fidelity F .
However, even if each pair in the system has different fidelity,
the same method can be used for evaluating the final state’s
fidelity.

For the general case of LQNC(N ,M ) having a final state
presented in Eq. (97) and Eq. (98), the Z-error conditions can
be similarly extracted for the sake of identifying the error/
no-error patterns. As a result, in Table 7 we calculated the
no-error probability for several examples of LQNC systems.

TABLE 7. Probabilities of no-error-scenarios.

B. CODING RATE
Given a system supportingM pairs of source-target users via
an N -hop backbone link, either the LQNC-based system of
Fig. 9(b) or the ES-based system of Fig. 9(a) can be used
by employing Y entangled pairs in the system, which are
given by

YES = M (2+ N ), (107)

and

YLQNC = 3M +
MN
2
. (108)

FIGURE 9. An LQNC-based and an ES-based system, both of which have
an N-hop backbone link and support M pairs of users. (a) ES: N-hop
backbone link and M-pairs. (b) LQNC: N-hop backbone link and M-pairs.

By comparing YES of Eq. (107) and YLQNC of Eq. (108),
it can be inferred that in order to support M pairs of source-
target users ES requires more entangled pairs than LQNC,
when the system has more than two hops, i. e. for N > 2.
Moreover, the term F representing the average fidelity of
an entangled pairs in the initial system’s state in the formu-
lae of PES0 in Table 6 and PLQNC0 in Table 7 becomes the
most dominant term, when the value of fidelity approaches
F = Fin = 1, which is inversely proportional to Y . As a
result, YES and YLQNC can be used for predicting the fidelity
of both the ES-based system and of the LQNC-based system.

Considering the processes of ES and LQNC as encod-
ing/decoding processes, let us define the coding rate in the
system employing LQNC as

RLQNC =
M

YLQNC
=

2
6+ N

, (109)

while that in the system using ES is defined by

RES =
M
YES
=

1
2+ N

. (110)

It can be inferred from Eq. (109) and Eq. (110) that we have
RLQNC > RES , when the system relies onmore than two hops,
N > 2. As a result, it is expected that in the system having
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FIGURE 10. Fidelity/QBER/Fidelity-degradation performance of QNC and ES for different numbers of hops (N = 2, 4), when considering Z errors in the
system supporting M = 2 pairs of source-target users. (a) Fidelity: N = 2, M = 2. (b) QBER: N = 2, M = 2. (c) Fidelity degradation: N = 2, M = 2.
(d) Fidelity: N = 4, M = 2. (e) QBER: N = 4, M = 2. (f) Fidelity degradation: N = 4, M = 2.

N > 2 hops the LQNC-based protocol is able to provide a
better fidelity-performance and higher coding rate.

C. PERFORMANCE COMPARISON OF LQNC VS. ES
Let us assume that the average fidelity of a specific pair
among the Y and M pairs before/after the encoding-and-
decoding processes is Fin and Fout , respectively. Given Fin,
we may have different fidelity-related performance metrics,
as represented by
• FLQNCout andFESout fidelity performance associated with the
coding rate of RLQNC and RES , which is quantified for
different numbers of hops N and user-pairsM ;

• QBER performance reflecting the reciprocal of the
fidelity of FLQNCout and FESout , which is quantified for dif-
ferent numbers of hops N and user-pairsM ;

• Fidelity degradation of DF = Fin − Fout characterising
the reduction of the average fidelity after the encoding-
and-decoding processes, which is quantified for differ-
ent values of hops N and user-pairsM ;

• The relative fidelity improvement IF quantitatively
reflecting the benefit of LQNC over ES, which is cal-
culated by

IF = 100
FLQNCout − FESout

FESout
. (111)

• The normalised relative fidelity improvement INF , quan-
tifying IF per entangled pair of qubits, which is

calculated as

INF = 100
FLQNCout − FESout
FESoutYLQNC

. (112)

In order to provide a quantitative performance comparison
between ES-based and LQNC-based systems, we consider
the examples listed in Table 8.

TABLE 8. Comparison of LQNC-based and ES-based systems.

As seen in Fig. 10(a)-Fig. 10(c), when we have N = 2
and M = 2 leading to YES = YLQNC = 8, the fidelity of
the LQNC-based and of ES-based system is similar in the
high-fidelity region, where Fin = 1 is approached. Increasing
N = 2 to N = 4 hops while still supporting M = 2 pairs
results in YLQNC = 10 < YES = 12, which implies that
we can expect to see the LQNC-based systems to outperform
the ES-based systems in Fig. 10(d)-Fig. 10(f) right across
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FIGURE 11. Fidelity/QBER/Fidelity-degradation performance of QNC and ES for different numbers of hops (N = 2, 4), when considering Z errors in the
system supporting M = 8 pairs of source-target users. (a) Fidelity: N = 2, M = 8. (b) QBER: N = 2, M = 8. (c) Fidelity Degradation: N = 2, M = 8.
(d) Fidelity: N = 4, M = 8. (e) QBER: N = 4, M = 8. (f) Fidelity degradation: N = 4, M = 8.

the entire input fidelity range of Fin. This is in line with our
analysis in Section VII-B.

Fig. 10(f) shows that the fidelity improvement of LQNC
increases, when Fin decreases. This phenomenon is in agree-
ment with the error correction trend typically found in the
classical domain, sincemore powerful codes can correct more
errors.

It is also interesting to see in Fig. 10(f) and Fig. 11(f) that
the fidelity degradation, which is reminiscent of the path loss
effects in classical communication, is reduced, when the input
fidelityFin decreases. This is because a Z-error in Eq. (98) can
be cancelled out by another Z-error in the system.

In the system supporting as many as M = 8 pairs, the
LQNC-based system always outperformed the ES-based sys-
tem for N > 2 hops, as demonstrated in Fig. 11. The more
pairs the system supports, the higher the fidelity degradation
becomes and the gap between the two system’s performance
improvement is seen to widen.

The relative fidelity improvement of the two systems is pre-
sented in Fig. 12, where we can see that the larger the system
associated with more hops and more user-pairs, the higher
the improvement becomes. More specifically, the fidelity
improvement plotted in Fig. 12(a) is in the range spanning
from IF ≈ 101 % to IF ≈ 103 %, when the system dimension
is scaled up from (N = 3,M = 4) to (N = 10,M = 14).

When we normalise the relative fidelity improvement to
the total number Y of entangled pairs used, as detailed

FIGURE 12. Fidelity improvement of LQNC-based systems over ES-based
systems. (a) Relative fidelity improvement. (b) Normalised relative fidelity
improvement.

in Eq. (112), the normalised fidelity improvement of the
LQNC-based systems over the ES-based system is increased
from INF = 0.5 % to INF = 8 %, as seen in Fig. 12(b).

VIII. DESIGN GUIDELINES AND CONCLUSIONS
To summarise, the design of LQNC can be carried out using
the following steps.

Step 1 requires us to partition the given complex network
into fragments. Then, the more beneficial one of ES and
LQNC protocol-pair may be used for converting the arbitrary
structure of the fragments to the standard structure portrayed
in Fig. 9.

Step 2 is used for interpreting the details of the
design requirements, which may encompass the parameters
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characterising the LQNC system, including the numberM of
entangled pairs involved and the fidelity of Fin and Fout , as
well as the number of available relays defining the number of
hops N . It should be noted that due to the conversion in Step
1, the fidelity of a particular entangled pair of qubits may vary
throughout the network, hence the distinct error probabilities
become useful.

In Step 3, we construct the overall system architecture and
determine the system’s configuration based on the constraints
and specifications given. Then, we proceed by constructing
the specific encoding/decoding processes, which lead us to
specific error patterns that can be used for predicting the
system’s performance.

In conclusion, we demonstrated the benefits of QNC in the
context of a large-scale quantum network, termed as LQNC.
The LQNC-based system is capable of providing about
10-times better fidelity-performance at a higher coding rate
than that supported by ES-based systems, when considering
a large-scale network.
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