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Abstract— In this contribution two general formulae were  gain when communicating over MIMO channels was studied in [5].
derived for the capacity evaluation of Multi-Input Multi-Output However, the MIMO channel’s capacity was only found for the
(MIMO) systems using multi-dimensional signal sets, different CCMC in [3]. Furthermore, only the SISO AWGN channel capacity
modulation schemes and an arbitrary number of transmit as well  was found for multi-dimensional signal sets, suchasary orthogo-
as receive antennas. It was shown that transmit diversity is ca- nal signalling [2] andL-ary PSK based.-orthogonal signalling [10,
pable of narrowing the gap between the capacity of the Rayleigh- 11]. More specifically, the.-orthogonal PSK signal [11] is a hy-
fading channel and the AWGN channel. However, since this gap brid form of M-ary orthogonal and PSK signalling, combining the
becomes narrower when the receiver diversity order is increased, benefits of power-efficient and error-resiliehf-ary orthogonal sig-
for higher-order receiver diversity the performance advantage of nalling [2, p. 284] as well as bandwidth-efficient PSK signalling. At
transmit diversity diminishes. A MIMO system having full mul- this stage we note that STTC and STBC schemes have so far been ex-
tiplexing gain has a higher achievable capacity, than the corre- clusively designed for complex-valued (two-dimensional) PSK/QAM
sponding MIMO system designed for achieving full diversity gain, signal sets, but not for multi-dimensional signal sefgjainst this
provided that the channel SNR is sufficiently high. background, the novel contribution of this treatise is that we pro-
vide two general channel capacity formulae applicable to MIMO
channels exhibiting full diversity gain or full multiplexing gain
as well as employing multi-dimensional signal sets, in the quest

. . . for more error-resilient, power-efficient and bandwidth-efficient
The capacity, of a Single-Input Single-Output (SISO) AWGN Chan'MIMO channel coding schemes.

nel was quantified by Shannon in 1948 [1]. Since then, substantial re-
search efforts have been invested in finding channel codes that would
produce an arbitrarily low probability of error at a transmission rate 2. MULTIDIMENSIONAL SIGNAL SET
close toC* = C/T, whereT is the symbol period. We note how- . . . ) . . . )
ever that Shannon’s channel capacity is only defined for ContinuouShe dimensionality of a time- and band-limited signal is defined as [12,
Input Continuous-Output Memoryless Channels (CCMC) [2], wher8P- 348-351}: D = 2WT, whereW is the bandwidth and" is the

the channel input is a continuous-amplitude, discrete-time Gaussiagnalling period of the finite-energy signalling waveform. Infan
distributed signal and the capacity is only restricted either by the si@rthogonal PSK signal set [10, 11], there &fe= W' independent

nalling energy or by the bandwidth. Therefore we will refer to the--ary PSK subsets. The total number of waveformafis= V'L and
capacity of the CCMC as thenrestricted bound the number of dimensions ® = 2V, which is independent of.

By contrast, in the context of discrete-amplitude QAM and PSK [ pecifically, anL-orthogc_)naI PSK signal require_s splitting the origi-
signals, we encounter a Discrete-Input Continuous-Output Memor -SlKPSK Zyrlnboll pderlodc;n;@’ number OT g{qportlogatl;ely ghg(;tﬁn?d
less Channel (DCMC) [2]. Therefore, the capacity of the DCMC i symbol periods and hence necessitatéimes the bandwidth o

more pertinent in the design of channel coded modulation schem .K s_lgnallmg, in order to trans_rﬂtbg?(M) bits. The vector rep.re-
With the advent of powerful space-time coding schemes [3, 4], thR€ntation of.-orthogonal PSK signalling may be formulated as:
Multi-Input Multi-Output (MIMO) channel capacity is of immediate xm = xPPSKgo m=1,...,M, | =m%L, 1)
interest. Note that multiple antennas can be utilised for providing di-

versity gain and/or multiplexing gain [5]. Specifically, Space-Timevherem%L is the remainder ofn/L, while v = (2= +1) and
Trellis Coding (STTC) [6] and Space-Time Block Coding (STBC)x/"5K is the classic 2-dimensiondl-ary PSK signal vector. Fur-
[7, 8] were designed for achieving diversity gains by conveying thghermore, the orthonormal basis function = (¢.[1], $.[2], . .., ¢o[V])

same information through different paths over the MIMO channel ifs 3 vector ofi’ elements, which may be constructed from non-overlappir
order to combat the channel-induced fading. By contrast, Bell Labgignalling pulses as follows:

Layered Space-Time (BLAST) [9] scheme transmits independent in-

formation in parallel over the MIMO channel for the sake of achieving bmli] = { 1, i=m, @
multiplexing gain, hence increasing the attainable transmission rate. " 0, i#m.

Furthermore, both STTC and STBC schemes are capable of achievin% . . .
full transmit diversity at the cost of providing no multiplexing gain, Figure 1 illustrates an example &f = 8-orthogonal PSK signalling
while the BLAST scheme was designed for achieving full multiplex@vingV: = 2. ForV = 1, L-orthogonal PSK signalling repre-

ing ga]n at th? cost qf haV'”‘:? no .trans:mlt d!verSIty galrj. The tradepffs 2This dimensionality is different from the definition used in the context of
associated with having partial diversity gain and partial multiplexingnultidimensional trellis coded modulation [13] (MTCM). Explicitly, when the
MTCM-dimensionality increases, only the coding rate increases, but the corre-

1A system is said to have a full transmit diversity, when the transmit diversponding capacity and bandwidth efficiency curves representing the achievable
sity order is identical to the number of transmit antennas [7]. upper-bound performance of the PSK/QAM signalling remain the same.

1. INTRODUCTION




T, = 2T, scheme as:

T,=1T,/2 = 2
y = Y (Gwldeld +Qld) @
d=1
! \ = ¢ofl] yld = xan[dzld] +Q[d], (5)
4 3 wherey = (y[1],...,y[D]),x = (z[1],...,z[D]) and
o T o2 Q = (Q[1],...,92[D]). Note that wherD > 2, we haveD/2 hum-
! R ber of differenty2, values for theD-dimensional signals. Specif-
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ically, we havex2y[i] = x3ny[i + 1] fori € {1,3,5...}, since a
complex channel has two dimensions. FurthermfXé] has a vari-
60- /OS ance ofy3 y [d] No/2 per eachD dimensions.

a9

The conditional probability of receiving B-dimensional signal
‘ y given that aD-dimensionalM -ary signalx.,, m € {1,..., M},
1 \ = ¢[2]  was transmitted over an AWGN channel is determined by the PDF of
the noise, yielding:
11
12 .-
v ‘10 D 2
6] Q —(yld] — zmd]) )
m) , (6
l‘O @:’ where Ny /2 is the channel’'s noise variance. For the full-diversity
14 15( 16 MIMO system of Equation 5, we have:
p(ylxn) = :
Figure 1: AnL-orthogonal PSK example conveying 4 bits per sym- miT D /2% TdINg
bol usingL = 8-ary PSK subset, where the total symbol perigd i b Xar (1Mo
consists o’ = 2 LPSK subset’s signalling duratiofs,. —(y[d] — x3n[d]zm[d])?
exp Z 5 .
i1 Xan [d]No

sents classic two-dimensionatary PSK signalling. The total num-
ber of waveforms ig\/ = VL = 16 and the number of dimensions . .

. X Ry The channel capacity for th&/ = (N: x N,) MIMO using D-

is D = 2V = 4. Note that only one timeslot of duratidf}, is ac- dimensional)M -ary signalling over the DCMC can be derived from

tive during the symbol period &f; = V'T,,. Therefore L-orthogonal . .
PSK signalling achievesg, (1) bits higher capacity at the cost &f that of the Discrete Memoryless Channel (DMC) [16] as:

times lower bandwidth efficiency, than that of clasbiary PSK sig- oo oo
nalling. As a further contribution to the current state-of-the-art in the Oove = max Z / /p V[%m )p(xXm) -
literature, we found that the concept bforthogonal PSK signalling p(x1)-.-p(xar)

can also be extended to QAM, rather than being limited to PSK. o fold
-10

lo 2 p(y|xm) > dv [bit/ 7 8
’ <Z£1P(Y|X¢)p(xm) y [bit/sym (8

3. MIMO CHANNEL CAPACITY BOUND FOR FULL
DIVERSITY GAIN
wherep(x.) is the probability of occurrence for the transmitted sig-
When D = 2-dimensional PSK/QAM was employed, the receivedial x,,. We know that Equation 8 is maximised, when the transmit-
signal of Alamouti’s orthogonal STBC [7] havinly; = 2 transmit ted signals are equiprobably distributed, i.e. when we p@xg,) =

antennas andV,- receive antennas can be transformed into [14]: 1/M. Hence, we have:
M
al p(y[xm) 1 plylxi)
— 2 — 2 IOg = — log J— — 7 R
Y*E_:l\hnl X+ Q=xinx+Q, @) > (D oy ep(x m)> 2 (Mm oty
=log, (M) —

wherey, x andh,, are the complex-valued transformed received sig- M .
nal, the complex-valued transmitted signal and the complex-valued logy Y _exp (®7'(N)),  (9)
Rayleigh-fading coefficient of theth MIMO channel link, respec- i=1

tively. Furthermorey?y = Zle |h,,|? represents the chi-squared
distributed random variable haviregv degree of freedom, where we
have N = N; x N,. Finally, © is the MIMO system’s complex-
valued AWGN after transformation, which has a zero mean and avaq)-m( )
ance ofy3y No/2 per dimension, wher&/, /2 is the original noise’s

variance per dimension. It was shown in [15] that a full-rate, full-
diversity orthogonal STBC also exists fof > 2. Let us now gener-

alise Equation 3 for & > 2-dimensionalL-orthogonal PSK/QAM

which is dependent on:
— (yld) = 3w [dlwi[d))* + (vld] — X3n[d)zm[d])”
X%N[d]NO

— (G d)(@mld] — z:[d]) + Q[d])* + Q[d]
X%N [d]NO

s £

. (10)

Y
Il
A



By substituting Equation 9 ang(x,,) = 1/M into Equation 8 we 4. MIMO CHANNEL CAPACITY BOUND FOR FULL
have: MULTIPLEXING GAIN

transmit antennas and¥,. number of receive antennas can be con-

m=1

M ¥ e . .
N log, (M) Z / /p(y\xm) dy — It was shown in [3] that MIMO channels employing; number of

oo sidered as uncoupled parallel channels with the aid of the singular
D-fold value decomposition method and a transformation on the received sig-
7 M nal vector. Specificallyy = min(V;, N,) is the maximum achiev-
/p(ylxm) log, > exp (®"(N)) dy,  able rank of the MIMO channel matrix. Since the subchannels are

oo i=1 uncoupled, their capacities add up. Hence a full multiplexing gain is

D-fold attained, when alt number of uncoupled subchannels are used for

conveying independent information. We define a full-multiplexing-

1 M %

= logy (M) — gain system as the MIMO system achieving full multiplexing gain
1 < M m . without any transmit/receive diversity gain. Note that the Multiple
M > B |logy Y exp(®]"(N))| [bit/symi, (11) " Antenna Interference (MAI) encountered in the BLAST scheme can
m=1 =1 be utilised for achieving receive diversity gain at the cost of employ-
where the expectation in Equation 11 is taken oy&¢[d] andQ[d]. ing an interference cancellation scheme. By contrast, a MIMO system

This expected value can be estimated using the Monte Carlo averagR€fiting from orthogonal transmission [3, p. 11] is free from MAI
method. More specifically, Equation 11 represents the capacity of tR8d achieves no receive/transmit diversity gain.

MIMO DCMC achieving full diversity gain forD-dimensional,M- Let us now quantify the capacity of the system having full multi-
ary QAM/PSK signals employingV; number of transmit antennas Plexing gain using a MIMO system benefiting from orthogonal trans-
andNT number of receive antennas. miSSion haVing/\[ = Nt = Nr. Specifically, eaCh Of the Ol’thog-

Note that in a SISO AWGN channel we hayéy[d] = N = 1 onal MIMO links can be represented using Equation 3 by assigning
and hence the noise variance @fd] is No/2 per each dimension. N = 1. Hence, the capacity of the MIMO DCMC achieving full
For D = 2-dimensional signalling, Equation 10 can be simplified tomultiplexing gain forD-dimensional M -ary QAM/PSK signals em-

m_ —Ixn Gem—x) T2 4|2 _ . ploying N; number of transmit antennas and. number of receive
o = Zx No , wherexi = zi[l] +jesl2] and o nae can be expressed as:
Q = Q[1] + 5Q[2]. Itis reassuring to note that in the simplified case
of SISO AWGN channels, Equations 10 and 11 agree with the results Chovic = N Chewe [bit/sym, (14)

of [17]. The average SNR can be determined from [10, 17] as:
whereC35us is the capacity of an uncoupldd-dimensional DCMC

LM S lemldl?E, 1) havingN =1, which can be obtained from Equation 11. Note that

dD_l E[Q2[d]] " DNy /2’ (12) the energy of the signal sets is still normalised #W;, when the

- transmitter does not know the complex Rayleigh-distributed channel
where E; is the average energy of the-dimensionalM-ary sym-  coefficient of each of the MIMO links. Similarly, the capacity of the
bol x,,, and D22 is the average energy of tife-dimensional AWGN  MIMO CCMC achieving full multiplexing gain forD-dimensional
Q. Additionally, the energy of the signal sets is further normalisedaussian input signals employing, number of transmit antennas
by v/N:, when the transmitter does not know the complex Rayleighand N, number of receive antennas can be expressed as:
distributed channel coefficient of each of the MIMO links. Hence,

we havezy[d] = @x[d]/v/N;, whereiy[d] is the kth modulated sig- Clve = N ClGuc [bit/sym, (15)

nal, k = {1,..., M}, of dimensiond in the case ofV; = 1. In N1 ) . )

an AWGN channel, the channel capacity is not expected to increadéhereCceyc is the capacity of an uncoupled-dimensional CCMC
when N, is increased. However, if the transmitter knows the combavingN' = 1, which can be obtained from Equation 13 and the SNR
plex Rayleigh-distributed channel coefficient of each of the MIMON Equation 13 is still normalised biV;, when the transmitter does
links, the transmitted power to be assigned to the various transniiet know the channel.

antennas can be distributed according to the “water-filling” princi-

ple [3] in order to increase the achievable capacity. In this scenario, 5. BANDWIDTH EFFICIENCY

the energy of the signal sets does not have to be further normalised

by v/N;. The capacity formula of Equations 10 and 11 can also bRormalising the channel capacity, which can be represented by
applied to real-valued signal sets, suchidsary orthogonal signals, either of Equations 11, 13, 14 and 15, with respect to the product
as well as to amplitude-modulated signals following straightforwardf the bandwidth occupied and the signalling period yields another
adjustments of the signalling space dimensionality, the channel fadingeful performance metric, namely the bandwidth efficiency:

and the noise. The unrestricted MIMO CCMC capacity achieving full

SNR =

diversity gain can be derived based on [3] as: _C _ C
1= 7 = B3 DS (16)
Clwe = E|WTlog,(1+ x3 SN—R) [bit/syr
ceme = 0821 T XaN TR ym, The bandwidth efficiency is plotted against tH&/ R per bit, which

SNR

is given by: ot = 50

D SNR .
B |5 tors(1 433y S| bivsym, 13)
t
6. NUMERICAL RESULTS
where the expectation is taken ovef,, when the transmitter does
not know the channel. Again, the normalisation fadsaris dropped Figure 2 illustrates the achievable capacitpf both the uncorrelated

from the equation, when the transmitter knows the channel [3]. MIMO Rayleigh-fading channel and that of the AWGN channel for
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As seen by comparing Figures 2 and 3 for the systems having
N, = 1, the achievable channel capacity increases as the signal di-
mensionalityD increases, although this is attained at a reduced band-
width efficiency. However, the error-resilience of the power-efficient
16-QAM, D=2 multi-dimensional orthogonal signals also improves as the dimension-
ality increases [2]. As evidenced by Figure 3, at |&y/No the n
value of 16QAM in conjunction with botl = 1 andV = 2 con-
verges to the unrestricted bound. Note that the unrestricted bound is
independent of the signal dimensionality.

Unrestricted

Bound ~— 16-QAM, D=4

EN

C (bit/symbol)

N

11

* AWGN 10| Ne=Np=2 | A ar
1 Ne=1 : S
N =2 ® / / // '
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Figure 2: The capacity of the MIMO uncorrelated Rayleigh-fadings / //
channel and AWGN channel for 16QAM having= 1 (M = 16, © 4 / /
D =2)andV =2 (M = 32,D =4). 3 ; - D
° 2 A Q = Multiplexing
Unrestricted 7 1 / Diversity AWGN
Bound 16-QAM, D=2 M Rayleigh
N /o %0 0 10 20 30
] £ SNR (dB)
N
% 16-QAM, D=4 Figure 4: The unrestricted bound of tfi& = 2 and4 dimensional
= MIMO uncorrelated Rayleigh-fading channel and AWGN channel.
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Figure 3: The bandwidth efficiency of the MIMO uncorrelated
Rayleigh-fading channel and AWGN channel for 16QAM havingO

t/symbol)
w S ol (e} ~ [oe] ©

V=1WM=16,D=2)andV =2 (M = 32, D = 4). / Diversity

) . . 2 o = Multiplexing
L = 16-orthogonal QAM signalling having boti = 1 andV = 2, 1 / // AWGN
assuming that the transmitter does not know the channel. We denote ~ _erfiveer" Rayleigh
‘L = 16-orthogonal QAM having/ = v’ as '16QAM, V' = v’ %0 0 10 20 30
for brevity. Again, anL. = 16-orthogonal QAM/PSK signalling SNR (dB)

havingV = 1 represents classic two-dimensiorahry QAM/PSK
signalling. As shown in Figure 2, the achievable capacity of th
Rayleigh-fading channel increases as the number of transmit ant
nasN; increases from 1 to 4, approaching the capacity of the AWG
channel, which is independent df;.

e%igure 5. The capacity of the MIMO uncorrelated Rayleigh-fading
|ﬁrjil.annm and AWGN channel for 16QAM having = 1 (M = 16,
=2)andV =2 (M =32, D = 4).
Lets us now compare the achievable capacity of the full-diversity
Figure 3 depicts the bandwidth efficiengyof both the uncorre- MIMO system to that of the full-multiplexing-gain MIMO system in
lated MIMO Rayleigh-fading channel and that of the AWGN channefigures 4 and S using; = N, = 2in the context of) = 2 and 4 di-
for L = 16-orthogonal QAM signalling having bot’ = 1 and mensional signalling. Specnjcally, the capacity of thg MIMO CCMC
V = 2, assuming that the transmitter does not know the channel. 3d DCMC are shown in Figures 4 and 5, respectively. Note that
is shown in Figure 3 that a¥,. increases, the bandwidth efficiency of the AWGN CCMC capacity for a full-diversity MIMO system char-
the AWGN channel also improves, hence the corresponding Rayleightterised in Equation 13 becomes:
fading channel performance follows the same trend. However, the N D
attainable extra transmit diversity gain of the Rayleigh-fading chan- Ceome = B | 5 logy (1 + N SNR)| 17
nel reduces, a¥V. increases, since a near-AWGN performance is
achieved by the high-order receiver diversity. where the SNR is multiplied bV, since we have3y = (N, x N)



for the AWGN channel. By contrast, the AWGN CCMC capacity of [2]
the full-multiplexing-gain MIMO system in Equation 15 becomes:

(3]
D SNR
NE 510g2(1+ —Nt ) ;

MUL
C’CCMC

(18)

[4]
where the expectation value is multiplied by a factoN6f= N; =
N,., but the SNR is divided byV;, since we have = 1 for the
AWGN channel. Therefore, at low SNR the full-diversity system out- [5]
performs the full-multiplexing-gain system, while the opposite is true
at a high SNR, as it is evidenced by Figure 4. As shown in Figure 4
at SNR=6 dB the AWGN capacity curves of the full-diversity system fe]
and that of the full-multiplexing-gain system cross ove€at= 3.16
and6.32 bit/sym, when the signal dimensioni3 = 2 andD = 4,
respectively. Similar performance trends are also observed in Figure [47]
for the capacity of the Rayleigh fading channel.

Figure 5 shows the capacity curves for the MIMO DCMC em-
ploying D = 2 and D = 4 dimensional 16QAM signalling. Again,
at low SNR (orC) the full-diversity system outperforms the full-
multiplexing-gain system, while the opposite is true at high SNRs
(or C), as it is evidenced by Figure 5. Explicitly, the full-diversity
system outperforms the full-multiplexing-gain system for< 3.2
andC < 4 bit/sym in terms ofD = 2 and D = 4-dimensional
16QAM signalling, respectively, when communicating over Rayleigl;lo]
fading channels. Although the full-multiplexing-gain system has
higher asymptotic capacity, the gap between the capacity curves of
the Rayleigh fading channel and the AWGN channel is wider in co 11]
parison to that of the full-diversity system, as it is shown in Figure 5.
Therefore, a full-multiplexing-gain MIMO system provides a higher
throughput at the cost of requiring a higher SNR for reliable tran 12]
missions. By contrast, a full-diversity MIMO system requires a lowe
SNR for reliable transmissions at the cost of a lower throughput.

(8]

El

(13]
7. CONCLUSIONS

14
Two general formulae, i.e. Equation 11 and 14, were provided for th[e ]
MIMO channel capacity of multi-dimensional signal sets. Both the
channel capacity and bandwidth efficiency of two- and four-dimensiqn
16QAM were evaluated, when full diversity gain or full multiplexing
gain was achieved. It was shown that transmit diversity is capable of
narrowing the gap between the capacity of the Rayleigh-fading chafig)
nel and the AWGN channel. However, since this gap becomes nar-
rower, when the receiver diversity order is increased, for higher-ord 7]
receiver diversity the performance advantage of transmit diversity di-
minishes. The capacity of full-diversity and full-multiplexing-gain
MIMO systems was studied, where at a low SNR the full-diversity
system has a higher achievable capacity compared to that of the full-
multiplexing-gain system, while the opposite is true at a high SNR.
The capacity formulae provided can be used for studying the channel
capacity of MIMO systems having various signal dimensionality, dif-
ferent modulation schemes as well as a different number of transmit
and receive antennas.
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