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Abstract – A jointly optimised turbo transceiver ca-
pable of providing unequal error protection is proposed
for employment in an MPEG-4 aided audio transceiver.
The transceiver advocated consists of Space-Time Trellis
Coding (STTC), Trellis Coded Modulation (TCM) and two
different-rate Non-Systematic Convolutional codes (NSCs)
used for unequal error protection. A benchmarker sche-
me combining STTC and a single-class protection NSC is
used for comparison with the proposed scheme. The au-
dio performance of the both schemes is evaluated when
communicating over uncorrelated Rayleigh fading chan-
nels. It was found that the proposed unequal protection
turbo-transceiver scheme requires about two dBs lower trans-
mit power than the single-class turbo benchmarker scheme
in the context of the MPEG-4 audio transceiver, when aim-
ing for an effective throughput of 2 bits/symbol, while ex-
hibiting a similar decoding complexity.

1. MOTIVATION AND BACKGROUND

The MPEG-4 standard [1, 2] defines a comprehensive multi-
media content representation scheme that is capable of sup-
porting numerous applications - such as streaming multime-
dia signals over the internet/intranet, content-based storage and
retrieval, digital multimedia broadcast or mobile communica-
tions. The audio-related section of the MPEG-4 standard [3]
defines audio codecs covering a wide variety applications -
ranging from narrowband low-rate speech to high quality mul-
tichannel audio, and from natural sound to synthesized sound
effects as a benefit of its object-based approach used for repre-
senting the audio signals.

The MPEG-4 General Audio (GA) encoder is capable of
compressing arbitrary natural audio signals. One of the key
components of the MPEG-4 GA encoder is the Time/Frequency
(T/F) compression scheme constituted by the Advanced Audio
Coding (AAC) and Transform based Weighted Vector Quan-
tization (TwinVQ), which is capable of operating at bitrates
ranging from 6 kbit/s to broadcast quality audio at 64 kbit/s [1].
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The MPEG-4 T/F codec is based on the MPEG-2 AAC
standard, extended by a number of additional functionalities,
such as Perceptual Noise Substitution (PNS) and Long Term
Prediction (LTP) for enhancing the achievable compression per-
formance, and combined with the TwinVQ for operation at ex-
tremely low bit rates. Another important feature of this codec
is its robustness against transmission errors in error-prone prop-
agation channels [4]. The error resilience of the MPEG-4 T/F
codec is mainly attributed to the so-called Virtual Codebook
tool (VCB11), Reversible Variable Length Coding tool (RVLC)
and Huffman Codeword Reordering tool (HCR) [4, 5], which
facilitate the integration of the MPEG-4 T/F codec into wire-
less systems.

In this study the MPEG-4 audio codec was incorporated in
a sophisticated unequal-protection turbo transceiver using joint
coding and modulation as inner coding, twin-class convolu-
tional outer coding as well as space time coding based spatial
diversity. Specifically, maximal minimum distance Non-Sys-
tematic Convolutional codes (NSCs) [10, p. 331] having two
different code-rates were used as outer encoders for providing
unequal audio protection. On one hand, Trellis Coded Modula-
tion (TCM) [6–8] constitutes a bandwidth-efficient joint chan-
nel coding and modulation scheme, which was originally de-
signed for transmission over Additive White Gaussian Noise
(AWGN) channels. On the other hand, Space-Time Trellis
Coding (STTC) [7, 9] employing multiple transmit and re-
ceive antennas is capable of providing spatial diversity gain.
When the spatial diversity order is sufficiently high, the chan-
nel’s Rayleigh fading envelope is transformed to a Gaussian-
like near-constant envelope. Hence, the benefits of a TCM
scheme designed for AWGN channels will be efficiently ex-
ploited, when TCM is concatenated with STTC.

We will demonstrate that significant iteration gains are at-
tained with the aid of the proposed turbo transceiver. The paper
is structured as follows. In Section 2 we describe the MPEG-
4 audio codec, while in Section 3 the architecture of the turbo
transceiver is described. We elaborate further by characterising
the achievable system performance in Section 4 and conclude
in Section 5.
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Figure 1: Block diagram of the serially concatenated STTC-TCM-2NSC assisted MPEG-4 audio scheme. The notationss, ŝ, bi,
b̂i, ui, c, xj andyk denote the vector of the audio source symbol, the estimate of the audio source symbol, the class-i audio
bits, the estimates of the class-i audio bits, the encoded bits of class-i NSC encoders, the TCM coded symbols, the STTC coded
symbols for transmitterj and the received symbols at receiverk, respectively. Furthermore,Nt andNr denote the number of
transmitters and receivers, respectively. The symbol-based channel interleaver between the STTC and TCM schemes as well as
the two bit-based interleavers at the output of NSC encoders are not shown for simplicity. The iterative decoder seen at the right
is detailed in Figure 2.

2. AUDIO SYSTEM OVERVIEW

As mentioned above, the MPEG-4 AAC is based on time/frequency
audio coding, which provides redundancy reduction by exploit-
ing the correlation between subsequent audio samples of the
input signal. Furthermore, the codec uses perceptual modelling
of the human auditory system for masking the quantisation dis-
tortion of the encoded audio signals by allowing more distor-
tion in those frequency bands, where the signal exhibits higher
energy peaks and vice versa [4, 5].

The MPEG-4 AAC is capable of providing an attractive au-
dio quality versus bitrate performance, yielding high-fidelity
audio reconstruction for bit rates in excess of 32 kbit/s per
channel. In the proposed wireless system the MPEG-4 AAC
is used for encoding the stereo audio file at a bit rate of 48
kbit/s. The audio input signal was sampled at 44.1 kHz and
hence results in an audio framelength of 23.22 ms, which cor-
responds to 1024 audio input samples. The compressed au-
dio information is formatted into a packetized bitstream, which
conveyed one audio frame. In our system, the average trans-
mission frame size is approximately 1116 bits per frame. The
audio Segmental Signal to Noise Ratio (SegSNR) of this con-
figuration was found to beS0 = 16.28dB, which gives a trans-
parent audio quality.

It is well recognised that in highly compressed audio bit-
streams a low bit error ratio (BER) may lead to perceptually
unacceptable distortion. In order to prevent the complete loss
of transmitted audio frames owing to catastrophic error prop-
agation, the most sensitive bits have to be well protected from
channel errors. Hence, in the advocated system Unequal Error
Protection (UEP) is employed, where the compressed audio
bitstream was partitioned into two sensitivity classes. More
explicitly, an audio bit, which resulted in a SegSNR degrada-
tion above 16 dB upon its corruption was classified into pro-
tection class-1. A range of different audio files were used in
our work and the results provided are related to a 60 seconds
long excerpt of Mozart’s ”Clarinet Concerto (2nd movement -
Adagio)”. From the bit sensitivity studies using this audio file
as the source, we found that approximately 50% of the total

number of MPEG-4 encoded bits falls into class-1.
At the receiver, the output of the turbo transceiver is de-

coded using the MPEG-4 AAC decoder. During the decoding
process, the erroneously received audio frames were dropped
and replaced by the previous error-free audio frame for the sake
of avoiding an even more dramatic error-infested audio-quality
degradation [11, 12].

3. THE TURBO TRANSCEIVER

The block diagram of the serially concatenated STTC-TCM-
2NSC turbo scheme using a STTC, a TCM and two different-
rate NSCs as its constituent codes is depicted in Figure 1. Since
the number of class-1 audio bits is approximately the same as
that of the class-2 audio bits and there are approximately 1116
bits per audio frame, we protect the 558-bit class-1 audio se-
quence using a rate-R1 NSC encoder and the 558-bit class-2
sequence using a rate-R2 NSC encoder. Let us denote the turbo
scheme as STTC-TCM-2NSC-1 when the NSC coding rates of
R1 = k1/n1 = 1/2 andR2 = k2/n2 = 3/4 are used. Further-
more, when the NSC coding rates ofR1 = 2/3 andR2 = 3/4
are used, we denote the turbo scheme as STTC-TCM-2NSC-2.
The code memory of the class-1 and class-2 NSC encoders is
L1 = 3 andL2 = 3, respectively. The class-1 and class-2 NSC
coded bit sequences are interleaved by two separate bit inter-
leavers, before they are fed to the rate-R3 = 3/4 TCM [6–
8] scheme having a code memory ofL3 = 3. Code termi-
nation was employed for the NSCs, TCM [6–8] and STTC
codecs [7, 9]. The TCM symbol sequence is then symbol-
interleaved and fed to the STTC encoder. We invoke a 16-state
STTC scheme having a code memory ofL4 = 4 andNt = 2
transmit antennas, employingM = 16-level Quadrature Am-
plitude Modulation (16QAM) [8]. The STTC employingNt =
2 requires one 16QAM-based termination symbol. The over-
all coding rate is given byRs1 = 1116/2520 ≈ 0.4429 and
Rs2 = 1116/2152 ≈ 0.5186 for the STTC-TCM-2NSC-1
and STTC-TCM-2NSC-2 schemes, respectively. The effec-
tive throughput of the STTC-TCM-2NSC-1 and STTC-TCM-
2NSC-2 schemes islog2(M)Rs1 ≈ 1.77 Bits Per Symbol
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Figure 2: Block diagram of the STTC-TCM-2NSC turbo detection scheme seen at the right of Figure 1. The notationsπ(s,bi)

andπ−1
(s,bi)

denote the interleaver and deinterleaver, while the subscripts denotes the symbol-based interleaver of TCM and

the subscriptbi denotes the bit-based interleaver for class-i NSC. Furthermore,Ψ andΨ−1 denote LLR-to-symbol probability
and symbol probability-to-LLR conversion, whileΩ andΩ−1 denote the parallel-to-serial and serial-to-parallel converter, re-
spectively. The notationm denotes the number of information bits per TCM coded symbol. The thickness of the connecting
lines indicates the number of non-binary symbol probabilities spanning from a single LLR per bit to2m and2m+1 probabili-
ties [13] c©IEE, 2004, Ng, Chung and Hanzo.

(BPS) andlog2(M)Rs2 ≈ 2.07 BPS, respectively.

At the receiver, we employNr = 2 receive antennas and
the received signals are fed to the iterative decoders for the sake
of estimating the audio bit sequences in both class-1 and class-
2, as seen in Figure 1. The STTC-TCM-2NSC scheme’s turbo
decoder structure is illustrated in Figure 2, where there are four
constituent decoders, each labelled with a round-bracketed in-
dex. The Maximum A-Posteriori (MAP) algorithm [7] oper-
ating in the logarithmic-domain are employed by the STTC,
TCM and the two NSC decoders, respectively. The notations
P (.) andL(.) in Figure 2 denote the logarithmic-domain sym-
bol probabilities and the Logarithmic-Likelihood Ratio (LLR)
of the bit probabilities, respectively. The notationsc, u and
bi in the round brackets(.) in Figure 2 denote TCM coded
symbols, TCM information symbols and the class-i audio bits,
respectively. The specific nature of the probabilities and LLRs
is represented by the subscriptsa, p, e and i, which denote
a priori, a posteriori, extrinsic andintrinsic information,
respectively. The probabilities and LLRs associated with one
of the four constituent decoders having a label of{1, 2, 3a, 3b}
are differentiated by the identical superscripts of{1, 2, 3a, 3b}.
Note that the superscript3 is used for representing the two
NSC decoders of3a and3b. The iterative turbo-detection scheme
shown in Figure 2 enables an efficient information exchange
between STTC, TCM and NSCs constituent codes for the sake
of achieving spatial diversity gain, coding gain, unequal error
proctection and a near-channel-capacity performance. The in-
formation exchange mechanism between each constituent de-
coders is detailed in [13].

For the sake of benchmarking the scheme advocated, we
created a powerful benchmark scheme by replacing the TCM
and NSC encoders of Figure 1 by a single NSC codec hav-
ing a coding rate ofR0 = k0/n0 = 1/2 and a code memory
of L0 = 6. We will refer to this benchmarker scheme as the

STTC-NSC arrangement. All audio bits are equally protected
in the benchmarker scheme by a single NSC encoder and a
STTC encoder. A bit-based channel interleaver is inserted be-
tween the NSC encoder and STTC encoder. Taking into ac-
count the bits required for code termination, the number of
output bits of the NSC encoder is(1116 + k0L0)/R0 = 2244,
which corresponds to 561 16QAM symbols. Again, a 16-state
STTC scheme havingNt = 2 transmit antennas is employed.
After code termination, we have561 + 1 = 562 16QAM
symbols or4(562) = 2248 bits in a transmission frame at
each transmit antenna. The overall coding rate is given by
R = 1116/2248 ≈ 0.4964 and the effective throughput is
log2(16)R ≈ 1.99 BPS, both of which are very close to the
corresponding values of the STTC-TCM-2NSC-2 scheme. A
decoding iteration of the STTC-NSC benchmarker scheme is
comprised of a STTC decoding and a NSC decoding step.

We will quantify the decoding complexity of the proposed
STTC-TCM-2NSC scheme and that of the benchmarker scheme
using the number of decoding trellis states. The total number
of decoding trellis states per iteration for the proposed scheme
employing 2 NSC decoders having a code memory ofL1 =
L2 = 3, TCM havingL3 = 3 and STTC havingL4 = 4, is
given byS = 2L1 + 2L2 + 2L3 + 2L4 = 40. By contrast,
the total number of decoding trellis states per iteration for the
benchmarker scheme having a code memory ofL0 = 6 and
STTC havingL4 = 4, is given byS = 2L0 + 2L4 = 80.
Therefore, the complexity of the proposed STTC-TCM-2NSC
scheme having two iterations is equivalent to that of the bench-
marker scheme having a single iteration, which corresponds to
80 decoding states.



4. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
MPEG-4 based audio telephone schemes using both the Bit
Error Ratio (BER) and the Segmental Signal to Noise Ratio
(SegSNR).
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Figure 3: BER versusEb/N0 performance of the 16QAM-
based STTC-TCM-2NSC-1 assisted MPEG-4 audio scheme,
when communicating over uncorrelated Rayleigh fading chan-
nels. The effective throughput was1.77 BPS.
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Figure 4: BER versusEb/N0 performance of the 16QAM-
based STTC-TCM-2NSC-2 assisted MPEG-4 audio scheme,
when communicating over uncorrelated Rayleigh fading chan-
nels. The effective throughput was2.07 BPS.

Figures 3 and 4 depict the BER versus Signal to Noise Ra-
tio (SNR) per bit, namelyEb/N0, performance of the 16QAM-
based STTC-TCM-2NSC-1 and STTC-TCM-2NSC-2 schemes,
respectively, when communicating over uncorrelated Rayleigh
fading channels. As we can observe from Figures 3 and 4, the
gap between the BER performance of the class-1 and class-2
audio bits is wider for STTC-TCM-2NSC-1 compared to the
STTC-TCM-2NSC-2 scheme. More explicitly, the class-1 au-
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Figure 5: Average SegSNR versusEb/N0 performance of
the 16QAM-based STTC-TCM-2NSC assisted MPEG-4 audio
scheme, when communicating over uncorrelated Rayleigh fad-
ing channels. The effective throughput of STTC-TCM-2NSC-
1 and STTC-TCM-2NSC-2 was1.77 and 2.07 BPS, respec-
tively.
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Figure 6: Average SegSNR versusEb/N0 performance of
the 16QAM-based STTC-NSC assisted MPEG-4 audio bench-
marker scheme, when communicating over uncorrelated Ray-
leigh fading channels. The effective throughput was1.99 BPS.

dio bits of STTC-TCM-2NSC-1 have a higher protection at
the cost of a lower throughput compared to the STTC-TCM-
2NSC-2 scheme. However, the BER performance of the class-
2 audio bits of the STTC-TCM-2NSC-1 arrangement is ap-
proximately 0.5 dB poorer than that of STTC-TCM-2NSC-2
at BER=10−5.

Let us now study the audio SegSNR performance of the
schemes in Figures 5 and 6. As we can see from Figure 5,
the SegSNR performance of STTC-TCM-2NSC-1 is inferior in
comparison to that of STTC-TCM-2NSC-2, despite providing
a higher protection for the class-1 audio bits. More explicitly,
STTC-TCM-2NSC-2 requiresEb/N0 = 2.5 dB, while STTC-



TCM-2NSC-1 requiresEb/N0 = 3 dB, when having an audio
SegSNR in excess of 16 dB after the fourth turbo iteration.
Hence the audio SegSNR performance of STTC-TCM-2NSC-
1 is 0.5 dB poorer than that of STTC-TCM-2NSC-2 after the
fourth iteration. Note that the BER of the class-1 and class-
2 audio bits for the corresponding values ofEb/N0, SegSNR
and iteration index is less than10−7 and10−4, respectively,
for the two different turbo schemes. After the sixth iteration,
the SegSNR performance of both turbo schemes becomes quite
similar since the corresponding BER is low. These results
demonstrate that the MPEG-4 audio decoder requires a very
low BER for both class-1 and class-2 audio bits, when aiming
for a SegSNR above 16 dB. In this context it is worth mention-
ing that Recursive Systematic Convolutional codes (RSCs) [6,
7, 10] are capable of achieving a higher iteration gain, but suf-
fer from an error floor. Owing to this reason the SegSNR per-
formance of the schemes employing RSCs instead of NSCs
was found to be poorer. The SegSNR results of the turbo
schemes employing RSCs instead of NSCs as the outer code
were not shown here for reasons of space economy.

Figure 6 portrays the SegSNR versusEb/N0 performance
of the STTC-NSC audio benchmarker scheme, when commu-
nicating over uncorrelated Rayleigh fading channels. Note that
if we reduce the code memory of the NSC constituent code of
the STTC-NSC benchmarker arrangement fromL0=6 to 3, the
achievable performance becomes poorer, as expected. If we
increasedL0 from 6 to 7 (or higher), the decoding complex-
ity would increase significantly, while the attainable best pos-
sible performance is only marginally increased. Hence, the
STTC-NSC scheme havingL0=6 constitutes a good bench-
marker scheme in terms of its performance versus complex-
ity tradeoffs. It is shown in Figures 5 and 6 that the first
iteration based performance of the STTC-NSC benchmarker
scheme is better than that of the proposed STTC-TCM-2NSC
arrangements. However, at the same decoding complexity of
160 (240) trellis decoding states STTC-TCM-2NSC-2 having
4 (6) iterations performs approximately 2 (1.5) dB better than
the STTC-NSC arrangement having 2 (3) iterations.

It is worth mentioning that other joint coding and modula-
tion schemes directly designed for fading channels, such as for
example Bit Interleaved Coded Modulation (BICM) [7, 8, 14]
were outperformed by the TCM-based scheme, since the STTC
arrangement rendered the error statistics more Gaussian-like [15].

5. CONCLUSIONS

In conclusion, a jointly optimised audio source-coding, outer
unequal protection NSC channel-coding, inner TCM and spa-
tial diversity aided STTC turbo transceiver was proposed for
employment in a MPEG-4 wireless audio transceiver. With the
aid of two different-rate NSCs the audio bits were protected
differently according to their error sensitivity. The employ-
ment of TCM improved the bandwidth efficiency of the sys-
tem and by utilising STTC spatial diversity was attained. The

performance of the proposed STTC-TCM-2NSC scheme was
enhanced with the advent of an efficient iterative joint decod-
ing structure. The MPEG-4 audio decoder was found to re-
quire a very low BER for both classes of audio bits in order to
attain a perceptually pleasing, artefact-free audio quality. The
proposed twin-class STTC-TCM-2NSC scheme performs ap-
proximately 2 dB better in terms of the requiredEb/N0 than
the single-class STTC-NSC audio benchmarker.
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