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Abstract – In this contribution two general formulae were
derived for the capacity evaluation of Multi-Input Multi-Output
(MIMO) systems using multi-dimensional signal sets, different
modulation schemes and an arbitrary number of transmit as well
as receive antennas. It was shown that transmit diversity is ca-
pable of narrowing the gap between the capacity of the Rayleigh-
fading channel and the AWGN channel. However, since this gap
becomes narrower when the receiver diversity order is increased,
for higher-order receiver diversity the performance advantage of
transmit diversity diminishes. A MIMO system having full mul-
tiplexing gain has a higher achievable capacity, than the corre-
sponding MIMO system designed for achieving full diversity gain,
provided that the channel SNR is sufficiently high.

1. INTRODUCTION

The capacity,C, of a Single-Input Single-Output (SISO) AWGN chan-
nel was quantified by Shannon in 1948 [1]. Since then, substantial re-
search efforts have been invested in finding channel codes that would
produce an arbitrarily low probability of error at a transmission rate
close toC∗ = C/T , whereT is the symbol period. We note how-
ever that Shannon’s channel capacity is only defined for Continuous-
Input Continuous-Output Memoryless Channels (CCMC) [2], where
the channel input is a continuous-amplitude, discrete-time Gaussian-
distributed signal and the capacity is only restricted either by the sig-
nalling energy or by the bandwidth. Therefore we will refer to the
capacity of the CCMC as theunrestricted bound.

By contrast, in the context of discrete-amplitude QAM and PSK [2]
signals, we encounter a Discrete-Input Continuous-Output Memory-
less Channel (DCMC) [2]. Therefore, the capacity of the DCMC is
more pertinent in the design of channel coded modulation schemes.
With the advent of powerful space-time coding schemes [3, 4], the
Multi-Input Multi-Output (MIMO) channel capacity is of immediate
interest. Note that multiple antennas can be utilised for providing di-
versity gain and/or multiplexing gain [5]. Specifically, Space-Time
Trellis Coding (STTC) [6] and Space-Time Block Coding (STBC)
[7, 8] were designed for achieving diversity gains by conveying the
same information through different paths over the MIMO channel in
order to combat the channel-induced fading. By contrast, Bell Lab’s
Layered Space-Time (BLAST) [9] scheme transmits independent in-
formation in parallel over the MIMO channel for the sake of achieving
multiplexing gain, hence increasing the attainable transmission rate.
Furthermore, both STTC and STBC schemes are capable of achieving
full transmit diversity1 at the cost of providing no multiplexing gain,
while the BLAST scheme was designed for achieving full multiplex-
ing gain at the cost of having no transmit diversity gain. The tradeoffs
associated with having partial diversity gain and partial multiplexing

1A system is said to have a full transmit diversity, when the transmit diver-
sity order is identical to the number of transmit antennas [7].

gain when communicating over MIMO channels was studied in [5].
However, the MIMO channel’s capacity was only found for the

CCMC in [3]. Furthermore, only the SISO AWGN channel capacity
was found for multi-dimensional signal sets, such asM -ary orthogo-
nal signalling [2] andL-ary PSK basedL-orthogonal signalling [10,
11]. More specifically, theL-orthogonal PSK signal [11] is a hy-
brid form of M -ary orthogonal and PSK signalling, combining the
benefits of power-efficient and error-resilientM -ary orthogonal sig-
nalling [2, p. 284] as well as bandwidth-efficient PSK signalling. At
this stage we note that STTC and STBC schemes have so far been ex-
clusively designed for complex-valued (two-dimensional) PSK/QAM
signal sets, but not for multi-dimensional signal sets.Against this
background, the novel contribution of this treatise is that we pro-
vide two general channel capacity formulae applicable to MIMO
channels exhibiting full diversity gain or full multiplexing gain
as well as employing multi-dimensional signal sets, in the quest
for more error-resilient, power-efficient and bandwidth-efficient
MIMO channel coding schemes.

2. MULTIDIMENSIONAL SIGNAL SET

The dimensionality of a time- and band-limited signal is defined as [12,
pp. 348-351]2 : D = 2WT , whereW is the bandwidth andT is the
signalling period of the finite-energy signalling waveform. In anL-
orthogonal PSK signal set [10, 11], there areV = WT independent
L-ary PSK subsets. The total number of waveforms isM = V L and
the number of dimensions isD = 2V , which is independent ofL.
Specifically, anL-orthogonal PSK signal requires splitting the origi-
nal PSK symbol period intoV number of proportionately shortened
PSK symbol periods and hence necessitatesV times the bandwidth of
PSK signalling, in order to transmitlog2(M) bits. The vector repre-
sentation ofL-orthogonal PSK signalling may be formulated as:

xm = xLPSKl φv, m = 1, . . . ,M, l = m%L, (1)

wherem%L is the remainder ofm/L, while v =
(
m−l
V

+ 1
)

and
xLPSKl is the classic 2-dimensionalL-ary PSK signal vector. Fur-
thermore, the orthonormal basis functionφv = (φv[1], φv[2], . . . , φv[V ])
is a vector ofV elements, which may be constructed from non-overlapping
signalling pulses as follows:

φm[i] =

{
1, i = m,
0, i 6= m.

(2)

Figure 1 illustrates an example ofL = 8-orthogonal PSK signalling
havingV = 2. For V = 1, L-orthogonal PSK signalling repre-

2This dimensionality is different from the definition used in the context of
multidimensional trellis coded modulation [13] (MTCM). Explicitly, when the
MTCM-dimensionality increases, only the coding rate increases, but the corre-
sponding capacity and bandwidth efficiency curves representing the achievable
upper-bound performance of the PSK/QAM signalling remain the same.
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Figure 1: AnL-orthogonal PSK example conveying 4 bits per sym-
bol usingL = 8-ary PSK subset, where the total symbol periodTs
consists ofV = 2 LPSK subset’s signalling durationsTp.

sents classic two-dimensionalL-ary PSK signalling. The total num-
ber of waveforms isM = V L = 16 and the number of dimensions
is D = 2V = 4. Note that only one timeslot of durationTp is ac-
tive during the symbol period ofTs = V Tp. Therefore,L-orthogonal
PSK signalling achieveslog2(V ) bits higher capacity at the cost ofV
times lower bandwidth efficiency, than that of classicL-ary PSK sig-
nalling. As a further contribution to the current state-of-the-art in the
literature, we found that the concept ofL-orthogonal PSK signalling
can also be extended to QAM, rather than being limited to PSK.

3. MIMO CHANNEL CAPACITY BOUND FOR FULL
DIVERSITY GAIN

WhenD = 2-dimensional PSK/QAM was employed, the received
signal of Alamouti’s orthogonal STBC [7] havingNt = 2 transmit
antennas andNr receive antennas can be transformed into [14]:

y =

N∑
n=1

|hn|2x + Ω = χ2
2Nx + Ω , (3)

wherey, x andhn are the complex-valued transformed received sig-
nal, the complex-valued transmitted signal and the complex-valued
Rayleigh-fading coefficient of thenth MIMO channel link, respec-
tively. Furthermore,χ2

2N =
∑N
n=1 |hn|

2 represents the chi-squared
distributed random variable having2N degree of freedom, where we
haveN = Nt × Nr. Finally, Ω is the MIMO system’s complex-
valued AWGN after transformation, which has a zero mean and a vari-
ance ofχ2

2NN0/2 per dimension, whereN0/2 is the original noise’s
variance per dimension. It was shown in [15] that a full-rate, full-
diversity orthogonal STBC also exists forNt > 2. Let us now gener-
alise Equation 3 for aD > 2-dimensionalL-orthogonal PSK/QAM

scheme as:

y =

D∑
d=1

(
χ2

2N [d]x[d] + Ω[d]
)
, (4)

y[d] = χ2
2N [d]x[d] + Ω[d] , (5)

wherey = (y[1], . . . , y[D]), x = (x[1], . . . , x[D]) and
Ω = (Ω[1], . . . ,Ω[D]). Note that whenD > 2, we haveD/2 num-
ber of differentχ2

2N values for theD-dimensional signals. Specif-
ically, we haveχ2

2N [i] = χ2
2N [i + 1] for i ∈ {1, 3, 5 . . .}, since a

complex channel has two dimensions. Furthermore,Ω[d] has a vari-
ance ofχ2

2N [d]N0/2 per eachD dimensions.
The conditional probability of receiving aD-dimensional signal

y given that aD-dimensionalM -ary signalxm, m ∈ {1, . . . ,M},
was transmitted over an AWGN channel is determined by the PDF of
the noise, yielding:

p(y|xm) =

D∏
d=1

1√
πN0

exp

(
−(y[d]− xm[d])2

N0

)
, (6)

whereN0/2 is the channel’s noise variance. For the full-diversity
MIMO system of Equation 5, we have:

p(y|xm) =
1∏D

d=1

√
πχ2

2N [d]N0

·

exp

(
D∑
d=1

−(y[d]− χ2
2N [d]xm[d])2

χ2
2N [d]N0

)
. (7)

The channel capacity for theN = (Nt × Nr) MIMO using D-
dimensionalM -ary signalling over the DCMC can be derived from
that of the Discrete Memoryless Channel (DMC) [16] as:

CNDCMC = max
p(x1)...p(xM )

M∑
m=1

∞∫
−∞

. . .

∞∫
−∞

p(y|xm)p(xm) ·

D-fold

log2

(
p(y|xm)∑M

i=1 p(y|xi)p(xm)

)
dy [bit/sym], (8)

wherep(xm) is the probability of occurrence for the transmitted sig-
nal xm. We know that Equation 8 is maximised, when the transmit-
ted signals are equiprobably distributed, i.e. when we havep(xm) =
1/M . Hence, we have:

log2

(
p(y|xm)∑M

i=1 p(y|xi)p(xm)

)
=− log2

(
1

M

M∑
i=1

p(y|xi)
p(y|xm)

)
,

= log2(M)−

log2

M∑
i=1

exp (Φmi (N)) , (9)

which is dependent on:

Φmi (N) =

D∑
d=1

−
(
y[d]− χ2

2N [d]xi[d]
)2

+
(
y[d]− χ2

2N [d]xm[d]
)2

χ2
2N [d]N0

=

D∑
d=1

−
(
χ2

2N [d](xm[d]− xi[d]) + Ω[d]
)2

+ Ω2[d]

χ2
2N [d]N0

. (10)



By substituting Equation 9 andp(xm) = 1/M into Equation 8 we
have:

CNDCMC =
log2(M)

M

M∑
m=1

∞∫
−∞

. . .

∞∫
−∞

p(y|xm) dy −

D-fold

1

M

M∑
m=1

∞∫
−∞

. . .

∞∫
−∞

p(y|xm) log2

M∑
i=1

exp (Φmi (N)) dy,

D-fold

= log2(M)−

1

M

M∑
m=1

E

[
log2

M∑
i=1

exp(Φmi (N))

]
[bit/sym], (11)

where the expectation in Equation 11 is taken overχ2
2N [d] andΩ[d].

This expected value can be estimated using the Monte Carlo averaging
method. More specifically, Equation 11 represents the capacity of the
MIMO DCMC achieving full diversity gain forD-dimensional,M -
ary QAM/PSK signals employingNt number of transmit antennas
andNr number of receive antennas.

Note that in a SISO AWGN channel we haveχ2
2N [d] = N = 1

and hence the noise variance ofΩ[d] is N0/2 per each dimension.
ForD = 2-dimensional signalling, Equation 10 can be simplified to:

Φmi =
−|χ2

2N (xm−xi)+Ω|2+|Ω|2

χ2
2NN0

, wherexk = xk[1] + jxk[2] and

Ω = Ω[1] + jΩ[2]. It is reassuring to note that in the simplified case
of SISO AWGN channels, Equations 10 and 11 agree with the results
of [17]. The average SNR can be determined from [10, 17] as:

SNR =
1
M

∑M
m=1

∑D
d=1 |xm[d]|2∑D

d=1 E[Ω2[d]]
=

Es
DN0/2

, (12)

whereEs is the average energy of theD-dimensionalM -ary sym-
bol xm andDN0

2
is the average energy of theD-dimensional AWGN

Ω. Additionally, the energy of the signal sets is further normalised
by
√
Nt, when the transmitter does not know the complex Rayleigh-

distributed channel coefficient of each of the MIMO links. Hence,
we havexk[d] = x̃k[d]/

√
Nt, wherex̃k[d] is thekth modulated sig-

nal, k = {1, . . . ,M}, of dimensiond in the case ofNt = 1. In
an AWGN channel, the channel capacity is not expected to increase,
whenNt is increased. However, if the transmitter knows the com-
plex Rayleigh-distributed channel coefficient of each of the MIMO
links, the transmitted power to be assigned to the various transmit
antennas can be distributed according to the “water-filling” princi-
ple [3] in order to increase the achievable capacity. In this scenario,
the energy of the signal sets does not have to be further normalised
by
√
Nt. The capacity formula of Equations 10 and 11 can also be

applied to real-valued signal sets, such asM -ary orthogonal signals,
as well as to amplitude-modulated signals following straightforward
adjustments of the signalling space dimensionality, the channel fading
and the noise. The unrestricted MIMO CCMC capacity achieving full
diversity gain can be derived based on [3] as:

CNCCMC = E

[
WT log2(1 + χ2

2N
SNR

Nt
)

]
[bit/sym],

= E

[
D

2
log2(1 + χ2

2N
SNR

Nt
)

]
[bit/sym], (13)

where the expectation is taken overχ2
2N , when the transmitter does

not know the channel. Again, the normalisation factorNt is dropped
from the equation, when the transmitter knows the channel [3].

4. MIMO CHANNEL CAPACITY BOUND FOR FULL
MULTIPLEXING GAIN

It was shown in [3] that MIMO channels employingNt number of
transmit antennas andNr number of receive antennas can be con-
sidered asr uncoupled parallel channels with the aid of the singular
value decomposition method and a transformation on the received sig-
nal vector. Specifically,r = min(Nt, Nr) is the maximum achiev-
able rank of the MIMO channel matrix. Since the subchannels are
uncoupled, their capacities add up. Hence a full multiplexing gain is
attained, when allr number of uncoupled subchannels are used for
conveying independent information. We define a full-multiplexing-
gain system as the MIMO system achieving full multiplexing gain
without any transmit/receive diversity gain. Note that the Multiple
Antenna Interference (MAI) encountered in the BLAST scheme can
be utilised for achieving receive diversity gain at the cost of employ-
ing an interference cancellation scheme. By contrast, a MIMO system
benefiting from orthogonal transmission [3, p. 11] is free from MAI
and achieves no receive/transmit diversity gain.

Let us now quantify the capacity of the system having full multi-
plexing gain using a MIMO system benefiting from orthogonal trans-
mission havingN = Nt = Nr. Specifically, each of the orthog-
onal MIMO links can be represented using Equation 3 by assigning
N = 1. Hence, the capacity of the MIMO DCMC achieving full
multiplexing gain forD-dimensional,M -ary QAM/PSK signals em-
ployingNt number of transmit antennas andNr number of receive
antennas can be expressed as:

CMUL
DCMC = N CN=1

DCMC [bit/sym], (14)

whereCN=1
DCMC is the capacity of an uncoupledD-dimensional DCMC

havingN = 1, which can be obtained from Equation 11. Note that
the energy of the signal sets is still normalised by

√
Nt, when the

transmitter does not know the complex Rayleigh-distributed channel
coefficient of each of the MIMO links. Similarly, the capacity of the
MIMO CCMC achieving full multiplexing gain forD-dimensional
Gaussian input signals employingNt number of transmit antennas
andNr number of receive antennas can be expressed as:

CMUL
CCMC = N CN=1

CCMC [bit/sym], (15)

whereCN=1
CCMC is the capacity of an uncoupledD-dimensional CCMC

havingN = 1, which can be obtained from Equation 13 and the SNR
in Equation 13 is still normalised byNt, when the transmitter does
not know the channel.

5. BANDWIDTH EFFICIENCY

Normalising the channel capacityC, which can be represented by
either of Equations 11, 13, 14 and 15, with respect to the product
of the bandwidth occupied and the signalling period yields another
useful performance metric, namely the bandwidth efficiency:

η =
C

WT
=

C

D/2
[bit/s/Hz]. (16)

The bandwidth efficiency is plotted against theSNR per bit, which
is given by: Eb

N0
= SNR

η
.

6. NUMERICAL RESULTS

Figure 2 illustrates the achievable capacityC of both the uncorrelated
MIMO Rayleigh-fading channel and that of the AWGN channel for
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Figure 2: The capacity of the MIMO uncorrelated Rayleigh-fading
channel and AWGN channel for 16QAM havingV = 1 (M = 16,
D = 2) andV = 2 (M = 32,D = 4).
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Figure 3: The bandwidth efficiency of the MIMO uncorrelated
Rayleigh-fading channel and AWGN channel for 16QAM having
V = 1 (M = 16,D = 2) andV = 2 (M = 32,D = 4).

L = 16-orthogonal QAM signalling having bothV = 1 andV = 2,
assuming that the transmitter does not know the channel. We denote
‘L = 16-orthogonal QAM havingV = v’ as ‘16QAM, V = v’
for brevity. Again, anL = 16-orthogonal QAM/PSK signalling
havingV = 1 represents classic two-dimensionalL-ary QAM/PSK
signalling. As shown in Figure 2, the achievable capacity of the
Rayleigh-fading channel increases as the number of transmit anten-
nasNt increases from 1 to 4, approaching the capacity of the AWGN
channel, which is independent ofNt.

Figure 3 depicts the bandwidth efficiencyη of both the uncorre-
lated MIMO Rayleigh-fading channel and that of the AWGN channel
for L = 16-orthogonal QAM signalling having bothV = 1 and
V = 2, assuming that the transmitter does not know the channel. It
is shown in Figure 3 that asNr increases, the bandwidth efficiency of
the AWGN channel also improves, hence the corresponding Rayleigh-
fading channel performance follows the same trend. However, the
attainable extra transmit diversity gain of the Rayleigh-fading chan-
nel reduces, asNr increases, since a near-AWGN performance is
achieved by the high-order receiver diversity.

As seen by comparing Figures 2 and 3 for the systems having
Nr = 1, the achievable channel capacity increases as the signal di-
mensionalityD increases, although this is attained at a reduced band-
width efficiency. However, the error-resilience of the power-efficient
multi-dimensional orthogonal signals also improves as the dimension-
ality increases [2]. As evidenced by Figure 3, at lowEb/N0 the η
value of 16QAM in conjunction with bothV = 1 andV = 2 con-
verges to the unrestricted bound. Note that the unrestricted bound is
independent of the signal dimensionality.
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Figure 4: The unrestricted bound of theD = 2 and4 dimensional
MIMO uncorrelated Rayleigh-fading channel and AWGN channel.
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Figure 5: The capacity of the MIMO uncorrelated Rayleigh-fading
channel and AWGN channel for 16QAM havingV = 1 (M = 16,
D = 2) andV = 2 (M = 32,D = 4).

Lets us now compare the achievable capacity of the full-diversity
MIMO system to that of the full-multiplexing-gain MIMO system in
Figures 4 and 5 usingNt = Nr = 2 in the context ofD = 2 and 4 di-
mensional signalling. Specifically, the capacity of the MIMO CCMC
and DCMC are shown in Figures 4 and 5, respectively. Note that
the AWGN CCMC capacity for a full-diversity MIMO system char-
acterised in Equation 13 becomes:

CNCCMC = E

[
D

2
log2(1 +Nr SNR)

]
, (17)

where the SNR is multiplied byNr since we haveχ2
2N = (Nr×Nt)



for the AWGN channel. By contrast, the AWGN CCMC capacity of
the full-multiplexing-gain MIMO system in Equation 15 becomes:

CMUL
CCMC = N E

[
D

2
log2(1 +

SNR

Nt
)

]
, (18)

where the expectation value is multiplied by a factor ofN = Nt =
Nr, but the SNR is divided byNt, since we haveχ2

2 = 1 for the
AWGN channel. Therefore, at low SNR the full-diversity system out-
performs the full-multiplexing-gain system, while the opposite is true
at a high SNR, as it is evidenced by Figure 4. As shown in Figure 4,
at SNR=6 dB the AWGN capacity curves of the full-diversity system
and that of the full-multiplexing-gain system cross over atC = 3.16
and6.32 bit/sym, when the signal dimension isD = 2 andD = 4,
respectively. Similar performance trends are also observed in Figure 4
for the capacity of the Rayleigh fading channel.

Figure 5 shows the capacity curves for the MIMO DCMC em-
ployingD = 2 andD = 4 dimensional 16QAM signalling. Again,
at low SNR (orC) the full-diversity system outperforms the full-
multiplexing-gain system, while the opposite is true at high SNRs
(or C), as it is evidenced by Figure 5. Explicitly, the full-diversity
system outperforms the full-multiplexing-gain system forC < 3.2
andC < 4 bit/sym in terms ofD = 2 andD = 4-dimensional
16QAM signalling, respectively, when communicating over Rayleigh
fading channels. Although the full-multiplexing-gain system has a
higher asymptotic capacity, the gap between the capacity curves of
the Rayleigh fading channel and the AWGN channel is wider in com-
parison to that of the full-diversity system, as it is shown in Figure 5.
Therefore, a full-multiplexing-gain MIMO system provides a higher
throughput at the cost of requiring a higher SNR for reliable trans-
missions. By contrast, a full-diversity MIMO system requires a lower
SNR for reliable transmissions at the cost of a lower throughput.

7. CONCLUSIONS

Two general formulae, i.e. Equation 11 and 14, were provided for the
MIMO channel capacity of multi-dimensional signal sets. Both the
channel capacity and bandwidth efficiency of two- and four-dimensional
16QAM were evaluated, when full diversity gain or full multiplexing
gain was achieved. It was shown that transmit diversity is capable of
narrowing the gap between the capacity of the Rayleigh-fading chan-
nel and the AWGN channel. However, since this gap becomes nar-
rower, when the receiver diversity order is increased, for higher-order
receiver diversity the performance advantage of transmit diversity di-
minishes. The capacity of full-diversity and full-multiplexing-gain
MIMO systems was studied, where at a low SNR the full-diversity
system has a higher achievable capacity compared to that of the full-
multiplexing-gain system, while the opposite is true at a high SNR.
The capacity formulae provided can be used for studying the channel
capacity of MIMO systems having various signal dimensionality, dif-
ferent modulation schemes as well as a different number of transmit
and receive antennas.
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