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Abstract—Space division multiple access (SDMA) aided orthog-
onal frequency division multiplexing (OFDM) systems assisted by
efficient multiuser detection (MUD) techniques have recently at-
tracted intensive research interests. The maximum likelihood de-
tection (MLD) arrangement was found to attain the best perfor-
mance, although this was achieved at the cost of a computational
complexity, which increases exponentially both with the number
of users and with the number of bits per symbol transmitted
by higher order modulation schemes. By contrast, the minimum
mean-square error (MMSE) SDMA-MUD exhibits a lower com-
plexity at the cost of a performance loss. Forward error correction
(FEC) schemes such as, for example, turbo trellis coded modu-
lation (TTCM), may be efficiently combined with SDMA-OFDM
systems for the sake of improving the achievable performance. Ge-
netic algorithm (GA) based multiuser detection techniques have
been shown to provide a good performance in MUD-aided code
division multiple access (CDMA) systems. In this contribution, a
GA-aided MMSE MUD is proposed for employment in a TTCM-
assisted SDMA-OFDM system, which is capable of achieving a
similar performance to that attained by its optimum MLD-aided
counterpart at a significantly lower complexity, especially at high
user loads. Moreover, when the proposed biased Q-function based
mutation (BQM) assisted iterative GA (IGA) MUD is employed,
the GA-aided system’s performance can be further improved, for
example, by reducing the bit error ratio (BER) measured at 3 dB
by about five orders of magnitude in comparison to the TTCM-
assisted MMSE-SDMA-OFDM benchmarker system, while still
maintaining modest complexity.

Index Terms—Biased Q-function based mutation (BQM),
genetic algorithm (GA), minimum mean-square error (MMSE),
multiuser detection (MUD), orthogonal frequency division multi-
plexing (OFDM), space division multiple access (SDMA), turbo
trellis coded modulation (TTCM).

I. INTRODUCTION

S PACE DIVISION multiple access (SDMA) based or-
thogonal frequency division multiplexing (OFDM) [1]

communication invoking multiuser detection (MUD) tech-
niques has recently attracted intensive research interests.
In SDMA multi-input–multi-output (MIMO) systems, the
transmitted signals of L simultaneous uplink mobile users-each
equipped with a single transmit antenna-are received by the
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P different receiver antennas of the base station (BS). At
the BS, the individual user’s signals are separated with the
aid of their unique, user-specific spatial signature constituted
by their channel transfer functions or, equivalently, channel
impulse responses (CIRs). A variety of MUD schemes, such
as the least squares (LS) [1]–[3] and minimum mean-square
error (MMSE) [1]–[5] detectors, or successive interference
cancellation (SIC) [1]–[6], parallel interference cancellation
(PIC) [1], [2], [6], [7] and maximum likelihood detection
(MLD) [1], [2], [4], [5], [8] schemes may be invoked for
the sake of separating the different users at the BS on a
per-subcarrier basis. Among these schemes, the ML detection
arrangement was found to give the best performance, although
this was achieved at the cost of a dramatically increased
computational complexity, especially in the context of a high
number of users and higher order modulation schemes, such as
16QAM [6]. By contrast, MMSE combining exhibits the lowest
complexity in this set of detectors, while suffering from a per-
formance loss [1], [6]. Moreover, another branch of multiuser
detection schemes referred to as sphere decoder (SD) [9]–[15]
has also been proposed for multiuser systems, which is capable
of achieving ML performance at a lower complexity. However,
as far as we are concerned, most of the previously mentioned
techniques were proposed for the systems where the number of
users is less than or equal to the number of receivers.

Furthermore, the achievable performance can be significantly
improved if forward error correction (FEC) schemes, such as,
for example, turbo convolutional (TC) codes [16], are incorpo-
rated into the SDMA system. Various coded modulation (CM)
schemes such as, for example, trellis coded modulation (TCM)
[16], [17]; turbo TCM (TTCM) [16], [18], bit-interleaved coded
modulation (BICM) [16], [19]; and iteratively decoded BICM
(BICM-ID) [16], [20] have also attracted intensive research
interests, since they are capable of achieving a substantial
coding gain without bandwidth expansion. It was demonstrated
in [21] that TTCM generally provides the best performance in
the family of CM schemes in the specific context of the SDMA-
OFDM system investigated. Hence, in this paper, we will adopt
TTCM as the FEC scheme for our SDMA-OFDM system.

Genetic algorithms (GAs) [22]–[26] have been applied to a
number of problems, such as machine learning and modeling
adaptive processes. Moreover, GA-based multiuser detection
has been proposed by Juntti et al. [27] and Wang et al. [28],
where the analysis was based on the additive white Gaussian
noise (AWGN) channel in the absence of diversity techniques.
The proposal by Ergün et al. [29] utilized GAs as the first stage of
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a multistage multiuser detector, in order to provide good initial
guesses for the subsequent stages. Its employment in Rayleigh
fading channels was considered by Yen et al. in [30], [31],
and [31], [32] in diverse scenarios, both with and without the
aid of diversity techniques, respectively.

However, most of the GA-aided transceiver research previ-
ously mentioned was conducted in the context of code division
multiple access (CDMA) systems [31], [33]. Against this back-
ground, the novel contribution of this paper is that we apply new
GAs in the context of novel multiuser OFDM rather than CDMA
systems. Specifically, we propose a novel GA and MMSE-MUD
assisted TTCM-aided SDMA-OFDM system which is capable
of maintaining near-optimum performance in so-called over-
loaded systems, where the number of users is higher than the
number of receiver antenna elements. Our simulation results
show that the proposed GA assisted TTCM-SDMA-OFDM sys-
tem is capable of achieving performance similar to that attained
by its optimum but high-complexity maximum likelihood (ML)
MUD assisted counterpart in overloaded scenarios, while im-
posing a significantly lower computational complexity, espe-
cially at high user loads. Furthermore, the performance of the
proposed GA-aided system can be further improved if the pro-
posed biased Q-function based mutation (BQM) aided iterative
GA (IGA) MUD is employed. We will show that the BQM-
IGA aided system is capable of reducing the bit error ratio
(BER) by up to five orders of magnitude in comparison to the
TTCM-assisted MMSE-SDMA-OFDM benchmarker system.
Moreover, the complexity of the proposed detection scheme is
only moderately higher than that imposed by the linear MMSE
MUD, and is substantially lower than that imposed by the opti-
mum ML MUD.

The structure of this paper is as follows. The SDMA MIMO
channel model is described in Section II-A and the overview
of the GA-assisted TTCM-aided MMSE-SDMA-OFDM sys-
tem is given in Section II-B, followed by the introduction of
the basic principles of the concatenated MMSE-GA MUD of
Section III. Specifically, a review of the MMSE MUD is pro-
vided in Section III-A, the optimization metric of the GA MUD
is derived in Section III-B, and Section III-C offers a detailed in-
troduction to the concatenated MMSE-GA multiuser detection.
In Section III-D, the novel BQM scheme is proposed, followed
by the illustration of the IGA framework in Section III-E. Our
simulation results are provided in Section IV, and the asso-
ciated complexity issues are discussed in Section V. Finally,
Section VI concludes our findings.

II. SYSTEM MODEL

A. SDMA MIMO Channel Model

Fig. 1 shows an SDMA uplink MIMO channel model where
each of the L simultaneous mobile users employs a single trans-
mit antenna, while the BSs receiver exploits P antennas. At
the kth subcarrier of the nth OFDM symbol received by the
P -element receiver antenna array, we have the received complex
signal vector x[n, k], which is constituted by the superposition
of the independently faded signals associated with the L mobile
users and contaminated by the additive white Gaussian noise

Fig. 1. Schematic of the SDMA uplink MIMO channel model [1], where each
of the L mobile users is equipped with a single transmit antenna and the BSs
receiver is assisted by a P -element antenna front end.

(AWGN), expressed as

x = Hs + n (1)

where the (P × 1)-dimensional vector x, the (L × 1)-
dimensional vector s, and the (P × 1)-dimensional vector n
are the received, transmitted, and noise signals, respectively.
Here we have omitted the indices [n, k] for each vector for the
sake of notational convenience. Specifically, the vectors x, s,
and n are given by

x = (x1, x2, . . . , xP )T (2)

s =
(
s(1), s(2), . . . , s(L)

)T

(3)

n = (n1, n2, . . . , nP )T . (4)

The (P × L)-dimensional matrix H, which contains the
frequency-domain channel transfer functions (FD-CHTF) of the
L users, is given by

H =
(
H(1),H(2), . . . ,H(L)

)
(5)

where H(l)(l = 1, . . . , L) is the vector of the FD-CHTFs asso-
ciated with the transmission paths from the lth user’s transmit
antenna to each element of the P -element receiver antenna array,
which is expressed as

H(l) =
(
H

(l)
1 ,H

(l)
2 , . . . , H

(l)
P

)T

, l = {1, . . . , L}. (6)

In (1)–(6), we assume that the complex signal s(l) transmitted
by the lth user has zero-mean and a variance of σ2

l . The AWGN
signal np also exhibits a zero-mean and a variance of σ2

n . The

FD-CHTFs H
(l)
p of the different receivers or users are indepen-

dent, stationary, complex Gaussian distributed processes with
zero-mean and unit variance [1].

B. System Overview

In Section II-A, we have briefly reviewed the SDMA MIMO
channel model, as shown in Fig. 1. In Fig. 2, we present
the schematic of the proposed concatenated MMSE-GA MUD
aided SDMA-OFDM uplink system. At the transmitter end, as
seen at the top of Fig. 2, the information bit sequences of the
geographically separated L simultaneous mobile users are for-
warded to the TTCM [16] encoders, where they are encoded
into symbols. The encoded signals s(l)(l = 1, . . . , L) are then
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Fig. 2. Schematic of the MMSE-GA-concatenated multiuser detected SDMA-
OFDM uplink system.

forwarded to the OFDM-related inverse fast Fourier transform
(IFFT) based modulator, which converts the frequency-domain
signals to the time-domain modulated OFDM symbols. The
OFDM symbols are then transmitted by the independent mobile
stations (MSs) to the BS over the SDMA MIMO channel. Then,
each element of the receiver antenna array shown at the bottom
of Fig. 2 receives the superposition of the transmitted signals
faded and contaminated by the channel and performs fast Fourier
transform (FFT) based OFDM demodulation. The demodulated
outputs xp(p = 1, . . . , P ) seen in Fig. 2 are forwarded to the
proposed concatenated MMSE-GA MUD for separating the dif-
ferent user’s signals. The separated signals ŝ(l)(l = 1, . . . , L),
namely the estimated versions of the transmitted signals, are
then independently decoded by the TTCM decoders of Fig. 2.

III. GENETICAL ALGORITHM ASSISTED MMSE
MULTIUSER DETECTION

A. MMSE MUD

In the MMSE-based MUD, the estimates of the different
user’s transmitted signals are generated with the aid of the lin-
ear MMSE combiner. Specifically, the estimated signal vector
ŝ ∈ C

L×1 generated from the transmitted signal s of the L simul-
taneous users, as shown in Fig. 2, is obtained by linearly com-
bining the signals received by the P different receiver antenna
elements with the aid of the array weight matrix as follows [1]:

ŝMMSE = WH
MMSEx (7)

where the superscript H denotes the Hermitian transpose, and
WMMSE ∈ C

P ×L is the MMSE-based weight matrix given
by [1]

WMMSE =
(
HHH + σ2

nI
)−1

H (8)

where I is the identity matrix, and σ2
n is the AWGN noise

variance.

B. Optimization Metric for the GA MUD

The optimum ML MUD [1] uses an exhaustive search for find-
ing the most likely transmitted signals. For a ML-detection as-
sisted SDMA-OFDM system supporting L simultaneous users,
a total of 2mL metric evaluations has to be invoked, where m
denotes the number of bits per symbol (BPS) in order to detect
the L-user symbol vector ŝML that consists of the most likely
transmitted symbols of the L users at a specific subcarrier, given
by

ŝML = arg

{
min

š∈ML
‖x − Hš‖2

2

}
(9)

where the (P × 1)-dimensional received signal vector x and
the (P × L)-dimensional frequency-domain channel transfer
function (FD-CHTF) matrix H are defined by (2) and (5), re-
spectively. The set ML in (9), which is constituted by 2mL

trial-vectors, is formulated as

ML

=
{
š = (š(1), š(2), . . . , š(L))T

∣∣∣š(1), š(2), . . . , š(L) ∈ Mc

}

(10)

where Mc denotes the set containing the 2m number of legiti-
mate complex constellation points associated with the specific
modulation scheme employed. The number of metric evalua-
tions required for detecting the optimum vector increases expo-
nentially with the number of users L.

Furthermore, the optimum ML-based decision metric of (9)
may also be used in the GA-based MUD for the sake of detect-
ing the estimated transmitted symbol vector ŝGA. In the context
of the SDMA-OFDM system employing P receiver antenna
elements, the decision metric required for the pth receiver an-
tenna, namely the antenna-specific objective function [31], can
be derived from (9), yielding

Ωp(s) = |xp − Hps|2 (11)

where xp is the received symbol at the input of the pth receiver at
a specific OFDM subcarrier, and Hp is the pth row of the channel
transfer function matrix H. Therefore, the decision rule for the
optimum multiuser detector associated with the pth antenna is
to choose the specific L-symbol vector s, which minimizes the
metric given in (11). Thus, the estimated transmitted symbol
vector of the L users based on the knowledge of the received
signal at the pth receiver antenna and a specific subcarrier is
given by

ŝGAp
= arg{min

s
[Ωp(s)]}. (12)

However, it follows from above derivation that we will have
P metrics in total for the P receiver antennas. Since the channel
impulse responses of each of the P antennas are statistically
independent, the L-symbol vector that is considered optimum
at antenna 1 may not be considered optimum at antenna 2, etc. In
other words, this implies that a decision conflict is encountered,
which may be expressed as

arg{min
s

[Ωi(s)]} = ŝGAi
�= ŝGAj

= arg{min
s

[Ωj (s)]} (13)



118 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 1, JANUARY 2006

where ∀i, j ∈ {1, . . . , P}, i �= j. This decision conflict, there-
fore, leads to a so-called multiobjective optimization problem,
since the optimization of the P metrics may result in more
than one possible L-symbol solution. A similar decision con-
flict resolution problem was studied in [34] in an attempt to
reconcile the decision conflicts of multiple antennas resulting in
a decision dilemma. In order to resolve this problem, we may
adopt a similar approach and may amalgamate the P number of
antenna-specific L-symbol metrics into a joint metric as follows:

Ω(s) =
P∑

p=1

Ωp(s). (14)

Hence, the decision rule of the GA MUD is to find the specific
estimated transmitted L-symbol vector ŝGA that minimizes Ω(s)
in (14) for every OFDM subcarrier considered.

C. Concatenated MMSE-GA MUD

The BER performance of the MMSE MUD is somewhat lim-
ited, since it is the total mean-square estimation error imposed
by the different simultaneous users that is minimized, rather
than directly optimizing the BER performance. Therefore, the
MMSE-SDMA-OFDM system’s BER performance may be po-
tentially further improved with the aid of a concatenated GA-
aided MUD, which is capable of exploiting the output provided
by the MMSE MUD of Section III-A in its initial population.
For the sake of brevity, we will portray the philosophy of the
proposed system in simplified terms. However, readers who are
unfamiliar with GAs can consult [23] for a detailed description
on GA-based optimization.

Fig. 3 shows a flowchart of the GA MUD employed in our
multiuser SDMA-OFDM system.

1) Population Initialization: At the beginning of the GA-
based search, an initial population consisting X number
of so-called individuals is created. In order to speed up
the GA’s search procedure, the first individual is created
by making a hard decision at the output of the MMSE
MUD of Section III-A. The other X − 1 individuals are
then generated by mutating1 the MMSE solution. Without
loss of generality, an individual is represented by a sym-
bol vector containing L complex symbols, each of which
belongs to one of the L number of users at the specific
subcarrier considered. Specifically, the ith individual is
expressed as

s̃(y)
i =

[
s̃
(y)
i,1 , s̃

(y)
i,2 , . . . , s̃

(y)
i,L

]
, i = {1, . . . , X} (15)

where s̃
(y)
i,l denotes the lth (l = 1, . . . , L) gene of the ith

individual. If for example a 4QAM modem constellation
is used, each gene s̃

(y)
i,l can be represented by one of the

4QAM constellation symbols, namely by s̃
(y)
i,l ∈ Mc . The

population consisting of X number of individuals then
forms the starting point of the optimization process, which
is referred to as the y = 0th generation.

2) Fitness Value Evaluation: The GA’s task is to find an
individual, which is considered optimum or near-optimum

1The mutation process will be detailed later in this section.

Fig. 3. Structure of the GA MUD used in the multiuser SDMA-OFDM system.

in terms of minimizing the joint metric of (14) in the
context of a P -antenna SDMA-OFDM system. For each
individual, an associated objective score can be derived by
evaluating (14). The objective score is then converted to a
corresponding fitness value, which indicates the fitness of
the specific individual. This fitness calculation is carried
out in the “Fitness Value Evaluation” block of Fig. 3.

3) Mating Pool Creation: Based on the fitness values, T
number of individuals are selected for creating the so-
called mating pool, following the principle of Pareto-
Optimality [23], [31]. This strategy favors the so-called
non-dominated individuals and ignores the so-called dom-
inated individuals [31]. Specifically, the uth L-symbol
individual is considered to be dominated by the vth indi-
vidual, if we have [35]

∀i ∈ {1, . . . , P} : Ωi

(
s̃(y)
v

)
≤ Ωi

(
s̃(y)
u

)

∧∃j ∈ {1, . . . , P} : Ωj

(
s̃(y)
v

)
< Ωj

(
s̃(y)
u

)
(16)
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where Ωp( · ) is defined by (11). If an individual is not
dominated in the sense of (16) by any other individuals in
the population, then it is considered to be nondominated.
All the nondominated individuals are then selected and
placed in the mating pool, which will have a size of 2 <
T ≤ X [31].

4) Selection: In order to evolve the population through-
out the consecutive generations, the individuals in the
mating pool are then selected as parents for produc-
ing offspring. The selection process is based on the so-
called fitness-proportionate algorithm employed by the
“fitness-proportionate selection” block of Fig. 3, which is
widely used in the literature [36]. According to fitness-
proportionate selection, each of the T number of individ-
uals in the mating pool is assigned a selection probabil-
ity proportionate to its fitness value, which is calculated
as follows. First, the so-called windowing-mapping [28]
technique is invoked in order to get the fitness value f

(y)
i

associated with the ith individual, which is given by

f
(y)
i = Ω(y)

T − Ω
(
s̃(y)
i

)
+ c (17)

where

Ω(y)
T = max

t∈{1,...,T }

{
Ω

(
s̃(y)
t

)}
(18)

is the maximum objective score2 achieved by evaluating
the T number of individuals in the mating pool at the
yth generation, and c is a small positive constant, which
is used for the sake of ensuring the positiveness of f

(y)
i .

Then, the fitness-proportionate probability of selection pi

of the ith individual can be formulated as

pi =
f

(y)
i∑T

j=1 f
(y)
j

. (19)

Therefore, the individuals having higher fitness values will
be assigned higher selection probabilities, based on which
X/2 pairs of parents are selected. Moreover, during the se-
lection process, the so-called incest prevention [37] tech-
nique can be invoked, which requires that the two individu-
als selected to form a pair of parents are different. This can
effectively prevent the GA from premature convergence.

5) Crossover: For each pair of the X/2 selected parents, a
genetic operation referred to as crossover [24] is invoked.
The crossover operation is a process during which some
of the genes of a parent are exchanged with those of the
other parent, thus creating two offspring. In our proposed
GA MUD, the well-known uniform crossover [38] scheme
corresponding to the “Uniform crossover” block of
Fig. 3 is employed. For example, suppose each individ-
ual has L = 6 genes. After two individuals are selected
as parents from the mating pool, a binary crossover mask
vector containing six randomly generated ones and zeros

2Note that the individual having the maximum objective score out of the pool
of the T candidates is considered as the worst solution in the context of the
current mating pool, since the GA searches for the optimum solution which
minimizes (14).

will be created. The genes are then exchanged between
the selected pair of parents at positions associated with a
one in the crossover mask, giving birth to two offspring.

6) Mutation: After the crossover operation is applied to each
pair of parents, X number of offspring are produced,
which are then subject to the so-called mutation [24] oper-
ation, and some of the offspring’s genes may be changed.
Specifically, any gene of an offspring may be mutated to
another legitimate gene under the control of the specific
mutation strategy employed. Furthermore, the activation
of the mutation process is governed by the so-called mu-
tation probability pm . Therefore, following the cross-over
and mutation blocks illustrated in Fig. 3, the new popula-
tion will be constituted by X number of mutated offspring.
It is worth pointing out that the mutation operation is criti-
cal to the success of the genetic evolution, since it ensures
that sufficient diversity is maintained in the population,
thus preventing the GA’s search from being trapped at lo-
cal optima. This will be further discussed in Section III-D.

7) Elitism: While the crossover and mutation operations offer
the opportunity of improving the average fitness of the
population, they do not guarantee that each of the offspring
is better than their parents in terms of their fitness values.
In other words, the better individuals associated with the
higher fitness values found in the yth generation may not
be retained in the (y + 1)th generation. For the sake of
ensuring that the high-fitness individuals are not lost from
generation to generation, the best individual of the parents
population is copied into the new population, replacing the
worst offspring. This technique is known as elitism [24],
as illustrated in Fig. 3.

The genetic operation cycle mentioned previously forms the
basis of the GA-aided optimization, yielding an offspring pop-
ulation having an improved average fitness. This evolution con-
tinues until the generation index reaches its maximum. Then,
the operation of the GA is terminated and the highest fitness
individual of the last population will be considered as the fi-
nal solution, which is the specific length-L symbol vector that
contains the detected transmitted symbols of the L users at the
specific OFDM subcarrier considered. If the population size X
and/or the number of generations Y are sufficiently high, the
GA’s final solution approaches the optimum [31].

D. Improved Mutation Scheme

In the context of GA-based detection techniques, the effi-
ciency of the mutation scheme employed is important for the
success of the entire evolution procedure, since it provides a
chance for the individuals of the current population to influ-
ence the forthcoming ones, so that new areas of the total search
space may be explored and thus the chance of finding the opti-
mum solution increases [39]. In the context of the GA-assisted
multiuser SDMA-OFDM system, when the number of users L
increases or a high-throughput modulation scheme is used, the
total search space consisting of 2mL number of L-user sym-
bol vectors would become excessive. In such cases, the role
of mutation may become vital for the success of the overall
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system, since the GA may get trapped in local optima without
appropriate assistance of the mutation scheme.

1) Conventional Uniform Mutation: According to the
M -ary mutation employed by the GA MUD, each gene ŝ(l)(l =
1, . . . , L) of a length-L GA individual ŝ in the X-element popu-
lation is represented by a specific symbol inMc . In other words,
the lth gene denotes the lth user’s estimated transmitted sym-
bol at the subcarrier considered. During the genetic evolution,
when a gene is subjected to mutation, it will be substituted by a
different symbol in Mc based on a uniform mutation-induced
transition probability p

(ij)
mt

3, which quantifies the probability of
the ith legitimate symbol becoming the jth. For the sake of
brevity, from now on we refer to this probability as the tran-
sition probability. Furthermore, we shall refer to the mutation
scheme employing uniformly distributed p

(ij)
mt values as uniform

mutation (UM), which is a widely used conventional mutation
scheme known in the literature [24], and was also employed by
the GAs invoked in [31].

According to UM, the original gene will mutate to all the other
candidate symbols in Mc with a same transition probability.
However, this fixed uniform transition probability fails to reflect
the realistic channel conditions that the system is subjected to.
When considering a specific received symbol the adjacent con-
stellation symbols are more likely to be the transmitted symbol,
than the more distant ones. Hence, it may be more reasonable to
consider only the neighboring symbols as the potential mutation
candidates, and assign a modified biased transition probability,
which is dependent on both the distance from the original sym-
bol and on the signal-to-noise ratio (SNR). In other words, the
GA’s search space may be substantially reduced with the aid of
a biased mutation, which pays less attention to the constellation
points that are far from the received symbol. This is especially
beneficial for the system employing high-throughput modula-
tion schemes such as 16QAM, where the total search space is
exponentially expanded as a function of the number of BPS
compared to lower-throughput modems. In such a system, the
UM-aided GA, which allows mutation to all legitimate symbols,
may suffer from a slow convergence speed and might result in a
high residual error floor, since a considerable portion of the GA’s
searching power may be wasted on mutating to highly unlikely
gene candidates. By contrast, the biased mutation guided GA
is expected to achieve a better performance, since it searches
for the optimum solution in a more efficient way, as it will be
demonstrated in Section III-D2.

2) Biased Q-Function Based Mutation (BQM): In this sec-
tion, a novel mutation scheme will be presented which we call
BQM. According to BQM, for an original gene to be mutated, an
SNR-related biased transition probability p

(ij)
mt will be assigned

to each of the target candidate symbols in Mc . The calculation
of p

(ij)
mt may be carried out with the aid of the widely known

3Note that the mutation probability pm is different from the probability p
(ij )
m t

of mutating to a specific symbol in Mc . The former denotes the probability of
how likely it is that a gene will mutate, while the latter specifies how likely it is
that a specific symbol in Mc becomes the mutated gene.

Fig. 4. Illustration of the 1-D transition probability p
(ij )

m t for 4QAM.

Q-function [40]

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt, x ≥ 0. (20)

For the sake of easy explanation, let us first consider a simple
one-dimensional (1-D) scenario. In Fig. 4 we plotted the 1-D
real component of the constellation symbols ŝ

(l)
i in the context

of the 4QAM modem constellation. The horizontal axis is then
divided into two zones, each of which represents one specific
1-D constellation symbol sRi(i = 1, . . . , 2), as separated by the
vertical dashed line of Fig. 4. If sR1 is the original gene to be
mutated, the Gaussian distribution N(0, σ) may be centered at
the position of sR1, where σ is the noise variance at a given
SNR level. In this specific example, sR2 is the only mutation
target, and the 1-D transition probability of mutating from sR1

to sR2; i.e., p
(12)
mt , is characterized by the shadow area shown in

Fig. 4, which is given by

p
(12)
mt = Q

(
d0

σ

)
(21)

where d0 is half of the distance between the neighboring con-
stellation symbols. Similarly, we have

p
(21)
mt = Q

(
d0

σ

)
. (22)

We also have a certain probability for the original gene to remain
unchanged, which can also be expressed in terms of the Gaussian
distribution as

p
(11)
mt = p

(22)
mt = 1 − Q

(
d0

σ

)
. (23)

The corresponding two-dimensional (2-D) symbol transition
probability p

(ij)
mt can be derived by combining the 1-D real and

imaginary transition probabilities.4 For the specific 1-D-based
4QAM example of Fig. 4, we plot the corresponding 2-D con-
stellation in Fig. 5. In Fig. 5, for instance, the 2-D transition
probability of mutating from the constellation symbol ŝ

(l)
1 to

ŝ
(l)
2 , namely p

(12)
mt , can be calculated by multiplying the two

4Note that the 1-D transition probability p
(ij )

m t is different from the transition

probability p
(ij )
m t , which is based on the 2-D constellation symbols.
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Fig. 5. Illustration of the 2-D transition probability p
(ij )
m t for 4QAM, which is

the product of the relevant 1-D transition probabilities. sR i and sI i (i = 1, 2)
denote the 1-D constellation symbols in the context of the real and imaginary
components of the 4QAM constellation symbols, respectively.

relevant 1-D transition probabilities according to5

p
(12)
mt = p

(11)
mt · p(12)

mt =
(

1 − Q

(
d0

σ

))
· Q

(
d0

σ

)
(24)

while the associated 2-D probability of remaining in the current
state is

p
(11)
mt = p

(11)
mt · p(11)

mt =
(

1 − Q

(
d0

σ

))2

. (25)

However, when mutation takes place during the evolution,
the mutating gene or constellation symbol should not be al-
lowed to be mutated to itself. Hence, the effect of the probabil-
ity of mutating a symbol to itself should be removed. This can
be achieved by normalizing the 2-D transition probability p

(ij)
mt

(i �= j) with the aid of the original gene’s probability of re-
maining unchanged, namely p

(ii)
mt , following the principles of

conditional probability theory [41].
For higher throughput modems, for example for 16QAM and

64QAM, the same algorithm can be invoked for calculating
the corresponding 1-D and 2-D transition probabilities. More-
over, the proposed BQM scheme can be readily extended to
M -dimensional (MD) constellations, since the MD transition
probability associated with a specific MD symbol can be read-
ily derived upon multiplying the M number of corresponding
1-D transition probabilities.

3) Simplified BQM: Furthermore, the proposed BQM
scheme can be effectively simplified, when only a subset of
all the theoretically possible mutation target symbols are con-
sidered. More precisely, for the original gene subjected to mu-
tation, we may only consider its adjacent neighboring constel-
lation symbols as mutation target candidates, since the original
transmitted symbol is less unlikely to be corrupted to a relatively
distant constellation symbol.

An example of the simplified BQM designed for 16QAM
is provided in Fig. 6. As shown in Fig. 6, for example, we
assume that ŝ

(l)
1 is the original gene subjected to mutation,

5Note that the superscripts i and j of the 2-D transition probability p
(ij )
m t

denote the 2-D constellation symbols ŝ
(l)
i and ŝ

(l)
j , while the underlined su-

perscripts i and j of the 1-D transition probability p
(ij )

m t represent the 1-D
constellation symbols sR i and sRj , respectively.

Fig. 6. Example of the simplified BQM for 16QAM.

TABLE I
POSSIBLE TRANSITION PROBABILITY VALUES FOR THE CNUM SCHEME

and ŝ
(l)
i (i = 2, . . . , 9) represents the adjacent neighbors of ŝ

(l)
1 ,

while the symbols represented by the dashed-line circles are
ignored. Therefore, the GA’s entire search space is reduced.
Moreover, the search space can be further reduced when we only
consider the nearest neighbors of ŝ

(l)
1 as the legitimate mutation

candidates, namely the symbols ŝ
(l)
i (i = 3, 5, 6, 8), which are

shown in grey in Fig. 6. Each of these symbols is then assigned
an equal 2-D transition probability p

(1j)
mt = 1/4(j = 3, 5, 6, 8),

while all other constellation symbols shown in white are ne-
glected. Since the transition probability for each selected mu-
tation candidate is set to be identical, the BQM scheme is sim-
plified to a new scheme similar to UM which we refer to as
the closest-neighbor uniform mutation (CNUM) scheme. Note
that in CNUM, the corresponding transition probability value
is only dependent on the location of the original gene. For in-
stance, if the original gene is located in one of the four corners
of the constellation map plotted in Fig. 6, the relevant transi-
tion probability p

(ij)
mt becomes 1/2, since in this case only two

nearest-neighbor symbols exist. The CNUM-related transition
probability values of the different modems are summarized in
Table I. Hence, by introducing the simplified BQM scheme or
the CNUM arrangement, the computational complexity of BQM
can be reduced.

E. Iterative GA MUD

The performance of the multiuser SDMA-OFDM system em-
ploying the BQM-assisted GA MUD can be further improved
when an enhanced iterative detection architecture is utilized.
In the literature, iterative techniques such as SIC [1]–[6], and
PIC [1], [2], [6], [7], have been designed for multiuser OFDM
systems. Following the philosophy of iterative detections, we
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Fig. 7. Structure of the MMSE-initialized iterative GA MUD used at the BS.

propose an MMSE-initialized iterative GA (IGA) MUD for mul-
tiuser SDMA-OFDM systems.

The detailed structure of the IGA MUD is outlined in
Fig. 7. Specifically, the received length-P symbol vector x of
(2) is first detected by the MMSE MUD, which outputs the L

MMSE-detected symbols ŝ
(l)
MMSE(l = 1, . . . , L) of the L users

and forwards them to L number of independent TTCM de-
coders. The TTCM-decoded L-symbol vector, which is more
reliable than the MMSE MUD’s output, is then fed into the
concatenated GA MUD for assisting the creation of the initial
population. Then the genetically enhanced output symbol vec-
tor ŝGA, which may be expected to become more reliable, will
be fed back to the TTCM decoders in order to further improve
the signal’s quality, invoking a number of iterations. Following
the last iteration, the final GA solution will be decoded by the
TTCM decoders, and the hard-decision version of the estimated
information bits of the L independent users is forwarded to the
output, which is only enabled at the final iteration by the switch
seen in Fig. 7.

Therefore, two improvements have been achieved by the
MMSE-IGA MUD. First, a more accurate initial knowledge
of the transmitted signals, namely the output of the TTCM de-
coders rather than that of the MMSE MUD, is supplied for
the GA MUD. This reliable improvement, therefore, offers a
better starting point for the GA’s search. Second, the iterative
processing ensures that the detected L-user symbol vector can
be optimized in two dimensions. During every iteration, on one
hand, each L-symbol vector at a specified subcarrier slot is op-
timized by the GA in the context of the user domain. On the
other hand, the entire TTCM-coded frame of each user is opti-
mized by the TTCM decoder in the context of the TTCM-related
codeword domain, or more specifically the frequency domain.
Therefore, as the iterative processing continues, an information
exchange takes place between the two domains, and thus an
improved system performance may be expected.

IV. SIMULATION RESULTS

In this section, we characterize the performance of the pro-
posed TTCM-assisted concatenated MMSE-GA multiuser de-
tected SDMA-OFDM system. The channel was assumed to be
“OFDM symbol-invariant,” implying that the taps of the im-
pulse response were assumed to be constant for the duration of
one OFDM symbol, but they were faded at the beginning of each
OFDM symbol [1]. The simulation results were obtained over

TABLE II
VARIOUS TECHNIQUES AND PARAMETERS USED IN OUR SIMULATIONS

a channel characterized by the three-path short wireless asyn-
chronous transfer mode (SWATM) CIR given in [1, p. 78]. The
maximum path delay is 48.9 ns, while each of the paths experi-
ences independent Rayleigh fading having the same normalized
Doppler frequency of 1.235 × 10−5. The OFDM modem em-
ployed K = 512 subcarriers and a cyclic prefix of 64 samples,
which is longer than the maximum channel delay spread. If
not explicitly stated, it was assumed that the channels’ trans-
fer functions were perfectly known. For the iterative TTCM
scheme [16] used, the code memory ν was fixed to three, the
generator polynomial expressed in octal format was (13 6), and
the codeword length and channel interleaver depth were fixed
to 1024. For each of the various schemes evaluated, a similar
number of overall TTCM decoding iterations was maintained
so that the total TTCM-related complexity remained approxi-
mately the same for all systems. Table II summarizes the various
techniques and parameters used in our simulations.

A. BQM Versus UM

Fig. 8 shows the BER performance achieved by the various
schemes considered. The performance of the TTCM-assisted
MMSE-SDMA-OFDM system, the TTCM-assisted optimum
ML-detected system, and the uncoded single-user scheme em-
ploying a single receiver when communicating over an AWGN
channel are also provided for reference, respectively. The num-
bers in the round brackets seen in the legends of Fig. 8 denote
the associated number of IGA MUD iterations. From the results
of Fig. 8, two conclusions may be made. First, improved perfor-
mance can be achieved when the GA commences its operation
from a better initial population, regardless of the different mu-
tation schemes used. For example, at the same GA complexity,
the single-iteration IGA MUD assisted systems outperformed
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Fig. 8. BER versus Eb /N0 performance comparison of the TTCM-assisted
MMSE-GA-SDMA-OFDM or MMSE-IGA-SDMA-OFDM system using UM
or BQM, while employing a 4QAM scheme for transmission over the SWATM
channel, where L = 6 users are supported with the aid of P = 6 receiver
antenna elements, respectively. The GA-related system configuration are given
in Table II.

their noniterative GA aided counterparts, since the initial GA
population of the former systems were created based on the
first-iteration outputs of the TTCM decoders, rather than on the
less reliable MMSE MUD regardless, whether UM or BQM
was employed. Secondly, the BQM-aided systems achieved a
better performance than the UM-aided schemes, since BQM is
more efficient in guiding the GA towards the optimum solu-
tion, as seen in Fig. 8. Furthermore, the system employing the
BQM-aided two-iteration IGA MUD was capable of achiev-
ing a virtually indistinguishable performance from that of the
optimum ML-aided system.

When a high-throughput modem such as, for example,
16QAM, is employed, BQM may significantly outperform UM,
as evidenced in Fig. 9, where six users were supported.6 As
seen in Fig. 9, even when the IGA was employed, the UM-aided
scheme yielded a high residual error floor due to the less efficient
mutation strategy. By contrast, BQM significantly improved the
GA’s performance by lowering the error floor by about two
orders of magnitude. Furthermore, when the number of IGA
MUD iterations was increased, the performance of the BQM-
aided system can be dramatically improved, while the UM-aided
scheme still suffered from an error floor. This suggests that the
BQM-aided scheme is capable of substantially benefitting from
both a more meritorious initial GA population, and from a higher
number of IGA MUD iterations. On one hand, the improved ini-
tial population provides a good starting point for the GA, thus
assisting the BQM, which in turn benefits the entire detection
process, resulting in a substantial performance improvement.
On the other hand, the iterative processing invoked by the IGA
MUD further enhances the system’s performance with the aid

6Note that in this case the associated complexity of the ML-aided scheme
is as high as on the order of O(2m L ) = O(24·6) = O(16, 777, 216), which
imposes an excessive complexity, and hence cannot be simulated.

Fig. 9. BER versus Eb /N0 performance comparison of the TTCM-assisted
MMSE-GA-SDMA-OFDM or MMSE-IGA-SDMA-OFDM system using UM
or BQM, while employing a 16QAM scheme for transmission over the SWATM
channel, where L = 6 users are supported with the aid of L = 6 receiver an-
tenna elements, respectively. The GA-related system configuration are given in
Table II.

Fig. 10. BER versus Eb /N0 performance comparison of the TTCM-assisted
MMSE-IGA-SDMA-OFDM system using BQM, while employing a 4QAM
scheme for transmission over the SWATM channel, where L = 6, 7, 8 users are
supported with the aid of P = 6 receiver antenna elements, respectively. The
GA-related system configuration are given in Table II.

of the 2-D optimization, as discussed in Section III-E, since
the beneficial information exchange between the user domain
and the frequency domain assists both the GA MUD and the
TTCM decoder in eliminating more and more errors found in
the received signal, as the iterative procedure continues.

B. Overloaded BQM-IGA

Fig. 10 shows the performance achieved by the BQM-IGA
aided TTCM-SDMA-OFDM system using 4QAM, when six,
seven, and eight users are supported by six receiver antenna
elements, respectively. It is seen in Fig. 10 that in the so-called
overloaded scenarios, where the number of users exceeds the
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Fig. 11. Iteration gain at the BER of 10−5 versus number of IGA MUD
iterations performance of the TTCM-assisted MMSE-IGA-SDMA-OFDM sys-
tem using BQM, while employing a 4QAM scheme for transmission over the
SWATM channel, where L = 6, 7, 8 users are supported with the aid of P = 6
receiver antenna elements, respectively. The GA-related system configuration
are given in Table II.

number of receiver antenna elements, the linear MMSE MUD
suffered from an insufficient degree of freedom for separating
the different users, since the high number of users incurred
excess multiuser interference (MUI). This results in a significant
performance degradation in the context of the system using the
MMSE MUD, when the number of users increased from six to
eight, as observed in Fig. 10. However, in such cases, the system
employing the proposed BQM-IGA MUD was still capable of
maintaining a near-ML performance. For example, when we
had L = 8, the two-iteration based BQM-IGA MUD reduced
the BER measured at 3 dB by four orders of magnitude in
comparison to the MMSE-aided benchmarker system, as shown
in Fig. 10. This result characterizes the robustness of the BQM-
IGA MUD, which has successfully suppressed the high MUI
experienced in overloaded scenarios.

Fig. 11 shows the iteration gain achieved by the BQM-
IGA assisted TTCM-MMSE-SDMA-OFDM system employing
4QAM at the BER of 10−5, while using different number of IGA
MUD iterations. The iteration gain is defined here as the Eb/N0

difference of the systems employing different number of IGA
MUD iterations measured at the BER of 10−5 in comparison to
the baseline system employing a single IGA MUD iteration. It
is found in Fig. 11 that when more users are supported, higher
iteration gains may be obtained by iterative detection. For exam-
ple, a gain of about 6 dB was attained by the eight-user system
at the second IGA MUD iteration, while that attained by the six-
user system was only about 0.5 dB. Furthermore, as the number
of iterations was increased from two to six, the former scheme
provided a further gain of about 1 dB, while no explicit gain
was achieved by the latter arrangement, as shown in Fig. 11. It
is also seen in Fig. 11 that most of the achievable iteration gain
has been attained at the second IGA MUD iteration for all the
schemes.

Fig. 12. BER versus Eb /N0 performance comparison of the TTCM-assisted
MMSE-IGA-SDMA-OFDM system using BQM or CNUM, while employing a
4QAM scheme for transmission over the SWATM channel, where L = 6, 7, 8
users are supported with the aid of P = 6 receiver antenna elements, respec-
tively. The GA-related system configuration are given in Table II.

C. BQM Versus CNUM

As discussed in Section III-D3, the BQM scheme may be
simplified to the CNUM arrangement, which mutates to only
one of the closest neighbors of the original gene, thus reducing
the complexity of BQM. However, CNUM does not necessarily
degrade the system’s performance dramatically. Fig. 12 provides
a performance comparison of BQM and CNUM in the fully
loaded and overloaded scenarios. As observed in Fig. 12, the
BQM-IGA aided system achieved slightly better performance
than its CNUM-IGA aided counterpart. This may suggest that
in such scenarios the CNUM scheme may become an attractive
alternative to the BQM scheme for the sake of further decreasing
the complexity imposed.

D. Performance Under Imperfect Channel Estimation

As a further investigation, we provide the simulation results
generated in the scenario where the channel state information
(CSI) was assumed to be imperfect. The estimated CIRs ĥi were
generated by adding random Gaussian noise to the true CIR taps
hi as

ĥi [n] = hi [n] +

√
σ2

n

ε
ni [n], i = 1, . . . ,L (26)

where ε is the effective noise factor, σ2
n is the noise variance

at the specific SNR level, ni is an AWGN sample having zero-
mean and a variance of unity, L is the number of CIR taps, and
[n] denotes the nth OFDM symbol. In the scenarios associated
with imperfect CIRs, ε was set to 64, and L was set to three for
the three-path SWATM channel used. In this case, the effective
noise power added to the true CIR taps during each OFDM
symbol for the sake of simulating imperfect channel estimation
was σ2

n · L/ε = σ2
n × 4.69%.

Our performance comparison of the proposed BQM-
IGA aided TTCM-MMSE-SDMA-OFDM system under the
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Fig. 13. BER versus Eb /N0 performance comparison of the TTCM-assisted
MMSE-IGA-SDMA-OFDM system using BQM, while employing a 4QAM
scheme for transmission over the SWATM channel, where L = 6, 7, 8 users are
supported with the aid of P = 6 receiver antenna elements, respectively. The
GA-related system configuration is given in Table II.

assumptions both of perfect and imperfect CSI is provided in
Fig. 13. As seen in Fig. 13, the proposed system was capable
of attaining an acceptable performance even without accurate
channel knowledge. Moreover, it was found that when imperfect
channel estimation was assumed, the BQM-IGA aided system
outperformed its ML-aided counterpart, especially in the sce-
narios associated with higher user loads. This phenomenon may
be explained as follows. When the CSI is imperfect, the ML-
detected signal becomes less reliable than that detected in the
scenario benefitting from perfect CSI. The relatively unreliable
output of the ML MUD may readily mislead the TTCM decoder
due to error propagation, resulting in a performance degradation.
However, the detrimental effects of imperfect CSI may be mit-
igated by the proposed IGA MUD. More specifically, the IGA
MUD optimizes the detected signal in two dimensions, namely
in both the user domain as well as in the frequency domain, as
discussed in Section III-E. The beneficial information exchange
offered by the IGA MUD between the two domains may effec-
tively assist the concatenated detection-decoding procedure in
counteracting the detrimental effects of imperfect channel esti-
mation. This results in better system performance in comparison
to that achieved by the ML-aided system. Furthermore, when
a higher number of users had to be supported, the ML-aided
system using imperfect CSI suffered more from inaccurate mul-
tiuser detection, while a more robust behavior was exhibited by
the IGA-aided system, as shown in Fig. 13.

V. COMPLEXITY ANALYSIS

Compared to the conventional UM scheme, BQM is ca-
pable of significantly improving the GA’s performance, espe-
cially in high-throughput or high-SNR scenarios, as discussed
in Section IV-A. Furthermore, this performance improvement
was achieved at the cost of a modest complexity increase and
a modest memory requirement. At different SNR levels, for

each of the 2m constellation symbols, a specific set containing
(2m − 1) number of normalized 2-D transition probabilities has
to be created. However, this only imposes a modest “once-for-
all” calculation, since we can derive the associated transition
probabilities with the aid of offline experiments for a number
of typical SNR levels, where the calculated data can be stored
in the base station’s memory, hence incurring no further com-
putational complexity. Furthermore, by introducing the simpli-
fied BQM scheme of Section III-D3, the associated complexity
and memory cost may be dramatically reduced, especially for
high-throughput modems such as 16QAM or 64QAM, since
the number of mutation target candidates decreases, and thus
fewer transition probability calculations are required. More-
over, if the CNUM scheme is employed, the associated com-
plexity can be further decreased since, in this case, there is no
need to calculate the transition probabilities, which are already
available in Table I. This may significantly reduce the associ-
ated complexity and memory requirement, while still maintain-
ing performance similar to that of the BQM scheme as seen
in Fig. 12.

As suggested in Sections IV-A and IV-B, the performance of
the IGA-aided system can be further improved when the num-
ber of IGA MUD iterations or the GA’s parameters, such as
the population size, are increased. These will result in a further
increased complexity which, however, may still be significantly
lower than that imposed by the ML-aided scheme. In Table III
we compare the computational complexity imposed by the dif-
ferent MUDs in terms of the number of complex additions and
multiplications on a per user basis, where the number of re-
ceiver antenna elements was fixed to P = 6, and an Eb/N0

value of 3 dB was assumed. At a specific user load, we al-
ways selected the IGA-aided scheme for comparison, which
achieved an almost indistinguishable performance compared to
the corresponding ML-aided system. As shown in Table III, the
complexity of the ML MUD is significantly higher than that of
the MMSE MUD or the IGA MUD, especially in highly over-
loaded scenarios. On the other hand, the IGA MUD reduced
the BER by up to five orders of magnitude in comparison to the
MMSE MUD at a moderate complexity. It is also worth pointing
out that the IGA MUD’s complexity remained nearly identical
at different Eb/N0 values according to our simulation results,
which are not included here due to space limitations.

VI. SUMMARY AND DISCUSSION

From the investigations conducted, we conclude that the
GA-assisted TTCM-aided MMSE-SDMA-OFDM system is ca-
pable of achieving performance similar to that of the opti-
mum ML-assisted TTCM-SDMA-OFDM system. The novel
BQM scheme is capable of improving the GA’s search at a
modest complexity increase, thereby significantly increasing
the chances of finding the optimum GA solution in high-
SNR and/or high-throughput scenarios. On the other hand, the
2-D optimization provided by the proposed IGA MUD has been
shown to be beneficial for the SDMA-OFDM system in both
the frequency and user domains. Finally, the scheme that com-
bines BQM with the IGA MUD yields the best performance
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TABLE III
COMPARISON OF MUD COMPLEXITY OF NUMBER OF COMPLEX ADDITIONS AND MULTIPLICATIONS MEASURED AT Eb /No = 3 dB ON A PER

USER BASIS IN THE 4QAM TTCM-SDMA-OFDM SYSTEM

in all scenarios considered, while maintaining a significantly
lower computational complexity than that imposed by the ML-
assisted system, especially when the number of users is high, as
evidenced by Table III. Furthermore, the proposed BQM-IGA
MUD is capable of achieving a near-optimum performance in
the so-called over-loaded scenarios, where the number of users
supported is higher than the number of receiver antenna ele-
ments. In this case the classic linear MMSE MUD results in an
excessive residual BER, since the grade of freedom becomes
insufficiently high. Moreover, when the channel estimation is
imperfect, the proposed scheme still provides a satisfactory
performance.

The system parameters of the IGA framework, such as the
number of TTCM iterations the number of IGA MUD iterations,
and the GA-related parameter settings, are all readily config-
urable, enabling us to strike an attractive tradeoff between the
achievable performance and the complexity imposed. For spe-
cific scenarios, the TTCM scheme used in the system can also be
conveniently substituted by other FEC schemes—for example,
the TC codes. Therefore, the facility provided by the proposed
IGA MUD may make it relavent to applications in multimode
terminals, where good performance, low complexity, and easy
flexibility are all important criteria.

It is also worth pointing out that the proposed BQM-IGA
MUD can be readily incorporated into multiuser CDMA sys-
tems such as those of [31]. In this case, the initial detected
signal supplied to the GA MUD for creating the first pop-
ulation is provided by the bank of matched filters installed
at the CDMA BS, rather than by the MMSE MUD. How-
ever, the BQM scheme may remain unchanged. Our future re-
search will consider various overloaded sphere decoding aided
SDMA-OFDM systems.
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