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Abstract– An Iteratively Decoded Variable Length Space
Time Coded Modulation (VL-STCM-ID) scheme capable
of simultaneously providing both coding and iteration gain
as well as multiplexing and diversity gain is proposed. Non-
binary unity-rate precoders are employed for assisting the
iterative decoding of the VL-STCM-ID scheme. The discrete-
valued source symbols are first encoded into variable-length
codewords that are mapped to the spatial and temporal do-
mains. Then the variable-length codewords are interleaved
and fed to the precoded modulator. More explicitly, the
proposed VL-STCM-ID arrangement is a jointly designed
iteratively decoded scheme contriving source coding, chan-
nel coding, modulation and spatial diversity/multiplexing.
As expected, the higher the source correlation, the higher
the achievable performance gain of the scheme becomes.
Furthermore, the performance of the VL-STCM-ID scheme
is more than 14 dB better than that of the Fixed Length
STCM (FL-STCM) benchmarker at a source symbol error
ratio of 10−4.

1. INTRODUCTION

Shannon’s separation theorem stated that source coding and
channel coding is best carried out in isolation [1]. However,
this theorem was formulated in the context of potentially infinite-
delay, lossless entropy-coding and infinite block length chan-
nel coding. In practise, real-time wireless audio/video com-
munications systems do not meet these ideal hypotheses. Ex-
plicitly, the source encoded symbols often remain correlated,
despite the lossy source encoder’s efforts to remove all redun-
dancy. Furthermore, they exhibit unequal error sensitivity. In
these circumstances, it is often more efficient to use jointly de-
signed source and channel encoders.

The wireless communication systems of future generations
are required to provide reliable transmissions at high data rates
in order to offer a variety of multimedia services. Space time
coding schemes, which employ multiple transmitters and re-
ceivers, are among the most efficient techniques designed for
providing high data rates by exploiting the high channel ca-
pacity potential of Multiple-Input Multiple-Output (MIMO)
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channels [2, 3]. More explicitly, Bell-lab’s LAyered Space
Time architecture (BLAST) [4] was designed for providing
full transmitter-multiplexing gain, while Space Time Trellis
Codes (STTC) [5] were designed for providing full transmitter-
diversity gain.

In this contribution, we describe a jointly designed source
coding and Space Time Coded Modulation (STCM) scheme,
where two dimensional (2D) Variable Length Codes (VLCs)
are transmitted by exploiting both the spatial and temporal do-
mains. More specifically, the number of activated transmit
antennas equals the number of symbols of the corresponding
VLC codeword in the spatial domain, where each VLC code-
word is transmitted during a single symbol period. Hence, the
transmission frame length is determined by the fixed number
of source symbols and therefore the proposed Variable Length
STCM (VL-STCM) scheme does not exhibit synchronisation
problems and does not require the transmission of side infor-
mation. Additionally, the associated source correlation is con-
verted into an increased product distance, hence resulting in
an increased coding gain. Furthermore, the VL-STCM scheme
is capable of providing both multiplexing and diversity gains
with the aid of multiple transmit antennas.

It was shown in [6] that a binary unity-rate precoder can be
serially concatenated with Trellis Coded Modulation (TCM) [7]
for the sake of invoking iterative detection and hence for attain-
ing iteration gains. Since VL-STCM also belongs to the TCM
family, we further develop the VL-STCM scheme for attaining
additional iteration gains by introducing non-binary unity-rate
precoders between the variable-length space-time encoder and
the modulator. The Iteratively Decoded (ID) VL-STCM (VL-
STCM-ID) scheme achieves a significant coding/iteration gain
over both the non-iterative VL-STCM scheme and the Fixed
Length STCM (FL-STCM) benchmarker.

The rest of the paper is organised as follows. The overview
of the space-time coding technique advocated is given in Sec-
tion 2 and the 2D VLC design is outlined in Section 3. The de-
scription of the proposed VL-STCM and VL-STCM-ID schemes
is presented in Sections 4 and 5, respectively. In Section 6, the
performance of the proposed schemes is discussed and finally
our conclusions are offered in Section 7.



2. SPACE TIME CODING OVERVIEW

Let us consider a MIMO system employingNt transmit an-
tennas andNr receive antennas. The signal to be transmitted
from transmit antennam, 1 ≤ m ≤ Nt, at the discrete time
index t is denoted asxm[t]. The signal received at antennan,
1 ≤ n ≤ Nr, and at time instantt can be modelled as:

rn[t] =
√
Es

Nt∑
m=1

hn,m[t]xm[t] + wn[t] , (1)

whereEs is the average energy of the signal constellation,
hn,m[t] denotes the flat-fading channel coefficients between
transmit antennam and receive antennan at time instantt,
while wn[t] is the Additive White Gaussian Noise (AWGN)
having zero mean and a variance ofN0/2 per dimension. The
amplitude of the modulation constellation points is scaled by a
factor of

√
Es, so that the average energy of the constellation

points becomes unity and the expected Signal-to-Noise Ratio
(SNR) per receive antenna is given byγ = NtEs/N0 [8]. Let
us denote the transmission frame length asT symbol periods
and define the space-time encoded codeword as an (Nt × T )-
dimensional matrixC formed as:

C =


c1[1] c1[2] . . . c1[T ]
c2[1] c2[2] . . . c2[T ]

...
...

...
...

cNt [1] cNt [2] . . . cNt [T ]

 , (2)

where thetth columnc[t] = [c1[t] c2[t] . . . cNt [t]]
T is the

space-time symbol transmitted at time instantt and themth
row cm = [cm[1] cm[2] . . . cm[T ]] is the space-time symbol
transmitted from antennam. The signal transmitted at time
instantt from antennam, which is denoted asxm[t] in Equa-
tion 1, is the modulated space-time symbol given byxm[t] =
f(cm[t]) wheref(.) is the modulator’s mapping function. The
Pair-Wise Error Probability (PWEP) of erroneously detecting
E instead ofC is upper bounded at high SNRs by [5, 9]:

p(C→ E) ≤ 1
2

(
Es

4N0

)−EH ·Nr
(EP )−Nr , (3)

whereEH is referred to as theeffective Hamming distance,
which quantifies the transmit diversity order andEP is termed
as theeffective product distance[5], which quantifies the cod-
ing advantage of a space-time code.

It was shown in [10] that a full-transmitter-diversity STTC
scheme having the minimum decoding complexity can be sys-
tematically designed based on two steps. The first step is to
design a block code, while the second step is to transmit the
block code diagonally across the space-time grid. The mech-
anism of the diagonal transmission across the space-time grid
will be exemplified in Section 4 in the context of Figure 2.
The Hamming distance and the product distance of a block

code can be preserved, when the block code is transmitted di-
agonally across the space-time grid. Hence, a full-transmitter-
diversity STTC scheme can be realised, when the Hamming
distance of the block code used by the STTC scheme equals
to the number of transmitters. Based on the same principle,
a joint source coding and STTC scheme can be systematically
designed by first designing a 2D VLC and then transmitting the
2D VLC diagonally across the space-time grid. As mentioned
above [10], this allows us to achieve a transmitter-diversity or-
der, which is identical to the Hamming distance of the 2D VLC
plus a coding advantage quantified by the product distance of
the 2D VLC, as well as a multiplexing gain, provided that the
number of possible source symbolsNs is higher than the num-
ber of modulation levelsM .

Let us now commence our detailed discourse on the pro-
posed VL-STCM-ID scheme in the following sections.

3. TWO-DIMENSIONAL VLC DESIGN

Consider for example a source havingNs = 8 possible discrete
values and let thelth value be represented by a symbolsl = l
for l ∈ {1, 2, . . . , Ns}. Furthermore, assume that the source is
correlated such that the source symbol occurrence probability
is given by:

P (sl+1) = 0.6P (sl) , (4)

and
∑Ns
l=1 P (sl) = 1. Hence, the source symbols1 has the

highest occurrence probability ofP (s1) = 0.406833 and the
source symbols8 has the lowest occurrence probability ofP (s8)
= 0.011389. Let us now consider a 2D VLC codeword matrix,
VV LC , which encodes theseNs = 8 possible source symbols
usingNt = 3 transmit antennas and BPSK modulation as fol-
lows:

VV LC =

 x 1 x 0 x 0 1 1
x x 0 x 1 1 0 1
0 x x 1 1 x 1 0

 , (5)

where each column of the (3 × 8)-dimensional matrixVV LC

corresponds to the specific VLC codeword conveying a par-
ticular source symbol and the elements in the matrix denoted
as 0 and 1 represent the BPSK symbols to be transmitted by
theNt = 3 transmit antennas, while ‘x’ represents ‘no trans-
mission’. ‘No transmission’ implies that the corresponding
transmit antenna sends no signal. Let thelth source symbol
sl be encoded using themth column of theVV LC matrix seen
in Equation 5. Hence, the source symbols1 is encoded into
anNt-element codeword using the first column ofVV LC in
Equation 5, namely[x x 0]T , where the first and second trans-
mit antennas are in the ‘no transmission’ mode, while the third
antenna transmits an ‘active’ symbol represented by the binary
value ‘0’. If L(sl) is the number of ‘active’ symbols in the
VLC codeword assigned to source symbolsl, then we may de-



fine the average codeword length of the 2D VLC as:

Lave =
Ns∑
l=1

P (sl)L(sl) , (6)

where we haveLave = 1.233 bit/VLC codeword for this sys-
tem according to Equations 4 and 5. The corresponding BPSK

f(1) = −A f(x) = 0 f(0) = A

−A 0 A

A =
√

Nt

Lave

Figure 1: The signal mapper of the VL-STCM.
signal mapper is characterised in Figure 1, where the ‘no trans-
mission’ symbol is actually represented by the origin of the Eu-
clidean space, i.e. we havef(x) = 0, wheref(.) is the map-
ping function. Since the ‘no transmission’ symbol is a zero
energy symbol, the amount of energy saving can be computed
from:

A2 =
Nt
Lave

, (7)

where we haveA2 = 3/1.233 = 2.433, which is equivalent
to 20 log(A) = 3.86 dB. Hence, more transmitted energy is
saved, when there are more ‘no transmission’ symbols in a
VLC codeword. Therefore, the columns of the matrixVV LC

in Equation 5, which are the VLC codewords, and the source
symbols are specifically arranged, so that the more frequently
occurring source symbols are assigned to VLC codewords hav-
ing more ‘no transmission’ components, in order to save trans-
mit energy. The energy saved is then reallocated to the ‘active’
symbols for the sake of increasing their minimum Euclidean
distance, as shown in Figure 1.

The design of the 2D VLC scheme can be summarised in
the following three steps:

1. Search for all possible VLC codeword matrices, which
have the maximum achievable minimum Hamming dis-
tanceEH min and product distanceEP min values for
each pair of the VLC codewords at a givenNs andNt
combination. Note that attaining a higherEH min is given
more weight thanEP min sinceEH min, is more domi-
nant in the PWEP of Equation 3.

2. From the resultant VLC matrices, choose that specific
one, which has the highest number of ‘no transmission’
symbols at the givenEH min andEP min combination.

3. Assign the more frequently occurring source symbols to
the VLC codewords having more ‘no transmission’ com-
ponents.

Additionally, we note that the correlation of the source only
affects the specific mapping of the source symbols to the 2D

VLC codewords, but not the search for the best 2D VLC itself,
which takes place during steps 1 and 2. As in the conventional
1D VLC, the higher the source correlation, the lower the av-
erage codeword lengthLave of the 2D VLC. Hence, a higher
power saving can be obtained, when the source is more cor-
related, since the amount of energy saving is given by Equa-
tion 7, whereNt is fixed. The 2D VLC matrix seen in Equa-
tion 5 was designed based on the above three steps and the cor-
responding minimum Euclidean distance of the BPSK constel-
lation points seen in Figure 1 becomes identical toA = 1.56.
The minimum Hamming distance isEH min = 2, as can be
verified by counting the number of different symbol positions
of all the columns in Equation 5. Hence a transmit-diversity
of orderEH min = 2 can be achieved instead of three, when
Nt = 3 transmit antennas are employed for transmitting the
Nt-element 2D VLC codewords denoted asv = [v1 . . . vNt ]

T

in Figure 2. On the other hand, the minimum product distance
EP min can be computed based on Equation 5 and the signal
mapper of Figure 1. Explicitly, the corresponding minimum
product distance is found to beEP min = 5.92, which is com-
puted as [10]:

EP min = min
1≤s<s̃≤Ns

∏
m∈ξ

|f(vm)− f(ṽm)|2 , (8)

whereξ is the specific VLC codeword component of Figure 2
mapped to transmit antenna indexm associated withvm 6= ṽm
for 1 ≤ m ≤ Nt, while [v1 . . . vNt ]

T and [ṽ1 . . . ṽNt ]
T are

two VLC codewords conveying the source symbolss and s̃,
respectively.

4. VL-STCM TRANSMITTER
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Figure 2: Block diagram of the VL-STCM transmitter.

The block diagram of the VL-STCM transmitter is illus-
trated in Figure 2. As seen in Figure 2, a VLC codeword
v[t] = [v1[t] v2[t] . . . vNt [t]]

T is assigned to each of the source
symbolss[t] generated by the source at time instantt, where
s[t] ∈ {1, . . . , Ns} andNs denotes the number of possible
source symbols. Each component of the VLC codewordv[t]
seen in Figure 2 is represented by a binary or non-binary sym-
bol. Again, each of these VLC codewords corresponds to one



c : [c1 c2 c3]
T S : [S1 S2 S3]

[ 0 1 0 2 0 2 1 1 ] 0 : [ x 0 0 ]

[ 3 4 3 5 3 5 4 4 ] 1 : [ x 0 1 ]

[ 6 7 6 8 6 8 7 7 ] 2 : [ x 0 x ]

[ 0 1 0 2 0 2 1 1 ] 3 : [ x x 0 ]

[ 3 4 3 5 3 5 4 4 ] 4 : [ x x 1 ]

[ 6 7 6 8 6 8 7 7 ] 5 : [ x x x ]

[ 9 10 9 11 9 11 10 10 ] 6 : [ 0 x 0 ]

[12 13 12 14 12 14 13 13 ] 7 : [ 0 x 1 ]

[15 16 15 17 15 17 16 16 ] 8 : [ 0 x x ]

[ 0 1 0 2 0 2 1 1 ] 9 : [ x 1 0 ]

[ 3 4 3 5 3 5 4 4 ] 10: [x 1 1 ]

[ 6 7 6 8 6 8 7 7 ] 11: [x 1 x ]

[18 19 18 20 18 20 19 19 ] 12: [1 1 0 ]

[21 22 21 23 21 23 22 22 ] 13: [1 1 1 ]

[24 25 24 26 24 26 25 25 ] 14: [1 1 x ]

[18 19 18 20 18 20 19 19 ] 15: [1 x 0 ]

[21 22 21 23 21 23 22 22 ] 16: [1 x 1 ]

[24 25 24 26 24 26 25 25 ] 17: [1 x x ]

[ 9 10 9 11 9 11 10 10 ] 18: [0 1 0 ]

[12 13 12 14 12 14 13 13 ] 19: [0 1 1 ]

[15 16 15 17 15 17 16 16 ] 20: [0 1 x ]

[18 19 18 20 18 20 19 19 ] 21: [1 0 0 ]

[21 22 21 23 21 23 22 22 ] 22: [1 0 1 ]

[24 25 24 26 24 26 25 25 ] 23: [1 0 x ]

Figure 3: The trellis of VL-STCM when invoking the 2D VLC
of Equation 5. For the list of codewords see Table 1.

of the columns in the VLC matrix of Equation 5. As por-
trayed in Figure 2, the VLC codewordv[t] is transmitted diag-
onally across the space-time grid with the aid of appropriate-
length shift registers denoted asSk in Figure 2, where we have
k ∈ {1, 2, . . . ,

∑Nt
j=1(j − 1)}. As we can see from Figure 2,

the codewordv[t] = [v1[t] v2[t] . . . vNt [t]]
T is transmitted us-

ingNt transmit antennas, where themth element of each VLC
codeword, for1 ≤ m ≤ Nt, is delayed by (m−1) shift register
cells, before it is transmitted through themth transmit antenna.
Hence, theNt number of components of each VLC codeword
are transmitted on a diagonal of the space-time codeword ma-

Index c Index c Index c
0 [ 0 x x ]T 9 [ 0 0 x ]T 18 [ 0 1 x ]T

1 [ 0 x 1 ]T 10 [ 0 0 1 ]T 19 [ 0 1 1 ]T

2 [ 0 x 0 ]T 11 [ 0 0 0 ]T 20 [ 0 1 0 ]T

3 [ 1 x x ]T 12 [ 1 0 x ]T 21 [ 1 1 x ]T

4 [ 1 x 1 ]T 13 [ 1 0 1 ]T 22 [ 1 1 1 ]T

5 [ 1 x 0 ]T 14 [ 1 0 0 ]T 23 [ 1 1 0 ]T

6 [ x x x ]T 15 [ x 0 x ]T 24 [ x 1 x ]T

7 [ x x 1 ]T 16 [ x 0 1 ]T 25 [ x 1 1 ]T

8 [ x x 0 ]T 17 [ x 0 0 ]T 26 [ x 1 0 ]T

Table 1: The space-time codeword table.

trix of Equation 2. Since the VLC codewords are encoded di-
agonally, the space-time coded symbolcm[t] transmitted by
themth antenna,1 ≤ m ≤ Nt, at a particular time-instantt
is given bycm[t] = vm[t − m + 1]. Hence, for this specific
case each element of the space-time codeword matrix of Equa-
tion 2 is given bycm[t] = vm[t−m+1], while the transmitted
signal is given byxm[t] = f(cm[t]) = f(vm[t −m + 1]) for
1 ≤ m ≤ Nt.

Note that originally there were onlyNs = 8 legitimate
2D-VLC codewords in Equation 5. However, after these VLC
codewords are diagonally mapped across the space-time grid
using the shift registers shown in Figure 2, there is a total of
M̄Nt = 33 = 27 legitimate space-time codewords, whereM̄
is the number of possible symbols in each position of the 2D
VLC codewords. Note however that the actual number of le-
gitimate space-time codewords can be less thanM̄Nt . The cor-
responding trellis diagram of the proposed VL-STCM scheme
is depicted in Figure 3. TheNt = 3-element space-time code-
word seen in Figure 2 is given byc = [c1 c2 c3]T and the
relationship between the 27 codeword indices shown in Fig-
ure 3 andc is defined in Table 1. The trellis states are defined
by the contents of the shift register cellsSk shown in Figure 2,
which are denoted byS = [S1 S2 S3]. For example, the state
S = 0 is denoted as[x 0 0] in the trellis diagram of Figure 3.
Note that each shift register cell may hold̄M = 3 possible val-
ues, namely{0, 1, x} in conjunction with the VL-STCM based
on Equation 5. However, the number of legitimate trellis states
can be less than̄Mp, wherep =

∑Nt
j=1 = 3 is the total num-

ber of shift registers. Hence, in our specific case there are only
24 legitimate trellis states out of thēMp = 27 possible trellis
states, which is a consequence of the constraints imposed by
the 2D VLC of Equation 5.

5. VL-STCM-ID TRANSCEIVER

In order to invoke iterative detection and hence attain iteration
gains as a benefit of the more meritoriously spreadextrinsic
information, we introduce a symbol-based interleaver and a
non-binary unity-rate precoder for each of theNt = 3 transmit
antennas. As we can see from Figure 4, each element in the
space-time codewordcm[t] for m ∈ {1, 2, 3} is further inter-
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Figure 4: The VL-STCM-ID transceiver employingNt = 3 transmit andNr = 2 receive antennas. The notatioñ(.) and (̂.)
indicates theextrinsic/a priori probability and the hard decision estimate of(.), respectively.

leaved and encoded by a non-binary unity-rate precoder, be-
fore feeding them to the mapper. It was found that without the
recursive feedback assisted non-binary precoder, the iterative
detection aided VL-STCM-ID was unable to outperform the
lower-complexity non-iteratively decoded VL-STCM scheme.
By contrast, a simple single-cell non-binary precoder invoked
for each of the transmit antennas did allow us to achieve a
significant iteration gain. The non-binary precoder employs
a modulo-M̄ adder, where again̄M = 3 is the number of dif-
ferent symbols in the VLC space-time codeword and we have
cm[t] ∈ {0, 1, x}. Accordingly, this single-cell precoder pos-
sessesM̄ = 3 trellis states.

At the receiver, the symbol-based MAP algorithm [11] is
used by both the VL-STCM decoder and the unity-rate de-
coder. As we can see from Figure 4, the MAP decoder of the
VL-STCM scheme benefits from thea priori information of
the space-time codewordc[t] = [c1[t] c2[t] c3[t]]T provided
by the demodulator as well as from thea priori information
of the source symbolss[t] quantified in terms of their differ-
ent probabilities. Furthermore, each of theNt = 3 unity-
rate ‘MAP Decoders’ of the precoder seen inside the demod-
ulator block of Figure 4 also benefits from thea priori in-
formation of its codewordum[t] and that of its input symbol
cm[t], m ∈ {1, 2, . . . , Nt}. The task of the soft demapper
seen in the demodulator block of Figure 4 is to generate the
soft metrics, characterising the probability of the transmitted
space-time signalxm[t], 1 ≤ m ≤ Nt, seen in Figure 1. The
‘Soft Demapper’ of Figure 4 also benefits from thea priori
information of its input symbolsum[t] after the first iteration,
where a full iteration consists of a soft demapper operation,
Nt = 3 unity-rate, MAP decoder operations and a VL-STCM
MAP decoder operation. For the non-iteratively decoded VL-
STCM, the soft demapper computes thea priori information
of c[t] = [c1[t] c2[t] c3[t]]T and feeds it to the VL-STCM MAP
decoder.

6. SIMULATION RESULTS

Before we commence our performance study of the proposed
scheme, we introduce a Fixed Length (FL) STCM (FL-STCM)
benchmarker, where the FL Codeword (FLC) matrix is given

by:

VFLC =

 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 . (9)

The FL-STCM transmitter obeys the schematic of Figure 2,
except that it employs theVFLC of Equation 9. For the FL-
STCM, the minimum Hamming distance and product distance
are 1 and 4, respectively. It attains the same multiplexing
gain as that of the VL-STCM or VL-STCM-ID arrangements.
Let us now evaluate the performance of the VL-STCM, VL-
STCM-ID and FL-STCM schemes in terms of their source
Symbol Error Ratio (SER) versus the Signal to Noise Ratio
(SNR) per bit, which is given byEb/N0 = γ/η, whereγ is the
SNR per receive antenna andη = log2(8) = 3 bit/symbol is
the effective information throughput.

turbo-stvlc-2psk-ser-iter-compare.gle
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Figure 5: SER versusEb/N0 performance of the VL-STCM,
VL-STCM-ID and FL-STCM schemes, when communicating
over uncorrelated Rayleigh fading channels using BPSK,Nt =
3 andNr = 2.

Figure 5 depicts the SER versusEb/N0 performance of
the VL-STCM, VL-STCM-ID and FL-STCM schemes, when
communicating over uncorrelated Rayleigh fading channels us-
ing BPSK, three transmitters and two receivers. As expected,
the VL-STCM arrangement attains a higher gain, when the



source has an adjacent-sample correlation of 0.6 compared to
its uncorrelated counterpart. However, both the FL-STCM and
VL-STCM-ID schemes still manage to achieve some coding
gain, since their decoder benefits from the probability-related
a priori information of the source symbols. More specifi-
cally, the coding gain attained as a benefit of transmitting cor-
related source symbols increases, as the number of iterations
invoked by the VL-STCM-ID scheme increases. Although the
VL-STCM-ID arrangement performs worse than VL-STCM
during the 1st iteration, the performance of VL-STCM-ID at
SER= 10−4 after the 8th iteration is approximately 5.7 (14.1)
dB and 6.8 (14.3) dB better than that of the VL-STCM (FL-
STCM) scheme, when employing correlated and uncorrelated
sources, respectively.

7. CONCLUSIONS

An iteratively decoded variable length space-time coded mod-
ulation design was proposed. The joint design of source-coding,
space-time coded modulation and iterative decoding was shown
to achieve both spatial diversity and multiplexing gain, as well
as coding and iteration gains at the same time. The variable
length structure of the individual codewords mapped to the
maximum ofNt transmit antennas imposes no synchronisa-
tion and error propagation problems. A significant iteration
gain was achieved by the VL-STCM-ID scheme and it outper-
formed both the VL-STCM scheme as well as the FL-STCM
benchmarker. Our future research will incorporate both ex-
plicit channel coding and real-time multimedia source codecs.
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