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Abstract—Quantum key distribution (QKD) provides the op-
portunity to deliver unconditional communication security. The
most robust version of QKD relies on quantum entanglement.
Very recently, ubiquitous deployment of such entanglement-based
QKD over large distances has moved closer to reality, as verified
by quantum entanglement distribution from a low Earth orbit
satellite. We will demonstrate that this robust form of QKD
via space will require a renewed focus on short-block length
error-correcting codes in order to facilitate the reconciliation
phase of the key distribution. Focusing on discrete variable
QKD and adopting the low data rates consistent with measured
entanglement distribution from space, we quantify the benefits of
state-of-the-art short-block length codes in the context of device-
independent QKD. Our results highlight the trade-off between
the attainable key throughput vs the communication latency
encountered in space-based implementations of this ultra-secure
technology.

Index Terms—Quantum Key Distribution, LDPC codes, Key
reconciliation

I. INTRODUCTION

In 1984 Bennett and Brassard proposed the first quantum
key distribution (QKD) protocol [1] - the so-called BB84 pro-
tocol. Independently, some years later in 1991, Ekert proposed
a QKD protocol based on the entanglement of two photons -
the so-called E91 protocol [2]. One of the key features of the
latter protocol is that its level of security can be directly linked
to a violation of Bell’s Inequality [3] - a feature that supports
the most robust form of QKD, namely device independent
(DI)-QKD. DI-QKD is widely considered to be the preferred
route to implementable QKD, since its unconditional security
remains immune to a whole suite of sophisticated side-channel
attacks that plague the real-world deployment of BB84 (e.g
see [4] for review). However, the implementation of the DI-
QKD has traditionally been hampered by difficulties in closing
the locality loophole - a difficulty that can be traced back
to the limited distance of the receiver and to the detector
inefficiencies [5].

However, very recently, the landscape surrounding QKD
(and quantum communications in general) has changed dra-
matically with the first results from the Chinese experimental
quantum-enabled satellite, Micius (launched in August 2016),
appearing in the literature [6]. In one of their experiments
entangled photon pairs were produced by the satellite, with one
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photon from each pair beamed down separately to different
ground-station receivers, resulting in a summed distance of
1600km - 2400km traveled by the photons. The Chinese
collaboration has confirmed the presence of entanglement
separated by these large distances via violations of the Bell
Inequality on synchronized photon detections at the level
of 2.37 ± 0.09. Significantly, due to the order-of-magnitude
entanglement distance-improvement the locality loophole has
been removed from the analysis [6].

Given the exciting developments described above, the
prospect of ubiquitous real-world deployment of DI-QKD
is much improved. Indeed, such developments motivate a
complete study of DI-QKD within the context of the Micius
experiment. A key ingredient of DI-QKD within the context
of Micius may well be the implementation of codes having
a short block length codes of say 1000 - 10000 bits in the
reconciliation phase of the protocol. Such short-block length
codes are unusual in the study of QKD, since normally
longer codes of ∼ 106 bits length are adopted due to their
near-capacity performance. These longer codes also exhibit
improved security attributes, as discussed in [7] and in the
references therein. However, in the context of the Micuis
experiment, the data rates - i.e. the synchronized capture
of entangled photon pairs by the ground stations - is often
so small that use of short codes is necessitated. Use of
near-capacity large-block length codes would incur, in many
circumstances, an unacceptable time delay in the processing
of the secret key.

In this treatise we explore, for the first time, the use
of short state-of-the-art low density parity check (LDPC)
codes for the reconciliation phase of DI-QKD in the context
of realistic space-based implementations. To optimize their
performance we will conceive adaptive-rate low-complexity
puncturing techniques. Our analysis accounts for the full signal
processing (quantum and classical) required through all steps
of the DI-QKD protocol. We will demonstrate that useful key
rates can still be achieved for such short codes, despite their
performance erosion. Our results therefore point to the first
use of DI-QKD, despite the low data rates anticipated from
space-based deployment of quantum entanglement producing
devices.

The remainder of this paper is as follows. In Section II
the error correction codes and system model of our DI-QKD
set-up are presented. In Section III our simulation results
are portrayed for the entire DI-QKD system, including a
discussion on the impact of finite key length on the security
of the keys. Finally, we conclude in Section IV.
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II. SYSTEM MODEL

A. System Settings

As discussed, the DI-QKD system studied in this paper is
satellite-based. Specifically, the two legitimate users, Alice and
Bob, are two ground stations, at a distance of about 1000km
from each other. A satellite, used to generate and distribute
entangled pairs of photons, is considered to be approximately
overhead the two geographically distant ground stations. We
note that the rate of binary data generated via detecting
synchronized entangled photons from low Earth orbit (LEO)
can be as low as a few bits per second [6]. Such a low data
rate means filling one block of large-block length code can
be time-consuming (hours). As stated previously, in this case,
short-block length codes seem the more attractive, despite their
performance penalties.

B. The DI-QKD Protocol

The version of the DI-QKD protocol we adopt in this work
follows the one studied in [8]. We introduce all the phases of
this protocol as follows:

Distribution and measurement of the entangled states: We
assume that following distribution from the satellite, Alice and
Bob share Nent pairs of entangled photons. These states are
represented by

|s〉 = (m |01〉 − |10〉)√
m2 + 1

.

Without loss of generality we assume m to be real (conditioned
on the state being normalized). In what follows, we will
assume that the only source of error is due to imperfect entan-
glement (non-maximal, m 6= 1). For the ith photon pair (i =
[1, 2, ...Nent]) Alice and Bob perform a quantum measurement
in a basis randomly chosen from C = {|m(0)

α 〉 , |m(1)
α 〉} where

|m(0)
α 〉 =

|0〉+ eiα |1〉√
2

(1)

|m(1)
α 〉 =

|0〉 − eiα |1〉√
2

, (2)

where α = 0, π2 ,
π
4 . For mathematical convenience, we denote

Alice’s choice of α for a measurement on the ith photon
as xi = 0, 1, 2, corresponding to α = 0, π2 ,

π
4 , respectively.

Similarly, we denote Bob’s choice of α for each measurement
as yi = 0, 1, corresponding to α = −π4 ,

π
4 , respectively.

The measurement bases of Alice and Bob are randomly and
independently varied. We also denote Alice’s measurement
outcomes as binary bits ai = 0, 1 when the measurement
outcome is |m(0)

α 〉 or |m(1)
α 〉, respectively. Likewise, Bob’s

measurement outcomes are assumed to be binary bits bi = 0, 1.

Selecting the testing set: Firstly, Alice randomly selects a
fraction, k, of the total entangled pairs as a testing set. For
those photon pairs selected we relabel them with the index
t and define the selected set as T = {t|t ∈ [1, 2, ...Nent]}.
Alice then exchanges T with Bob. For each element t ∈ T,
two different actions will be taken based on Alice’s and Bob’s
choices of xt and yt. Table I shows how the values of xt and yt

TABLE I
MAPPING OF MEASUREMENT RESULTS TO ACTIONS

xt yt Action
2 1 Kept for estimating the channel parameter
0 0 Kept for CHSH game
0 1 Kept for CHSH game
1 0 Kept for CHSH game
1 1 Kept for CHSH game

are mapped to the actions to be taken in the phases that follow.

Checking the violation of Bell’s Inequality: The first
action to be taken is checking the violation of Bell’s
Inequality [3]. Here we adopt the CHSH game used in [8] to
measure the entanglement of Alice and Bob’s photons. We
want to estimate the probability of winning the CHSH game:

PCHSH = Pr (xt · yt = at ⊕ bt) ,

where xt · yt means the product of xt and yt, and ⊕ means
the binary XOR. Although we expect PCHSH = cos2

(
π
8

)
for

maximally entangled photons, this value cannot be achieved
in reality due to the imperfect entanglement. Therefore, a
pre-set noise tolerance parameter δ is introduced so that the
protocol will abort if PCHSH ≤ cos2

(
π
8

)
− δ.

Estimating the channel parameter: The second action
is that of estimating the bit-flip probability. Firstly, assuming
cos2

(
π
8

)
− δ < PCHSH ≤ cos2

(
π
8

)
is detected, Alice and

Bob continue the protocol. Then, Alice and Bob estimate
the fraction of erroneous bits, p̂, when xt = 2, yt = 1. The
protocol will abort if p̂ ≤ δ. When the estimation is complete,
Alice and Bob discard the exchanged bits. Therefore, the
remaining number of Alice’s (Bob’s) measurement outcomes
is Nent · (1− k).

Marking the results of our measurements as a binary 0 or
1, allows us to subsequently model the transmission of the
binary key as the transmission of bits via a Binary Symmetric
Channel (BSC), within which the bit-flip probability is defined
as p (which is estimated as p̂),

p =

[
1− (1 +m)

2

2 (1 +m2)

]
. (3)

Key sifting: Alice and Bob exchange all the choices of
xi and yi which are not yet publicly revealed and save
the measurement outcome of each photon pair to the raw
key only if xi = yi. Therefore, the length of the raw key
N ′ = Nent · (1− k) · 16 . Note, this means that in this protocol
the sifting factor, q, will be set at q = 1

6 .

Reconciliation: Alice and Bob agree on an LDPC matrix
HM×N ′ generated by some algorithm (e.g. the Progressive
Edge Growth algorithm [9] - see later). Here M represents
the number of check nodes. Alice applies this matrix on her
key string, and sends H and her syndrome to Bob. Then,
Bob adopts an LDPC decoding algorithm to reconcile his key
string.
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Privacy Amplification: For the reconciled string, Alice
and Bob use a Toeplitz matrix as a 2-universal hash function
(e.g. see [10]) where the block length is N ′, and the
number of rows of the Toeplitz matrix is calculated via
L = (1−H2(p̂)) ·N ′, and where H2(·) is the binary entropy
function. Therefore, for a given Toeplitz matrix UL×N ′ , Alice
and Bob can generate a final secured key string with the
length L.

Putting all these phases of the protocol together the key
rate is calculated via Rkey = L

Nent
, which is the key rate per

detected coincidence of two entangled photons being received
(one by each detector). Put another way, this is the rate per
entangled photon pair utilized in the protocol (because of
this rate definition, the small communication delays in the
communication rounds of the protocol can be ignored).

C. Progressive Edge Growth

The above analysis assumes perfect decoding. It is now
our aim to see how close this ideal result can be approached
in practice, when using realistic codes. As indicated, we
commence with LDPC codes. Any parity-check matrix of
an LDPC code can be described by a Tanner Graph. In the
Tanner Graph, symbol nodes represent the binary bits within
a code block and the check nodes represent the parity check
equations. Therefore, designing an LDPC parity check matrix
is equivalent to adding edges between symbol and check
nodes for a set of given parameters. The error correction of
LDPC codes is tightly coupled to the design of the Tanner
Graph. In particular, the length of the shortest girth of the
graph should be maximized so as to ensure the iterative
decoders operate efficiently [9]. Increasing the length of the
shortest girth, is the key aim of the Progressive Edge Growth
(PEG) algorithm. To achieve this desired aim, a spanning tree
(starting from a check node) is used to search the unvisited
symbol nodes at the lth level. For the maximum depth of the
spanning tree Lmax, we know that the shortest cycle starting
from the check node is 2Lmax + 2 [9]. This means that any
iterative decoding algorithm is guaranteed to work on a
cycle-free Tanner Graph for 2Lmax + 2 iterations.

To discover the performance of our LDPC codes at various
rates, we determine their thresholds (although see our later
discussion on the relevance of such a metric for short codes).
Code thresholds indicate the noise level below which a code-
word can always be determined without error. For LDPC codes
the code rate is given by Rc = 1 − dv

dc
, where dv (dc) is the

degree of a variable (check) node. In our simulations, dv is
fixed to 3, and dc = dv

1−Rc
. The maximum number of iterations

with cycle-free decoding, Lc, is determined by the following
equation [11]:

Lc =
log (N)− log

(
dvdc−dv−dc

2dc

)
log [(dc − 1) (dv − 1)]

. (4)

Therefore, if the decoder iterates less than 2Lc times, we can
safely assume that no cycles appear in the Tanner Graph.

Based on this assumption, we can further calculate the thresh-
old for each code rate. The Gallager ‘A’ algorithm [12] is used
as the decoding algorithm, and as such the following density
evolution equations (Eq. 6 in [11]) can be applied,

p(l+1) = p(0) − p(0)
[
1 +

(
1− 2p(l)

)dc−1
2

]dv−1

+(1− p(0))

[
1−

(
1− 2p(l)

)dc−1
2

]dv−1 (5)

where p(0) is the bit-flip probability of the BSC, and
p(l)(l ∈ [1, 2Lc]) is the bit-flip probability after the lth

iteration. The threshold can be set by numerically finding the
supremum of p(0) constrained by p(l) < 10−4 for sufficiently
large l.

We note that in any practical implementation of a satellite-
based QKD protocol, rate-adaptive reconciliation from some
Mother code is appealing. Assuming that the bit-flip probabil-
ity can be accurately estimated when Alice and Bob exchange
a random subset of their shared binary string, then useful rate-
adaptive reconciliation by puncturing or shortening from a
Mother code is possible (e.g. [13]).

For additional comparison purposes, we have also consid-
ered the performance of a turbo code [14]. The turbo code we
investigated is based on the parallel concatenation of two 8-
state Recursive Systematic Convolutional (RSC) codes having
a generator polynomial of [15], [16] in the octal notation. The
turbo code was punctured to generate an overall coding rate
of 0.5, and the number of turbo iterations invoked during the
decoding is four.

III. SIMULATION RESULTS

An important question to consider for our analysis is: how
do you measure the performance of a short-length code? There
is no clear answer to this question. All performance measures,
such as the thresholds we have already discussed, have their
limitations. Thresholds are traditionally used for large-block
length codes, but start to lose relevance as the block length
decreases. Waterfall diagrams and error floor determinations
may seem more relevant, but they are dependent on code rates,
with the possibility that some code structures are likely to be
sub-optimal over the range of anticipated channel conditions.

It therefore appears that some hybrid cost functions should
be attempted for performance evaluation of short-block length
codes. Any hybrid cost function should anticipate the appli-
cation within which the code will be used, as well as the
context that application is used in. For the reconciliation phase
of DI-QKD used in the context of satellite-based communica-
tions, any hybrid cost function should also include threshold
behavior as a function of code rate, reconciliation efficiency,
decoder complexity (decoding time), and error-floor behavior.
Inevitably, a trade-off in these metrics is necessary. A full
blown investigation of such hybrid cost functions is beyond
the scope of the present study. Here we simply investigate
the impact our state-of-the-art short-block length codes have
on reductions of the system throughput relative to optimal



4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12
Threshold vs. Code−rate

Code Rate

T
hr

es
ho

ld

 

 
Benchmark
LDPC

Fig. 1. The threshold of the 2400 block length LDPC code used in this work
compared to benchmark capacity-approaching irregular LDPC codes.

capacity. This can be seen most directly in terms of the
reduction in code thresholds.

With regard to the specific LDPC codes we study, in spite
of their many attributes (as described earlier), thresholds of
our codes relative to thresholds of large-block length codes
are significantly smaller. This can be seen clearly from Fig. 1
where we have considered a rate Rc = 1

2 2400 block-length
LDPC code as the Mother code (the comparison benchmark
codes are the 106 block-length LDPC codes of [15] - that
effectively obtain optimal capacity). In this calculation we
puncture the same amount of the symbol nodes and check
nodes in the Tanner Graph of the Mother code (for details
on this method see [17]). Note that puncturing the redundant
bits is equivalent to reducing the degree of check nodes, dc
(which will accelerate the decoding process when the bit-flip
probability is low). This effect allows us to increase the data
rate dynamically when the circumstances allow (note shorten-
ing has the opposite effect). That is, when the estimation of
bit-flip probability becomes lower, LDPC codes with a higher
code rate can be used for faster reconciliation. The resultant
code rate can be calculated by using Eq. (4) in [17]. As can
seen from Fig. 1 over a wide range of code rates derived from
our Mother code, the thresholds for our 2400 block length
LDPC code is over a factor of two smaller than those for a
capacity achieving code.

Our 2400 block length code can be further analyzed by
considering its QKD key-rate performance as a function of
bit-flip probability for a specific code rate. This is shown in
Fig. 2 for a code rate of 0.5, and for k also equal to 0.5. Here
we see how the key rate increases as we move to the better
channel conditions. We should note, although not explicitly
shown here, we find similar key rates for a range of LDPC
codes in the 1000-10000 block length range.

For further comparison, we have shown in Fig. 2 the
performance of the turbo code we have investigated. Recon-
ciliation based on turbo codes is slightly different from that
based on LDPC coding, and is somewhat akin to the use of
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Fig. 2. The key rate for one-half rate codes. A value of k = 0.5 is assumed.
The blue (solid) line represents the LDPC code, while the red (dashed) line
is a turbo code with the same rate. The block lengths for both codes used
in the simulation is 2400. The dotted line is a standard entanglement-based
QKD key rate calculated via Eq. 7.

turbo coding with side-information [16]. For turbo code based
reconciliation, firstly, Alice and Bob agree on a choice of
the turbo code. Then, Alice encodes her raw key string with
the turbo encoder and sends the parity bits generated by the
encoder to Bob. Next, Bob uses the parity bits sent from Alice,
his raw key string, and the channel parameter, as the inputs
of his decoder to finish the reconciliation. The code rate and
length of turbo code that is used in our simulation is again 1

2
and 2400, respectively.

From Fig. 2 we see that the LDPC code has a slightly better
performance at the low bit-flip errors, although the turbo code
does show better performance at higher bit-flip probabilities
(better threshold performance). More specifically when the
bit-flip probability increases from 0 to 0.03, the decoder can
correct essentially all errors in a block. This phenomenon can
be understood in that for a 0.5 code rate, the threshold is
approximately 0.039. Therefore, for any bit-flip probability
p ∈ [0, 0.03], the probability of a decoding error can be
made to approach zero. The key rate decreases drastically
when the bit-flip probability is in the range 0.04 to 0.06 since
the decoding error significantly increases when the bit-flip
probability from the channel is larger than the threshold.

We recall that there is a fraction k of raw key that is revealed
due to the estimation of the channel parameter. Although
simply reducing k can increase the key rate, this in turn will
mean estimation accuracy in the CHSH game and in the bit-
flip probability will decrease. This makes it more difficult
for Alice and Bob to detect any potential disturbance caused
by Eve. Beyond this, the decoding algorithms for our codes
require a good estimation of the bit-flip probability in order to
achieve good decoding performance. A trade-off between the
raw key availability and estimation accuracies could therefore
be considered during any implementation.

Note, for illustrative comparison purposes we have also
shown in Fig. 2 the theoretical key rate for a more ‘standard’
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entanglement version of QKD. This is calculated via the
following relation [18]:

R′key = qQλ[1− f(δb)H2(δb)−H2(δp)] , (6)

where Qλ is the gain as defined in Eq. (9) of [18]. Assuming
the entanglement source is ideal and the detection of the
distributed photon pairs is ideal, Eq. (6) can be simplified as:

R′key = q[1− (f(p) + 1)H2(p)] . (7)

In Fig. 2 we have set q = 1
6 for the sifting factor and f(p) = 1

for ideal error correction.
The conclusive message from our calculations is that short-

block length PEG LDPC codes are viable candidates for
use in the satellite-based systems we study, despite their
shortcomings in terms of thresholds. A similar conclusion is
drawn for turbo codes. Their modest performance reduction
experienced at lower bit-flip probabilities is outweighed by
their superior performance at higher bit-flip probabilities.

In closing we caution that our analysis of code performance
within our chosen DI-QKD protocol only puts an upper limit
on the secrecy key rate. We have provided no basis that secure
keys at such rates are achievable - a fact compounded if
we were to consider finite size effects. More explicitly, we
have not formally applied any ε security parameter for the
composable security of our short codes. Indeed, the state-of-
the-art studies (e.g. [19]) of finite size effects on DI-QKD
do not provide a basis for establishing any formal security
for the keys generated by our specific short-length codes.
Beyond extending to larger code lengths, application of formal
security to our key rates would currently require additional
assumptions to be put in place within our system model,
leading to QKD schemes somewhat removed from a pure DI-
QKD scenario (e.g. one potential candidate is a relaxation to
one-sided DI-QKD [20]). We also note issues surrounding all
possible loophole-free tests are not covered in this work. Such
issues form some of our ongoing work in this area.

IV. CONCLUSIONS

Due to the short time span available for satellite-to-ground
station detections, the use of short-length codes for the key
reconciliation phase of space-based QKD may be required.
A situation where urgent command and control requirements
cannot wait for the accumulation of a one-time pad acquired
via multiple satellite passes, is but one scenario. In this work,
we outline how short-block length LDPC and turbo codes may
be able to provide such reconciliation solutions for the most
robust form of QKD, namely DI-QKD.

In this preliminary study we have made no attempt to
further optimize our codes for satellite-based implementations
(such as the recent Micius experiment) beyond the use of
state-of-the-art code construction techniques. No doubt further
optimization in both the LDPC and the turbo code spheres can
be achieved, and this should be the subject of future work.

Future work should also consider the neglect of finite
signalling in the security aspects of our derived key rates.
In particular, a formal security analysis that ties the block
length of the codes used for space-based DI-QKD to a formal ε

security parameter would be useful. We do expect there will be
a limit on the block-length below which security for DI-QKD
is no longer achievable - formal identification of this limit
would be useful. It could well be that for some space-based
implementations, in which delay tolerance of the messages is
bounded, relaxation around the tight assumptions implicit in
DI-QKD will be required for formal security in the keys to
be established. Nonetheless, the prospects for implementation
of satellite-based DI-QKD (or some variants thereof) appears
hopeful. Future theoretical and experimental work in this area
should have important ramifications for the emerging field of
space-based quantum communications.
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