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Abstract—With the proliferation of mm-Wave systems and
Visible Light Communications (VLC), indoor localization may
find multiple applications. When high localization accuracy is
required and triangulation is not possible due to the infras-
tracture and scenario limitations, the computational complex-
ity of searching on a virtual grid may become excessive. In
this contribution, we amalgamate uplink mm-Wave-based and
downlink VLC-based localization. We employ quantum search
algorithms for reducing the computational complexity required
for achieving the optimal full-search-based performance. Re-
garding the uplink mm-Wave-based localization, we employ a
single anchor equipped with multiple Antenna Elements (AEs)
and we exploit the specular multipath components created by
the room’s walls. The proposed solutions outperform the state-
of-the-art algorithms. Furthermore, various channel models are
considered, based on real indoors mm-Wave measurements. By
using VLC-based triangulation for downlink and the proposed
mm-Wave-based localization algorithm for uplink, there was an
average positioning error of 5.6 cm in the room considered, while
requiring 261 database queries on average.

Index Terms—Computational Complexity, Dürr-Høyer Algo-
rithm, Fingerprinting, Grover’s Quantum Search Algorithm,
Localization, mm-Wave, Quantum Computing, Visible Light
Communications

I. INTRODUCTION

Indoor localization is the process of estimating the position
of an agent in an indoor environment, based on either the
transmitted uplink or the downlink signals [1]. Given a single
or multiple anchors, such as Access Points (AP), a user with
an unknown location in the room, has to estimate its position
based on an uplink of downlink signal [2]. Accurate local-
ization may improve the performance of diverse applications,
such as beam-forming [3], where a narrow pencil beam may
be transmitted at high carrier frequencies, hence the receiver’s
position should be accurately estimated. Other compelling
applications include network management and security [2],
or assisted living [4], where accurate localization will aid
activity recognition, movement pattern discoveries and it may
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detect anomalies. High-precision indoor localization may be
used for creating new applications, such as accurate storage
information in warehouses, improving coworking efficiency in
office buildings by finding which meeting room is available,
or where a colleague may be found, assigning the closest
downlink Visible Light Communication (VLC) transmitter
to the user, as well as improving the consumer’s and trav-
eller’s experience in shopping malls and airports, by arranging
location-oriented goods promotions and information delivery.
Indoor localization may be performed by invoking various
technologies, such as wireless local area networks [2], VLC
systems [5] and wireless sensor networks [6], as long as there
are APs, whose positions are known.

The next generations of wireless communications are ex-
pected to subsume an increasing number of heterogeneous
network architectures [7]. For example, there may be fem-
tocells, which amalgamate the high bandwidth offered by the
millimeter-Wave (mm-Wave) technology [8]–[12] for the up-
link and that of the VLC systems [5], [13]–[15] for the down-
link. VLC systems have been shown to perform well in local-
izing users indoors [5], [16]–[18], based on a combination of
extracted characteristics, such as the Angle-of-Arrival (AoA)
or the Received Signal Strength Indicator (RSSI), as long as
their limited coverage allows it. Due to the wide-spread use
of Light Emitting Diodes (LED), VLC-based techniques are
promising for indoor localization. However, since the Field Of
View (FOV) of the LEDs employed determine the coverage,
there may be users whose presence may not be evident, when
relying solely on VLC solutions.

For this reason, we believe that mm-Wave systems, which
may be used for the uplink in the next-generation femtocells,
may also assist in the localization of indoor users. In high-
user-density scenarios, the localization load may be partitioned
between the downlink VLC and the uplink mm-Wave links.
Ultra WideBand (UWB) systems have often been used in
the literature for performing indoors localization [1], [4],
[19]–[22], mainly due to their short symbol duration, which
allows a better resolution of the Time of Arrivals (ToA)
relying on the MultiPath Components (MPC) in the Power
Delay Profile (PDP). In other words, the Inter-Symbol In-
terference (ISI) is reduced, since the reception of a symbol
has typically been completed before a reflected copy of it
arrives at the receiver. By employing UWB systems operating
at mm-Wave carrier frequencies, we may exploit the benefits
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that UWB system offer in localization applications, while
allowing multiple Antenna Elements (AE) to be installed at
the anchors, due to their compact construction, for improving
the estimation of the agents’ positions. Furthermore, the high
available bandwidth of the mm-Wave systems, as well as
their beamforming capabilities, may also increase the system’s
performance, once the users have been accurately localized.
As we demonstrate in this paper, the specific construction of
the Antenna Array (AA), which employs multiple AEs has
to be harmonized with the symmetry of the room, as well
as with the location of the anchor. The UWB-based indoor
localization solutions [4], [21], [22] are based on both the Line
Of Sight (LOS) path, as well as on the specular MPCs of the
received signal, where a single anchor equipped with a single
antenna is employed. We have also adopted this approach for
our investigations in mm-Wave systems.

The fingerprinting method [5] may be employed In both the
VLC-based and the RF-based indoors localization categories,
if high accuracy is required. The fingerprinting method as-
sumes prior knowledge of the room’s topology, which has been
divided in a virtual grid. Additionally, it exploits that noiseless
signals received or transmitted from the center of each virtual
tile of the grid, depending on whether they correspond to
downlink or uplink, respectively, are available in a pre-built
database. A subset of that database is then searched based on
the specific metric adopted for determining the most likely tile
that the agent transmitted from. Therefore, the computational
complexity of the search in the fingerprinting database may be-
come excessive, especially when the required accuracy is high,
which means that the tile-size of the virtual grid is small, hence
the number of tiles is high. Motivated by achieving a high
precision, we employ a Quantum Search Algorithm (QSA),
namely the Dürr-Høyer Algorithm (DHA) [23], which find the
minimum entry in an unsorted database having N elements,
using as few as O(

√
N) Cost Function Evaluations (CFE).

The DHA is based on Grover’s QSA [24]–[26], which is one
of the earliest algorithms in quantum computing and forms the
basic block of various quantum algorithms. In fact, we have
previously employed Grover’s QSA and the DHA for diverse
applications, such as multi-user detection in the uplink of Non-
Orthogonal Multiple Access (NOMA) systems [27]–[31], for
vector precoding in multi-user transmission in the downlink
of NOMA systems [32], for joint channel estimation and data
detection [33] and for multi-objective routing in self-organized
networks [34], [35]. Even though the operation of Grover’s
QSA will in practice be prone to quantum decoherence [36],
in this contribution we assume perfect operation of both the
quantum circuits, as well as of the classical components.

Against this background, our novel contributions are:
1) We conceive an indoor localization algorithm for mm-

Wave communications systems in Section II, relying on a
single multi-antenna-aided anchor, which exploits both
the LOS as well as the specular MPCs [4], [22], based
on practical indoor measurements of mm-Wave sys-
tems [37]. The proposed algorithm initially reduces the
search space and subsequently optimizes the estimated
position based on a fingerprinting database, which is
constructed with the aid of the room’s floor plan, taking

into account the required localization accuracy, as well
as the affordable complexity. The small wavelength of
mm-Wave communications allows an anchor to use
multiple antenna elements in a compact construction,
which may be exploited for improving the localization
estimation of the users.

2) We show that QSAs may be employed for reducing
the computational complexity of both the mm-Wave-
based and the VLC-based localization algorithms in
Section IV, while retaining the optimal performance of
a full search, after we have briefly introduced the VLC-
based localization model of [5] in Section III.

3) We demonstrate the importance that the shape of the
antenna array and various design parameters have
on the performance of localization in Section V. In
the spirit of contribution (1) and (2), we exploit the
benefits of the high downlink bandwidth of VLC [5] and
that of its uplink complement constituted by mm-Wave
communications in Section V, where their potential col-
laboration may reduce both a user’s estimated position
deviation from its true position and the complexity of
the localization. Furthermore, we argue that a potential
joint optimization of the anchors’ positions in the two
systems is beneficial.

4) Throughout the paper, we have opted for presenting
a step-by-step analysis and tutorial both for the pro-
posed mm-Wave localization algorithm and for the VLC
localization algorithm. Additionally, we quantify the
effect of its features and parameters on the attainable
localization performance and complexity.

Tables I and II describe the parameters that will be
used in the mm-Wave-based localization, while Table III
describes those employed in the VLC-based localization. Due
to the plethora of different symbols and parameters in this
manuscript, we request the reader to refer to these tables as
often as required.

II. LOCALIZATION IN UPLINK MM-WAVE SYSTEMS

Let us proceed by introducing the indoor environment that
will be considered for localization in both the analysis and the
simulations. Figure 1 presents a bird’s eye view of a room.
Assuming that the [0, 0] point is at the bottom left corner of
the room, let us install a multi-antenna mm-Wave anchor at
the a(i)

l = [a
(i)
l,x, a

(i)
l,y, a

(i)
l,z]

T position. In a(i)
l , the superscript

(i) determines the index of the NA physical anchors the
positions refer to, where i = 1, . . . , NA, while the subscript
l corresponds to the index of the Virtual Anchor (VA) of the
ith physical anchor, as defined below. Hence, the position of
a physical anchor has a subscript of l = 0. The positions of a
physical anchor’s VAs may be found with high precision if the
floor plan of the room is available, and they correspond to the
imaginary anchors that would have received a specular MPC as
a LOS path. Naturally, the VAs “exist” outside this room, since
in our scenario all specular MPCs are generated by the four
walls. Therefore, given that the ith physical anchor is located
at a(i)

0 = [a
(i)
0,x, a

(i)
0,y, a

(i)
0,z]

T in a room with floor dimensions
Wx and Wy , the four VAs depicted in Fig. 1 would be located
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TABLE I: mm-Wave System Parameters

Symbol Description

NA Number of anchors

M Number of AEs per anchor

L Number of VAs, equal to

the number of specular paths

a(i)
l Position of the ith physical anchor’s lth VA

p User’s position

r(i)
m (t) Received signal at the ith physical anchor’s

mth AE at time t

h
(i)
l Channel state of the lth path between the

user and the ith physical anchor

am(φ, θ) Phase rotation at the mth AE of the AA

with respect to the center of the AA,

when the angles of irradiance and incidence

are φ and θ, respectively

s(t) Transmitted signal at time t

τ
(i)
l Time of arrival of the lth path between

the user and the ith physical anchor

ν(i)(t) Diffusion multipath noise at the ith physical

anchor at time t

w
(i)
m (t) AWGN at the ith physical anchor’s mth AE

at time t

EIRP Equivalent isotropic radiated power in dBm

PL
(i)
l Path loss of the lth path between the user

and the ith physical anchor

λ Wavelength of the transmitted signal

fc Carrier Frequency

c Speed of light

n̄l Path loss exponent of the lth path

d
(i)
l Distance between the user and the lth VA

of the ith physical anchor

χl,sh Shadowing coefficient of the LOS (l = 0)

NLOS (l > 0) paths

σl,sh Standard deviation of the shadowing

coefficient of the lth path

BW Bandwidth of the transmitted signal

XPD Cross-polarization discrimination coefficient

a(1)
0

a(1)
1

a(1)
2

a(1)
3

a(1)
4

p

Fig. 1: Floor plan of the room, where the signal from the
agent with the unknown position p = [px, py, pz]

T =
[8.25, 4.25, 0.85]T (black square) is received by the four AEs
(different circles) of the physical anchor’s uniform linear array
at a(1)

0 = [a
(1)
0,x, a

(1)
0,y, a

(1)
0,z]

T = [2, 7.5, 2.5]T as a direct
path and four specular MPCs. since the carrier frequency is
fc = 28 GHz, the four AEs are placed with a λ/2 = 5.4 mm
spacing. The four specular MPCs may be considered as having
been received by VAs, in the same fashion as distributed
MIMO. Note that the AEs of the physical anchor and the
VAs are mirrored.

at

a(i)
1 =

[
a

(i)
0,x, 2 ·Wy − a(i)

0,y, a
(i)
0,z

]T
(1)

a(i)
2 =

[
2 ·Wx − a(i)

0,x, a
(i)
0,y, a

(i)
0,z

]T
(2)

a(i)
3 =

[
a

(i)
0,x, −a

(i)
0,y, a

(i)
0,z

]T
(3)

a(i)
4 =

[
−a(i)

0,x, a
(i)
0,y, a

(i)
0,z

]T
(4)

Please note that we have assumed no specular reflection
arrives at the physical anchor from the floor or the ceiling,
therefore only four VAs are considered. Furthermore, due to
the high path loss of MPCs at mm-Wave frequencies, we
have only considered the primary specular MPCs due to a
single reflection, since the power received from multiple-
reflection MPCs will be under the noise level. The user
and the physical anchor are assumed to be synchronised.
Furthermore, if the power received due to multiple reflected
paths was above the noise level and they were included in
the proposed localization algorithm, the resultant localization
accuracy would be improved. However, more VAs should be
considered, which would result in a increased computational
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TABLE II: mm-Wave System Parameters (continued)

Symbol Description

∆tm(φ, θ) Time difference of arrival between the mth

AE and the center of the AA, when the

angles of irradiance and impedence are

φ and θ, respectively

r Radius of the uniform circular array

β Roll-off factor of the RRC filter

T Symbol period

fs Sampling frequency

Pw, dBm AWGN power in dBm

SDNR Signal to Diffusion Noise Ratio

ξ Exponential decay constant of DM noise’s

exponential decay process

u Uniformly distributed random number

y
(i)
m (t) Matched filter output at the mth AE of the

ith physical anchor

rs(t) Impulse response of the raised cosine filter

at time t

z(i)(t) Total power at the outputs of the MFs at the

ith physical anchor

Np Maximum number of selected peaks

Ns, LOS Maximum number of samples difference

between the actual ToA of the LOS path

and that of a tile’s LOS path, for that tile to

be included in the reduced-size database

Ns,NLOS Maximum number of samples difference

between the ToA of a tile’s NLOS path and

any estimated peak, for that tile to be

included in the reduced-size database

NT Number of tiles in the room

NDB Number of tiles in the searched database

CFmmW Cost function in mm-Wave localization

pk Position of the center of the kth tile

ŷ
(i,k)
m Reconstructed, noiseless MF output at the

mth AE of the ith physical anchor, if the

signal was transmitted from the center

of the kth tile

TABLE III: VLC System Parameters

Symbol Description

NAP Number of Access Points

PTx,opt Transmitted optical power of each AP

P
(n)
Rx

Optical power received by the user

from the nth AP

h
(n)
LOS LOS path between the nth AP and the user

h
(n)
NLOS NLOS path between the nth AP and the user

h
(n)
l Channel state of the nth AP’s lth reflection

ψc Half of user’s Field-Of-View

m Order of Lambertian emission

φ1/2 Semi-angle at half power

dn Distance between the user and the nth AP

dn,l Distance between the nth AP

and the reflection point on the wall

dl,p Distance between the reflection point

on the wall and the user

Ar Physical area of the photodetector

Ts(ψ) Optical filter’s gain

g(ψ) Optical concentrator’s gain

nrfr Refraction index

ρ Reflection efficiency of the wall’s surface

Awall Wall’s reflective area

α Angle of irradiance at the reflection point

β Angle of irradiance at the user

I0 Center luminous intensity per LED

NDB, V LC Size of searched database

CFV LC Cost function in VLC localization

complexity. The specific PDP of the system depends on the
application scenario, i.e. on the positions of both the physical
anchor and the user, as well as on the dimensions of the
room. The positions of the VAs depend solely on the physical
anchor’s position, but not on that of the agents. Therefore,
only the floor plan’s knowledge is required, but no prior
knowledge of the users’ positions is necessitated. In Fig. 1,
we have employed a Uniform Linear Array (ULA) with four
AEs, noting that in general different formations of the AEs
offer different advantages. Therefore, it is important during
the signal combining stage to take into account the fact that
the AEs of the VAs’ antenna arrays are at different positions,
when compared to that of the physical array. More specifically,
the antenna arrays of the VAs are mirrored with respect to
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the four walls used for creating them. This becomes evident
in Fig. 1, where we have printed each AE using a different
pattern.

Let us now assume that a user, whose position has to be
estimated, is at position p = [px, py, pz]

T , as illustrated
in Fig. 1. In our systems, every user is assumed to use a
single antenna and since a user has no prior knowledge of
the anchor’s position in the room, an omnidirectional signal
is transmitted. The transmitted uplink signal arrives at the
physical anchor via five paths, hence the following signal is
received:

r(i)
m (t) =

L∑
l=0

h
(i)
l · am

(
φ

(i)
l

)
· s
(
t− τ (i)

l

)
+ s(t) ∗ ν(i)(t) + w(i)

m (t), (5)

where r
(i)
m (t) is the signal received by the ith physical an-

chor’s mth AE at time instant t, with i = 1, . . . , NA and
m = 1, . . . ,M , while l = 0, 1, . . . , L is the index of the LOS
and NLOS paths arriving at the anchor, with l = 0 referring
to the LOS path and L equal to the number of specular MPCs
(L = 4 in our scenario). Still referring to (5), h(i)

l is the
channel coefficient of the lth path between the user and the
ith physical anchor, which in our scenario only includes the
effect of the path loss. In other words, no fading channels have
been assumed in our systems. The function am

(
φ

(i)
l

)
in (5)

outputs the phase rotation of the signal received by the ith
anchor’s mth AE with respect to the signal that would have
been received at the center of the antenna array (if an AE
was there), based on the AoA of the signal that arrived on the
lth path. In the same equation, τ (i)

l is the delay experienced
by the signal received by the ith physical anchor from the
lth path, while s(t) is the transmitted signal, which is the
output of a root-raised cosine filter and it is known to both the
user, as well as to the anchors. The convolution s(t) ∗ ν(i)(t)
describes the Diffused Multipath (DM) noise that arrives at
the physical anchors. The diffused multipath noise cannot be
deterministically estimated and it models the signals received
due to the diffusion that the transmitted signals experience
by being scattered by non-deterministic or stationary objects
in the room. The diffusion coefficient ν(i)(t) is different for
every physical anchor i, and the associated diffused component
appears after the arrival of the direct path, as well as after each
specular path and it decays exponentially with time. Finally,
wm(t) ∼ N (0, N0) describes the Additive White Gaussian
Noise (AWGN) experienced by the ith physical anchor’s mth
AE, which obeys a normal distribution with zero mean and a
variance of N0.

In the following subsections, we will further investigate the
elements of (5), while referring to our propagation scenario
illustrated in Fig. 1.

A. Path Loss

The channel coefficient of the lth path between the user and
the ith physical anchor h(i)

l of (5) may be described as

h
(i)
l = 10

(
EIRP [dBm]−PL(i)

l [dB]
)
/20
, (6)

where the Equivalent Isotropically Radiated Power (EIRP)
is the product of the transmitted power and of the transmit
antenna gain, while the Path Loss (PL) of the lth path received
by the ith physical anchor is described in dB as

PL
(i)
l [dB] = 20 · log10

(
4π

λ

)
+ 10 · n̄l · log10

(
d

(i)
l

)
+ χl,sh. (7)

In (7), λ = c/fc is the wavelength, c is the speed of light and
fc is the carrier frequency, d0 = 1 m is a reference distance
and d(i)

l is the three-dimensional distance travelled by the lth
path between the user and the ith physical anchor. In (7),
n̄l is the PL exponent of the lth path, which depends both
on the carrier frequency, as well as on whether the signal is
received via a direct or a reflected path and on the particular
nature of the room, where the latter is different for airports,
empty warehouses and for office spaces in use. Finally, χl,sh
in (7) represents the shadowing that the transmitted signal
experiences for the lth path, with the shadowing coefficient
having a lognormal distribution associated with χl,sh[dB] ∼
N (0, σ2

l>0,sh), where σ2
l>0,sh is the variance of the lognormal

distribution, which also depends on the carrier frequency and
on whether the signal was received via a LOS or NLOS path,
as well as on the room.

In [37], the authors presented measurements performed in
indoors office environments and proposed channel models
for generalizing the aforementioned measurements. The path
loss model described in (7) is termed as the Close-In (CI)
free space reference distance model. The CI path loss model
of (7) assumes that the transmit and receive antennas are
co-polarized. In the scenarios, where the antennas are cross-
polarized, it was proposed in [37] to include a constant
attenuation factor, termed as the Cross-Polarization Discrimi-
nation (XPD), resulting in the Close-In reference distance with
XPD (CIX) based PL model, as encapsulated in

PL
(i)
l [dB] = 20 · log10

(
4π

λ

)
+ 10 · n̄l · log10

(
d

(i)
l

)
+ χl,sh +XPDl [dB]. (8)

As it may be observed in (8), the XPDl factor was found to
be different for the LOS and the NLOS paths.

B. Phase Rotation at Antenna Arrays

Each AE in an AA receives the transmitted signal with a
different phase with respect to the other AEs, based on the
inter-element distance.

1) Uniform Linear Arrays: When a ULA of antenna ele-
ments is used, such as the one depicted in Fig. 1, and assuming
that the ith physical anchor’s position a(i)

0 refers to the center
of the ULA, the ULA output of the mth AE is equal to [38]

am

(
φ

(i)
l

)
= e

j·2·π·fc·∆tm
(
φ
(i)
l

)
, (9)

where ∆tm

(
φ

(i)
l

)
is the time difference between the arrival of

the lth path at the center of the ith physical anchor’s ULA and
at the mth element of the ULA. Since the ULAs of the VAs
have the same spacing between the AEs, even though their
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m = 1

m = 2

m = 3

m = 4

φ
(1)
0

a(1)
0

dAE

{ m = 1

m = 2

m = 3

m = 4

φ
(1)
3

a(1)
3

Planar
Wavefront

Wavefront
Planar

Fig. 2: The arrival of the wavefront at the ULA of the physical
anchor at a(1)

0 and at the south VA at a(1)
3 . Knowledge of the

angle of arrival φ(1)
l and of the distance between two AEs

dAE are sufficient for reconstructing the phase difference of
the signal arriving at the center of the ULA and the AEs.
Note that the indexing of the AEs is performed from top to
bottom, resulting in different physical AEs having the same
index, depending on the VA.

position on the ULA is mirrored with respect to the walls, let
us initially investigate the phase rotation experienced by the
direct path. Based on Fig. 2, when there is an even number of
AEs M in the ULA, the time difference ∆tm

(
φ

(i)
l

)
between

the mth AE of the ith ULA and the center of that ULA is
stated in (10) (top of the next page). In (10), m = 1 refers to
the top AE and m = M to the bottom AE in Fig. 2, dAE is
the spacing between two neighbouring AEs, φ(i)

l is the AoA
of the direct signal to the ith physical anchor and c is the
speed of light.

The angle between the user and the physical anchor is

φ
(i)
l =


µ

(i)
l px > a

(i)
l,x

sign
(
µ

(i)
l

)
· π − µ(i)

l px < a
(i)
l,x

0 px = a
(i)
l,x

, (11)

where

µ
(i)
l = tan−1

(
a

(i)
l,y − py
a

(i)
l,x − px

)
. (12)

As far as the VAs are concerned, the AEs of the physical
anchor’s ULA are reflected with respect to the VA’s associated
wall, and the same procedure applies for finding the AoA
based on (11) and (12). Afterwards, the arrival time difference
with respect to the center of the ULA is calculated based
on (10) and the ULA output is found by evaluating (9). Please
note that the angles calculated based on (11) are with respect
to the VAs’ positions.

2) Uniform Circular Arrays: We also employ Uniform
Circular Arrays (UCA), since the vertical symmetry of the
ULA with respect to the AoAs will cause a problem in the
localization, as we will see in the following sections.

A UCA with four AEs is illustrated in Fig. 3. The UCA
output is the same as that of the ULA, which is given in (9).
Nonetheless, there is a difference in the calculation of the
time difference between the arrival of the signal at an AE,
compared to its arrival at the center of the UCA, since the
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Fig. 3: Signal reception at the UCA of the physical anchor at
position a(1)

0 and at the south VA at position a(1)
3 . Knowledge

of the azimuthan and elevation angles of arrival φ(1)
l and θ(1)

l ,
as well as of the UCA’s radius r and number of AEs M are
sufficient for reconstructing the phase difference of the signal
arriving at the center of the UCA and that which arrives at
the AEs. Note that the indexing of the AEs is performed in a
counter clockwise direction starting from the x axis, resulting
in different physical AEs having the same index, depending
on the VA.

AEs have different positions. Furthermore, both the azimuthal
angle φ(i)

l and the elevation angle θ(i)
l affect the resultant phase

difference, as exemplified in Fig. 3. More specifically, we have

∆tm

(
φ

(i)
l , θ

(i)
l

)
= −r

c
· sin

(
θ

(i)
l

)
· cos

(
φ

(i)
l − φm

)
, (13)

where r is the radius of the UCA and φm is the angle of the
mth AE with respect to the horizontal axis that passes through
the center of the UCA. Please note that again, the indexing
of a UCA’s AE will begin counter-clockwise from the right-
hand side of the horizontal axis that passes throught the UCA’s
center, which results in the same AE having a different index,
when it belongs to a VA’s UCA, due to the reflection with
respect to the walls, as illustrated in Fig. 3 for the South-
VA at position a(1)

3 . The azimuthan angle of the mth AE is
calculated as

φm = 2 · π · m− 1

M
, m = 1, 2, . . . ,M. (14)
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∆tm

(
φ

(i)
l

)
=

 sign
(
−φ(i)

l

)
·
[
dAE

2 +(M2 −m)·dAE
]
·
∣∣∣sin(φ(i)

l

)∣∣∣
c , m < M

2

sign
(
φ

(i)
l

)
·
[
dAE

2 +(m−M
2 −1)·dAE

]
·
∣∣∣sin(φ(i)

l

)∣∣∣
c , m > M

2

(10)

The azimuthan angle between the lth received path and the
UCA φ

(i)
l may be found as described in (11), while the

elevation angle θ(i)
l is calculated as in

θ
(i)
l = cos−1

(
a

(i)
l,z − pz
d

(i)
l

)
, (15)

where d
(i)
l is the distance travelled by the lth path before

reaching the ith physical anchor.
Please note that none of these parameters are known at

the anchors, hence they cannot be exploited for finding the
user’s position. However, the equations may be used for
reconstructing a noiseless signal as if it was transmitted from
a position p̂ in order to determine how similar the received
signal is to the noiseless reconstructed one. The localization
algorithm will be investigated in detail in the following section,
but we believe that the motivation of our analysis in this
section should be made explicit. The radius of the UCA
is r = 0.3536 · λ, in order for the distance between two
neighbouring AEs to be equal to λ/2.

C. Pulse Shaping
The user transmits a single Binary Phase Shift Key-

ing (BPSK) modulated symbol +1, pulse shaped with the aid
of a Root Raised Cosine (RRC) filter having a roll-off factor of
β. The impulse response of the RRC, which is the transmitted
signal in (5), is equal to [39]

s(t) =
4β

π
√
T

cos
(

(1+β)πt
T

)
+ T · sin( (1−β)πt

T )
4βt

1−
(

4πt
T

)2 , (16)

where T is the symbol period.
At the receiver, the signal r(i)

m (t) of (5) received by the
mth AE of the ith physical anchor passes through a matched
RRC filter. Since different AEs will experience different
noise contamination, the diversity provided by analyzing the
summation of the received powers at the outputs of the MF
operations may improve the ability to distinguish the useful
signal and the AWGN.

D. Diffused Multipath
The diffused multipath noise ν(t) in (5) models the MPCs,

which cannot be deterministically estimated and they are
physically caused by reflections due to small or moving
objects [40]–[43]. In our systems we have opted for modelling
the DM noise power as an exponentially decaying process
triggered by each reception of a deterministic specular MPC,
including the direct path. This would result in an amplitude
of [43]

ν(t) =
h

(1)
l>0(t)√

10SDNR/10
·
√
e−

t
ξ · ej·2·π·u, (17)

Matched Filter

Received Signals

Find the Peaks

Reduce the Search Space

Search the Search Space

Estimated Position

Fig. 4: Flow chart of the fingerprinting method using AAs in
mm-Wave Systems.

where u is a random number obeying the uniform distribution
u ∼ U(0, 1), and ξ is the exponential decay constant of the
exponential decay process. Still referring to (17), we have
chosen the peak power of the DM noise to be a scaled version
of the power received by the specular MPC at that same
time, since h

(1)
l>0(t) is the channel state of a NLOS path at

time t, received by the first physical anchor. By introducing
in (17) the Signal to Diffusion Noise Ratio (SDNR), measured
in dB, we are able to scale the received DM noise power in
our simulations. Please note that the SDNR is assumed to be
constant in time.

The resultant DM noise that arrives at the receiver is the
convolution of the noise in (17) with the transmitted signal
of (16) as stated in (5) and it passes through the matched
RRC filter, as described in Section II-C. The DM noise is a
colored noise process, in contrast to the AWGN of (5), since it
does not have uniform power at all frequencies. The DM noise
may degrade the accuracy of the localization process due to
its random phase rotation imposed on the received signal, as
stated in (17).

E. Fingerprinting using AAs in mm-Wave Systems

Let us now commence with the fingerprinting-based local-
ization algorithm that makes use of both the AAs and of
the specular MPCs. The algorithm may be divided in four
processes, as illustrated in Fig. 4.

Application Scenario: After presenting each step of the
algorithm, we will demonstrate it in a specific application
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TABLE IV: Path Loss Parameters for fc = 28 GHz

PLE σsh (dB) XPD (dB)

LOS (l = 0) 1.1 1.8 14

NLOS (l > 0) 2.7 9.6 10.4

example, in order to provide deeper intuition to the process
of the proposed algorithm. As an application scenario, let
us consider the 15(m) × 15(m) = 225m2 room seen in
Fig. 1. Assuming that the [0, 0] point is at the bottom left
corner of the room, let us install a single (NA = 1) multi-
antenna mm-Wave anchor at the position a(1)

0 = [2, 7.5, 2.5]T ,
which is on the ceiling close to the left wall. Since the floor
plan is available, we may find the positions of the VAs that
correspond to the physical anchor by finding the symmetrical
positions of the physical anchor with respect to the four walls,
resulting in a(1)

1 = [2, 22.5, 2.5]T , a(1)
2 = [28, 7.5, 2.5]T ,

a(1)
3 = [2, −7.5, 2.5]T and a(3)

2 = [−2, 7.5, 2.5]T , as illus-
trated in Fig. 1. In our scenario, a user is at the unknown
position p = [8.25, 4.25 0.85]T .

The carrier frequency is set to fc = 28 GHz, hence we
have λ ≈ 1 cm. The anchor is a ULA having M = 4
AEs, which have a spacing of dAE = λ/2 = 5 mm, in a
formation parallel to the west wall. The CIX PL model of (8)
has been assumed. For a carrier frequency of fc = 28 GHz as
well as for a two-sided bandwidth of BW = 800 MHz, the
authors of [37] estimated the LOS PL exponent to be equal to
n̄0 = 1.1, while that of the NLOS paths equal to n̄l>0 = 2.7.
Similarly, the shadowing standard deviation was estimated as
σ0,sh = 1.8 dB for the direct path and σl>0,sh = 9.6 dB for
the specular MPCs. Furthermore, in [37] it was estimated that
XPD0 = 14 dB for the direct path and XPDl>0 = 10.4 dB
for the specular MPCs. The aforementioned parameters of the
PL calculation for fc = 28 GHz are gathered in Table IV.

The sampling frequency is equal to fs = 2/T = 1600 MHz,
where T = 1/BW = 1.25 ns is the symbol period. Regarding
the noise in our scenario, an AWGN floor of Pw,dBm =
−174 dBm / Hz has been included, as well as DM noise
having a negative-exponential decay parameter equal to the
symbol period of ξ = T = 1/BW = 1.25 ns. Finally, we
have SDNR = 3 dB and the roll-off factor of the RRC filters
is β = 0.5.

1) Matched Filter: As mentioned in the previous section,
the signals received by each AE initially pass through an RRC
MF. The output of the RRC MF at the mth AE of the ith
physical anchor is

y(i)
m (t) =

L∑
l=0

h
(i)
l · am

(
φ

(i)
l

)
· rs
(
t− τ (i)

l

)
+ rs(t) ∗ ν(i)(t) + ŵ(i)

m (t), (18)

where ŵ(i)
m (t) is still an AWGN process with zero mean and

a variance of N0, while rs(t) is the impulse response of the
raised cosine filter essentially formed by the sequential use of
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Fig. 5: Combined MF outputs at the physical anchor’s ULA
in the scenario of Fig. 1, when both DM and AWGN noise
are included. Two matching RRC filters with β = 0.5 were
used at the user and the physical anchor, while the sampling
period is equal to half the symbol period.

two root raised cosine filters, which is described as

rs(t) = sinc
(
t

T

)
·

cos
(
πβt
T

)
1− 4β2 t2

T 2

. (19)

The outputs of the MFs are then combined as encapsulated in

z(i)(t) =
M∑
m=1

∥∥∥y(i)
m (t)

∥∥∥2

, (20)

which describes the total power received by all AEs at the ith
physical anchor at time instance t.

Application Scenario: In our scenario, the combined MF
output, which includes the useful signal, the DM noise and
the AWGN at all AEs of the physical anchor is depicted in
Fig. 5. Even though the additional power that the DM noise
constitutes may not be substantial for all paths, the associated
phase rotation may prove catastrophic for the success of the
localization algorithm.

The combined MF output of our scenario, which is depicted
in Fig. 5, was calculated based on (20). Each of the MF outputs
is found based on (18). More specifically, (18) depends on the
path loss of (8), the phase rotation of the ULA anchor of
Section II-B1, the impulse response of the pair of RRC filters
given in (19) and the diffusion multipath noise process of (17)
convolved with the transmitted signal of (16).

2) Finding the Peaks: Based on the received combined
power received at the output of the MF stage of Fig. 4, we
may estimate the ToAs of the five paths (one direct path and
four specular paths), by detecting the peaks in its PDP. Since
in low-SNR scenarios some of the paths may be close ot the
noise level, if we just select the specific five peaks, where
the maximum received power was recorded, we may be led
to wrong decisions, when peaks corresponding to noise are
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Fig. 6: The top five peaks, with respect to the received power,
at the output of the MFs.

selected. This is expected to cause issues in the next stage
of Fig. 4, where the search space is shrunk, since there is a
high probability that the correct position of the user would be
eliminated from the search space.

In order to avoid missing the peaks that correspond to
the actual received paths, we may keep the Np number of
preeminent peaks, which would be forwarded to the next
stage of the algorithm. The number of peaks Np is a design
parameter and we may vary it based on the channel conditions,
or on the number of VAs.

As it will be analyzed in more detail in the following stage
of the algorithm, the only peak that we may identify with
a confidence is the first peak that exceeds a specific power
threshold, which corresponds to the direct path. Therefore,
there is no need to search for peaks before the ToA of the
direct path. The power threshold should take into consideration
both the DM noise and the AWGN, as well as the fact that
the sampling may not take place exactly at the peak of the
transmitted signal. Therefore, the heuristic power threshold we
used in our investigations is

ThrLOS(t) = M · h(1)
0 ·

rs

(
1

2fs

)
2

. (21)

The first peak, with respect to time, that is higher than the
corresponding threshold value is considered to be the LOS
path.

Application Scenario: In our scenario of Fig. 5, if only
the top five peaks were selected, with respect to power, the
second highest peak, which is caused by the DM noise, would
be erroneously selected instead of the desired peak, which
corresponds to the East wall’s reflection, as depicted in Fig. 6.
Therefore, let us set in our example Np = 30, which results
in finding and saving the peaks illustrated in Fig. 7.

3) Reducing the Search Space: During the shrinking stage
of Fig. 4, we scan the virtual grid, generated by the fin-
gerprinting methodology, by checking whether transmission
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Fig. 7: The top thirty peaks, with respect to the peak persis-
tence, at the output of the MFs.

from the center of a specific tile is capable of identifying the
peaks. More specifically, transmission from the center of a tile
results in the reception of five peaks at known delays, since
the position of each tile in the room is known. If all these five
paths match five of the peaks identified during the previous
stage, then that tile is termed as a legitimate tile and it remains
in the search space. By contrast, if no peak has been found at a
specific delay, where a peak should have been found according
to a specific tile, that tile is removed from the search space.
Please note that the amplitude of the peak is not checked at
this stage, only the ToA of each path. Please note that other
techniques, such as Time Difference of Arrival (TDoA), or
AoA may also be used at this stage of the algorithm, if the
required infrastructure is available in order to reduce the search
space.

It should be noted that even though the ToA of each path
may be readily estimated from the received signals, we are
not able to estimate, which specific path corresponds to which
particular wall’s reflection, or in other words, which path
corresponds to which VA. Therefore, search spaces that are
symmetric with respect to the physical anchor are expected to
appear, due to the symmetry of the room considered in our
scenario. Let us now define, when there is a match between
the delays expected by transmitting from the center of a tile
and the estimated peaks of the previous stage.

Initially, the direct path is sought, since this is the only
path that is known with certainty from the MF outputs. If the
expected ToA of the direct path of a tile is within Ns, LOS
samples from the ToA of the actually received direct path,
then it is considered a match. Similarly, if there is at least
one estimated peak within Ns,NLOS samples from the ToA
of a specular path of a tile, then it is also considered a match.
Please note that all the expected ToAs of a tile should have
a match in the estimated peak-database, while Ns, LOS and
Ns,NLOS may differ. The reason that Ns, LOS and Ns,NLOS
are greater than zero is that due to DM noise and AWGN,
as well as due to the sampling times, the true peak due to a
specific path may not result in an observable peak, when the
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Fig. 8: The search space after the shrinking stage, where
the tile size is (0.5m × 0.5m) and hence NT = 900 tiles
are considered, with Ns, LOS = 1 and Ns,NLOS = 3. The
NDB,mmW = 126 tiles included in the search space are
plotted with gray color. The correct tile, which includes the
true position of the user, is shown with black color. The tiles
that are not included in the search space are illustrated with
white color.

signals are received. In that case, if Ns, LOS and Ns,NLOS
were equal to zero, the correct tile would not even be included
in the reduced-size database. However, the above-mentioned
observed peak will not have moved far away from the true
peak. The reason that Ns, LOS and Ns,NLOS may be different
is due to design considerations, where we may want the match
of the direct path to be stricter than that of the specular paths.

The objective of the shrinking stage of Fig. 4 is to reduce
the size of the search space, so that the complexity of the
actual search, which takes place in the following stage of
Fig. 4, becomes lower. Naturally, the performance will not
be improved by shrinking the search space. On the contrary,
if the shrinking procedure is not performed carefully, the
localization performance may degrade. Therefore, the current
stage describes a performance versus complexity trade-off in
the localization algorithm.

Application Scenario: Figure 8 depicts the reduced search
space in our scenario, when the tile size of the grid is (0.5m×
0.5m), resulting in NT = 900 tiles in the room and when we
have opted for Ns, LOS = 1 and Ns,NLOS = 3 samples.

The resultant search space consists of NDB,mmW = 126
tiles, which constitutes the database that will be searched. The
peaks found in Fig. 7 have been used for shrinking the search
space. We may observe that the distance estimated by the ToA
of the direct path determines the shape of the search space.
If we used Ns, LOS = 1 and Ns,NLOS = 1 instead, the
resultant search space would only include NDB,mmW = 26
tiles, as illustrated in Fig. 9. As expected, the lower the values
of Ns, LOS and Ns,NLOS are, the stricter the eligibility of a
tile is judged and hence the smaller the shrunk search space
becomes. However, this comes at the risk of excluding the

Fig. 9: The search space after the shrinking stage, where
the tile size is (0.5m × 0.5m) and hence NT = 900 tiles
are considered, with Ns, LOS = 1 and Ns,NLOS = 1. The
NDB,mmW = 26 tiles included in the search space are plotted
with gray color. The correct tile, which includes the true
position of the user, is shown with black color. The tiles that
are not included in the search space are illustrated with white
color.

Fig. 10: The search space after the shrinking stage, where
the tile size is (0.25m × 0.25m) and hence NT = 3600
tiles are considered, with Ns, LOS = 1 and Ns,NLOS = 3.
The NDB,mmW = 484 tiles included in the search space are
plotted with gray color. The correct tile, which includes the
true position of the user, is shown with black color. The tiles
that are not included in the search space are illustrated with
white color.

correct tile from the resultant search space, due to the noise
imposed on the received signals.

Moreover, if the virtual grid was separated into NT = 3600
tiles of size (0.25m× 0.25m) each, then the resultant search
space would be the one shown in Fig. 10, where we have
Ns, LOS = 1 and Ns,NLOS = 3 and the estimated peaks of
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Fig. 11: The search space after the shrinking stage, where
the tile size is (0.25m × 0.25m) and hence NT = 3600
tiles are considered, with Ns, LOS = 1 and Ns,NLOS = 1.
The NDB,mmW = 100 tiles included in the search space are
plotted with gray color. The correct tile, which includes the
true position of the user, is shown with black color. The tiles
that are not included in the search space are illustrated with
white color.

Fig. 7 were used. By using a smaller tile size, the precision of
the localization will be increased, but at the cost of increased
complexity, since NDB,mmW = 484 tiles would have to be
searched in contrast to the NDB,mmW = 126 tiles in the case,
where each tile had a size of (0.5m × 0.5m). By changing
the design parameter of Ns,NLOS = 1, the search space is
reduced even further, as shown in Fig. 11, but the algorithm
becomes more sensitive to noise. By comparing Fig. 9 and
Fig. 11, which use the same design parameters of Ns, LOS = 1
and Ns,NLOS = 1, but different tile sizes, we may observe
that when the tile size is smaller, more tiles are included in the
resultant search space. Therefore, based on both the available
complexity budget and on the target localization precision, the
tile size and the design parameters Ns, LOS and Ns,NLOS may
be tuned accordingly.

4) Exploring the Search Space: This stage of Fig. 4 de-
termines, which particular tile in the resultant database is the
most likely to include the true position of the user. In order to
achieve that the noiseless received signals, which would have
been received at the outputs of the RRC MFs, if the signal was
transmitted from the kth tile are compared to the actual outputs
of the MF of each AE according to the Cost Function (CF),
of

CFmmW (pk) =
I∑
i=1

Np∑
p=1

M∑
m=1

∥∥∥y(i)
m (tp)− ŷ(i,k)

m (tp)
∥∥∥2

NiNpM
, (22)

where pk = [pk,x, pk,y, pk,z]
T is the center position of the kth

tile, NA is the number of physical anchors in the systems, Np
is the number of peaks estimated by the“Finding the peaks”
stage of Fig. 4, M is the number of AEs installed at each

physical anchor, tp is the pth peak’s time of arrival, and
ŷ

(i,k)
m (tp) is the noiseless version of (18), if the transmitted

signal had originated from the center of the kth tile, as
formulated in

ŷ(i,k)
m (t) =

L∑
l=0

h
(i,k)
l · am

(
φ

(i,k)
l

)
· rs
(
t− τ (i,k)

l

)
, (23)

where h(i,k)
l is the channel state, which may be reconstructed

based on

h
(i,k)
l = 10

(
EIRP [dBm]−PL(i,k)

l [dB]
)
/20
, (24)

where PL
(i,k)
l is based on (7) or (8), with the difference

that d(i,k)
l is substituted in those equations, determining the

distance between the ith physical anchor and the kth tile, as
in

d
(i,k)
l =

∥∥∥a(i)
l − pk

∥∥∥ . (25)

Still referring to (23), φ(i,k)
l is the AoA of the lth path between

the ith physical anchor as well as the kth tile and it is
calculated according to (11), where µ(i)

l is replaced by µ(i,k)
l ,

which in turn is described by

µ
(i,k)
l = tan−1

(
a

(i)
l,y − pk,y
a

(i)
l,x − pk,x

)
. (26)

Finally, τ (i,k)
l describes the delay of the lth path between the

ith physical anchor and the kth tile, and it is calculated as in

τ
(i,k)
l =

d
(i,k)
l

c
, (27)

where d(i,k)
l is given in (25) and c is the speed of light.

Therefore, it may be concluded that the cost function in (22)
is a function of the position of a tile’s center. Hence, the
optimal tile, with respect to its center being the closest to
the user’s true position, is the one that minimizes the cost
function of (22). In other words, the user’s estimated position
is the center of the tile that minimizes (22), as encapsulated
in

p̂mmW = arg min
p̃
CFmmW (p̃). (28)

A full search of all tiles would result in an excessive search.
By reducing the search space according to the previous stage’s
procedure, the complexity is reduced, but a high complexity
may still be required.

The reason we opted for the CF of (22) is that by comparing
all Np peaks that were estimated in the corresponding stage
of the algorithm, we ensure that all five peaks, which were
originated by the different paths of the received signals are
taken into consideration. The remaining peaks, which appear
due to the DM noise, as well as to the AWGN, will inevitably
increase the CF value. Therefore, a tile whose power delay
profile matches the more dominant peaks, will be associated
with a lower CF value. Finally, the computational complexity
of the mm-Wave localization algorithm may be quantified by
the number of CFEs of (22). Therefore, the full search would
require CmmW = NDB,mmW CFEs, where NDB,mmW <
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Fig. 12: The CF values of the reduced search space, where
NDB,mmW = 126 tiles participate, with Ns, LOS = 1 and
Ns,NLOS = 1. The tile positioned at p̂mmW = [8.25, 4.25]T

exhibits the minimum CF value of (22) and it perfectly
matches the user’s position p = [8.25, 4.25]T .

NT due to the reduction of the search space during the
corresponding stage of Fig. 4.

Application Scenario: In our scenario, when the tile size
is (0.5m × 0.5m) and the design parameters are Np = 30,
Ns, LOS = 1 and Ns,NLOS = 3, we have a database size
of 126 tiles, as illustrated in Fig. 8. The cost function values
of each legitimate tile are depicted in Fig. 12. As expected,
the specific tiles which are close to the user’s true position
p = [8.25, 4.25] have a lower CF value, while the tile located
at position p̃ = [8.25, 4.25]T has the minimum CF value of
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Fig. 13: The CF values of the reduced search space, where
NDB,mmW = 484 tiles participate, with Ns, LOS = 1
and Ns,NLOS = 1. The tile positioned at p̂mmW =
[8.125, 4.375]T exhibits the minimum CF value of (22) and
it is 0.18 m away from the user’s position p = [8.25, 4.25]T ,
due to the grid’s quantization.

2.32 · 10−6. Therefore, a full search would correctly estimate
the user’s position. If the tile size is (0.25m× 0.25m), again
with Ns, LOS = 1 and Ns,NLOS = 3, the resultant CF values
of the 484 tiles of Fig. 10 are illustrated in Fig. 13. The best
estimated position after a full search is p̂ = [8.125, 4.375]T ,
which is 0.18 m away from the user’s true position, due to
the quantization of the grid. In general, since a user will be
allowed to occupy any position in the room, smaller tiles
will result in an improved average precision, as we will
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Fig. 14: Floor plan of the room, where the NAP = 8 × 8 =
64 APs transmit to the user at the unknown position p =
[8.25, 4.25, 2.5]T .

demonstrate in the following sections. Since in our scenario
the user’s true position is exactly the same as the center of a
tile of size (0.5m× 0.5m), the positioning error is zero.

III. LOCALIZATION IN DOWNLINK VISIBLE LIGHT
COMMUNICATION SYSTEMS

Let us now try to localize the same user of our scenario
in Section II with the aid of a downlink VLC system. In
our downlink scenario, NAP APs, or physical anchors, are
installed close to the ceiling of the room, as illustrated in
Fig. 14. The APs may be considered as LEDs that are also
used to illuminate the room. The user is located at the
unknown position p = [px, py, pz]

T as in the uplink mm-
Wave scenario. Multiple localization methodologies designed
for VLC systems have been investigated in great detail in [5].
In this paper we will use the fingerprinting methodology
described in [5]. Since we will not introduce additional novelty
in the localization algorithm of a downlink VLC system, but
rather only in the search algorithm that will be employed, the
analysis in this section will focus on presenting the holistic
picture of the VLC downlink and it will not be as detailed as
that of the uplink mm-Wave system of the previous section.
The motivated reader may refer to [5] for a tutorial-paced
description of this downlink VLC localization algorithm.

The main concept of the downlink VLC localization algo-
rithm, when the fingerprinting methodology is adopted is to
determine, which specific tile would have the most similar
power received by each of the NAP APs. As in [5], this means
that the APs are assumed to transmit in an orthogonal manner
with respect to each other, so that the user can distinguish
the received power levels that correspond to each individual
AP. In order to relate it to the uplink mm-Wave localization
algorithm, the NAP APs may be related to the Np number of
peaks that were estimated during the “Finding the Peaks” stage
of Fig. 4, which are naturally separated from each other in the

time domain. Since the user receives a different power level
from each AP, there are NAP power samples for estimating
that user’s position.

Let us commence by defining the RSSI at the user’s posi-
tion, when transmitting from the nth AP, n = 1, 2, . . . , NAP ,
as [5]

P
(n)
Rx

(p) =
(
h

(n)
LOS(p) + h

(n)
NLOS(p)

)
· PTx, opt, (29)

where PTx, opt is the transmitted optical power of each AP,
h

(n)
LOS is the LOS path between the nth AP and the user, while
h

(n)
NLOS is a NLOS path between the nth AP and the user,

originated by reflections from the four walls. Naturally, the
transmitted light will be received by the users via multiple
NLOS paths due to the multiple reflections, but as in the
case of the mm-Wave model and localization algorithm of
Section II, we will only consider the deterministic reflections
from the four walls, which are also the most dominant NLOS
paths.

In more detail, the LOS VLC channel coefficient may be
described as [5]

h
(n)
LOS(p) =

(m+ 1) ·Ar
2 · π · d2

n

· cosm(φ) · Ts(ψ) · g(ψ) · cos(ψ),

(30)
where ψ is the angle of incidence, with 0 ≤ ψ ≤ ψc, where
ψc is half of the user’s FOV. Moreover, φ is the angle of
irradiance, m is the order of Lambertian emission, which is
described as m = ln(2)/ ln

[
cos
(
φ1/2

)]
, where φ1/2 is the

semi-angle at half power, and dn is the distance between the
user and the nth AP. Still referring to (30), Ar is the physical
area of a photodetector, Ts(ψ) is the optical filter’s gain and
g(ψ) is the optical concentrator’s gain, which is given by
g(ψ) = n2

rfr/ sin2(ψc), where nrfr is the refractive index.
The total power received due to all NLOS paths is a fraction

of the transmitted optical power, as encapsulated in

h
(n)
NLOS(p) =

L∑
l=1

h
(n)
l (p), (31)

where h
(n)
l (p) is the channel response of the lth reflection,

which is modeled as

h
(n)
l (p) =

(m+ 1) ·Ar
2 · π2 · d2

n,l · d2
l,p

· ρ ·Awall · cosm(φ)

· cos(α) · cos(β) · Ts(ψ) · g(ψ) · cos(ψ), (32)

where dn,l is the distance between the nth AP and the point
on the specific wall that reflected the lth NLOS path, dl,p is
the distance between that same point on the wall and the user,
who is at position p, ρ is the reflection efficiency of the wall’s
surface, Awall is the reflective area, α is the angle of irradiance
at the reflection point and β is the angle of irradiance at the
user. In our scenarios, we assume a reflection efficiency of
ρ = 0.75 and once again, (32) is valid when the angle of
incidence is within half of the user’s FOV ψc.

A. Fingerprinting-Based Localization

The fingerprinting-based localization algorithm partitions
the room into a grid of NT tiles, the potential RSS at the
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Fig. 15: The CF values of the search space in the VLC finger-
printing localization algorithm, where all NDB, V LC = 900
tiles participate. The tile positioned at p̂V LC = [8.25, 4.25]T

exhibits the minimum CF value of (34) and it perfectly
matches the user’s position p = [8.25, 4.25]T .

center of which has already been calculated and is stored in
a database. Since all tiles participate in the search, the size of
the resultant database is NDB, V LC = NT . The calculation of
the RSS at the center of the kth tile, k = 1, 2, . . . , NDB, V LC ,
is based on (29), where the unknown position of the user p is
now replaced by the known position of the center of the kth
tile pk, as encapsulated in

P
(n)
Rx

(pk) =
(
h

(n)
LOS(pk) + h

(n)
NLOS(pk)

)
· PTx, opt. (33)

Similarly, (30), (31), and (32) are used in conjunction with
pk. During the localization process, the actual RSS of (29) is
compared to that of (33) for all tiles. The tile center which has
the closest RSS value to that of the actual one is selected as
the user’s estimated position. This may be described according
to the following CF

CFV LC(pk) =

NAP∑
n=1

∥∥∥P (n)
Rx

(p)− P (n)
Rx

(pk)
∥∥∥2

. (34)

Therefore, similarly to (28), the user’s estimated position is

p̂V LC = arg min
p̃
CFV LC(p̃). (35)

Application Scenario: Let us consider a scenario based on
Fig. 14, where the user is positioned at p = [8.25, 4.25, 0.85]T

and there are NAP = 8× 8 = 64 APs at a height 2.5 m from
the floor, at the positions depicted in Fig. 14. Each AP consists
of 60 × 60 = 3600 LEDs [44]. Each LED has an optical
power of 5.55 mW. Therefore, the transmitted optical power
of each AP in our scenario is equal to PTx,opt = 3600 · 5.55 ·
10−3 = 20 W. The semi-angle at half power is φ1/2 = 60o

and the FOV is 100o. Furthermore, the physical area of the
user’s photodetector is Ar = 1 cm2, the optical filter’s gain is
Ts(ψ) = 1 and the refractive index is nrfr = 1.5.

The CF values of our scenario are illustrated in Fig. 15.
We may observe that the tile with center p̂V LC =
[8.25, 4.25, 0.25]T exhibits the minimum CF value of
CFV LC(pk) = 0, since it perfectly matches the true position
and only deterministic contributions to the RSS have been
considered. The complexity of the full search in this scenario
is NDB, V LC = 900 CFEs relying on (34).

IV. QUANTUM SEARCH ALGORITHMS IN LOCALIZATION

In this section rudimentary familiarity with quantum infor-
mation processing is assumed. For the associated basics please
refer to [45]–[47], but below we provide a brief introduction
to the required basics. In quantum computing, the basic unit of
information is the quantum bit, or qubit, which can be found
in the quantum states |0〉 or |1〉, or any superposition of the
two, as in

|q〉 = a|0〉+ b|1〉, (36)

where |a|2 and |b|2 are the probabilities of obtaining the
quantum states |0〉 or |1〉, when we measure or observe the
qubit |q〉 of (36), while a, b ∈ C. When a measurement
or observation takes place, the superposition of states will
collapse to the measured state of the classic domain. When
using multiple qubits, quantum registers may be created,
essentially increasing the number of legitimate quantum states
exponentially. By applying quantum operators or quantum
gates to the qubits, we are able to change, or evolve, their state.
Furthermore, when a quantum state of two or more qubits
cannot be described separately by its qubits’ states, then it is
said to be entangled. For example, let the following two qubits
be in the state

|x〉 = |q1〉|q2〉 = a|00〉+ b|11〉. (37)
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If it was possible to describe the state |x〉 using the individual
states of the two qubits |q1〉 and |q2〉, then we would have

|x〉 = |q1〉|q2〉 = (a1|0〉+ b1|1〉)(a2|0〉+ b2|1〉)
= a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉. (38)

However, since either a1 or b2 should be equal to 0, based
on (37), this means that (38) cannot describe (37). There-
fore, (37) describes an entangled state. For an extended tutorial
on quantum computing and QSAs, the motivated reader might
also like to consult [27].

A. Grover’s Quantum Search Algorithm

QSAs exploit these postulates of quantum computing for
finding the position of an element in a database. Grover’s
QSA finds the index of an entry δ in a database of size
N with ∼ 100% probability of success, by only requiring
O(
√
N) queries to the database. However, in order to achieve

this, the desired entry δ, the size of the database N and
the number of times that δ appears in the database S have
to be known prior to Grover’s search. From a high-level
perspective, Grover’s QSA [24], [25] is initialized by having
an equiprobable superposition of all N legitimate quantum
states, where each quantum state corresponds to the index of
a single entry in the database. Therefore, log2(N) qubits are
required in order to index all N legitimate states. The goal
is then to apply a specific quantum circuit Lopt number of
times, so that when we measure the resultant state of the
quantum register, the quantum state that corresponds to the
index of the desired entry in the database is obtained. This is
achieved by the activation of the appropriate quantum gates
in Grover’s quantum circuit, which change the amplitudes of
the quantum register’s state, so that eventually the quantum
state that corresponds to the desired entry in the database has
a probability to be observed close to 100%. The number of
iterations of Grover’s quantum circuit, or Grover’s quantum
operator, Lopt is equal to [24], [25]

Lopt =

⌊
π

4

√
N

S

⌋
. (39)

Naturally, Grover’s QSA shines in unsorted databases.
The most important quantum gate employed in Grover’s

quantum circuit is the Oracle, which is capable of querying
all entries in the database simultaneously in parallel, with
the aid of the superimposed qubits and a few auxiliary ones.
The Oracle only manipulates the specific quantum states that
correspond to the indices of those particular entries in the
database, which contain δ, while leaving the rest of the
quantum states unaltered. Therefore, the Oracle is tasked with
marking the so-called solutions of the search.

B. Boyer - Brassard - Høyer - Tapp Quantum Search Algo-
rithm

When, however, the number of occurrences S of a desired
entry δ in a database of length N is not known prior to the
search, and only δ and N are known, then Grover’s QSA is not
applicable, because according to (39) it will not be possible

to determine the optimal number of Grover iterations Lopt.
To circumvent this limitation, Boyer, Brassard, Høyer and
Tapp (BBHT) proposed the BBHT QSA [26] for such search
problems by relying on Grover’s QSA. Again, from a bird’s
eye perspective, since the number of solutions S is not known
and we are unable to determine how many times Grover’s
quantum circuit should be applied to the initially equiprobable
superposition of states, the BBHT QSA pseudo-randomly
chooses the number of Grover iterations. Even though it is
highly likely that the state observed is not the desired one after
the first few trials, a fact that can be checked by classically
querying the database with the obtained state, the BBHT QSA
has been formally proven to obtain the desired state, provided
that it exists, after at most 4.5

√
N/S database queries. Since

S is unknown, the algorithm can be terminated after 4.5
√
N

Grover iterations, which is the highest-complexity scenario of
S = 1. In other words, the BBHT QSA invokes Grover’s QSA
multiple times for a different number of Grover iterations, until
the index of the desired entry is acquired. The probability of
success remains at ∼ 100%, as in Grover’s QSA.

Since the BBHT QSA is a probabilistic algorithm, its
complexity may vary even between different search instances
in the same database. However, even though the maximum
required complexity is 4.5

√
N/S, before we manually ter-

minate the algorithm and conclude that there is no solution
to this the search problem, when at least one solution exists,
the maximum actually encountered and recorded complexity
is usually much lower than 4.5

√
N/S.

C. Dürr - Høyer Algorithm

Naturally, when the goal of a search is to find the minimum
entry in an unsorted database, then δ is also unknown prior
to the search. Therefore, neither Grover’s nor the BBHT QSA
are able to find that minimum entry, since they both require
a priori knowledge of δ. The Dürr-Høyer Algorithm manages
to find the index of the minimum entry in a database of size
N with ∼ 100% success probability after at least 4.5

√
N and

at most 22.5
√
N database queries. In [28], we showed that

the complexity of the DHA may be further reduced without
sacrificing the success probability, provided that appropriate
search statistics about the database are available.

Initially, the DHA randomly chooses one of the entries
of the database. If there is a way of selecting an entry,
the value of which is closer to the minimum one in the
database, the complexity of the DHA is further reduced [28].
For example, in the signal detection field, if a low-complexity
Minimum Mean Square Error (MMSE) detector is employed
before the DHA, then the output of the MMSE detector may
be used as the initial input to the DHA for reducing its
complexity [28], [31]. After the initial input entry to the DHA
δ has been selected, the BBHT QSA is employed, as described
in Section IV-B, but with the difference that the Oracle now
marks as solutions all the quantum states that correspond to the
specific indices of those entries in the database that are smaller
than δ. Naturally, there will be multiple entries in the database
that have a lower value than δ. Since it is impossible to know
the exact numbers of entries that are smaller than δ prior to the
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Fig. 16: The tiles that were obtained by the DHA, when used
in the mm-Wave localization algorithm for NDB = 900 tiles.
The CF value of each evaluated tile is also plotted. The entries
of the database that were not obtained during the DHA search
have been fixed to a CF value of 9 · 10−6, just for the sake
of presentation, without meaning that their true CF value,
presented in Fig. 12, has changed. The final output of each
BBHT search during the DHA’s process is numbered, in the
sequence of the BBHT QSA occurrences. The circled tile is
the closest to true position of the user. The last output of the
last BBHT QSA’s call, indicated by the number 1 is the output
of the DHA and it is the correct tile. The unnumbered tiles
denote the tiles that were measured by the BBHT QSAs but
were not solutions, as expected by the trial-and-error procedure
of the BBHT QSA.

search, only the BBHT QSA can be used. However, when we
measure the final quantum state at the end of the BBHT QSA,
only one of the candidate quantum states will be obtained. By
classically checking, whether the entry that corresponds to the
index of the quantum state observed has a lower value than δ,
we are able to determine whether there is an entry lower than
δ or not. If there is, then that entry becomes the new δ and the
same process is repeated, until the BBHT QSA is terminated
without yielding an entry lower than δ. At that point we may
conclude that the last δ we used is the minimum entry of the
database and the DHA is concluded.

Since DHA employs the BBHT QSA, it also has a
probabilistic complexity. The average complexity found for
randomly constructed, unsorted databases was around 7

√
N

database queries. The minimum complexity of 4.5
√
N is

equal to the maximum complexity of the BBHT QSA and
it corresponds to the particular scenario, where the minimum
entry of the database was selected to be the initial input entry
of the DHA. The maximum complexity of the database given
by 22.5

√
N is rarely approached. In [28], we proposed an

early termination criterion for the DHA. With the aid of this
criterion we are able to tune its complexity, based on striking

Fig. 17: The tiles that were obtained by the DHA, when used in
the VLC fingerprinting localization algorithm for NDB = 900
tiles. The CF value of each evaluated tile is also plotted. The
entries of the database that were not obtained during the DHA
search have been fixed to a CF value of 4.63 · 10−9, just for
the sake of presentation, without meaning that their true CF
value, presented in Fig. 15, has changed. The final output of
each BBHT search during the DHA’s process is numbered, in
the sequence of the BBHT QSA occurrences. The circled tile
is the closest to true position of the user. The last output of the
last BBHT QSA’s call, indicated by the number 3 is the output
of the DHA and it is the correct tile. The unnumbered tiles
denote the tiles that were measured by the BBHT QSAs but
were not solutions, as expected by the trial-and-error procedure
of the BBHT QSA.

a trade-off between the affordable complexity budget and the
success probability desired. Due to the methodology followed
by the DHA, with the continuous updates of δ, even if the true
minimum entry of the database is not found, an entry with a
value close to that of the true minimum entry will have been
obtained.

D. Localization Using Quantum Search Algorithms

In the localization problem, the search aims for finding the
minimum entry in an unsorted database. Hence, the DHA may
be employed for reducing the search complexity quantified
in terms of the number of CFEs, while having a success
probability of ∼100%. In both the mm-Wave and in the
VLC localization algorithms, the average complexity of the
DHA depends on the size of the database NDB,mmW and
NDB, V LC . For the same tile size, the database size in the
mm-Wave localization algorithm is lower than that in the
VLC localization algorithm NDB,mmW < NDB, V LC , due
to the search space shrinking stage of Section II-E3. In
the mm-Wave localization algorithm, the DHA performs a
search for the minimum entry in the database consisting of
NDB,mmW entries, which are constructed based on the CF
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of (22). Similarly, in the VLC localization algorithm the DHA
is employed for finding the minimum entry in a database of
size NDB, V LC = NT , the entries of which are calculated
based on (34).

When we employed the DHA in the scenario of Fig. 1
and the database of Fig. 12, where the database size is
NDB,mmW = 126, the resultant complexity was 52 CFEs.
Only a certain fraction of the search space was retained after
the measurements of the BBHT QSAs employed by the DHA,
as illustrated in Fig. 16. For the same scenario, when using
the VLC localization algorithm in the database of Fig. 15,
247 CFEs were required for identifying the specific tile that
minimized the CF of (34). The tiles observed during the
DHA search in the VLC localization algorithm are shown in
Fig. 17. We may observe that in both localization algorithms,
the required computational complexity is reduced, when the
DHA is used instead of a full search. At the same time, the
DHA succeeds in finding the correct tile in both the mm-Wave
and the VLC localization algorithms.

When the DHA is used, the complexity reduction, quantified
in terms of the percentage of the database size is improved
when the database size is higher. This is the reason why in the
mm-Wave localization algorithm the DHA requires 41.37% of
the complexity needed by a full search in a database size of
126 entries, while it requires only 27.4% of the complexity
imposed by the full search in a database size of 247 entries.
Since the DHA’s complexity is proportional to

√
NDB , where

NDF is the size of the database, the higher the size of the
database is, the higher the complexity reduction achieved by
the DHA becomes.

Due to the nature of the mm-Wave-based localization algo-
rithm, the database size differs, depending on the position of
the user. At the same time, for the DHA to require a lower
complexity than the full search, the database size should be
higher than 26 = 64 entries [28]. Therefore, in the mm-Wave
localization methodology we will employ a hybrid quantum
search for the “Exploring the Search Space” stage of Fig. 4,
where a full search is performed if the size of the database is
lower than 64 entries, while if the database size is higher than
64 entries, the DHA is used for finding the tile that corresponds
to the minimum entry.

V. SIMULATION RESULTS & DISCUSSIONS

Let us now evaluate the localization methodologies and
search algorithms investigated. Tables V and VI gather the
values of all the parameters invoked by the mm-Wave-based
and VLC-based localization algorithms, respectively. These
remain unaltered in all the simulations. In all the simulations,
we have moved a user to 90 000 different positions in the
room, essentially moving a user on a grid with a step of
5 cm. We have employed a localization algorithm for each
of these positions for 100 independent trials. We have also
investigated the performance that different tile sizes offer,
as well as different transmit power and antenna arrays. We
have opted for using the maximum and average positioning
error distance as our prime performance metric. For the mm-
Wave-based localization algorithm, in contrast to the previous

TABLE V: mm-Wave Scenario Parameters

Number of anchors NA = 1

Anchor’s position a(1)
0 = [7.5, 7.5, 2.5]T

Height of Users 0.85 m

Number of AEs M = 8

Number of VAs L = 4

Carrier frequency fc = 28 GHz

Bandwidth BW = 800 MHz

Sampling frequency fs = 1600 MHz

Roll-off factor of RRC β = 0.5

Path loss parameters See Table IV

AE spacing in ULA dAE = 5 mm

Radius of the UCA r = 3.8 mm

AWGN power Pw,dBm = −174 dBm/Hz

SDNR 6 dB

Exponential decay constant ξ = 1.25 ns

Localization algorithm’s Np = 30

design parameters Ns, LOS = 1

Ns,NLOS = 5

sections, an antenna array is installed on the ceiling in the
center of the room, while for the VLC-based system, 64 APs
are installed uniformly in the room. The reason we opted for
a carrier frequency of fc = 28 GHz with a bandwidth of
800 MHz, was both the availability of actual measurements
of that system in [37], as well as the fact that in even
higher frequencies, the associated high PLE for the NLOS
paths increases the difficulty of detecting them. Nevertheless,
the presented algorithm is applicable for a range of carrier
frequencies.

Figure 18 presents both the maximum and average position-
ing error for each of the 90 000 user positions, when the mm-
Wave-based localization relied on the hybrid quantum search
and a tile size of (0.5m × 0.5m), EIRP = 25 dBm. The
resultant error pattern depends on the number of AEs installed
on the UCA, as well as on the position of the UCA in the
room. Based on the maximum positioning error recorded in
Fig. 18a, the maximum error observed among all positions
was 1.64 m, even though the relative frequency of observing
such a high positioning error is very low, as it will be shown
with the aid of probability density functions in our forthcoming
analysis. A glimpse of this may be observed in Fig. 18b, which
depicts the average positioning error for the same system,
demonstrating that the average positioning error among all
positions is 0.27 m. It should be noted that both Fig. 18a
and Fig. 18b have been obtained using the same simulation
instances and hence depend on the same random variable
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(a) Tile size: (0.5m× 0.5m).
Average error: 0.27 m.
Average complexity: 80 CFEs.

(b) Tile size: (0.3m× 0.3m).
Average error: 0.18 m.
Average complexity: 146 CFEs.

(c) Tile size: (0.1m× 0.1m).
Average error: 0.07 m.
Average complexity: 490 CFEs.

Fig. 20: Maximum positioning error, when using the mm-Wave localization methodology with hybrid quantum search for
90 000 user positions, three different tile sizes, EIRP = 25 dBm. The rest of the parameters are stated in Table V.

(a) Tile size: (0.5m× 0.5m).
Positions Lost: 1.12% (1010 positions).
Average error for found positions: 0.44 m.
Average complexity: 208 CFEs.
Average total error, assuming max error for
lost positions: 0.67 m.

(b) Tile size: (0.3m× 0.3m).
Positions lost: 1.12% (1010 users).
Average error for found positions: 0.24 m.
Average complexity: 436 CFEs.
Average total error, assuming max error for
lost positions: 0.46 m.

(c) Tile size: (0.1m× 0.1m).
Positions lost: 1.12% (1010 users).
Average error for found positions: 0.09 m.
Average complexity: 1293 CFEs.
Average total error, assuming max error for
lost positions: 0.32 m.

Fig. 21: Maximum positioning error, when using the VLC localization methodology with DHA for 90 000 user positions and
three different tile sizes. The rest of the parameters are stated in Table VI.

values. We may also conclude that the positioning error pattern
is symmetric with respect to the center of the room, where the
UCA is installed.

Still referring to Fig. 18, the average number of CFEs
required for all tiles over all independent simulation instances
by the hybrid quantum search was 80 CFEs. At the same
time, if only a full search was performed for the databases,
the average complexity would have been 139 CFEs, while
the positioning error performance would be the same. In
other words, the hybrid quantum search achieves the same
performance as the full search, while requiring 57.5% of the
CFEs. As we will show in a subsequent figure, this percentage
will be even lower, when the tile size is reduced and hence
the database size is increased.

Even though we used a ULA for our tutorial example,
Fig. 19 suggests that a ULA should not be used in the
mm-Wave-based localization algorithm, due to the inherent
symmetry of the antenna array with respect to an axis. Hence,
when a ULA is installed in the center of a symmetric room,

the mm-Wave-based localization algorithm becomes unable to
distinguish, whether the user is positioned on the left or on
the right side of the ULA, since in both cases all AEs would
have received exactly the same signals. All parameters’ values
in Fig. 19 are the same as those in Fig. 18. Therefore, in the
following simulations we will employ a UCA for the mm-
Wave-based localization.

When reducing the tile size, the positioning accuracy is
expected to improve, since the grid’s resolution is enhanced.
This is evident in Fig. 20, where the maximum positioning
error has been plotted for three different tile sizes, namely
for (0.5m × 0.5m), (0.3m × 0.3m) and (0.1m × 0.1m),
resulting in an average positioning error across all 90 000 user
positions of 27 cm, 18 cm and 7 cm, respectively. When
the “pencil-wide” beams of mm-Wave technology are used
for communication, the more precise the localization, the less
interference will be imposed on the adjacent users. Naturally,
this comes at the price of an increased complexity, since by
increasing the number of tiles, more CFEs are required by
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TABLE VI: VLC Scenario Parameters

Number of APs NAP = 64

Height of APs 2.5 m

Height of users 0.85 m

Number of LEDs per AP 60× 60 = 3600

Center luminous intensity per LED I0 = 350 mcd

Transmitted optical power per LED 5.5 mW

Transmitted optical power per AP PTx,opt = 20 W

Half of user’s FOV ψc = 45o

Semi-angle at half power φ1/2 = 60o

Physical area of photodetector Ar = 1 cm2

Optical filter’s gain Ts(ψ) = 1

Refraction index nrfr = 1.5

Wall’s reflection efficiency ρ = 0.75

Wall’s reflective area Awall = 0.6875 m2

both the full search and by the hybrid quantum search. More
specifically, in order to achieve a 20 cm reduction in the
average positioning error, from 27 cm to 7 cm, six times the
number of CFEs is required on average.

When the 64 APs are employed for performing a VLC-
based localization, the positioning accuracy also depends on
the tile size and on the affordable complexity, as portrayed
in Fig. 21, where the maximum recorded positioning error is
illustrated for three different tile sizes. The main difference
between the mm-Wave-based localization’s performance of
Fig. 20 and that of the VLC-based localization in Fig. 21,
is that in the latter some user positions may never be found
by the methodology, due to the visible light’s limited coverage.
As it may be seen close to the walls of the room, and especially
at its four corners, there are 1010 positions, which are never
found by the VLC-based localization. In other words, 1.12%
of the 90 000 positions cannot be identified by the current
system setup. By assigning the maximum possible positioning
error of 15

√
2 = 21.21 m to them for our analysis, the average

positioning error is 51 cm, 37 cm and 30 cm for the tile sizes
of (0.5m × 0.5m), (0.3m × 0.3m) and (0.1m × 0.1m),
respectively. If we only consider the specific positions that
were in the coverage area, their average positioning error
becomes 28 cm, 14 cm and 6 cm, respectively, for the three
aforementioned tile sizes. Since in the VLC-based localization
of Fig. 21 only the perturbations due to wall-reflections are
assumed, if the user’s position happens to be exactly at the
center of a tile, its associated localization error may be equal
to zero. None of the three tile sizes we used in Fig. 21 have a
tile center exactly at a user’s positions, in order to guarantee
a fair comparison between the different tile sizes.

Still referring to Fig. 21, the average complexity required
by the VLC-based localization using the DHA is 208 CFEs,

(a) Maximum Positioning Error

(b) Average Positioning Error

Fig. 18: Maximum and average positioning error of the mm-
Wave-based localization, when a user is located in 90 000
different positions in the room and a UCA is installed at the
center of the room, while the tile size is (0.5m × 0.5m).
Furthermore, we have EIRP = 25 dBm. The rest of the
parameters are gathered in Tables IV and V. The search
complexity, averaged on all 90 000 positions, when the hybrid
quantum search is employed is 80 CFEs, while that of the full
search was 139 CFEs on average.

436 CFEs and 1293 CFEs, respectively, for the three tile
sizes used. Comparing the complexities of the VLC-based
localization for the three different tile sizes to the respective
ones of the mm-Wave-based localization in Fig. 20, we may
conclude that the mm-Wave-based localization achieves a
similar performance in terms of the average positioning error
over all the positions, while requiring fewer CFEs. Since the
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(a) Maximum Positioning Error

(b) Average Positioning Error

Fig. 19: Maximum and average error of the mm-Wave-based
localization, when a user is located in 90 000 different po-
sitions in the room and a ULA is installed at the center of
the room, while the tile size is (0.5m× 0.5m). Furthermore,
we have EIRP = 25 dBm. The search complexity, averaged
on all 90 000 positions, when the hybrid quantum search
is employed is 80 CFEs, while that of the full search was
139 CFEs on average.

cost functions of the mm-Wave-based and the VLC-based
localization methodologies are different, it may not be fair
to compare them, but they both represent a single query of a
database formed by the same tile arguments. Furthermore, in
contrast to the VLC-based localization, the mm-Wave-based
localization succeeds in localizing all user positions in the
room.

The average positioning error’s relation to the number
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Fig. 22: Average positioning error among all user positions,
with respect to the required computational complexity, in terms
of the number of CFEs, for the mm-Wave-based and VLC-
based localization methodologies, when a quantum search or a
full search is performed. For the mm-Wave-based localization
methodology, we have EIRP = 25 dBm. The rest of the
parameters are gathered in Tables V and VI.

of CFEs required for both localization techniques may be
better understood by observing Fig. 22. The complexity of
both the mm-Wave-based and of the VLC-based localization
methodologies was varied by only changing the tile size and
the search algorithm. In both techniques, when a quantum
search is used, we achieve a complexity reduction, which
becomes even higher, when the complexity required by the full
search is higher. In other words, the smaller the tile size of both
localization methodologies, the higher the complexity reduc-
tion achieved by the quantum search becomes. For example, in
order to achieve an average positioning error of 7 cm, the mm-
Wave-based localization algorithm using the hybrid quantum
search requires 14% of the number of CFEs required by a full
search. Similarly, the VLC-based localization algorithm using
the DHA requires 5.75% of the number of CFEs required
by a full search for achieving an average positioning error
of 9 cm. From another point of view, by investing the same
complexity, a more precise localization can be achieved, when
quantum search is used. For example, in the mm-Wave-based
localization scenarios of Fig. 22, if the affordable complexity
budget was 490 CFEs, by using a full search the average
positioning error would be 16.9 cm, while the same error
would be reduced to 7 cm, if the hybrid quantum search was
used.

By comparing the quantum-search-aided mm-Wave-based
and VLC-based localization methodologies in Fig. 22, as-
suming that their CFEs are equivalent in terms of power
consumption, we may conclude that the mm-Wave based
localization may achieve a similar average positioning error by
requiring fewer CFEs than the VLC-based localization. This
is due to the “Shrinking the Search Space” stage of the mm-
Wave-based localization methodology of Section II-E3, which
reduces the resultant search space. At the same time, the VLC-
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Fig. 23: Number of required CFEs among all user positions,
when the mm-Wave-based localization is employed, with
hybrid quantum search, EIRP = 25 dBm, and a tile size
of (0.1m × 0.1m). The rest of the parameters are stated in
Table V.

based localization methodology always performs a search right
across the entire room. It should be noted that in Fig. 22, we
have not taken into consideration during the calculation of
the VLC-based localization’s average positioning error, those
specific user positions, which are out of coverage.

Recall that the “Shrinking the Search Space” stage of the
mm-Wave-based localization methodology of Section II-E3 is
based on the peaks estimated in the received power delay
profile, as described in Section II-E2. In other words, it relies
on the distance travelled by the received signals, without taking
into consideration, which reflection caused which specular
path. This is also illustrated in Fig. 23, which quantifies the
computational complexity in terms of the number of CFEs,
which is required at each user’s position for the mm-Wave-
based localization methodology, when the hybrid quantum
search is used for a tile size of (0.1m×0.1m). The complexity
follows the trend of the number of tiles in the resultant
database. If the shrinking stage was omitted, then the number
of CFEs required would have been the same at all user
positions.

Figure 24 depicts the effect of different EIRP levels on
the average positioning error, when the mm-Wave-based lo-
calization relying on the hybrid quantum search is used and
the tile size is (0.1m × 0.1m). As expected, by increasing
the transmitted power, a lower average positioning error is
achieved, which eventually reaches the minimum error floor,
governed by the limited resolution of the room imposed by
the selected tile size. Viewing Fig. 24 from another angle,
by using a lower tile size and lower EIRP, we may achieve a
similar performance to those scenarios, where a higher tile size
combined with a higher EIRP was used. Therefore, depending
on the localization precision required, on the power budgets
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with respect to the EIRP from the user, when the mm-Wave-
based localization with hybrid quantum search, and a tile size
of (0.1m× 0.1m) are employed. The rest of the parameters
are stated in Table V.
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Fig. 25: Probability density function of the position error
among all positions in the room for three different tile sizes in
the mm-Wave based localization algorithm, where the hybrid
quantum search was employed, EIRP = 25 dBm. The rest
of the parameters are stated in Table V.

of the users and on that of the physical anchor, a suitable
allocation of transmission power and search complexity may
be performed.

Figure 25 illustrates the probability density functions of the
positioning error recorded for all positions in the room for
three different tile sizes in the mm-Wave-based localization
methodology using the hybrid quantum search. As expected,
the probability of having a low position error is higher,
when the tile size is small. The tails of the three probability
distributions show that even though relatively high errors may
be encountered, the probability of their occurrence is very low.
For example, the probability of having an error close to 1.45 m
is 3·10−7, 3·10−6 and 7.5·10−5 for the tile size of (0.1m·0.1),
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Fig. 26: Maximum positioning error of the VLC-based trian-
gulation method, when a user is located in 90 000 different
positions in the room, 64 APs for VLC are installed in the
room. The system parameters are stated in Table VI.

(0.3m · 0.3) and (0.5 · 0.5), respectively. Therefore, even
though Fig. 20 depicts the highest recorded positioning error
for the three tile sizes, the probability distribution of the errors
observed in Fig. 25 provides a more complete perspective on
the mm-Wave-based localization’s performance.

A. Joint VLC-based and mm-Wave-based Localization

Let us now join the forces between the downlink VLC-
based and uplink mm-Wave-based localization, by employing
the VLC-based localization using triangulation, as discussed
in [5], and subsequently invoke mm-Wave-based localization,
if the user happens to be out of the VLC coverage range.
The presence of a user will be known due to its uplink
transmissions. Hence, it is viable to assume that the system
will know, when a user is present in the room, but he / she
has not been localized by the VLC-based methodology. The
triangulation method requires three APs in order to estimate
the position of the user, similarly to the Global Positioning
System (GPS). In our system, when the user receives signals
from three APs, then VLC-based triangulation is performed,
while in any other cases, the mm-Wave-based localization
methodology using the hybrid quantum search and a tile size
of (0.1m× 0.1m) is used.

The performance of the VLC-based triangulation alone is
shown in Fig. 26. Naturally, since three APs are required for
localizing the user, the number of positions, where the user is
estimated by the VLC-based methodology is low. On the other
hand, when triangulation is performed, the positioning error is
close to zero, with the exception of the positions close to the
four walls, where we have assumed in our simulations that the
light is reflected, which allows triangulation to be used, albeit
with a degraded result. Nevertheless, triangulation requires the
overlap of coverage areas from different APs, therefore its
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Fig. 27: Maximum positioning error of the joint VLC-based
and mm-Wave-based localization, when a user is located in
90 000 different positions in the room, 64 APs for VLC are
installed in the room and a UCA is installed at the center of
the room. The VLC-based localization algorithm is employed
first using the triangulation method. When a user is not found,
the mm-Wave-based localization is used with hybrid quantum
search, a tile size of (0.1m× 0.1m), EIRP = 25 dBm. The
rest of the parameters are stated in Table V and Table VI.
The average positioning error is 0.056 m and the average
complexity is 261 CFEs.

success highly depends on the architecture of the room and
on the density of the APs, as well as on the field of view.

When we allow the mm-Wave-based localization method-
ology to follow the VLC-based localization, by employing a
UCA at the center of the room as in the previous scenarios,
using hybrid quantum search and a tile size of (0.1m×0.1m),
the resultant performance is illustrated in Fig. 27. Since we
employ both investigated systems sequentially, their maximum
positioning error is related to the combination of Fig. 20c
and Fig. 26. However, the average positioning error in the
joint VLC-based and mm-Wave-based localization is 5.6 cm,
which is lower than that of Fig. 20c, due to the improved
localization precision offerred by the VLC-based triangulation
in some parts of the room.

At the same time, assuming that the triangulation’s com-
plexity is much lower, than that of the fingerprinting method,
we have assumed that no CFEs were required, when triangu-
lation was employed. Therefore, the average number of CFEs
required in Fig. 27 is 261 CFEs and all belong to the mm-
Wave-based localization using the hybrid quantum search.

VI. CONCLUSIONS

In this contribution, we have proposed indoor localization
algorithms for the uplink of mm-Wave communication sys-
tems, which rely on a single multi-antenna anchor and exploit
the specular paths. In Section II we presented a tutorial on the
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operation of this localization algorithm, while in Section IV
we investigated the employment of quantum search algorithms
for it, in order to reduce the number of CFEs required.
Furthermore, we have used quantum search algorithms in
the VLC-based localization methodology of Section III for
achieving the same performance as the full search, while
requiring lower complexity.

As illustrated in Fig. 18 and Fig. 19, we concluded that only
the UCA, or two-dimensional antenna arrays, are suitable for
the uplink mm-Wave localization methodology. In Fig. 20, we
observed that by decreasing the size of the tiles in a fingerprint-
ing method, the average positioning error diminishes, while the
associated search complexity increases. The positioning error
pattern in the room depends on a number of factors, such as the
position of the anchor, the transmitted power and the number
of AEs on the UCA. Similar conclusions were drawn for the
VLC-based localization methodology in Fig. 21, which shows
the positioning error for multiple tile sizes, when the DHA
was used for conducting the search. The same figure shows
that the VLC-based localization algorithm may be “blind” to
specific user positions, due to its limited coverage. Therefore,
the position of the APs is crucial for the performance of the
VLC-based localization.

In Fig. 22 we compared the localization performance of
both the uplink and downlink algorithms, when a quantum
search algorithm is used and when only a classical full
search is employed. We observed that when a quantum search
algorithm is used for improving the localization, fewer CFEs
are required for achieving the same performance as the full
search. At the same time, assuming for the sake of comparison
that the complexity of a single CFE in the mm-Wave-based
localization methodology is equivalent to a single CFE in the
VLC-based localization methodology, the uplink mm-Wave-
based localization algorithm is able to offer a lower average
positioning error across the room at a lower complexity, as
observed in Fig. 22 for the two setups that we investigated.
For example, if more APs were installed on the ceiling and es-
pecially close to the four walls, we expect the downlink VLC-
based localization to outperform the uplink mm-Wave-based
localization. Similarly, if more mm-Wave-enabled physical
anchors are installed in the room, the localization estimation
would improve.

As expected, based on Fig. 23, in the mm-Wave-based
localization methodology, the required complexity depends on
the user’s position in the room due to the shrinking stage
of the algorithm, as stated in Section II-E3. Furthermore,
Fig. 24 illustrated the effect of different radiated powers on the
average positioning error of the mm-Wave-based localization
methodology. Since in Figs. 18, 19, 20 and 21 we referred
to both the maximum observed and the average positioning
error at each user’s position, in Fig. 25, we plotted the
probability distributions of the position error obtained by the
mm-Wave-based localization methodology. More specifically,
the maximum positioning error shown in Figs. 18, 19, 20
and 21 describes the worst-case scenario, but it has a very low
probability of occurrence. At the same time, as expected, the
position error probability distribution is shifted towards lower
positioning errors, when the tile size is smaller. However, this

comes with the cost of increased complexity.
Since the mm-Wave and VLC technologies are capable of

operating at the same time in a given room the for uplink
and downlink, respectively, we opted for joining their forces,
instead of simply comparing their individual performances.
Therefore, in Fig. 27 we presented the maximum positioning
error observed, when the VLC-based triangulation of [5] is
employed and if the user was not found, the mm-Wave-
based localization methodology of Section II was activated.
By employing this combined VLC and mm-Wave scheme, we
were able to achieve a reduced average positioning error across
all user positions in the room, while requiring fewer CFEs.
The reason was that even though the downlink VLC-based
triangulation achieves an infinitesimally low positioning error,
it has a very limited coverage. This problem was eliminated,
by using the uplink mm-Wave-based localization methodology.

Our future work includes the employment of multiple
physical anchors in the mm-Wave-based localization method-
ology in order to further improve the localization accuracy.
Moreover, we are aiming for exploiting the multiple AEs
in the physical anchor of the mm-Wave-based localization
methodology for further reducing the search space, before
actually searching through it. This may allow us to achieve
an even lower positioning error at the same complexity.
Furthermore, in our treatise we only considered rooms, where
there was no blockage. In reality, pillars and walls may block
the LOS path, resulting in degraded localization accuracy. In
our future work, we are planning to circumvent this problem
by either employing multiple anchors, or exploiting the VAs in
a different way. At the same time, we aim to use the estimated
position as an initial step for a quantum-assisted tracking
algorithm, which would follow the trajectory of each user.
Finally, a joint VLC and mm-Wave localization algorithm,
which would allow the exchange of information between the
uplink and the downlink may prove beneficial.
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