
Received March 17, 2013, accepted April 15, 2013, published May 10, 2013.

Digital Object Identifier 10.1109/ACCESS.2013.2259536

Quantum Search Algorithms, Quantum Wireless,
and a Low-Complexity Maximum Likelihood
Iterative Quantum Multi-User Detector Design
PANAGIOTIS BOTSINIS (Student Member, IEEE), SOON XIN NG (Senior Member, IEEE), AND
LAJOS HANZO (Fellow, IEEE)
School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, U.K.

Corresponding author: P. Botsinis (pb8g10@ecs.soton.ac.uk)

This work was supported in part by the RC-UK, India-UK Advanced Technology Centre (IU-ATC), EU, under the Concerto Project, and
the European Research Council Advanced Fellow Grant.

ABSTRACT The high complexity of numerous optimal classic communication schemes, such as the
maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this
paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential
applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard
MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD.
Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input
soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted
sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD)
scheme, which is the quantum-domain equivalent of theMLMUD.We then demonstrate its application using
the design example of a direct-sequence code division multiple access system employing bit-interleaved
coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its
performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show
that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the
QMUD’s computational complexity is significantly lower.

INDEX TERMS Bit-interleaved coded modulation, computational complexity, EXIT chart, Grover’s quan-
tum search algorithm, BBHT quantum search algorithm, Dürr–Høyer algorithm, iterative decoding, multi-
user detection, quantum amplitude amplification, quantum amplitude estimation, quantum computation,
quantum entanglement, quantum mean algorithm.

NOMENCLATURE
ACO Ant Colony Optimization
APP A Posteriori Probability
AWGN Additive White Gaussian-distributed Noise
BBHT Boyer-Brassard-Høyer-Tapp
BER Bit Error Ratio
BICM Bit-Interleaved Coded Modulation
BS Base Station
CF Cost Function
CIR Channel Impulse Response
COMP Cooperative Multi-cell Processing
DHA Dürr–Høyer Algorithm
DS-CDMA Direct-Sequence Code Division Multiple

Access
EPR Einstein-Podolsky-Rosen
EXIT Extrinsic Information Transfer

GA Genetic Algorithm
ID Iterative Decoding
IQFT Inverse Quantum Fourier Transform
LLR Log-Likelihood Ratio
MBER Minimum Bit Error Ratio
MC Multi-Carrier
MF Matched Filter
MFAA Multi-Functional Antenna Array
MIMO Multiple-Input Multiple Output
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSE Mean Square Error
MUA Multi-input-approximation
MUD Multi-User Detection
MUI Multi-User Interference
NSCC Non-Systematic Convolutional Code
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OFDM Orthogonal Frequency-Division Multiplexing
PSO Particle Swarm Optimization
QAA Quantum Amplitude Amplification
QAE Quantum Amplitude Estimation
QAM Quadrature Amplitude Modulation
QCA Quantum Counting Algorithm
QCR Quantum Control Register
QD Quantum Domain
QET Quantum Existence Testing
QFR Quantum Function Register
QFT Quantum Fourier Transform
QGOA Quantum Genetic Optimization Algorithm
QIR Quantum Index Register
QMA Quantum Mean Algorithm
QMUD Quantum Multi-User Detection
QoS Quality of Service
QR Quantum Register
QSA Quantum Search Algorithm
QWSA Quantum Weighted Sum Algorithm
SDMA Spatial Division Multiple Access
SF Spreading Factor
SISO Soft-Input Soft-Output
SM Spatial Multiplexing
SNR Signal to Noise Ratio
TCCC Turbo Coding relying on Convolutional

Codes
UWB Ultra-Wide Band

I. MOTIVATION
The history of wireless communications, the evolution of
standards and a host of popular enabling techniques was
detailed in [1]. These solutions paved the way for inching
closer to the Shannonian channel capacity limits. However,
these ultimate limits may only be approached for a sin-
gle user link subjected to pure Additive White Gaussian-
distributed Noise (AWGN) under Shannon’s idealized
simplifying assumptions of using random Gaussian transmit
signals. However, in practical state-of-the-art systems we
employ digital, rather than Gaussian transmit signals. Fur-
thermore, no quantitative statements were made by Shan-
non as regards to the system’s delay and complexity, whilst
in practice only the family of powerful and hence high-
complexity, high-delay channel coded systemsmight be capa-
ble of approaching these limits and even then only under
perfectly synchronized conditions. Regretfully however, per-
fect synchronization at near-capacity Signal-to-Noise Ratios
(SNR) is again, a real challenge. Hence the myth of operating
in the vicinity of Shannon’s capacity limit in practical systems
was dispelled in [2], where it was quantitatively demonstrated
with the aid of painstakingly meticulous measurements that
only a fraction of the theoretically attainable capacity is
actually achieved by the standardized systems.

Another limitation imposed on the operational standard
systems is that a single link’s Shannonian capacity is limited
by the logarithmic Bit/Hz normalized capacity formula of
C/B = log2(1+ SNR), which only allows the capacity to be

increased logarithmically with the SNR, i.e. with the transmit
power, where B is the available bandwidth. Nonetheless, we
hasten to add that when B tends to infinity, like in Ultra-Wide
Band (UWB) systems for example, this capacity formula
also tends to a linearly increasing function of the SNR. By
contrast, provided that we can construct a sufficiently high
number of parallel streams and additionally, we are capable of
conceiving low-complexity full-search-based detection tech-
niques, the throughput of wireless systems may be increased
linearly, rather than logarithmically with the transmit power,
leading to the concept of power-efficient ‘‘green’’ communi-
cations systems, which was the motto of the book [3].
Given this motivation, let us briefly elaborate on the

potential techniques of creating parallel streams in wire-
less systems and then embark on conceiving high-efficiency
quantum-processing techniques for creating powerful detec-
tors for them!

A. LARGE-DIMENSIONAL HOLISTIC OPTIMIZATION IN
WIRELESS SYSTEMS
1) The family of multi-stream wireless systems, such as

for example the single-carrier Direct-Sequence Code
Division Multiple Access (DS-CDMA) [4], [5] scheme
of the operational third-generation wideband-CDMA
systems are capable of increasing the throughput lin-
early with the transmit power - provided that we assign
multiple superimposed spreading codes to each of the
K users supported.

2) Similarly, the pan-American Multi-Carrier (MC) DS-
CDMA [5]–[7] cdma2000 system supports a multiplic-
ity of users by allocating unique, user-specific spread-
ing codes to them, which are also often referred to as
user signatures. The throughput of MC-CDMA may
also be increased linearly with the transmit power, since
we can create superimposed parallel streams in both the
time-domain and frequency-domain. Hence it may be
anticipated that MC-CDMA systems will play a promi-
nent role in future generations of wireless systems.

3) As a further dimension for creating superimposed par-
allel streams, the spatial domain of parallel transmit and
receive antennas was proposed in the context of Multi-
Functional Antenna Arrays (MFAA) [1]:

• To elaborate a little further, firstly, MFAAs are
capable of achieving a multiplexing gain by trans-
mitting independent parallel streams, which may
be separated at the receiver, provided that we
can estimate the unique, antenna-specific Channel
Impulse Responses (CIR) sufficiently accurately
at the receiver. This scheme is termed as Spatial
Multiplexing (SM).

• Secondly, the MFAAs are also capable of sup-
porting the uplink transmissions of multiple users
instead of transmitting multiple streams for a sin-
gle user, which is referred to as Spatial Division
Multiple Access (SDMA) [8]–[10]. Similarly to
separatingmultiple streams in spatial multiplexing,
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in SDMA the separation of users is achieved with
the aid of the accurately estimated unique, user-
specific CIRs.

• The third key function of MFAAs is the provi-
sion of diversity gain for the sake of mitigating
the deleterious effects of the wireless channel’s
fading imposed by the sometimes constructively,
sometimes destructively superimposed multiple
propagation paths. Naturally, the multiplicity of
propagation paths contribute further towards the
gradually escalating number of parallel streams,
which may be coherently combined with the aid
of maximum ratio combining for the sake of miti-
gating the effects of fading. It is important to note
however that in order to achieve the maximum
attainable diversity gain, the MFAA elements have
to be sufficiently far apart for experiencing inde-
pendent fading.

• The MFAAs are also capable of attaining angu-
lar selectivity, hence potentially mitigating the
effects of interference amongst the users, which
is termed as co-channel or Multi-User Interfer-
ence (MUI) - provided that the interfering sig-
nals arrive from angles outside the beamformer’s
main transmit/receive beam. These beamformers
typically employ MFAA elements, which are half-
the-wavelength apart, because in contrast to the
independently fading signal components of the
transmit diversity schemes, they aim for transmit-
ting/receiving appropriately phase-combined sig-
nal components for creating maxima in the desired
user’s direction andminima towards the interferers.

• Finally, all the above-mentioned design objec-
tives of MFAAs may be combined in the inter-
est of benefiting from all of these desirable per-
formance improvements—again, provided that
low-complexity multi-stream detectors may be
conceived.

Similarly to MC-CDMA, all the above-mentioned
concepts are also applicable to the fourth-generation
Multiple-InputMultiple Output (MIMO) aidedOrthog-
onal Frequency-Division Multiplexing (OFDM) sys-
tems [11]–[13], where the users convey their informa-
tion to and from the Base Station (BS) over multiple
subcarriers.

4) However, so far we have only alluded to the multiple
streams generated by multiple users and the MFAAs
within a single cell. In reality one of the most severe
performance limitation of wireless systems is con-
stituted by the MUI imposed by the adjacent cells,
because this can only bemitigated with the aid of Coop-
erativeMulti-cell Processing (COMP). More explicitly,
the basic philosophy of COMP is that the base-stations
are linked with the aid of either optical fibre or by
a point-to-point microwave link and this way they

exchange all their information, including all the uplink
and downlink data of all the users, as well as their CIRs.

5) Albeit the COMP concept imposes a huge amount
of data exchange amongst the BSs, as a benefit, no
MUI is experienced, because all the energy received
by all receivers is useful signal energy and hence
directly contributes towards achieving the best possible
holistic system performance. As a result, the theoreti-
cally best possible multi-user, multi-cell performance
constituted by an idealized system, where the only per-
formance impairment is the AWGN may be asymptoti-
cally approached - again, provided that low-complexity
parallel processing aided receivers may be constructed.
Expanding the multi-cell, multi-user optimization con-
cept [14], [15] yet another step further, accurate
near-instantaneous power control is required at the
COMP-aided BSs in order to minimize the transmit
power, while maintaining the required Quality of Ser-
vice (QoS) constraints for each of the K users [16],
[17]. In the operational standardized systems this is
achieved by carefully optimizing both the step-size
and the instants of power-updates as a function of
the vehicular speed, but these step-by-step sequential
power-adjustments do not necessarily approach the
optimum, especially not for high velocities. Hence a
near-instantaneous ‘‘direct-dial-style’’ parallel power-
adjustment of all transmitters would be desirable
across the entire system.
Additional large-dimensional optimization algorithms
processing numerous parallel streams in wireless com-
munication systems involve message-routing across
large cooperative and multi-hop networks [18]–[22],
where the specific multi-hop routing path having
the minimum overall length, or the minimum num-
ber of hops or alternatively, the maximum received
power between two predetermined nodes has to be
found. These techniques may be readily combined
with sophisticated message-scheduling and resource
allocation [23], [24], as well as with cognitive radio
techniques relying on efficient channel- and power-
allocation designed for the primary user [25], [26].
Moreover, soft information exchange between the sig-
nal detector and the channel-decoding stages is required
in the green communication systems of the future,
where holistic optimization is pursued [27] as well as in
massive MIMO systems [2], [11], [28], [29] where the
computational complexity of the optimal full-search-
based algorithms is potentially excessive. As a remedy,
in the next section we propose quantum-domain paral-
lel processing techniques for implementing the above-
mentioned massive parallel processing tasks.

B. MULTI-STREAM DETECTION IN LARGE-DIMENSIONAL
WIRELESS SYSTEMS
As argued above, the employment of algorithms impos-
ing a low computational complexity is essential, since
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low-complexity algorithms impose a low power-dissipation,
which hence requires desirably low-weight, potentially solar-
charged or kinetically-charged batteries for the shirt-pocket-
sized wireless handsets.

A plethora of bothMulti-User Detection (MUD) andmulti-
stream detections techniques has been proposed in the litera-
ture, as detailed for example in [4], [5]. In simple physically
tangible terms we may argue that provided all the K users’
signals in the above-mentioned holistically optimized system
arrive at the base-station synchronously and they transmit
M -ary signals, then the optimum full-search-based receiver
has to tentatively check all the MK symbol combinations,
in order to reliably detect each of the K user’s symbols.
More specifically, this is achieved by identifying the most
likely transmitted M -ary symbol of all the K users of the
entire multi-user, multi-cell system by evaluating a carefully
chosen Cost Function (CF), which may be the Mean Squared
Error (MSE) or the Bit Error Ratio (BER), etc. Suffice to
say, however that when using 64-level Quadrature Amplitude
Modulation (QAM) for example at an airport, where say
10 000 users would like to use their phones/tablet computers,
it is entirely unrealistic to evaluate the CF 6410 000 times. . .
This is where Quantum Computing may be employed in

the above-mentioned systems for reducing the complexity
of the above-mentioned processes by exploiting its inherent
parallelism as illustrated in Fig. 1. Assuming that only one
of the eight keys unlocks the box in Fig. 1, serial computing
would have to perform consecutive trials until the correct
key is found, requiring a long time for solving this problem.
By contrast, parallel computing would recreate the box eight
times and try all the keys in parallel, which is more efficient
as far as the required time is concerned, but it requires more
hardware resources. Quantum computing on the other hand is
capable to try all the keys at the same time in the context of a
single box.
Following the above low-paced tutorial exposure, in the

rest of this treatise we will expedite the speed of developing

our ideas. We continue by reviewing the family of quantum
search algorithms that may be used in the above-mentioned
large-dimensional wireless systems and then conclude by
providing a radically new quantum-MUD DS-CDMA design
example.

II. INTRODUCTION
The employment of MUD facilitates achieving a near-single-
user performance with the aid of joint iterative detection
and decoding, exchanging extrinsic information in the form
of Log-Likelihood Ratios (LLR) between the receiver com-
ponents. The complexity of the optimal Maximum Like-
lihood (ML) MUD [30] exhibits an exponential increase
with the number of users, which prohibits its employment
when many simultaneous users are supported by the sys-
tem. Hence reduced-complexity solutions have been devel-
oped, such as the decorrelating and the Minimum Mean-
Square Error (MMSE)MUDs [31], the iterative linearMMSE
MUD [32], as well as the successive interference cancellation
aided detector [33] and the family of iterative interference
cancellers [34]. Following an approach, where the aim is
to directly minimize the system’s BER, the Minimum BER
(MBER) detector was conceived [35], [36]. MUDs that can
be integrated into an iterative receiver, providing soft deci-
sions for the decoder, while accepting soft estimates from the
decoder, have also been proposed [6], [37], [38].
Bio-inspired heuristic algorithms have also been conceived

for shrinking the search space by performing a random-
guided search, which are capable of near-optimal MUD.
For example, Genetic Algorithm (GA)-based MUDs have
been proposed in [39]–[41]. Furthermore, an Ant Colony
Optimization (ACO) algorithm-based MUD was proposed
for the uplink of a synchronous MFAA-assisted MC DS-
CDMA system in [7], while its soft-output version, termed as
the multi-input-approximation (MUA)-assisted soft output-
ACO MUD, was presented in [42]. By exploiting the sheer
power of Particle Swarm Optimization (PSO) algorithms,

FIGURE 1. Comparison between classic serial, parallel and quantum computing. Assuming that only one of the eight keys
unlocks the box, by employing serial computing we have to try each of the keys sequentially until one succeeds to unlock it.
Classic parallel computing creates as many boxes as the available keys and tries all of them at once, requiring a large amount
of resources. With quantum computing we are able to try all the keys in parallel on a single box. The box corresponds to a
function, while the keys represent the legitimate inputs of the function. The key that unlocks the box is the input of the
function which will lead to a desired output. By employing quantum computing, the function may be evaluated for the inputs
in parallel, as in parallel computing, with the computational cost of a single evaluation, as in serial computing.
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PSO-based MUDs were proposed in [43], [44], while
further low-complexity suboptimal MUDs were presented
in [45], [46].

With the size of a single transistor constantly shrinking
according to Moore’s law, it is expected to reach the atomic
scale in a few years, where the postulates of quantummechan-
ics replace the laws of classic physics. The transition to
quantum computing will unlock capabilities that a conven-
tional classic computer is inherently incapable of [47]–[50].
For instance, quantum computing allows parallel evaluations
of a function at a complexity equivalent to that of a single
classic evaluation. An astonishing example of the power of
quantum computing is the Quantum Amplitude Amplifica-
tion (QAA) algorithm analysed in [51] employed in Grover’s
Quantum Search Algorithm (QSA) [52], [53], which per-
forms search in an unsorted database having N elements and
finds a single solution1 at a complexity order of O(

√
N ),

in contrast to its classic optimal counterpart imposing O(N )
operations. Boyer et al. [54] proposed the so-called Boyer-
Brassard-Høyer-Tapp (BBHT) QSA, which is also based on
quantum amplitude amplification and manages to perform
search in an unsorted database even when the number of
solutions is higher than one and even if the exact number
is not known a priori. The Dürr–Høyer algorithm (DHA)
presented in [55] manages to find the index of the minimum
entry in a database by activating the BBHT QSA multiple
times.

In addition to the breakthroughs in quantum error correc-
tion [56], [57] and quantum cryptography [58], [59], a sub-
stantial amount of research has been devoted to the quantum
search-basedMUDfield by creating quantum-assistedMUDs
(QMUD) [48], [60], where classic algorithms are combined
with quantum-processes. It should be noted that the commu-
nications systemswe investigate operate in the classic domain
and only the QMUD processes are performed in the Quantum
Domain (QD). The inputs and outputs of the QMUD are
in the classic domain, as presented in Fig. 2. A represen-
tative example of a quantum-assisted MUD was proposed
in [60], [61], where the Quantum Counting Algorithm (QCA)
of [62] is employed. Quantum-inspiredMUDs have also been
proposed, adopting quantum-domain attributes in the classic
domain. Representative examples of quantum-inspired
MUDs are the combinations of the heuristic algorithms
combined with quantum principles, such as the quantum
PSO-based MUDs of [63]–[65], the quantum GA-optimized
neural network employed for signal detection in [66], and the
quantum GA-based MUDs of [67]–[69].

Our novel contributions are:

1) We have proposed a Maximum Likelihood Quantum-
assisted Multi-User Detector (ML QMUD), where all
the legitimate combinations of the users’ transmitted
symbols are taken into consideration at the receiver.
TheMLQMUDmatches the performance of the classic

1A solution is an index of the database the entry of which satisfies the
search problem.

FIGURE 2. Block diagram of soft-input soft-output quantum-assisted
multi-user detection, where the input/output signals are converted
from/to the classic domain (C) to/from the quantum domain (Q), while
the inner operations are performed in the quantum domain.

ML MUD, while achieving a quadratic reduction in
computational complexity.

2) We have designed the first Soft-Input Soft-Output
Quantum-assistedMUD (SISOQMUD) for forwarding
the bit LLRs to the decoding stage in the classic domain
and for processing the decoder’s soft outputs as a priori
information also in the classic domain, making it emi-
nently eligible for integration into an iterative receiver.

3) We have provided EXtrinsic Information Transfer
(EXIT) charts [4], [70] for the proposed QMUDs, com-
paring them with those of the ML MUD.

Based on the QD algorithm of estimating the mean of a
function [71], also termed as the Quantum Mean Algo-
rithm (QMA), we conceived an algorithm for estimating
the weighted sum of a function. Explicitly, we propose an
algorithm termed as the Quantum Weighted Sum Algorithm
(QWSA) for estimating the LLRs. This is achieved by com-
puting the numerators and denominators of the LLRs, which
involve the summations of conditional probabilities. These
operations represent the CF evaluations, while the corre-
sponding a priori probabilities act as the weights of the con-
ditional probabilities, as detailed in Section VII.
The rest of the paper is structured as follows. We will

apply the proposed QMUD scheme in a communications
system presented in Section III. A review of QSAs and their
applications is offered in Section IV. The relevant theoretical
background on quantum computing is provided in Section V,
while Section VI introduces Grover’s QSA, the BBHT algo-
rithm and finally the DHA, which will also be exploited in
our proposed QMUD. Section VII introduces the QMA and
proposes the measures required for the transfiguration of the
QMA into the QWSA. Section VIII states the CF normaliza-
tion issues and the resultant computational complexity of the
QWSA-based MUD, while the performance of our system
employing both Bit-Interleaved Coded Modulation (BICM)
relying on Iterative Decoding (ID) and on turbo codes is
presented in Section IX. Finally, our conclusions are offered
in Section X.

III. SYSTEM OVERVIEW
BICM-ID will be used in our uplink communications sys-
tem presented in Fig. 3. The information bit stream {bk} of
each user is encoded into the stream {ck} by a convolutional
encoder, which is passed through pseudo-random bit-based
interleavers. Then, the interleaved bits {uk} are spread by the
user-specific DS-CDMA sequences of the codebook C and
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FIGURE 3. BICM-ID system’s block diagram with K users and quantum-assisted multi-user detection with soft-input
and soft-output.

are modulated onto the symbols {xk}, which are transmitted
over uncorrelated Rayleigh channels over T time slots. The
channel matrix H is assumed to be perfectly estimated at the
BS. Moreover, the DS-CDMA codebookC = [c0, . . . , cK−1]
storing ck = [ck,0 . . . ck,SF−1]T employed by the individ-
ual users having a specific Spreading Factor (SF) is known
at the BS. On the other hand, the thermal noise imposed
at the receiver, along with the time delay introduced dur-
ing the propagation is unknown. However, since we assume
non-dispersive Rayleigh fading, only the noise levels are
unknown.

The classic optimal MUD that accepts soft inputs and
provides soft outputs is the one that computes the bit LLRs
of every bit of every symbol of each user. Let us consider a
multi-user system supporting K users and employing an M -
ary modulation scheme. Omitting the time superscript, the
Matched Filter’s (MF) outputs during a single time slot are
described by

y = CHCHx+ CHn

= Rx+ ñ (1)

where y = [y0, . . . , yK−1]T includes each user’s MF output
during the same time slot, x = [x0, . . . , xK−1]T is the multi-
level symbol, n = [n0, . . . , nSF−1]T contains the complex-
valued thermal noise at the BS, where we have R = CHCH
and ñ = CHn = [ñ0, . . . , ñK−1]T .
The bit-based metric computed at the MUD is the

a posteriori information of the encoded, interleaved bits,
presented in terms of the LLRs as [4]

Lm,po
(
b(m)k

)
= ln

P
(
b(m)k = 0|y

)
P
(
b(m)k = 1|y

)

= log

[ ∑
x∈χ (k,m,0)

P (y|x)P(x)

]
/P(y)[ ∑

x∈χ (k,m,1)
P (y|x)P(x)

]
/P(y)

(2)

where the subscript k is the index of the specific user
k ∈ {0, . . . ,K − 1} the bit belongs to, the superscript
m ∈ {0, . . . , log2(M )− 1} denotes the index of the particular
bit the LLR is computed for in the symbol of the kth user,M is
the size of the modulation constellation, χ (k,m, v) is the set
of multi-level symbols for which the

(
k log2(M )+ m

)
th bit

is equal to v, P(x) is the a priori probability of the symbol x,
P(y) is the model’s likelihood, which reflects the probability
of receiving y as [4]

P(y) =
∑
x

P (y|x)P(x) (3)

P(y|x) is the CF, which represents the probability of having
received y, given that the multi-level symbol x was transmit-
ted [4]

f (x) = P(y|x) = exp
(
−‖y− Rx‖2 /2σ 2

)
(4)

where σ 2 is the noise variance. Assuming the independence
of the bits in a symbol, the a priori symbol probability is equal
to the product of the a priori bit probabilities that the symbol
was created from, i.e. we have

P(x) = P(b(0)0 ) · . . .P
(
b(log2(M )−1)
0

)
· . . .P

(
b(log2(M )−1)
K−1

)
.

(5)
It should be noted that MK/2 CF evaluations are required
in the summation in each of the numerator and denominator
of (2).

The extrinsic LLRs are passed to the K Max-Log
A Posteriori Probability (APP) decoders [4], which in turn
feed the QMUDwith symbol probabilities, given the received
encoded soft sequence. These iterations are continued for a
specific number of iterations. During the first iteration, or
if the MUD is not part of an iterative procedure, as in non-
iterative BICM, all the symbols have equal a priori probabil-
ities, since no extrinsic information is available.

IV. ORIGINS OF QUANTUM COMPUTING
Research on Quantum Mechanics initiated in 1923 by the
renown physicists Planck, Bohr, Heisenberg, Einstein and
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Schrödinger. Even though arguments have been arisen against
quantum mechanics being a compact and complete theory of
describing nature, quantum mechanics is considered to be the
superset of physical theories describing both the microscopic
and macroscopic worlds, while abiding by the laws of the
Newtonian theory.

By using the principles of quantum mechanics in order
to improve intelligent computational systems, the field of
Quantum Computing emerged. In 1981, Feynman introduced
the concept of a quantum computer, which would be able to
accurately simulate the evolution of a quantum system [72].
It was only a year later when Benioff presented a complete
theoretical framework of the quantum computer concept [73].
The structural element of a quantum computer is a quantum
bit, or qubit, that, in comparison to the classic bit, has values
that are not limited to 0 and 1. Quite the contrary, it can
have any of these two values like a spinning coin in a box,
whichwill only assume the value of ‘‘Heads’’ or ‘‘Tails’’ upon
observing it when it stopped. This phenomenon is also often
referred to as being in a superposition of the two orthogonal
states, 0 and 1 [47]. The reason for this superposition of states
being seemingly absent in the macroscopic world is related
to the observation of the qubit. When a qubit is observed or
‘‘measured’’, any superposition of states that it might have
assumed ‘‘collapses’’ to the classic states of 0 or 1, as stated
by the so-called Copenhagen interpretation [74], introduced
by Bohr and Heisenberg in 1924. As a further terminology,
Everett in 1957 proposed the ‘‘Many-World’’ or ‘‘Parallel-
Universes’’ interpretation [75], where an observation of a
quantum state creates parallel universes that carry on with a
different observation outcome taking place in each.

Quantum computing exploits a range of astonishing, non-
intuitive characteristics of quantum mechanics, such as quan-
tum parallelism, a term coined by Deutsch in 1985 [76],
and entanglement [80] to accomplish computational tasks
of stunningly high complexity, which would be deemed
excessive in the classic computing world. Entanglement is
a mysterious connection that can be established between
qubits, where the observation of one of the entangled qubits
allows instantaneous knowledge to be obtained for the other
qubit. Einstein, Podolsky and Rosen challenged the valid-
ity of using quantum mechanics for describing nature by
presenting a thought experiment which leads to a paradox
(EPR paradox) [81]. Their thought experiment is based on the
entanglement between particles. Assume that there are two
particles, A and B, which interact with each other and then
they are moved to different locations. Quantum theory and
Heisenberg’s uncertainty principle state that it is impossible
to have knowledge of both the position and the momentum of
a particle. According to the EPR thought experiment, if amea-
surement of A’s position is made, then the position of B can
be calculated. Therefore, the same statement can be made for
B’s momentum, and hence A’s momentum can be calculated.
Therefore, both the position and the momentum of particle
B become known, resulting in a paradox. Hence Einstein’s
belief was that quantummechanics was not a complete theory

of nature. As a further advance, in 1966 Bell showed that at
least one of the initial assumptions of Einstein, Podolsky and
Rosen, namely locality and reality, was flawed, which was
encapsulated in Bell’s inequalities in [80].
Quantum parallelism is the ability to evolve the qubits of

a quantum system in parallel, saving a large amount of com-
putational complexity, when compared to classic computing.
Quantum parallelism was first exploited by Deutsch in 1985,
who proposed a quantum algorithm [76] based on the princi-
ples of quantum parallelism and quantum interference, which
is also part of quantum mechanics. By applying Deutsch’s
algorithm to a function f : {0, 1} → {0, 1}, a global property
can be determined by relying on a single evaluation of f . This
property is the determination of whether the function f is an
one-to-one mapping function, hence whether f (0)⊕f (1) = 1,
or not, resulting in f (0)⊕ f (1) = 0. In the context of a classic
apparatus two evaluations of f would be required, one for
each legitimate input.
In 1992, Deutsch and Jozsa [77] generalized Deutsch’s

algorithm of [76]. This algorithm was used to solve the so-
called generalized Deutsch problem [77]. Converted into a
real life scenario for better intuition, two persons are con-
sidered, Alice and Bob, with Alice classically transmitting
a number x to Bob with x ∈ {0, 2n − 1} and n ∈ N. When
Bob receives this number, he evaluates a function f (x) and
sends the resultant value back to Alice, which may be either
0 or 1. The function that was used by Bob is either a constant
function, in which case the output is fixed to a single value,
namely to 0 or 1, regardless of the input, or balanced, which
means that for half the possible inputs the outcome is 0
and for the other half it is 1. Alice’s goal is to determine
whether the function that was used by Bob is a constant or
balanced, which she intends to find out by iterating the above
procedure. More explicitly, by applying the Deutsch-Jozsa
algorithm [77], Alice could achieve her goal in a single cor-
respondence, while in classic computing 2n−1 + 1 enquiries
would be required in the worst case scenario, which includes
f being a constant and hence reaching this conclusion after
evaluating just over half of the legitimate inputs. The best
case scenario in classic computing may occur when f is
balanced and its first two evaluations output different values.
The Deutsch-Josza algorithm was further improved by Cleve,
Ekert, Macchiavello and Mosca in [79], where the phase
estimation quantum algorithm was introduced.
In 1994 Shor proposed a number of algorithms for quan-

tum computation [78], such as for example a quantum algo-
rithm conceived for integer factorization. Furthermore, Shor
introduced the concept of the Quantum Fourier Transform
(QFT) [78]. A range of techniques for constructing unitary
transformations in the form of matrices, which are used for
describing the time-domain evolution of any quantum system,
i.e. its consecutive states as a function of time were also
presented. During the same year, Simon managed to solve
a black-box problem by using on the order of O(n) queries
to the black box, compared to the optimal classic algorithm,
which uses �(2n/2) queries for the same task [82]. The black
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box Uf implements a function f : {0, 1}n → {0, 1}n, which
constitutes the input to the problem and has the property that
f (x) = f (y) if and only if x = y or x ⊕ y = s, for some
s ∈ {0, 1}n, where x, y ∈ {0, 1}n. Simon’s algorithm succeeds
in finding this s that satisfies the function’s above-mentioned
property.

In the mid 1990’s the field of quantum-domain search
and quantum-assisted optimization of intelligent computa-
tional systems started gaining substantial momentum based
on the Deutsch-Jozsa algorithm [77] and Shor factoring algo-
rithm [78]. The quantum algorithms touched upon are sum-
marized in Table 1. The rest of this section continues by intro-
ducing the quantum search algorithms along with their appli-
cations in the field of wireless communications. Nevertheless,
this does not limit the applications of the quantum algo-
rithms, since at the time of writing substantial research efforts
are devoted into quantum-based communications, where
quantum information is conveyed over quantum channels
[95]–[97], with particularly attractive applications in the field
of optical communications [98], [99].

A. ORIGINS AND APPLICATIONS OF QUANTUM SEARCH
ALGORITHMS
In 1996 Grover proposed a quantum mechanical algo-
rithm for performing quantum search in an unsorted clas-
sic database [52], [53]. Grover’s QSA finds the index of
the desired entry in the classic database, assuming that the
desired value appears only once in the classic database, or,
in other words, when there is only one solution in the classic
database. During the same year, Boyer, Brassard, Høyer and
Tapp (BBHT) in [54] generalized Grover’s QSA to the case,
where the desired value appears in more than one entry in the
classic database. In the same paper, they proposed the BBHT
algorithm, which yields the index of an entry having the
desired value, provided that the number of identical desired
entries is unknown a priori. Furthermore, they derived a
closed-formmathematical expression for quantifying the suc-
cess probability of Grover’s QSA in identifying the desired
entry. Grover’s QSA is essentially an amplitude amplification
process that allows the retrieval of the desired search outcome
after a specific number L of tentative evaluations in the clas-
sic database [51]. The computational complexity of search-
ing an unsorted classic database of size N by employing

classic computing is O(N ), whereas by using Grover’s QSA
is O(
√
N ).

In July of 1996 Dürr and Høyer proposed the DHA for
finding the minimum entry in a classic database with∼ 100%
probability, based on the BBHT QSA [55]. Furthermore,
Bennett et al. in [83] proved that Grover’s QSA is asymptoti-
cally optimal, by formally showing that there exists no quan-
tum algorithm that can satisfy the search problem in fewer
than O(

√
N ) computational steps. In 1997, Zalka provided

the mathematical proof that Grover’s QSA is optimal in terms
of maximizing the success probability of obtaining the index
pointing to an entry having the desired value [84].
In 1998, Brassard, Høyer and Tapp proposed the Quantum

Counting Algorithm (QCA) based on Grover’s QSA and
Shor’s quantum algorithms in [62]. The concept of QCA was
conceived by the same authors in [54]. The QCA is capable
of providing the number of entries in a classic database that
are equal to the desired value, or, in other words, the number
of solutions in the database. The QCA may be viewed as an
amplitude estimation process, which is capable of estimating
the number of desired entries in the classic database [51]. In
1999, Ahuja and Kappor also presented a similar QSA to the
DHA that was capable of finding the maximum entry in a
database [87]. During the same year, Long et al. introduced
the generalized version of Grover’s QSA by using arbitrary
unitary operators and phase rotations in Grover’s quantum
circuit [86], replacing Grover’s proposed operators [52].
When considering applications, where the entries of the

database are related to each other, Hogg presented a heuris-
tic QSA [88], which manages to find the specific index
that corresponds to the minimum entry. Since this quantum
algorithm is heuristic and application-based, no theoretical
limits were provided. Then, Brassard et al. proposed a mod-
ification in the last part of Grover’s QSA in order to suc-
cessfully conclude the search with 100% probability [51].
In 2002, Imre and Balázs proposed an MUD scheme for a
DS-CDMA system employing the QCA [60], [61]. The main
process relies on creating symbol-specific quantum databases
containing all the potential faded and noise—as well as
interference—contaminated received signals corresponding
to each user’s hypothesized transmitted symbol and then aims
for finding the transmitted symbol of each user relying on
the QCA. If the faded and noise—as well as interference—

TABLE 1. Origins of Quantum Computing.

Year Author(s) Contribution

1981 Feynman [72] Proposed the basic model of a quantum computer, which was capable of simulating the sequence of quantum states
in a quantum system.

1982 Benioff [73] Proposed a theoretical framework for a quantum computer.

1985 Deutsch [76] Deutch’s Algorithm: A global property of a function f :
{
0,1

}
→

{
0,1

}
can be determined by using only a single

evaluation of f .

1992 Deutsch and Jozsa [77] Deutsch-Jozsa Algorithm: Succeeds to determine whether a function f :
{
0,2n

− 1
}
→
{
0,1

}
is balanced or constant in

one correspondence.

1994 Shor [78] Shor’s Algorithm: Proposed a quantum algorithm for integer factorization and introduced the concept of the Quantum
Fourier Transform (QFT).

Cleve et al. [79] Proposed improvements to the Deutsch-Josza algorithm and introduced the phase estimation algorithm.
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contaminated received signal appeared in one of the symbol-
specific databases, then the specific information symbol this
database was constructed on is the most likely symbol to have
been transmitted by the corresponding user.

In 2003, Shenvi et al. proposed a quantum random-walk
search algorithm applied on graphs [89]. In 2004, Imre and
Balázs generalized Grover’s QSA, where arbitrary unitary
operators are employed and only a single iteration of the
Grover operator is applied [90]. Furthermore, Imre proposed
the Quantum Existence Testing (QET) algorithm [48], [92]
for replacing the QCA in the above-mentioned QMUD algo-
rithm. The difference between the QCA and the QET algo-
rithm is that the QET shows whether the faded and noise—
as well as interference—contaminated received signal asso-
ciated with a specific legitimate transmitted symbol does or
does not exist in the quantum database. However, this is
achievedwithout providing any information about the number
of occurrences. By contrast, the QCA provides an estimate of
the number of solutions in the database. Since in the QMUD
proposed in [60] the knowledge required is the existence
or non-existence of a solution in the databases, the QET is
sufficient and less computationally complex. Moreover, Imre
proposed a quantum algorithm for finding an extrinsic value
in an unsorted database in [92], provided that the desired
value was an integer number and that its approximate range
was known a priori. In [91], Zhao et al. proposed the con-
cept of a QMUD based on Grover’s QSA [53] and Imre’s
previously proposed QMUD [60]. The main concept was to
create a single quantum database for all users, containing the

CF evaluations of all the legitimate multi-level symbols that
might have been transmitted, and then to perform quantum
search for finding the minimum entry in it.
Malossini et al. employed the DHA for creating a

Quantum-assisted Genetic Optimization Algorithm (QGOA)
[93] that has a performance similar to that of the classic GA,
but this is achieved at a lower computational complexity.
Briefly, the GAs typically carry out a random-guided search
across a large search-spacewith the goal of finding the desired
entry associated with a CF maximum/minimum, while visit-
ing only a fraction of the legitimate entries. In 2011, Li et al.
proposed a quantum detection scheme for MIMO-OFDM
systems by employing Grover’s QSA [94]. Similarly to the
QMUD algorithm proposed in [91], a quantum database is
created by including evaluations of the CF used for classic
detection in MIMO systems for all the possible legitimate
inputs. A quantum algorithm based on Grover’s QSA is then
employed for finding the minimum of the CF in the resultant
quantum database. Brassard et al. proposed in [71] the QMA,
which finds the mean of a function with a predefined preci-
sion. In the same paper the authors presented an application
of the QMA for approximating the median of a function. The
major contributions in the field of quantum search along with
their applications are summarized gathered in Table 2.

V. FUNDAMENTALS OF QUANTUM COMPUTING
In classic communications the smallest unit of information
is the bit, which assumes binary values from the set {0, 1}.
Its quantum-domain counterpart is the quantum bit or qubit,

TABLE 2. Major contributions to Quantum Search Algorithms (QSA) with their applications.

Year Author(s) Contribution
1996 Grover [52], [53] Grover’s Quantum Search Algorithm (QSA): A quantum mechanical algortihm performing quantum search in an unsorted

classic database.
Boyer et al. [54] Showed a closed form for calculating the success probability of Grover’s QSA and proposed an algorithm based on

Grover’s QSA where the wanted searched number appears more than once and also an unknown number of times in
the database.

Dürr and Høyer [55] Dürr–Høyer Algorithm (DHA): Proposed a quantum algorithm for finding the minimum entry in an unsorted database.
Bennett et al. [83] Showed that Grover’s QSA is asymptotically optimal.

1997 Zalka [84] Proved that Grover’s QSA is exactly optimal, in terms of providing the maximum possible probability of obtaining the
solution.

1998 Ventura and Martinez [85] Presented the concept of Quantum Associative Memory based on Grover’s QSA.
Brassard et al. [62] Proposed the Quantum Counting Algorithm (QCA) based on Grover’s QSA and Shor’s factoring algorithm.

1999 Long et al. [86] Proposed a generalized Grover’s QSA by replacing the quantum circuit’s unitary operators with arbitrary ones.
Ahuja and Kapoor [87] Presented a QSA similar to the DHA of [55] for finding the maximum entry in a database.

2000 Hogg [88] Presented a heuristic quantum algorithm that finds the minimum by exploiting the correlation of the database entries.
Brassard et al. [51] Introduced the Quantum Amplitude Amplification (QAA) and Quantum Amplitude Estimation (QAE) concepts, along

with a modified Grover’s QSA that finds the solution with 100% probability.

2002 Imre and Balázs [60], [61] Proposed a Quantum Multi-User Detector (QMUD) employing the QCA of [62].

2003 Shenvi et al. [89] Proposed a quantum random walk search algorithm on graphs, having a similar approach as Grover’s QSA [53].

2004 Imre and Balázs [90] Presented a generalized Grover’s QSA with a single application of the generalized Grover’s operator.

2006 Zhao et al. [91] Suggested improvements to the Grover’s QSA-based MUD of [60].

2007 Imre [92] Introduced Quantum Existence Testing (QET) based on QCA of [62] and proposed an algorithm searching for extreme
values in an unsorted database based on QET.

2008 Malossini et al. [93] Presented a Quantum Genetic Optimization Algorithm (QGOA) where the parent selection is based on the DHA of [55].

2011 Li [94] Proposed a detection scheme for MIMO-OFDM systems based on the QCA of [62].
Brassard et al. [71] Proposed a quantum algorithm that finds the mean of a function inspired by the QCA of [62] and presented an application

of it which finds the median of a function.
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which is denoted as |q〉, where |·〉 is termed as a ket [100].
A unique and rather unusual feature of the qubit is that apart
from assuming the classic {0, 1} states, it also may assume the
superposition of them, as encapsulated in:

|q〉 = a|0〉 + b|1〉 (6)

where we have |a|2+ |b|2 = 1, with a, b ∈ C. If either a = 0
or b = 0, then we have |q〉 = |1〉 or |q〉 = |0〉, respectively. If
neither a nor b is equal to 0, then the qubit is in a superposition
of states, implying that it is in both states at the same time,
until this somewhat strange state is perturbed by external
interference, such as an attempt to ‘‘measure’’ or observe
it. The probability of finding a qubit being in the state |0〉
after observing it is |a|2 and in state |1〉 is |b|2. The physical
interpretation of a qubit was elegantly illustrated by Brassard
in [101] by presenting a scenario where an atom with an
electron orbiting on the ground state receives half the needed
energy to excite it to a higher energy level orbit. The atomwith
the two allowed energy levels that the electron can occupy
is presented in Fig. 4. Quantum mechanics do not allow the
electron to be observed in an intermediate state, even though
it is simultaneously in both the excited and ground state.

The non-intuitive phenomenon of quantummechanics may
be better appreciated by imagining a coin spinning within a
black box. Until it settles down and someone opens the box to
observe it, it is considered as being 50% ‘‘Heads’’ and 50%
‘‘Tails’’, simultaneously. Hence the state of a spinning coin
may indeed be deemed to be a superposition of states and its
state may be described by

|q〉 = a|0〉 + b|1〉 =
1
√
2
|0〉 +

1
√
2
|1〉 (7)

where |0〉 = ‘‘Heads’’ and |1〉 = ‘‘Tails’’, while |a|2+|b|2 =
0.5+ 0.5 = 1.

When the spinning coin settles down and an observer
approaches it, there is an |a|2 = 0.5 probability of observing
the ‘‘Heads’’ side of it and |b|2 = 0.5 probability of observ-
ing its ‘‘Tails’’ side. When an ‘‘observation’’ reminiscent of

FIGURE 4. An atom with one electron orbiting around the nucleus having
two legitimate energy levels (solid orbits). Quantum mechanics allow the
electron to be in an arbitrary superposition of these two energy levels
(dashed orbit), but when it is observed it may only be found in one of the
two legitimate orbits.

observing the spinning coin takes place in a quantum system,
the observed qubits ‘‘collapse’’ to a classic state according
to the so-called Copenhagen interpretation [74], where this
classic state is the observed one. In our example, if the coin
is observed to be in the |0〉 state, naturally it will remain in
this state, until an operation is applied to it. In a quantum
communication system, a qubit’s state is decided to be in
a specific classic state upon its observation. According to
the No-Cloning Theorem [47], a qubit being in an unknown,
unobserved state cannot be copied, which is in contrast to the
case of classic bits, which represent known, observed states.
A qubit |x〉 = ax |0〉 + bx |1〉 may also be interpreted as

a vector on a unit sphere, termed as the Bloch sphere [47],
where the positive z-axis represents the state |0〉 and the state
|1〉 is mapped to the negative z-axis, as depicted in Fig. 5.
The relationship between the angles ϑx , ϕx and the quantum
state’s amplitudes ax and bx is

ax = cos
(
ϑx

2

)
, bx = eiϕx sin

(
ϑx

2

)
(8)

where 0 ≤ ϑx ≤ π and 0 ≤ ϕx < 2π . From (8), we may
conclude that ax ∈ R+0 and bx ∈ C. The quantum amplitude
ax of |0〉may always be made real by applying a global phase
rotation to the qubit, without essentially changing its quantum
state [47]. A qubit in the quantum state |q〉 = a|0〉+b|1〉with
a, b ∈ R has ϕq = 0 and ϑq = 2 cos−1(a) = 2 sin−1(b), as
illustrated in Fig. 5.

A. COMPOSITE QUANTUM SYSTEMS
Naturally, a quantum system may involve several qubits. For
instance, a two-qubit state in a superposition of equiprobable

FIGURE 5. Geometrical representation of a qubit
|x〉 = ax |0〉 + bx |1〉 = cos(ϑx /2)|0〉 + ejϕx sin(ϑx /2)|1〉 with ax ∈ R,
bx ∈ C, 0 ≤ ϑ ≤ π and 0 ≤ ϕ < 2π on the Bloch sphere, along with the
computational basis {|0〉, |1〉}, the sign basis {|+〉, |−〉} and the Hadamard
H operator. The rotation Rπ/2 operator is applied on a qubit
|q〉 = a|0〉 + b|1〉 = cos(ϑq/2)|0〉 + ejϕq sin(ϑq/2)|1〉 with ϕq = 0 and
hence a,b ∈ R.
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states is described by

|q〉 = a0|00〉+a1|01〉+a2|10〉+a3|11〉,
3∑
i=0

|ai|2 = 1 (9)

where again, the square of the coefficients represents the
probability of finding the two-qubit register in the corre-
sponding state upon its observation.

A 3-qubit quantum system in a superposition of states may
be described as

|q〉 =
1

2
√
2
|000〉 +

1

2
√
2
|001〉 +

√
3

2
√
2
|100〉 +

√
3

2
√
2
|101〉

(10)
where we have a2 = a3 = a6 = a7 = 0 and

∑23−1
i=0 |ai|

2
= 1.

In practice, a specific scenario where this system may be
found in this particular superposition of states is when unitary
operators have been applied to the three qubits, which alter
their state.

In this example, the second qubit is in the state |0〉, since the
probability of finding it in |1〉 is zero. The third qubit can be
considered to be in the superposition of equiprobable states,
i.e. |q3〉 = 1

√
2
|0〉 + 1

√
2
|1〉, since the probability of observing

it in either of the states is the same according to (10). Finally,
the first qubit may be considered to be in the state of |q1〉 =
1
2 |0〉 +

√
3
2 |1〉, indicating a probability of 75% to retrieve |0〉

and 25% to observe |1〉. Hence, (10) is derived by

|q〉 = |q1〉|q2〉|q3〉

=

(
1
2
|0〉 +

√
3
2
|1〉
)
|0〉
(

1
√
2
|0〉 +

1
√
2
|1〉
)

=
1

2
√
2
|000〉 +

1

2
√
2
|001〉 + 0|010〉 + 0|011〉

+

√
3

2
√
2
|100〉 +

√
3

2
√
2
|101〉 + 0|110〉 + 0|111〉. (11)

This system’s state can be equivalently represented in a vec-
torial form as

|q〉 =

[
1

2
√
2
,

1

2
√
2
, 0, 0,

√
3

2
√
2
,

√
3

2
√
2
, 0, 0

]T
. (12)

For an arbitrary n-qubit register, its state may be denoted
as

|q〉 = [a0, a1, a2, . . . , a2n−2, a2n−1]T ,
2n−1∑
i=0

a2i = 1 (13)

where |a2|2 is the probability of observing the system in the
state |2〉 = |010〉 and |aj|2 is the probability of observing
the system in the state |j〉, with j = 0, 1, . . . , 2n − 1. The
formulation in (13) will be used in algebraic manipulations
in the following discussions. The states |0〉 and |1〉, that an 1-
qubit system can be found in, may be represented in vectorial
form as

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
. (14)

The Hermitian counterpart of (13) is referred to as a
bra [100] and it is denoted as

〈q| = |q〉† = [a∗0 a
∗

1 a
∗

2 . . . a
∗

2n−2 a
∗

2n−1],
2n−1∑
i=0

∣∣a∗i ∣∣2 = 1

(15)
where the superscript † denotes the conjugate transpose of
|q〉. It may be readily verified that the inner product obeys
〈q||q〉 = 〈q|q〉 = 1 and the outer product becomes

|q〉〈q| =


|a0|2 a0a∗1 · · · a0a

∗

2n−1
a1a∗0 |a1|2 · · · a1a∗2n−1
...

...
. . .

...

a2n−1a∗0 a2n−1a
∗

1 · · · |a2n−1|
2

 . (16)

B. EVOLUTION OF QUANTUM SYSTEMS
Unitary operators are employed to evolve a quantum system,
altering the amplitude of its superposition of states ai, but
keeping the sum of the probabilities for the system to be
observed to one of the superimposed states, to unity. An
operator U is a unitary operator if it obeys U−1 = U†,
where the superscript † denotes the conjugate transpose or
the Hermitian adjoint matrix of U . Since a quantum system
may be described by its quantum state |q〉, the application of
a unitary operator will transform it into the quantum state |q′〉
as in

|q′〉 = U |q〉. (17)

Two unitary operators that will be employed in our
QMUD are the Hadamard operator H and the Rotation oper-
ator Rθ [47], with their one-qubit matrix representations
being [47]:

H =
1
√
2

[
1 1
1 −1

]
, Rθ =

[
cos θ − sin θ
sin θ cos θ

]
. (18)

Their effect may be interpreted as in Fig. 6, where Rθ rotates
|q〉 by θ anti-clockwise on the unit circle, while H creates an
equiprobable superposition of the computational basis states,
as encapsulated in

|0〉
H
−→

1
√
2
(|0〉 + |1〉) (19)

|1〉
H
−→

1
√
2
(|0〉 − |1〉). (20)

The representation of a quantum state portrayed in Fig. 6
is only applicable when b ∈ R. Comparing it to the portrayal
of the quantum state as a vector on the Bloch sphere, we may
conclude that the plane consisting of the computational basis
{|0〉, |1〉} and the sign basis {|+〉, |−〉} on the Bloch sphere is
mapped to the right half circle of Fig. 6. In the case where
a rotation operator Rθ results in the quantum state’s vector
lying on the left-hand plane in Fig. 6, the resultant quantum
state may be equivalently represented by applying a rotation
gate associated with θ = π . The application of a rotation
gate with θ = π does not affect a quantum state, since it
may be considered as applying a global phase to it, which
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FIGURE 6. Geometrical interpretation of a qubit |q〉 = a|0〉 + b|1〉 with
a,b ∈ R, on the computational basis {|0〉, |1〉} and the sign basis
{|+〉, |−〉}, along with the Hadamard H and rotation Rπ/2 operators.

is unobservable [47]. For example, the unitary rotation gate
Rπ/2 applied to |q〉 = a|0〉 + b|1〉 in Figs. 5 and 6 results in
the state Rπ/2 = −b|0〉+a|1〉, which is equivalent to the state
|q′〉 = −(b|0〉−a|1〉) = ejπ (b|0〉−a|1〉). The quantum states
Rπ/2|q〉 and |q′〉 on the Bloch sphere of Fig. 5 are represented
by the same vector, since the amplitude of |0〉 has to be real
and non-negative.

In contrast to H and Rθ , the Controlled-NOT (CNOT )
operator [47] acts on two qubits jointly forming a Quantum
Register (QR)2, with the first qubit |c〉 being the control qubit
and the second qubit |t〉 the target one. More specifically, if
|c〉 = |1〉, then the state of |t〉 is flipped, otherwise it remains
intact, as encapsulated in

|c〉|t〉
CNOT
−−−→ |c〉|c⊕ t〉. (21)

The QD unitary operator Uf does not have a classic coun-
terpart and it is capable of evaluating the function f with the
input qubits simultaneously representing multiple arguments
of the function, which is achieved by taking advantage of the
superposition of states. More explicitly, it accepts two QRs as
inputs, with the first QR |x〉 containing the argument, while
the second QR is formed by the specific number of bits Z
that we desire the function’s evaluation to be approximated
in. This second QR is initialized to the all-zero state |0〉⊗Z 3,
as depicted in Fig. 7, where the numeric kets subscripts
distinguish the QRs employed. Assuming n qubits in the QR
|x〉1 = H |0〉⊗n1 and having initialized it in an equiprobable
superposition of states by applying a Hadamard gate, the
system’s quantum state before the application of Uf would
be

2AQR is formed by any number of qubits and it exists only to underline the
purpose of a set of qubits. The state of a two-qubit QR may be equivalently
represented as |q1〉 ⊗ |q2〉 ≡ |q1〉|q2〉 ≡ |q1q2〉.

3The Z -element tensor product is defined as: |0〉⊗Z =

|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
Z

= |0〉|0〉 . . . |0〉︸ ︷︷ ︸
Z

= |00 . . . 0〉︸ ︷︷ ︸
Z

FIGURE 7. Unitary operator Uf entangling the f evaluations with the
corresponding input argument. The subscripts of the kets are used to
distinguish the QRs throughout a circuit analysis.

|ψ1〉 = |x〉1|0〉
⊗Z
2 = H |0〉⊗n1 |0〉

⊗Z
2

=

2n−1∑
q=0

1
√
2n
|q〉1

 |0〉⊗Z2

=

2n−1∑
q=0

(
1
√
2n
|q〉1|0〉

⊗Z
2

)
(22)

where the integer values in q correspond to their respective
binary values as for example in |q〉 = |5〉 = |101〉. The
unitary operator Uf will evolve the system into

|ψ2〉 = Uf
2n−1∑
q=0

(
1
√
2n
|q〉1|0〉

⊗Z
2

)

=

2n−1∑
q=0

(
1
√
2n
|q〉1|f (q)〉2

)
. (23)

TheUf operator creates a strange connection between the two
QRs. If only the first QR shown in Fig. 7 is observed in theQD
and |x〉1 = |0〉1 is obtained, then the second QR seen in Fig. 7
will be in the |f (0)〉2 state with 100% probability. Similarly, if
we have |f (x)〉2 = |f (1)〉2 after an act of QD observation, then
we have |x〉1 = |1〉1 with 100% probability. This peculiar
connection is referred to as entanglement, as detailed in [47].
Any classic circuit may be converted to an equivalent

circuit in the QD by using the unitary operators H , Rθ and
CNOT [47]. Additionally, any classic circuit may become
reversible in the QD in the sense defined in [47] with the aid
of the Toffoli gate, or equivalently by using the Controlled-
Controlled-NOT (CCNOT ) gate, and auxiliary qubits [47].
Hence, the implementation of Uf will be based on the QD
equivalent of the classic circuit that computes f : {0, 1}⊗n→
{0, 1}⊗Z . The time required for a single application of Uf
compared to that for a single classic evaluation of f will
depend on the technology used for creatingUf . In our analysis
we will assume that these times are equal.

C. MEASUREMENT OF QUANTUM STATES
When stating the terms of ‘‘measurement’’ or ‘‘observation’’,
so far we have been referring to measurements with respect
to the computational or standard basis {|0〉, |1〉}. If an 1-qubit
quantum system is observed, its state after the measurement
would be either |0〉 or |1〉, depending on the observation’s
result. However, measurementsmay be performed in a diverse
base. In fact, the number of different bases that a qubit may
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be observed in is infinite [47]. A commonly used alternative
basis the qubit may be measured in is the Hadamard or sign
basis {|+〉, |−〉} portrayed in Figs. 5 and 6, where we have:

|+〉 =
1
√
2
|0〉 +

1
√
2
|1〉 (24)

|−〉 =
1
√
2
|0〉 −

1
√
2
|1〉. (25)

The specific reason for using a particular basis depends on the
application. For example, if the intention of the observation
is to determine which specific part of the Cartesian plane the
qubit |q〉 = a|0〉 + b|1〉 lies on, then a measurement on the
Hadamard basis would resolve whether we have a·b > 0 or a·
b < 0, hence again determining the particular part of the plane
the qubit exists on. By contrast, if an observation was made
on the computational basis for the same purpose, then the
resultant state would be mapped to one of the coordinate axes
seen in Figs. 5 and 6, hence providing us with no particular
clue as to its quadrant.

The representation of a qubit |q〉 on the computational basis
is |q〉 = a|0〉 + b|1〉. In order to convert its representation to
the sign basis, we exploit the fact that

|0〉 =
|+〉 + |−〉
√
2

(26)

|1〉 =
|+〉 − |−〉
√
2

. (27)

Hence, the same qubit may be represented in the sign basis as

|q〉 =
a+ b
√
2
|+〉 +

a− b
√
2
|−〉 (28)

and the probability of getting the state |+〉 or |−〉 after a
potential observation on the Hadamard basis is |a+b|

2

2 and
|a−b|2

2 , respectively. If the observation’s outcome is |+〉, then
the state of the system after the observation will be |+〉 =
1
√
2
(|0〉 + |1〉). Similarly, if the observation’s outcome is |−〉,

then the resultant system’s state will be |−〉 = 1
√
2
(|0〉 − |1〉).

1) PARTIAL MEASUREMENT OF QUANTUM STATES
As far as a multiple-qubit system is concerned, the mea-
surement procedure is similar to the one analysed for a
single-qubit system. For example, when considering a 2-qubit
system, its general quantum state is presented in (9). As in any
quantum system, a potential measurement will only be able to
reveal as many bits of information as the number of qubits in
the system. In the 2-qubit system considered a measurement
of the two qubits would yield the result |00〉 with probability
|a00|2, or the state |01〉 with probability |a01|2 or in general
the bit string s ∈ {0, 1}2 with probability |as|2. The state of
the quantum system after the measurement would be |s〉.
However, it is possible to measure only a subset of the

qubits that a quantum system consists of by performing a
partial measurement. Let us assume that in our example of
a 2-qubit system we intend to observe only the second qubit.

The probabilities of obtaining the second qubit in the state of
|0〉 or |1〉 are

Pq(x0) = Pq(00)+ Pq(10) = |a00|2 + |a10|2 (29)

Pq(x1) = Pq(01)+ Pq(11) = |a01|2 + |a11|2. (30)

In other words, the probability of obtaining the second qubit
in the state of |0〉 upon its measurement is equal to the
probability of observing the full system in the states that have
the second qubit equal to |0〉.
The main difference of the partial measurement compared

to the full measurement of a quantum system lies in the
gravity of the perturbation imposed on the system’s original
state and the resultant state. Following the same example, let
us assume that the result of the second qubit’s observationwas
|0〉. The new state of the system after the partial measurement
will include all the states that are consistent with the measure-
ment’s specific outcome. Hence we have

|qnew〉 = a00,new|00〉 + a10,new|10〉 (31)

where a00,new and a10,new are the new amplitudes of the
legitimate remaining states. The new amplitudes will be the
normalized versions of the corresponding amplitudes of the
original states before the measurement, resulting in

|qnew〉 =
a00|00〉 + a10|10〉√
|a00|2 + |a10|2

. (32)

Any following measurement of the second qubit in the new
quantum state |qnew〉 will result in the state |0〉 with 100%
probability.

D. ENTANGLEMENT
The new state after the partial measurement may be written
as

|qnew〉 =
(

a00√
|a00|2 + |a10|2

|0〉 +
a10√

|a00|2 + |a10|2
|1〉
)
|0〉

=
(
a00,new|0〉 + a10,new|1〉

)
⊗ |0〉. (33)

As seen in (33), the resultant quantum system consisting of
two qubits may be decomposed in a way, where the composite
quantum states are represented by the tensor products of the
qubits. Another example is the 3-qubit quantum state pre-
sented in (10) which may be decomposed as seen in (11). The
information that can be gained by the decomposition of (11) is
that the first qubit of the system is in the state 1

2 |0〉 +
√
3
2 |1〉,

regardless of the states the rest of the qubits are in. Similar
knowledge may be obtained for the second and third qubit.
The quantum system is referred to as being ‘‘unentangled’’,
if it is able to be decomposed i.e. it is decomposable.
However, this decomposition is not possible for every

quantum state. Let us consider for example the quantum state
of a 2-qubit system, which is initially in the state |ψ0〉 = |00〉,
as seen in Fig. 8. Once the first qubit passes through the
Hadamard gate, the system’s state becomes
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FIGURE 8. Quantum circuit for generating the entnagled Bell state
1
√

2

(
|00〉 + |11〉

)
.

|ψ1〉 = (H |0〉1)|0〉2

=

(
1
√
2
|0〉1 +

1
√
2
|1〉1

)
|0〉2

=
1
√
2
(|00〉 + |10〉) . (34)

When the two qubits pass through the CNOT gate, the first
qubit |ψ1〉1 =

1
√
2
(|0〉 + |1〉) acts as the control qubit to the

second qubit |ψ1〉2 = |0〉, which is the target qubit. The
transfer matrix of the CNOT gate relying on the first qubit
acting as the control qubit and the second qubit as the target
qubit may be formulated as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (35)

The final state of the system after passing it through the
CNOT gate becomes

|ψ2〉 = CNOT · |ψ1〉

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1
√
2


1
0
1
0


=

1
√
2

[
1 0 0 1

]T
=

1
√
2
(|00〉 + |11〉) . (36)

The resultant state |ψ2〉 =
1
√
2
(|00〉 + |11〉) cannot be

decomposed into a state representing the first qubit and a
state corresponding to the second qubit. This may be readily
shown by attempting to decompose |ψ2〉 into separate states.
Let us assume that the state of the first qubit is |ψ2〉1 =

a10|0〉 + a11|1〉 and the state of the second qubit is |ψ2〉2 =

a20|0〉 + a21|1〉. The resultant composite system of these two
qubits would become

|ψ2〉1 ⊗ |ψ2〉2 = (a10|0〉 + a11|1〉)(a20|0〉 + a21|1〉)

= a10a20|00〉 + a10a21|01〉

+a11a20|10〉 + a11a21|11〉. (37)

In order for the state in (37) to be equal to |ψ2〉, the ampli-
tudes of |00〉 and |11〉 should be non-zero. This leads to

a10, a11, a20, a21 6= 0. At the same time, the amplitudes of
|01〉 and |10〉 should be equal to 0, leading to either a10 = 0
or a21 = 0 and at the same time a11 = 0 or a20 = 0. The latter
constraints contradict the former one, making it impossible
for the quantum state |ψ2〉 to be decomposed.
A system that is not possible to decompose to separate

states corresponding to its constituent qubits is termed as
‘‘entangled’’. When one of the two qubits of the state |ψ2〉

is observed, the outcome might be |0〉 with a probability of
1/2 or |1〉 with a probability of 1/2. If the outcome is 0, then
a potential measurement of the second qubit will yield 0 with
a probability of 1. Symmetrically, if the outcome of the first
qubit’s observation is 1, then a measurement of the second
qubit will surely result in 1. It seems that a connection exists
between these two qubits, relating them to each other, regard-
less of their spatial distance. This non-intuitive relationship
between two entangled qubits was referred to by Einstein as
a ‘‘spooky action in a distance’’ [102].

In fact, the state |ψ2〉 is one of the four Bell basis states,
named after John S. Bell [47], which are constituted by the
following four entangled states

|8+〉 =
1
√
2
(|00〉 + |11〉) (38)

|8−〉 =
1
√
2
(|00〉 − |11〉) (39)

|9+〉 =
1
√
2
(|01〉 + |10〉) (40)

|9−〉 =
1
√
2
(|01〉 − |10〉). (41)

As for any other orthonormal basis defined overC4, a 2-qubit
system may be measured on the Bell basis. None of the states
of the Bell basis can be decomposed to the separate states
constituted by each qubit.

VI. QUANTUM SEARCH ALGORITHMS
For the case of providing further in-depth intuition we will
proceed by investigating Grover’s QSA [53], the BBHT
QSA [54] and the DHA [55] in the context of a simple DS-
CDMA scenario supporting K = 2 users employing the
BPSK modulation scheme associated withM = 2 states. The
channel coefficients are assumed to be perfectly estimated
andGold spreading codes [5] are used which have a spreading
factor of SF = 31 chips. The CF evaluations in (4) would
be f : {0, 1, 2, 3} → [0, 1] and the size of the search space
is N = MK

= 4, since we have four possible two-bit
combinations at the BS’s receiver. Let us assume that the CF
outputs are

[f (0), f (1), f (2), f (3)] = [0.24, 0.16, 0.38, 0.27] (42)

which represent the probability P(y|x) of receiving the signal
y in (1), given that the 4-level two-user signal x was trans-
mitted. Due to the nature of the CF in (4), the smaller the
Euclidean distance of a legitimate noise-free 4-level symbol
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from the actually received faded and noise-contaminated sig-
nal y is, the higher its CF value. Hence, in our scenario we
may conclude that the 4-level symbol x = [1, 0]T is the
most probable to have been transmitted. Naturally, in real
applications we can only draw this conclusion, once we have
computed all the possible CF values, hence facilitating anML
decision.

During our analysis of the QSAs, we will refer to the QR
which will contain the indices of our search problems as the
Quantum Index Register (QIR). In our scenario the QIR will
consist of n = log2 N = 2 qubits forming the four states
|0〉, |1〉, |2〉 and |3〉, corresponding to the legitimate 4-level
symbols x ∈

{
[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T

}
≡ x ∈

{0, 1, 2, 3}, respectively. The probabilities of observing each
of these states will be evolving and changing as the QSAs pro-
ceed, as it will be detailed in Sections VI-A, VI-B and VI-C.

A. GROVER’S QUANTUM SEARCH ALGORITHM
The goal of Grover’s QSA is exactly the same as that of any
classic search algorithm’s, namely that of finding the index of
the desired entries, provided of course that the desired entry
is indeed part of the database. It was shown in [53] that it
succeeds in finding the solution after O(

√
N ) CF evaluations,

in contrast to the optimal classic full-search algorithms which
succeed after O(N ) calculations. Let us commence with an
unrealistic version of our scenario, namely where we assume
that we know that δ = 0.38 appears in the database as one
of the CF evaluations and also that it is unique. In practice
this is unrealistic, because the CF value depends on the con-
taminating effects of random fading, noise and interference.
Employing Grover’s QSA we will determine the index xs that
corresponds to f (xs) = δ. Hence, we have S = 1 solution and
N = 4 database indices. In classic search algorithms, once
the desired entry associated with the lowest Euclidean dis-
tance was found, its index is readily observed and retrieved.
In Grover’s QSA on the other hand, the process aims for
maximizing the probability of observing the index in the QIR
xs. Each of the N indices is treated as a legitimate solution
to the search problem. The QIR should be initialized in a
superposition of N equiprobable states, which is formulated
as:

|x〉 =
N−1∑
q=0

aq|q〉 =
N−1∑
q=0

1
√
N
|q〉 =

3∑
q=0

1
2
|q〉 (43)

since there is no a priori ‘‘preference’’ for any of the legiti-
mate solutions. The initialization is performed with the aid of
a two-qubit Hadamard gate H⊗2 and two qubits in the |00〉
state which may be described based on (20) as

|x〉 = H⊗2|00〉 = H |0〉H |0〉

=
1
√
2
(|0〉 + |1〉)

1
√
2
(|0〉 + |1〉)

=
1
2
|00〉 +

1
2
|01〉 +

1
2
|10〉 +

1
2
|11〉

=
1
2
|0〉 +

1
2
|1〉 +

1
2
|2〉 +

1
2
|3〉. (44)

The initial quantum amplitudes of the QIR |x〉 are depicted
in Fig. 9a which shows the evolution of the quantum states in
our scenario.
Finding the highest-probability solution in the QIR is

accomplished by the iterations of Grover’s QSA as detailed
below. A single iteration of Grover’s QSA is carried out by
applying a unitary operatorG, referred to as theGrover opera-
tor to the QIR |x〉. The operator’s circuit-based representation
is shown in Fig. 10, which consists of a unitary operator
termed as the Oracle, two Hadamard gates H exemplified in
(20), and a controlled phase shift gate P0. The Hadamard gate
creates a superposition of equiprobable states, when applied
to a state of the computational basis, |0〉 or |1〉. The controlled
phase shift gate P0 inverts the sign of all the input states
except for the |0〉⊗n one. The Hadamard gate, H⊗n = H⊗2,
and the controlled phase shifter gate P⊗20 of Fig. 10 obey the
following format

H⊗n =
1
√
2

[
H⊗(n−1) H⊗(n−1)

H⊗(n−1) −H⊗(n−1)

]
, H⊗0 = 1 (45)

P⊗n0 =


1 0 · · · 0
0 −1 · · · 0
...
...
. . .

...

0 0 · · · −1


 (2n × 2n). (46)

In our scenario we have n = 2, hence the matrix represen-
tations of the Hadamard gate H⊗2 and the controlled phase
shift gate P⊗20 are

H⊗2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (47)

FIGURE 9. Graphical representation of Grover operator’s G applications
in our K = 2, M = 2 scenario with a unique solution S = 1 and
N = MK = 4 entries. The colours correspond to the rotations in Fig. 12.

108 VOLUME 1, 2013



P. Botsinis et al.: QSA, Quantum Wireless, and a Low-Complexity Maximum Likelihood Iterative Quantum MUD Design

FIGURE 10. Grover operator’s quantum circuit including an Oracle, two
n-qubit Hadamard gates H and a controlled n-qubit phase shift gate P0.

P⊗20 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, (48)

respectively.
The Oracle is capable of recognizing the legitimate solu-

tions in the QIR by evaluating the CF at this input. More
explicitly, the Oracle’s task in Grover’s QSA is that of finding
and marking the specific index sought. The Oracle may be
described algebraically by an (N × N )-element matrix with
all the non-zero elements lying on its diagonal. Each of the
N elements on the diagonal of the Oracle-matrix represents a
specific cell of the QIR. The diagonal elements may assume
the values of −1 or +1, depending on whether their corre-
sponding CF evaluation is deemed to be a legitimate solution
or not, respectively. Hence the format of the Oracle-matrix
obeys

O =


±1 0 · · · 0
0 ±1 · · · 0
...

...
. . .

...

0 0 · · · ±1

 . (49)

In our scenario, since the third index of the QIR, namely
x = 2 is a solution to the search problem, the Oracle will
recognize this by comparing the corresponding entry f (2) =
0.38 to the desired value δ = 0.38 and the third element of the
Oracle-matrix diagonal will be set to −1. On the other hand,
since the first state |0〉 is not deemed to be a solution, because
f (0) = 0.24 6= δ = 0.38, the first element of the Oracle’s
diagonal is set to +1. The second index x = 1 as well as the
fourth index x = 3 are also not deemed to be solutions since
f (1) = 0.16 6= δ = 0.38 and f (3) = 0.27 6= δ = 0.38,
respectively, resulting to their corresponding positions on the
diagonal of the Oracle-matrix to be set to+1 as encapsulated
in

O =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 +1

 . (50)

Moving deeper into the Oracle’s operation, the Oracle’s
workspace is described by a single qubit, |w〉, initialized
to the superposition of equiprobable states |w〉 = |−〉 =
|0〉−|1〉
√
2

. This superposition of states is acquired by applying
the Hadamard gate H to the state |1〉 as described in

|w〉 = H |1〉 =
1
√
2

[
1 1
1 −1

]
·

[
0
1

]
=

1
√
2

[
1
−1

]
=

1
√
2
(|0〉 − |1〉) = |−〉. (51)

The Oracle will then map the N input states of the QIR |x〉 to

|x〉|w〉
O
−→ |x〉|w⊕ g(x)〉 (52)

where we have

g(x) =
{
1 if f (x) = δ
0 otherwise.

(53)

Since we have |w〉 = |−〉, the operations encapsulated in (52)
may be expanded as

|x〉
|0〉 − |1〉
√
2

O
−→ (−1)g(x) |x〉

|0〉 − |1〉
√
2

. (54)

The function g(x) of (53) in our scenario is

g(x) =


0 x = 0, since f (0) = 0.24 6= δ = 0.38
0 x = 1, since f (1) = 0.16 6= δ = 0.38
1 x = 2, since f (2) = 0.38 = δ = 0.38
0 x = 3, since f (3) = 0.27 6= δ = 0.38

(55)

and according to (52) and (54) the Oracle operation in our
scenario is

|x〉|−〉 =
1
2
(|00〉 + |01〉 + |10〉 + |11〉) |−〉

=
1
2
(|0〉 + |1〉 + |2〉 + |3〉) |−〉

=
1
2
|0〉

1
√
2
(|0〉 − |1〉)+

1
2
|1〉

1
√
2
(|0〉 − |1〉)

+
1
2
|2〉

1
√
2
(|0〉 − |1〉)+

1
2
|3〉

1
√
2
(|0〉 − |1〉)

O
−→

1
2
|0〉
(

1
√
2
(|0〉 − |1〉)⊕ g(0)

)
+
1
2
|1〉
(

1
√
2
(|0〉 − |1〉)⊕ g(1)

)
+
1
2
|2〉
(

1
√
2
(|0〉 − |1〉)⊕ g(2)

)
+
1
2
|3〉
(

1
√
2
(|0〉 − |1〉)⊕ g(3)

)
=

1
2
|0〉
(

1
√
2
(|0〉 ⊕ g(0)− |1〉 ⊕ g(0))

)
+
1
2
|1〉
(

1
√
2
(|0〉 ⊕ g(1)− |1〉 ⊕ g(1))

)
+
1
2
|2〉
(

1
√
2
(|0〉 ⊕ g(2)− |1〉 ⊕ g(2))

)
+
1
2
|3〉
(

1
√
2
(|0〉 ⊕ g(3)− |1〉 ⊕ g(3))

)
=

1
2
|0〉

1
√
2
(|0〉 − |1〉)+

1
2
|1〉

1
√
2
(|0〉 − |1〉)

+
1
2
|2〉

1
√
2
(|1〉 − |0〉)+

1
2
|3〉

1
√
2
(|0〉 − |1〉)
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=
1
2
|0〉|−〉 +

1
2
|1〉|−〉 +

1
2
|2〉 (−|−〉)+

1
2
|3〉|−〉

=
1
2
(|0〉 + |1〉 − |2〉 + |3〉) |−〉

=
1
2
(|00〉 + |01〉 − |10〉 + |11〉) |−〉. (56)

The Oracle generates the function g by evaluating f in par-
allel, thus a single Oracle operation will be considered to
have the computational complexity of one CF evaluation. By
combining (45), (46) and (49), the algebraic description of the
Grover operator may be constructed with the aid of Fig. 10 as

G = H⊗nP⊗n0 H⊗n · O. (57)

Since in our scenario we have n = log2 N = 2, by substitut-
ing H⊗2 from (47), P⊗20 from (48) and the Oracle from (50),
the Grover operator in our scenario becomes equal to

G = H⊗2P⊗20 H⊗2 · O =
1
2


−1 1 −1 1
1 −1 −1 1
1 1 1 1
1 1 −1 −1

 . (58)

The effect of the operation G on |x〉 may be seen in
Fig. 11, where the y-axis represents the superposition of states

that are solutions—which are given by |s〉 =
√

1
S |2〉 =

|2〉 in our scenario—while the x-axis represents the set of
states that are not solutions, which are given by |ns〉 =√

1
N−S (|0〉 + |1〉 + |3〉) =

√
1
3 (|0〉 + |1〉 + |3〉). It should be

noted that this is a geometrical representation, which explains
the operation of G and that the states |s〉 and |ns〉 are not
physically created. The initial state |x〉 may be represented
as

|x〉 =

√
S
N
|s〉 +

√
N − S
N
|ns〉

=

√
1
4
|s〉 +

√
3
4
|ns〉

=
1
2
|2〉 +

√
3
2

(
1
√
3
(|0〉 + |1〉 + |3〉)

)
=

1
2
(|0〉 + |1〉 + |2〉 + |3〉) . (59)

The Oracle reflects |x〉 with respect to |s〉, since it marks the
solution in |x〉 by transforming |s〉 to −|s〉 and leaving |ns〉
unaltered as in (56). The HP0H operator of Fig. 11 reflects
O|x〉 with respect to the input state |x〉, as it may be seen in
Fig. 11.More explicitly, the resultant state |x1〉 = HP0H ·O|x〉
may be considered as a anti-clockwise rotation by 2ϕ with
respect to |x〉, while the quantum stateO|x〉 beforeHP0H was
applied may be considered as a clockwise rotation by 2ϕ with
respect to the initial state |x〉, as illustrated in Fig. 11. The
HP0H operator is considered to perform inversion about the
average, as depicted in Fig. 9c. Hence, G results in a total
anti-clockwise rotation of the input state by 2ϕ, where we
have [54]

ϕ = arcsin
√
S/N . (60)

FIGURE 11. Geometrical interpretation of Grover’s quantum search
algorithm.

It should be noted that ϕ is the angle that the initial state |x〉
had with respect to the x-axis, which corresponds to |ns〉, and
its value depends on the number of solutions S in the database,
in addition to the size of the database N . If there was no
solution in our problem S = 0, then |ns〉 =

√
1
N (|0〉 + |1〉 +

|2〉 + |3〉) = 1
2 (|0〉 + |1〉 + |2〉 + |3〉) and ϕ = 0 from (60),

resulting in |x〉 = |ns〉. In other words, the initial quantum
state in Fig. 11 would be on the x-axis and any application
of G would have no effect on it, since it would rotate it by
2ϕ = 0.
The same process is repeated, if subsequent Grover oper-

ators are applied, with the initial state of the next iteration
being the final state of the previous iteration. The target is
for GL |x〉 to approach |s〉 as closely as possible so that when
we observe the QIR, we will have the maximum possible
probability of obtaining a state of the solutions set |s〉. This
occurs the earliest after [54]

Lopt =

⌊
π

4

√
N
S

⌋
(61)

consecutive applications of the G operator of Fig. 10. This
process is the QAA [51]. If we observe the resultant state
in the QD, the probability of obtaining the correct answer is
sin2

[
(2Lopt + 1)ϕ

]
.

In our scenario, we have ϕ = 30ř and Lopt = 1 according
to (60) and (61), respectively. The geometric representation
of the evolution of our scenario’s QIR with respect to the
applications of Grover operators may be seen in Fig. 12. The
application of the Oracle to the initial QIR state |x〉 in (43)
would result into

O|x〉 =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 +1

 · 12

1
1
1
1

 = 1
2


1
1
−1
1

 (62)
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FIGURE 12. Geometrical interpretation of Grover’s quantum search
algorithm applied in our K = 2, M = 2 scenario, where we have a unique
solution S = 1 and N = 4 legitimate entries.

and its graphical and geometrical representation may be seen
in Figs. 9b and 12, respectively. If we applied the operators
H⊗2P⊗20 H⊗2 on O|x〉 we would obtain

|x1〉 = H⊗2P⊗20 H⊗2 · O|x〉 = G|x〉

=
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ·

·
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 · 12


1
1
−1
1



=
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 · 12


1
1
−1
1

 =

0
0
1
0

 . (63)

The sequence of the operatorsHP0H is termed as the diffusion
operator, since it reflects the amplitudes of the quantum states
in O|x〉 with respect to the average of their amplitudes, as
illustrated in Fig. 9c, where the average of the amplitudes in
our scenario’s O|x〉 is (3 · 0.5 − 0.5)/4 = 0.25 as it may
be verified from (62). At the same time, when considering
the QIR as the superposition of the states |s〉 and |ns〉, the
reflection with respect to the initial state |x〉 may be seen in
Fig. 12. Hence, a single application of G to the initial QIR
state |x〉 verifies that it succeeds inmaximizing the probability
of obtaining the solution upon a potential observation of the
QIR, since we have |x1〉 = 0·|0〉+0·|1〉+1·|2〉+0·|3〉 in (63).
It should be noted that in different systems, the probability
of finding the solution might not become equal to 100%, but
it may be close to it. In fact, the probability of obtaining a
solution is equal to 100% only when the number of solutions
S is 25% of all the entries N , or, equivalently, when we have
the ratio S/N = 1/4 [54]. If we apply G one more time, we
arrive at

|x2〉 = G|x1〉 = G2
|x〉 =

1
2


−1
−1
1
−1

 (64)

which is translated to another equiprobable superposition of
all states, as presented in Fig. 9d, verifying the rotation that
G imposes on |x〉 with respect to the states |s〉 and |ns〉, as
depicted in Fig. 12. The periodicity imposed on the quantum
amplitudes of the states in the QIR due to the consecutive
applications of G is illustrated in Fig. 13. The probability of
success in finding the unique solution by applying the same
number of G operators in systems having a different search
space size N will vary. There is a non-negligible probability
that applying the same number of G operators to a search
space having a size ofN = 2n would provide an almost 100%
probability of finding the unique solution, while applying the
same number of G operators to a search space having a size
of N = 2n+1 would result in a probability of obtaining the
unique solution which is close to zero. This phenomenon is
depicted in Fig. 14 in quantitative terms.

B. BBHT QUANTUM SEARCH ALGORITHM
In many practical applications the number of solutions is
higher than one and the exact number of solutions is not
known beforehand. Grover’s QSA would most probably fail,
or, more precisely, we would have a successful detection
probability of sin2

[
(2Lopt + 1)ϕ

]
≈ 0, if the same number

of Lopt was used in diverse systems having different number
of solutions, since ϕ of (60) would have changed. The BBHT
QSA of [54] circumvents this problem by applying G of
Fig. 10 a pseudo-random consecutive number of times to
the initial system, observing the resultant state in the QD
and then repeating it until a solution is obtained after the
observation. Assuming 0 ≤ S ≤ 3N/4, as it is the case in our
scenario, the steps of the BBHT algorithm are summarized as
in Algorithm 1 [54]:

Algorithm 1: BBHT Quantum Search Algorithm

1: Set m← 1, λ← 6/5 and LBBHT ← 0.
2: Choose L uniformly from the set {0, . . . , bmc}.
3: Apply the G operator L times starting from the initial state |x〉 in (43),

resulting in the final state |xf 〉 = GL |x〉.
4: Observe |xf 〉 in the QD and obtain |j〉.
5: Update LBBHT ← LBBHT + L.
6: if f (j) = δ or LBBHT ≥ Lmax

BBHT then
7: Set xs ← j, output xs and exit.
8: else
9: Set m← min

{
λm,
√
N
}
and go to Step 2.

10: end if

The BBHT QSA [54] manages to find a solution after
Lmax
BBHT = 4.5

√
N/S G operations, or, equivalently, Oracle

calls in the worst case as formally proved in [54]. It should be
noted at this point that the number of CF evaluations during a
BBHT iteration is equal to the number of Oracle calls, plus an
additional one required for determining whether the obtained
value j is a solution or not. If no solution is found after
Lmax
BBHT iterations, it may be concluded that we have S = 0.

The parameter λ may be chosen in the set (1, 4/3) and the
evaluation of f (j) at Step 6 is performed in the classic domain.
If there is no solution for the search problem, i.e. we have
S = 0, the BBHT QSA will realize this fact after 4.5

√
N
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FIGURE 13. (a) Quantum amplitudes of the QIR |x〉 with respect to the number of Grover operators G applied to it. (b) Probability of
obtaining a quantum state after applying the corresponding number of Grover operators G. The minimum optimal number of Grover
operations is one, which in our scenario is also the global optimal number of Grover operations, since the marked state reaches 100%
probability to be observed.

FIGURE 14. Probability of obtaining the solution when observing a QIR
with N = 2n quantum states after having applied a specific number of
Grover operators G. The periodical nature of Grover’s QSA is evident.

Oracle operations by delivering a final output of xf for which
we have f (xf ) 6= δ.
Let us proceed by applying the BBHT QSA in our scenario

for finding the index xs such that f (xs) = 0.38 = δ, assuming
that we do not know that δ = f (2) = 0.38 appears only once
as a result of the CF evaluations. Assuming uniqueness of our
solution, which is the worst case scenario, the BBHT QSA
has to find it after a maximum of Lmax

BBHT = 4.5
√
N = 9

G/Oracle calls and we choose λ = 6/5. Since the BBHT
QSA includes randomly generated parameters, we offer one

TABLE 3. BBHT QSA Scenario’s Instance.

Step Process

1 Set m← 1, λ← 6/5 and LBBHT ← 0

2 Since m = 1, we have L ∈
{
0,1

}
and we randomly choose

L← 0

3 After L = 0 G operations: |xf 〉 = GL
|x〉 = G0

|x〉 = |x〉

4 We observe |xf 〉 and obtain |1〉 (25% probability)

5 LBBHT ← LBBHT + L = 0

6 We compute f (1) = 0.16 in the classic domain and check that
f (1) 6= δ

8–9 LBBHT < Lmax
BBHT = 9, thus m ← min{λm,

√
N} = λm = 6/5 =

1.2

2 Since m = 1.2, we have L ∈
{
0,1

}
and we randomly choose

L = 1

3 After L = 1 G operations: |xf 〉 = GL
|x〉 = G1

|x〉 = |x1〉, where
|x1〉 is in (63)

4 We observe |xf 〉 and obtain |2〉 (100% probability)

5 LBBHT ← LBBHT + L = 1

6–7 We compute f (2) = 0.38 = δ, thus xs ← 2. Output xs and exit.

of the possible outcomes in Table 3, where the steps visited
by the BBHT QSA are also given. The probabilities included
in the parentheses denote the probability of observing the
obtained state before the measurement, but naturally, these
probabilities are not available in real applications.

C. DÜRR–HØYER ALGORITHM
The DHA [55] finds the solution xmin = argmin∀x {f (x)}
that minimizes f (x) by employing the BBHT QSA. The
only modification in the BBHT QSA is that the Oracle in
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G of Fig. 10 will mark as solutions the particular states x
that satisfy f (x) < δ. The steps of the DHA are stated in
Algorithm 2 [55]:

Algorithm 2: Dürr–Høyer Algorithm

1: Choose i uniformly from the set {0, . . . ,N − 1} and set Ltotal ← 0.
2: The BBHTQSA is employed with δ← f (i) and an Oracle that marks

as solutions the states |x〉 that obey f (x) < δ. Obtain xs and LBBHT
from the BBHT QSA.

3: Ltotal ← Ltotal + LBBHT .
4: if f (xs) ≥ f (i) or Ltotal ≥ Lmax

DHA then
5: Set xmin ← i, output xmin and exit.
6: else
7: Set i← xs and go to Step 2.
8: end if

It was formally shown in [55] that xmin is found with
100% probability after Lmax

DHA = 22.5
√
N applications of the

G operator of Fig. 10 in the worst-case scenario and from
Section VI-B we may conclude that the best case scenario
includes as few as 4.5

√
N Grover iterations, if the initial i is

chosen to be equal to xmin and thus S = 0. Hence, the DHA
may be carried out in 22.5

√
N and 4.5

√
N Oracle operations

in the worst-case and best-case scenario, respectively. Once
again, the CF evaluations in Step 4 of Alg. 2 are realized
in the classic domain. It should be noted that in contrast to
Grover’s QSA [53] and the BBHT QSA [54], the DHA [55]
does not assume any a priori knowledge of the values of
the CF evaluations, making it applicable in a broad range of
applications, where low-cost optimization is desired.

The DHA relies on a range of randomly generated vari-
ables, as exemplified in Algorithms 2 and 1, hence resulting
into different sequences of steps, even if we employ it in
the same scenario. In our DS-CDMA scenario, the most
likely 4-level symbol to have been transmitted is the one that
maximizes the CF in (4). Hence, we employ the DHA to find
the minimum of the function −f (x). An instance where the
DHA is employed to find xmin such that −f (xmin) ≤ −f (x),
where x = 0, 1, 2, 3 in our DS-CDMAMUD scenario of (42)
is presented in Table 4, where we have λ = 6/5, Lmax

BBHT =

4.5
√
N = 9 and Lmax

DHA = 22.5
√
N = 45 Grover iterations.

The acronym BBHT refers to the numbered step in the BBHT
QSA. Even though the total number of CF evaluations in this
scenario turns out to be higher than N/2, which is the average
in the optimal classic algorithm, its computational power is
revealed systems associated with a large N .

Let us proceed by stating some insightful comments on the
instance of the DHA’s application in our scenario. For deeper
intuition of the processes, let us assume that we knew a priori
the CF evaluations of (42). The first time when we visit Step
2 in Table 4, it may be concluded that we found a solution in
the BBHT QSA without applying Grover operators of Fig. 10
at all. This is very likely since all the CF evaluations of−f (x)
for x = 0, 2, 3 are smaller than δ = −f (1) and hence there
are S = 3 solutions amongst the N = 4 entries, resulting in
75% probability of obtaining a solution by simply observing
the equiprobable initialized superposition of states, with 25%
probability of obtaining each of the four states. When the

TABLE 4. DHA in the DS-CDMA MUD Scenario.

Step Process

1 We randomly choose i ← 1 from the set
{
0,1,2,3

}
and set Ltotal ← 0

2 Set δ←−f (1) = −0.16 and employ the BBHT QSA

BBHT 1 Set m← 1, λ← 6/5 and LBBHT ← 0

BBHT 2 Since m = 1, L ∈
{
0,1

}
and we randomly choose L← 0

BBHT 3 After L = 0 G operations: |xf 〉 = GL
|x〉 = G0

|x〉 = |x〉

BBHT 4–5 We observe |xf 〉 and obtain |3〉 (25% probability). Set
LBBHT ← 0

BBHT 6–7 We compute −f (3) = −0.27 in the classic domain and
check that −f (3) < δ. Hence, set xs ← 3 and exit

3 Set Ltotal ← Ltotal + LBBHT = 0

4 −f (3) < −f (1) and Ltotal < Lmax
DHA = 45

6-7 Set i ← xs = 3

2 Set δ←−f (3) = −0.27 and employ the BBHT QSA

BBHT 1 Set m← 1, λ← 6/5 and LBBHT ← 0

BBHT 2 Since m = 1, L ∈
{
0,1

}
and we randomly choose L← 1

BBHT 3 After L = 1 G operations: |xf 〉 = GL
|x〉 = G1

|x〉 = |x1〉,
where |x1〉 is in (63)

BBHT 4–5 We observe |xf 〉 and obtain |2〉 (100% probability). Set
LBBHT ← 1

BBHT 6–7 We compute −f (2) = −0.38 in the classic domain and
check that −f (2) < δ. Hence, set xs ← 2 and exit

3 Set Ltotal ← Ltotal + LBBHT = 1

4 −f (2) < −f (3) and Ltotal < Lmax
DHA = 45

6–7 Set i ← xs = 2

2 & BBHT Set δ ← −f (2) = −0.38 and the BBHT QSA outputs
xs = 0 with LBBHT = 9

3 Ltotal ← Ltotal + LBBHT = 1+ 9 = 10

4–5 Since −f (0) > −f (2), set xmin ← 2, output xmin and
exit

BBHT QSA of Alg. 1 is employed for the second time, we
have S = 1 solution and that solution is |xs〉 = |2〉. Since
there are N = 4 entries, if L = 1 was chosen in the BBHT
QSA we would obtain |xf 〉 = |2〉 with 100% probability, as
it was the case in our instance. Finally, when the BBHT QSA
was employed for the last time, there were S = 0 solutions,
since xmin had already been found. Naturally, this knowledge
is unavailable to the BBHT QSA, which hence performed
the maximum number of G operations, namely Lmax

BBHT = 9,
finally yielding xnew = 0 and allowing us to conclude that we
have xmin = 2, since −f (2) < −f (0).

VII. QUANTUM WEIGHTED SUM ALGORITHM
The QWSA is capable of estimating the weighted sum of
the CF in both the numerator and denominator of the LLR
expressed in (2) by using a fixed number of CF evaluations,
regardless of the number of users K or of the modulation
orderM . It can be applied to any function f : {0, 1, . . . ,N −
1} → [0, 1], including the CF of (4) in conjunction with
N = MK/2. Where necessary, we will present application
examples for a system supporting K = 2 users and QPSK
modulation relying on M = 4. Furthermore, N = 8 CF
evaluations contribute to each summation and the numerator
(b = 0) of the first user’s (k = 0) first bit (m = 0)
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LLR is estimated. The same process is also applied for the
denominator of the same bit, as well as for the numerators and
denominators of the rest of the bits of the multi-levelMK -ary
symbol.

The QWSA invoked for a user’s bit value estimates the
weighted sum of the evaluations of the function f (x) in (4) for
all the x values that contribute to that bit value. The process
of the QWSA invoked for determining each user’s bit value
may be summarized in two steps:

1) Construct a QR associated with (K log2M ) qubits in
the state

|9〉 =
∑

x∈χ (0,0,0)

(√
P(x)(1− f (x))|x〉

)
|0〉

+

∑
x∈χ (0,0,0)

(√
P(x)f (x)|x〉

)
|1〉. (65)

The number of qubits is one less than the number of bits
in our MK -ary symbols, (K · log2(M ) − 1) = 3, plus
1. The last qubit distinguishes between the states which
have the probability of P(x)(1− f (x)) and those with a
probability of P(x)f (x), when the last qubit is |0〉 and
|1〉, respectively. It should be noted that the probability
of a state associated with the last qubit being |1〉 is one
of the additive terms in our desired summation in the
numerator of (2).

2) Employ l qubits and the Quantum Amplitude Estima-
tion (QAE) algorithm [51] to estimate the probability
of obtaining a state with the last qubit equal to |1〉,
when observing |9〉 in the QD. This probability is
given by the sum of the square of the amplitudes of
all the states for which the last qubit is |1〉, hence∑

x∈χ (0,0,0) [P(x)f (x)] from (65), which is the numera-
tor of the first user’s first bit as in (2).

A. PREPARATION OF THE QR |9〉
Let us commence our analysis by introducing the unitary
operator A, relying on the quantum circuit of Fig. 15. We
employ n = log2 N qubits for representing all the input
arguments of the CF evaluations included in the summation, Z
qubits to store the CF evaluations and an additional auxiliary
qubit, |0〉3, all initialized to the |0〉 state. The first n qubits are
rotated by a qubit-specific rotation operator Ri. The rotation
angle of each qubit depends on the a priori probability of
the specific classic bit being equal to 0, which the qubit
corresponds to. If for example P(b(m)k = 0) is the a priori
probability of the kth user’s mth bit being 0, and the currently
estimated LLR does not belong to it, then the i = ((k −
1) log2M + m)th qubit’s unitary rotation operator Ri would
be equal to

Ri =

√P(b(m)k = 0) −
√
P(b(m)k = 1)√

P(b(m)k = 1)
√
P(b(m)k = 0)

 . (66)

This is the only difference with respect to the QMA, which
uses H operators instead of Ri, for creating an equiprobable

FIGURE 15. Quantum circuit of the unitary operator A. In the first QR, the
i = ((k − 1) log2 M +m)th rotation gate Ri , i = 0,1, . . . ,n maps the i th

qubit to the state
√

P
(

b(m)
k = 0

)
|0〉 +

√
P
(

b(m)
k = 1

)
|1〉, where the

resultant amplitudes are the a priori bit probabilities included in (5). The
A′ operator illustrated in Fig. 16 is then applied to the three QRs.

superposition of all the input arguments at this point. It should
be noted that if all the a priori bit probabilities are equal to
0.5, the QWSA transforms into the QMA, since the weights
will be equal to each other and we have Ri = H . This part of
the QWSA describes theC/Q section of the QMUD of Fig. 2,
since classic information is encoded into the probabilities of
quantum states. Therefore, the quantum state |ξ〉 at the input
of the block A′ in Fig. 15 is equal to

|ξ〉 =

N−1∑
x=0

√
P(x)|x〉1|0〉

⊗Z
2 |0〉3 (67)

where P(x) is the product of all the probabilities of the bits’
values, which contribute to the evaluation of f (x) presented in
(4), except for the specific bit for which the LLR is estimated.

FIGURE 16. Quantum circuit of the unitary operator A′ . The unitary
operator Uf accepts as inputs a quantum state |x〉 and Z qubits in the
zero state, where Z is the number of bits f (x) is desired to be calculated
in. After the controlled R operation, the inverse quantum circuit of Uf is
applied in order to return the second QR to the all-zero state.
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In our scenario, for x = 1, we have P(1) = P(0001) =
P(b(1)0 = 0)P(b(0)1 = 0)P(b(1)1 = 1).
The unitary operator A′ is then applied to the state |ξ〉. The

quantum circuit is presented in Fig. 16 and its operation may
be summarized as

|x〉|0⊗Z 〉|0〉
A′
−→ |x〉|0⊗Z 〉

(√
1− f (x)|0〉 +

√
f (x)|1〉

)
(68)

where the controlled rotation gate R may be described as

R =
[√

1− f (x) −
√
f (x)

√
f (x)

√
1− f (x)

]
. (69)

Equation (68) may be further simplified by removing |0⊗Z 〉,
since it is independent of |x〉 and the operation of the block
A′ in Fig. 16 becomes

|x〉|0〉
A′
−→ |x〉

(√
1− f (x)|0〉 +

√
f (x)|1〉

)
. (70)

The operator A shown in Fig. 15 uses 2 CF evaluations and
its output state |9〉 is

|9〉=

N−1∑
x=0

√
P(x)(1− f (x))|x〉|0〉︸ ︷︷ ︸
√
1−a|90〉

+

N−1∑
x=0

√
P(x)f (x)|x〉|1〉︸ ︷︷ ︸
√
a|91〉

.

(71)
where a is the probability of arriving at the states belonging
to the set |91〉 when |9〉 is observed, which is equal to the
desired weighted sum

a =
N−1∑
x=0

P(x)f (x). (72)

The states in |91〉 are the wanted states, which differ from the
unwanted states of |90〉 only in terms of the last qubit being
|1〉 and |0〉, respectively.

B. QUANTUM AMPLITUDE ESTIMATION
The QAE process of [51] is employed for estimating the
amplitude

√
a of |91〉 in (71). The quantum circuit of the

QWSA integrating A and the QAE is illustrated in Fig. 17.
The superscript of the Q operator indicates the number of

Q operator activations. Every time the unitary operator Q is
applied, it rotates the Quantum Function Register (QFR) by
2θ , where we have

θ = arcsin
√
a⇒ a = sin2 θ. (73)

Therefore, an estimate of θ would also provide an estimate
of a. More specifically, the quantum circuit of Q is shown in
Fig. 18 and its operation is formulated as

Q = AP0A†B (74)

where B is a unitary operator that ‘‘marks’’ the desired states
by changing their sign and P0 changes a state’s sign if and
only if that state is not the all-zero state as encapsulated
in (46). Operator B may be implemented with the aid of a
CNOT gate as in (21) controlled by the particular qubit that
determines if a state is a wanted one or not, and by an auxiliary
target qubit in the |−〉 = 1

√
2
(|0〉 − |1〉) state. The unitary

operator Qmay be considered as a generalized Grover opera-
tor, since it is constructed in a similar way as the generalized
Grover operators in [86], [90], by replacing the Hadamard
operatorsH with the unitary operators A, as well as the Oracle
O by B and leaving the controlled phase shift operator P0
unaltered. Geometrically, when B is applied to |9〉, the input
state |9〉 is reflected with respect to the unwanted states
|90〉 and U9 = AP0A† reflects the resultant state B|9〉 with
respect to the input state |9〉, resulting in an anti-clockwise
rotation by 2θ , as presented in Fig. 19. Since Q is unitary,
its eigenvectors of |9±〉 = 1

√
2
(±j|90〉 + |91〉), which are

associated with the corresponding eigenvalues of λ± = e±j2θ

form an orthonormal basis. A repeated application of the Q
operator i times would yield

Qi|9〉 = cos((2i+ 1)θ )|90〉 + sin((2i+ 1)θ )|91〉

= −
j
√
2

(
ej(2i+1)θ |9+〉 − e−j(2i+1)θ |9−〉

)
. (75)

The amplitudes of |90〉 and |91〉, with respect to the number
of applications of theQ operator, are sinusoidal functionswith
a period of θ/π . The resemblance that the Q operator in (74)
has with the Grover operator G in (57) may be seen by com-
paring their circuits in Figs. 18 and 10, respectively as well

FIGURE 17. Quantum circuit of the QWSA, where the operators A and Q are depicted in Figs. 15 and 18, respectively. The superscripts of the Q
operators signify the number of times the Q operator will be consecutively applied. The number of qubits in the QFR is
(n+ 1) = (K log2 M − 1+ 1) = K log2 M.
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FIGURE 18. Quantum circuit of the unitary operator Q, where B consists
of a CNOT gate, the quantum circuit of A is illustrated in Fig. 15 and the
controlled phase shift gate P0 is stated in (46).

FIGURE 19. Geometrical interpretation of the operations of Q on |9〉. The
unitary operator B reflects the initial state |9〉 with respect to |90〉, while
the unitary operator AP0A† reflects the state B · |9〉 with respect to |9〉,
resulting in the state |9(1)〉 = Q|9〉 and an overall counter-clockwise
rotation of 2θ . The same process is repeated in subsequent applications
of Q.

as their operations illustrated in Figs. 19 and 11, respectively.
A Quantum Control Register (QCR) |t〉 containing l qubits
will be initialized in an equiprobable superposition of states
and will encode the angle of θ/π into its phases by using
controlledQ operators, as seen in Fig. 17. Elaborating further,
each of the QCR’s qubits will apply a specific number of Q
operators to the QFR, but only when its state is |1〉. The state
|φ1〉 shown in Fig. 17 may be formulated after the controlled
Q operators as

|φ1〉 =
ejθ
√

2(l+1)

2l−1∑
q=0

ejq2θ |q〉|9+〉

−
e−jθ
√

2(l+1)

2l−1∑
q=0

e−jq2θ |q〉|9−〉 (76)

which may be interpreted as an encoding of θ into the phases
of 2l quantum states.

The Inverse Quantum Fourier Transform (IQFT) [47] is
applied to |φ1〉, resulting in

|φ2〉 =
ejθ
√
2

 1
2l

2l−1∑
z=0

2l−1∑
q=0

(
e
j2π

(
θ
π
−

z
2l

))q
|z〉

 |9+〉

−
e−jθ
√
2

 1
2l

2l−1∑
z=0

2l−1∑
q=0

(
e
j2π

(
−
θ
π
−

z
2l

))q
|z〉

 |9−〉.
(77)

A QCR’s state |z〉 in |φ2〉 has the same probability to be
observed in the QD as the state |2l − z〉, with the maximum
probability belonging to the states that minimize z ± 2lθ/π .
Once the QCR is observed and |zobs〉 is obtained, θ is esti-
mated as

θ̂ = π
zobs
2l
. (78)

The QD observation performed at this step of the QWSA is
the Q/C conversion stage of the QMUD seen in Fig. 2, since
the quantum state of the system converts to a classic one.
Finally, the weighted sum a is estimated from (73) and the
operator A† returns the QFR of Fig. 17 to the all-zero state.

VIII. NORMALIZATION AND COMPUTATIONAL
COMPLEXITY
The operators A and A† perform C = 2 CF evaluations each.
The QWSA repeatedly uses the Q operator (2l − 1) times,
which in turn performs C = 4 CF evaluations each, resulting
in a complexity of C = 4 · 2l = 2l+2 CF evaluations.
It should be noted that the number of qubits employed in
the QCR unambiguously determines the complexity of the
algorithm, which is independent of the number of the addi-
tive terms [71], or, in other words, independent of both the
number of users and of the modulation scheme employed. For
example, a QWSA MUD employing l = 12 qubits results in
a complexity of 214 CF evaluations for each user’s each bit.
According to our simulation results presented in Section IX, a
choice of l = 11 qubits is sufficient in terms of balancing the
performance versus complexity relationship. In the QWSA-
basedMUD, the QWSA of Fig. 17 is employed twice for each
bit of every user, namely once for that bit’s value being 0 and
once for 1, during each MUD-decoder outer iteration.
The minimum non-zero detectable sum in (72) is equal

to Smin = sin2(π/2l). The QWSA MUD may deliver a
zero output if the actual sum is smaller than Smin/2. When
many users are supported in the system, f (x) in (4) becomes
extremely small even for the xmax that provides the maxi-
mum CF value, f (xmax) < Smin/2. Hence, the QWSA will
fail to estimate the summation of both the numerator and
denominator of (2), mapping them to 0. In order to circumvent
this problem, we normalize f (x) = P(y|x) with respect to
the maximum value f (xmax) of the CF. This will result in
the normalized f (x) being equal to 1 at xmax and will be
lower for the remaining arguments. In order to determine
the maximum value of f (x) during each timeslot, various
techniques may be employed, such as a quantum-inspired GA
MUD, the classic ACO algorithm of [7], or theDHA that finds
the minimum of a function [55], with the function in our case
being −f (x).
The classic ACO algorithm employs ζ ants in each of the4

generations and outputs the argument xmax that maximizes the
CF in the majority of the cases, while imposing a complexity
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of (ζ ×4) CF evaluations. Each of the parameters ζ and 4
may be chosen to be log2(M

K ), resulting in a total complexity
of log22(M

K ) CF evaluations [7].
As analysed in Section VI-C, the DHA employs the BBHT

QSA. The DHA is provided with a random initial argument
xinit and finds xmax with∼ 100% probability after 22.5

√
MK

CF evaluations in the worst case [55]. Since in our scenarios
we have access to the output of the MF, we choose xinit =
xMF for avoiding this worst case scenario. Furthermore, in
some of the cases we have xmax = xMF = xinit , resulting
in the lowest bound of 4.5

√
MK CF evaluations per time

slot [54] for finding f (xmax) = P(y|xmax). The individual
employment of the DHA provides a quantum-assisted opti-
mal hard-output MUD, since it finds the argument xmax that
maximizes the CF at a complexity of O(

√
MK ).

Hence, a QWSA MUD relying on l qubits, M -ary modu-
lation, K users and J MUD-decoder iterations will have an
overall complexity order of

O(C) = 2l+3 · J · log2(M
K )

+

{
22.5
√
MK upper bound

4.5
√
MK lower bound

(79)

CF evaluations when DHA is employed for normalization,
compared to MK for the classic ML MUD. The factor
O(
√
MK ) becomes dominant in large-dimensional systems.

If the ACO algorithm is used in order to find the maximum of
f (x), the complexity imposed will be smaller, as illustrated in

O(C) = 2l+3 · J · log2(M
K )+ log22(M

K ) (80)

but the attainable performance would also be degraded, if an
erroneous xmax was chosen. If l = 11 is chosen and there are
J = 4 iterations between theMUD and the decoder, the upper
bound of the DHA-QWSAMUD’s complexity becomes 216 ·
K log2M+22.5

√
MK CF evaluations, which is less complex

than the ML MUD for K > 6 users transmitting 8-PSK
symbols or for K > 10 users employing QPSK modulation,
as quantified in Fig. 20. If the affordable complexity of our
receiver processor is a maximum of

(
4 · 106

)
CF evaluations,

a BPSK system will be able to support K = 33 users
using the QWSA MUD in contrast to K = 22 users, when
the ML MUD is employed. Similarly, in a 64-QAM system
supporting K = 5 users, the complexity of the QWSA MUD
is 0.25% of that of the ML MUD in the worst-case scenario.
On the other hand, if the ACO-QWSA MUD is used, the
complexity is always lower than that of the DHA-QWSA
MUD complexity’s upper bound and also smaller than its
lower bound in large-dimensional systems. In greater detail,
for K = 30 users and QPSK symbols, the complexity of
the ACO-QWSA is a fraction of 10−12 in comparison to that
of the ML MUD. It should be stated that the ACO-QWSA
MUD’s performance is extremely dependent on the accuracy
of the ACO algorithm involved for finding the maximum
value of the CF. Comparing the proposed QWSAMUD to the
hard-output QMUD introduced in [60] that has a complexity
of O[2l+1 log2(M

K )] CF evaluations [60], for l ≥ log2
(
MK

)

FIGURE 20. Complexity in terms of number of CF evaluations for the
proposed QWSA MUD with l = 11 qubits, lmodel = 15 qubits and the
classic, optimal ML MUD, without MUD-decoder iterations (J = 1).

operating in a noiseless scenario [60], we may conclude that
its complexity is lower, regardless of whether the DHA or
ACO is used.
The simulation results of Section IX have been recorded

for a DHA-QWSA MUD, where the DHA offers ∼ 100%
probability of success in finding the minimum of −f (x). The
reason behind our choice was to demonstrate the capabili-
ties of the QWSA, providing it with perfect and error-free
normalization of the CF, hence reaching the upper bound of
the QWSA-based MUD’s performance. It should be noted
that the DHA-QWSAMUD is a quantum-basedMUD imple-
mentable in classic systems, whereas the ACO-QWSAMUD
is a hybrid of the classic- and the quantum-domain. After find-
ing f (xmax) with the aid of the DHA, the CF is transformed
into

f ′(x) =
f (x)

f (xmax)
=

P(y|x)
P(y|xmax)

. (81)

The accuracy of the weighted sum’s estimate according
to [51], [71] is upper-bounded by

|â− a| ≤ 2πw

√
a(1− a)
2l

+ w2 π
2

22l
, w = 1, 2, . . . (82)

with a probability 8/π2 forw = 1 and at least 1−1/(2(w−1))
for w ≥ 2. The choice of the number of qubits l in the
QCR depends on both the maximum tolerable probability
of erroneously deciding θ and on the accuracy, expressed in
terms of the number of bits that θ is represented by.

If during the calculation of the LLRs only one of the two
bit’s values turn out to be 0 according to the QWSA MUD,
then we assume maximum confidence and we map that bit’s
LLR to 20 or −20, where

∑
x∈χ (k,m,1) P (y|x)P(x) = 0 or∑

x∈χ (k,m,0) P (y|x)P(x) = 0, respectively. If according to the
QWSAMUD the numerator and the denominator of a bit LLR
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turns out to be equal to each other, but not equal to 0 or Smin, at
low Eb/N0, there is no significant error, since the actual LLR
will also be close to 0. In this scenario, the dominant source
of error may occur due to having an inadequate precision in
terms of the number of qubits l.

IX. SIMULATION RESULTS AND DISCUSSIONS
In this section we will characterize the design of the proposed
QMUD both with the aid of EXIT charts [4], as well as by its
BER performance. In Fig. 21 we commence by first present-
ing the BER performance of BICM-ID systems supporting
K = 4, 6 and 8 users employing QPSK modulation associ-
ated with M = 4. Turbo Coding relying on Convolutional
Codes (TCCC) is used at a rate of R = 1/2, relying on 8 trellis
states and Iinner = 4 iterations between the convolutional
codes. The performance of the DHA-based hard-input hard-
output MUD is compared to that of the ML MUD and to that
of the MF detection. We may conclude that the performance
of the DHA is optimal, since it matches that of the hard
ML MUD. The number of CF evaluations performed by the
ML MUD of the systems supporting K = 4, 6 and 8 users
employing QPSK is MK

= 256, 4096 and 65 536, respec-
tively, while the average number of CF evaluations in the
same systems when the DHA was used is 78, 342 and 1456,
respectively. Hence, by using the DHA for hard MUD we
may achieve optimal performance at a substantially reduced
computational complexity.

Let us now proceed to the soft-input soft-output QMUD by
introducing a CDMA system supporting K = 2 coexisting
users, employing Gold codes having a spreading factor of

FIGURE 21. BER performance of BICM-ID DS-CDMA systems supporting
K = 4,6,8 users transmitting QPSK M = 4 symbols. The DHA MUD is
compared to the ML MUD and the MF detection, verifying its optimality in
finding the minimum of a function. The interleaver length is equal to
20 000 bits.

FIGURE 22. EXIT charts of a CDMA system with K = 2 users, SF = 31
chips, BICM-ID with Non-Systematic Convolutional Codes, R = 2/3, 16
trellis states and Turbo Code relying on Convolutional Codes, R = 1/2, 8
trellis states and Iinner = 4 inner iterations. DHA-QWSA-based MUD is
used with l = 10 qubits in the QCR of Fig. 17.

SF = 31. Each of them uses BICM-ID constructed by a
Non-Systematic Convolutional Code (NSCC) having a rate
of R = 2/3 and 16 trellis states, 3 parallel bit interleavers
and 8-PSK modulators. The system model may be found in
Fig. 3. The EXIT curves4 of both the inner MUD and of the
outer decoder are presented in Fig. 22 for Eb/N0 = 6 dB and
11 dB. It may be clearly observed that the EXIT curves of
the QWSA MUD match those of the ML MUD, confirming
that the two systems have the same performance. In Fig. 22
we have also presented the EXIT curves of a system for
K = 2 users and M = 8, but replacing the R = 2/3-
rate NSCC by a TCCC having a rate of R = 1/2, relying
on 8 trellis states and 4 iterations between the convolutional
codes. It may be readily verified that the EXIT curve of the
inner QWSA MUD is identical to that of the ML MUD.
The Monte-Carlo simulation based decoding trajectories of
Fig. 22 further justify that the proposed QWSA MUD may
be integrated into an iterative receiver. At Eb/N0 = 6 dB
and employing a R = 2/3 NSCC there is no open EXIT-
tunnel leading to the IE,DEC = 1 point, which is in contrast
to the Eb/N0 = 11 dB and R = 2/3 scenario, where we
have IE,DEC ≈ 1 after J = 2 outer iterations between the
MUD and the decoder. We may conclude that the extrinsic
information at the NSCC decoder’s output recorded at 6 dB
and the rate R = 2/3 scheme will not exceed IE,DEC = 0.9,
even if an infinite number of MUD-decoder outer iterations
are performed, while at 11 dB the maximum IE,DEC = 1 is
reached even with as few as J = 2 outer iterations. Further-
more, the system using TCCC needs J ≈ 7 outer iterations at

4For a tutorial on EXIT charts please refer to [4].
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FIGURE 23. EXIT charts of two CDMA systems with K = 2 users, SF = 31
chips, BICM-ID with R = 1/2, Turbo Code relying on Convolutional Codes
and Non-Systematic Convolutional Code, along with ML-based and
DHA-QWSA-based MUD with l = 10 qubits in the QCR of Fig. 17.

Eb/N0 = 5 dB in order to reach IE,DEC = 1. The size of the
interleaver in the NSCC systems is 20 000 bits, while that in
the TCCC system is 21 000 bits. The reason why the decoding
trajectories undershoot the NSCC curve for IA,MUD < 0.5 is
because the outputs of the ML and QWSA MUDs cannot be
modelled as a Gaussian distribution, whereas the outer EXIT
curve was created assuming that the LLRs obey the Gaussian
distribution.

Even though the complexity of the DHA-QWSA MUD in
this two-user scenario is higher than that of the ML MUD,
which are associated with 393 446 CF evaluations in the
worst case and 64 CF evaluations per time slot, respectively,
our objective was to demonstrate the match between the
classic and quantum MUDs EXIT curves. The application
area of our QWSAMUD is in systems designed for numerous
users and larger modem constellations, since its complexity
is proportional to O(

√
MK ) when the DHA [55] is used and

O[2l+3 log(MK )] when the ACO is employed, while that of
the classic ML-MUD is proportional to O(MK ), as seen in
Fig. 20.

In a BICM-ID system using R = 1/2 TCCC and sup-
porting K = 2 users employing Gold codes associated with
SF = 31 chips each, the performance of the QWSA MUD
again matches the ML MUD’s, as it may be concluded from
the EXIT chart of Fig. 23. Two encoders are compared,
namely a TCCC and an NSCC. The choice of Eb/N0 = 2.8
dB for the TCCC system was made with a value in mind,
where the ‘‘turbo cliff’’ emerges, whereas in the NSCC sys-
tem IE,DEC has exceeded 0.9 at Eb/N0 = 7 dB. The similarity
in the BER performance between the quantum and classic
ML-MUD is seen in Fig. 24. The size of the interleaver is
20 000 for each user, the number of inner iterations in the

FIGURE 24. BER performance of two CDMA systems with K = 2 users,
SF = 31 chips, BICM-ID with R = 1/2, Turbo Code relying on
Convolutional Codes and Non-Systematic Convolutional Code, along with
ML-based and QWSA-based MUD with l = 9, 10 and 11 qubits in the QCR
of Fig. 17. The interleaver length is equal to 20 000 bits and
4 MUD-decoder iterations have been applied.

TCCC is Iinner = 4, while the number of MUD-decoder
outer iterations is also fixed to J = 4. The large size of the
interleaver allows the BER floor of the TCCC system to be

FIGURE 25. BER performance of a CDMA system with K = 4 users, SF = 7
chips, BICM-ID employing QPSK and a Turbo Code relying on
Convolutional Codes with R = 1/2, 8 trellis states and Iinner = 5
iterations, along with ML-based and QWSA-based MUD for various
number of qubits l in the QCR of Fig 17. The interleaver length is equal to
20 000 bits and the number of MUD-decoder outer iterations is J = 1
and J = 4.
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lower than 10−5. If more qubits are used in the QCR, the
system’s performance approaches that of the ML MUD more
closely. Furthermore, if more MUD-decoder outer iterations
are performed, the overall QMUD system’s BER becomes
closer to that of the ML MUD.

In order to further investigate the effect that the l QCR
qubits have on the attainable performance, Fig. 25 character-
izes a BICM-ID system supporting K = 4 users with the aid
of SF = 7 chips, TCCC with R = 1/2, 8 trellis states and
Iinner = 4. The DHA-QWSA MUD is used in conjunction
with l ranging from 9 to 12 qubits in the QCR and the number
of MUD-decoder outer iterations considered are J = 1 and
J = 4. The system characterized in Fig. 25 has a higher
complexity than that used in Fig. 24. As the number of qubits
l increases, the precision in the QWSA becomes better and
Smin becomes smaller. Hence, the performance is improved
and it approaches that of the ML MUD, as it is clearly seen
in Fig. 25. In more detail, for J = 1 the Eb/N0 loss that is
experienced when we have l = 12, l = 11, l = 10 and
l = 9 compared to the optimal ML MUD is approximately
0.05 dB, 0.1 dB, 0.2 dB and 0.5 dB, respectively. In all
cases, the DHA-QWSAMUD performance has more closely
approached that of the ML MUD for J = 4, because the
classic decoder helps mitigate both the probabilistic nature
of quantum computation and the errors due to the limited
precision of the QWSA. If l > 12 qubits were used, the
performancewould be expected to be even closer to that of the
MLMUD.Once again, the trade-off between the performance
attained and the complexity imposed becomes explicit.

X. CONCLUSIONS
We have conceived an improved QMA resulting in the
QWSA, which is employed for designing a quantum-assisted
MUD relying on soft inputs and providing soft outputs.
The proposed QWSA-based MUD may be considered as the
quantum-domain equivalent of the ML MUD. The process
within the QWSA MUD takes place in the QD, while its
inputs and outputs remain in the classic domain, enabling
the quantum-assisted MUD to be integrated in a state-of-
the-art iterative receiver of a classic communications system.
The DHA is used prior to QWSA in order to detect the
specific multi-level symbol that maximizes the CF and for
normalizing its outputs. The EXIT charts and BER curves
presented verify that the QWSA MUD has the same perfor-
mance as the classic optimal ML MUD, which is achieved
at a substantially reduced computational complexity, when
compared to the ML MUD supporting numerous users and
high-order modulation schemes.
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