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ABSTRACT Inspired by the success of classical turbo codes, quantum turbo codes (QTCs) have also been
conceived for near-hashing-bound transmission of quantum information overmemoryless quantum channels.
However, in real physical situations, the memoryless channel assumption may not be well justified, since the
channel often exhibits memory of previous error events. Here, we investigate the performance of QTCs over
depolarizing channels exhibiting memory and we show that they suffer from a performance degradation at
low depolarizing probability values. In order to circumvent the performance degradation issue, we conceive
a new coding scheme termed quantum turbo coding scheme exploiting error-correlation (QTC-EEC) that is
capable of utilizing the error-correlationwhile performing the iterative decoding at the receiver. The proposed
QTC-EEC can achieve convergence threshold at a higher depolarizing probability for channels with a higher
value of correlation parameter and achieve performance near to the capacity. Finally, we propose a joint
decoding and estimation scheme for our QTC-EEC relying on the correlation estimation (QTC-EEC-E)
designed for more realistic quantum systems with unknown correlation parameter. Simulation results reveal
that the proposed QTC-EEC-E can achieve the same performance as that of the ideal system of known
correlation parameter and hence demonstrate the accurate estimation of the proposed QTC-EEC-E.

INDEX TERMS Quantum channels with memory, quantum turbo codes, iterative decoding, quantum error-
correction codes, Markovian correlated-noise, Markov process.

I. INTRODUCTION
Quantum computing and communication exploit the unique
properties of quantum mechanics, such as the superposition
of states and entanglement [1] to provide inherently fast and
secure data processing. However, the quantum bits (qubits)
are intrinsically fragile and susceptible to quantum decoher-
ence imposed by the unavoidable interaction between the
qubits and the environment, inflicting qubit errors. There-
fore, the practical realization of a quantum system relies on
the preservation of the quantum coherence of a quantum
state. In order to mitigate the detrimental effects of quantum
decoherence, several approaches have been proposed [2]–[5],
including the most well-known approach of quantum error-
correction codes (QECCs) [2].

QECCs make use of redundant auxiliary (also called
ancilla) qubits to protect the data qubits. The first quan-
tum code was introduced by Shor in 1995 [2] that was
only capable of correcting a single qubit error in a nine-
qubit block code. Since then, many other QECCs have been
developed that can outperform the Shor’s nine-qubit code,
with the goal of approaching the quantum channel’s capacity.
Inspired by the near-capacity performance of the classical
turbo codes [6], quantum serial turbo codes or also known as
quantum turbo codes (QTCs) were conceived in [7] and [8]
and later extended for entanglement-assisted coding schemes
in [9]–[12]. The superiority of QTCs in the context of mem-
oryless depolarizing channels was demonstrated in [7]–[12],
where the QTCs were shown to exhibit a similar turbo-cliff
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region to their classic counterparts in the vicinity of the quan-
tum channel’s capacity. Another near-capacity quantum code
family is constituted by low density parity check (QLDPC)
codes [13]–[15]. However, it has been shown that there
are several decoding issues associated with QLDPC codes.
Firstly, the belief propagation decoding algorithm of QLDPC
codes is not capable of exploiting the degenerate errors. Fur-
thermore, the unavoidable length-4 cycles found in QLDPC
codes degrade their performance [8], [11]. Fortunately, all
these weaknesses of QLDPC codes can be circumvented by
QTCs can also offer a higher flexibility in terms of choosing
the code parameters such as the frame length, coding rate,
constraint length and interleaver type.

The designers of QECCs have typically assumed that
the channels are memoryless, where the errors inflicted on
the transmitted qubits are identically and independently dis-
tributed (i.i.d). However, in real physical situations, the mem-
oryless channel assumption may only be valid upon applying
an external magnetic field to reset the channel’s memory or by
transmitting the successive signals at a sufficiently low rate
to allow the channels to naturally subside before transmitting
the next signal [16], [17]. Despite that, this is not justified in
a high-rate communication system where the signals follow
each other in quick succession. Physical examples of chan-
nels exhibiting a memory in quantum information processing
are constituted by unmodulated spin chains [18], [19], micro-
masers [20], and fibre optics [21], [22].

The quantum channel’s memory effect were first stud-
ied in 2002 by Macchiavello and Palma [23] for classical
information transmission over a depolarizing channel and
it was demonstrated that for a certain correlation value,
encoding the classical information into maximally entangled
quantum states is capable of enhancing the channel capacity
over the product quantum states encoding for two succes-
sive channel uses. This work was then extended to quasi-
classical depolarizing channels [24], to Pauli channels [25],
to more than two successive uses of Pauli channels [26] and
to superdense-coded qudit1 Pauli channels [27]. A model and
a unitary representation of quantum channels with memory
for classical and quantum information was introduced by
Bowen and Mancini [28]. In 2005, a unified framework
for quantum channels exhibiting memory was developed by
Kretschmann and Werner [17], where the upper bounds of
classical and of quantum channel capacities were derived
for various scenarios, depending on whether the transmitter,
the receiver or the eavesdropper has the control on the initial
and final memory states. Most of the theoretical contributions
on discrete quantum channels with memory assume contam-
ination by Markovian correlated noise, since the properties
of typical sequences generated by a Markov process are well
understood [23]–[35].

Sincemost of the existingQECCs includingQTCs[7]–[12]
are designed for memoryless channels, these QECCs may not

1Qudit is the generalization of a qubit for a d-level quantum state where a
qubit corresponds to a 2-level quantum state.

perform well for channels with memory. There have been
several studies on the performance of the existing QECCs in
the context of quantum channels exhibiting memory, specif-
ically using the 3-qubit repetition code [31], [32], [35], [36],
CSS codes [36] and stabilizer codes [33]. The performance
degradation of the existing QECCs became more severe as
the error-correlation of the quantum channels became higher.
Cafaro and Mancini [35] and Clemens et al. [36] proposed
concatenated coding schemes relying on the 3-qubit repeti-
tion code and a specific code based on the decoherence-free
subspace formalism of [5] which was investigated in the con-
text of a bit-flip (or a phase-flip) quantum channel. Although
the performance of this concatenated code improved upon
increasing the error-correlation, but for memoryless channels
and channels associated with low error-correlation, the stand
alone 3-qubit code outperformed the concatenated code. For
a recent review on quantum channels with memory please
refer to [16].

Against this background, we design a new QTC-based
coding scheme for depolarizing channels exhibiting mem-
ory. The correlated errors are modeled by a 4-state Markov
chain and the error-correlation characterized by the transition
probabilities are exploited using our modified maximum
a posteriori (MAP) algorithm employed by the inner decoder.
In contrast to the concatenated coding schemes of [35]
and [36] that are only suitable for a certain range of error-
correlations, our proposed coding scheme is capable of
achieving performance gains over the existing QTCs for the
entire range of error-correlations and does not suffer from any
performance degradation for transmission over memoryless
channels. Hence, our novel contributions can be summarized
as follows:

1) We conceive a quantum turbo coding scheme exploiting
the error-correlation (QTC-EEC), when performing
syndrome-based iterative decoding. This is realized by
modifying the MAP algorithm employed by the inner
decoder to capitalize on the statistics of the error-
correlation. The proposed QTC-EEC outperforms the
existing QTCs and achieves higher performance gains
over the existing QTCs, when the error-correlation
is increased. Moreover, we demonstrate the accu-
racy of extrinsic information transfer (EXIT) charts of
QTC-EEC, which is important for EXIT-chart based
code design/optimization.

2) We propose a joint decoding and estimation tech-
nique for our QTC-EEC relying on correlation estima-
tion (QTC-EEC-E). We demonstrate that the proposed
QTC-EEC-E is capable of accurately estimating the
unknown correlation parameter µ and achieves the
same performance as that when µ is perfectly known
at the receiver.

It is worth mentioning that although we specifically con-
sider unassisted transmission over a depolarizing channel in
this paper, the proposed QTC-EEC and QTC-EEC-E can also
be applied for entanglement-assisted transmissions [10] as
well as for communicating over any Pauli channels, even
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in conjunction with asymmetric error probabilities [37]. The
remainder of this paper is organized as follows. Our sys-
tem model and the channel capacity of quantum channels
associated with Markovian correlated noise are described in
Section II. Section III investigates the performance of the
existing QTCs for transmission over a quantum channel with
memory. The proposed QTC-EEC is detailed in Section IV.
Joint decoding and estimation of the correlation parameter
is proposed and analyzed in Section V. Finally, concluding
remarks are provided in Section VI.

II. QUANTUM CHANNELS EXHIBITING MEMORY
In many contributions related to quantum channels exhibiting
memory, a class of quantum channels subjected to discrete
Markovian correlated noise was considered [23]–[35]. Simi-
larly, in this paper we also consider the same class of channels
characterizing the temporal correlation between the errors
introduced by the quantum channels. The error model pre-
sented in this section is based on the general Pauli channels,
which include the family of depolarizing channels.

A. MODEL OF QUANTUM CHANNELS
EXHIBITING MEMORY
For a memoryless Pauli channel, the completely positive
trace-preserving mapping of an input quantum state having
a density operator ρ in its operator-sum (or Kraus) represen-
tation [38] is given by [39]:

8(ρ) =
∑

A∈{I,X,Y,Z}
pAAρA

= pIIρI+ pXXρX+ pYYρY+ pZZρZ, (1)

where I,X,Y, and Z are Pauli operators defined by [39]:

I =
(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =
(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2)

and {pI, pX, pY, pZ} are the probabilities of the Pauli opera-
tors {I,X,Y,Z} that are imposed on the input density opera-
tor ρ, respectively. Naturally, the sum of all the probabilities,
i.e. pI+pX+pY+pZ is equal to 1. For depolarizing channels,
we have pX = pY = pZ = p/3 and pI = 1 − p, where
p is the depolarizing probability. Here, we define the set of
{I,X,Y,Z} Pauli operators as the effective Pauli group G1
applied to a single qubit, while the general effective Pauli
group GN applied to N qubits is an N -fold tensor product
of G1 [8], [11].

Let us now consider N successive uses of the memoryless
channel described by Eq. (1) yielding

8N
(
ρ(N )

)
=

∑
A1A2...AN∈GN

pA1A2...AN

· (A1⊗A2⊗. . .⊗AN )ρ(N )(A1⊗A2⊗. . .⊗AN ), (3)

whereAi ∈ G1 is the Pauli operator acted on the i-th use of the
channel with i ∈ {1, 2, . . . ,N }. The joint probability obeys

pA1A2...AN = pA1 ·pA2 ·. . .·pAN , since the errors are imposed
independently on each successive channel use. In this case,
Eq. (3) can be expressed as anN -fold tensor product of Eq. (1)
to yield 8N

(
ρ(N )

)
= [8(ρ)]⊗N .

FIGURE 1. The state diagram of a Markov chain where {I,X,Y,Z}-state
correspond to the {I,X,Y,Z} Pauli operators, respectively.

For channels with memory, the correlation of the errors
on each successive channel use can be described by the
4-state Markov chain illustrated in Fig. 1, where the 4 states
correspond to the I,X,Y and Z Pauli operators imposed on
the transmitted qubits. The probability of traversing from a
previous state A′ to the current state A is denoted as qA|A′ ,
which is equal to the conditional probability of P(A|A′),
where {A′,A} ∈ G1. The error-correlation can be charac-
terized by the correlation parameter µ where µ ∈ [0, 1], with
µ = 0 indicating zero correlation (memoryless channels) and
µ = 1 indicating perfect correlation. In reality, µ can be
quantified from the time delay ∆t between two successive
channel uses and the typical relaxation time constant τ of
the channel environment, which can be expressed as µ '
exp(−∆t/τ ) [40], [41]. The relationship between the tran-
sition probability qA|A′ and the correlation parameter µ is
given by

qA|A′ = (1− µ) · pA + µ · δA′A, (4)

where δA′A is the Kronecker delta function and pA is the
probability of the Pauli operator A being imposed on the
transmitted qubits. The joint probability in Eq. (3) can be
computed as pA1A2...AN = pA1 · qA2|A1 · . . . · qAN |AN−1 and
therefore, the completely positive trace-preserving mapping
for channels with memory can be represented as [23], [28]

8N
(
ρ(N )

)
=

∑
A1A2...AN∈GN

pA1 · qA2|A1 · . . . · qAN |AN−1

· (A1⊗A2⊗. . .⊗AN )ρ(N )(A1⊗A2⊗. . .⊗AN ). (5)

B. CHANNEL CAPACITY OF DEPOLARIZING
CHANNELS EXHIBITING MEMORY
Themaximum amount of information that can be reliably sent
over the quantum channel at an arbitrarily low probability of
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error is given by the channel capacity [42]. In general, there
are two types of capacities for quantum channels, namely
the classical and the quantum channel capacities that corre-
spond to the transmission of classical and of quantum infor-
mation through the quantum channels, respectively. In this
treatise, we particularly consider the transmission of quan-
tum information over the quantum channels with memory.
However, at the time of writing, the exact quantum capacity
for the transmission of quantum information over the quan-
tum channels with memory has only been found for a few
specific channel models, as exemplified by the dephasing
channels [30], the amplitude-damping channels [43], and the
bit/phase-flip channels [34]. The exact quantum capacity of
the general Pauli channels including the depolarizing chan-
nels has not been found, hence we will use the lower capacity
bound derived in [34].

The lower bound of the quantum capacity derived for the
depolarizing channel with memory and having the correlation
coefficientµ as well as the depolarizing probability p is given
by [34]

CM
Q (µ, p) = lim

N→∞

1
N

[
I (1)c (p)+ (N − 1) · I (2)c (µ, p)

]
, (6)

where I (1)c (p) and I (2)c (µ, p) represent the coherent informa-
tion associated with the first and subsequent transmissions
after the first, respectively. These coherent information con-
tributions can be computed using the equations below [34]:

I (1)c (p) = 1− Hb(p)− p · log2(3), (7)

I (2)c (µ, p) = 1+ r0 · (1− p) · log2(r0)+ r1 · p · log2(r1)

+ r2 · (3− p) · log2(r2)+ r3 · p · log2(r3), (8)

where we have the binary entropy function Hb(p) = −p ·
log2(p) − (1 − p) · log2(1 − p), r0 = (1 − p) · (1 − µ) + µ,
r1 = (1−p)·(1−µ), r2 =

p
3 ·(1−µ), and r3 =

p
3 ·(1−µ)+µ.

In the case of a memoryless channel, substituting µ = 0 into
Eq. (8) will yield I (2)c (0, p) = 1−Hb(p)− p · log2(3). Hence,
the corresponding quantum capacity of Eq. (6) becomes
CM
Q (0, p) = 1− Hb(p)− p · log2(3) for any value of N . The

resultant CM
Q (0, p) value is the same as the hashing bound

of CQ(p) = 1 − Hb(p) − p · log2(3), which sets the lower
bound of communicating over a memoryless depolarizing
channel [44].

Fig. 2 depicts the effect of both the correlation coefficientµ
and of the number of channel usesN on the lower bound of the
quantum capacity of the depolarizing channel subjected to the
Markovian correlated noise of Eq. (6). An increased capacity
is observed for a channel having a higher value of µ. Fur-
thermore, when relying onmore channel uses for transmitting
more qubits over the quantum channels would also increase
the attainable capacity, as shown for the channel having
µ = 0.8 in Fig. 2, when the value of N increases from 3
to 3 × 104. However, the difference in capacity becomes
insignificant for large values of N such as, for example N =
3× 103 to N = 3× 104. For a desired quantum coding rate,
the increase in capacity can also be viewed as an increase in

FIGURE 2. Quantum capacity for depolarizing channels exhibiting
memory associated with various µ and N values.

the noise limit p∗, where reliable quantum communications
can be guaranteed. For example, a quantum system with a
coding rate of RQ = 1/9, the noise limit improves from
p∗ = 0.175 for the quantum channel having µ = 0.2 to
p∗ = 0.297 for that associated with µ = 0.6, which tells us
that a quantum system communicating over a more correlated
channel has a higher noise-tolerance.

III. EXISTING QTCS TRANSMITTED OVER A QUANTUM
CHANNEL EXHIBITING MEMORY
In this section, we will first give an overview of the existing
QTCs [8], [11] and then evaluate the performance of the
existing QTCs for transmission over depolarizing channels
with memory using Monte Carlo simulations.

A. EXISTING QUANTUM TURBO CODES
Fig. 3 illustrates the block diagram of a QTC relying on
the serial concatenation of two stabilizer codes. An [n, k]
quantum code maps k logical qubits (uncoded qubits) onto
n physical qubits (encoded qubits) using (n − k) auxiliary
qubits |0n−k 〉 , where n > k . For an [n, k] quantum convo-
lutional code (QCC) with m memory qubits, the parameter
set can be presented as [n, k,m]. In this work, we employ an
[nout, kout,mout] QCC as the outer code and an [nin, kin,min]
QCC as the inner code. At the transmitter, the logical qubits
|ψout〉 are first encoded to physical qubits

∣∣ψ̄out〉 using the
outer encoder Vout before being interleaved by the quantum
interleaver5. The interleaved qubits |ψin〉 which correspond
to the logical qubits for the inner encoderVin are then encoded
to n = nout × nin physical qubits

∣∣ψ̄in〉 . The physical qubits∣∣ψ̄in〉 are serially transmitted over a depolarizing channel
having a depolarizing probability p. The channel inflicts an
n-tuple error Pin ∈ Gn on the transmitted qubits

∣∣ψ̄in〉 .
At the receiver, the corrupted physical qubits Pin

∣∣ψ̄in〉

are passed to the inverse encoder V†
in to yield the cor-

rupted logical qubits of the inner encoder Lin |ψin〉 and the
(nin − kin) syndrome qubits Sin

∣∣0nin−kin〉 . The syndrome
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FIGURE 3. System model of a quantum communication system relying on a QTC transmitted over a
depolarizing channel exhibiting memory.

sequence
∣∣0nin−kin〉 is invariant to the Z-component of Sin

and therefore, the syndrome qubits Sin
∣∣0nin−kin〉 collapse to

the X-component of the classical syndrome bits Sxin upon
measurement [8], [11]. The erroneous logical qubitsLin |ψin〉

are deinterleaved by 5−1 to result in the erroneous physical
qubits of the outer inverse encoder V†

out, which are then
processed by V†

out. This results in the potentially erroneous
decoded logical qubits of the outer encoder Lout |ψout〉 and
the (nout−kout) syndrome qubits Sout

∣∣0nout−kout〉 that collapse
to the classical syndrome bits Sxout upon measurement.
A degenerate iterative decoding scheme [8] is invoked for

the pair of classic syndrome-based SISO decoders, namely
the inner SISO decoder Din and the outer SISO decoder
Dout for estimating the error coset L̃out inflicted on the log-
ical qubits of the outer encoder. The channel information
Pch(Pin), the classic syndrome bits Sxin and the a priori infor-
mation Pain(Lin) (equiprobable for the first iteration) are pro-
cessed by Din to compute the extrinsic information Pein(Lin),
which is related to the error inflicted on the logical qubits
of the inner encoder. The extrinsic information Pein(Lin) is
then de-interleaved by 5−1 and fed to Dout as the a pri-
ori information Paout(Lout). The computation of the a pos-
teriori information Poout(Lout) and the extrinsic information
Peout(Pout) is performed byDout using the a priori information
Paout(Lout), and the classic syndrome bits Sxout. The extrinsic
output Peout(Pout) is then interleaved by 5 to yield Pain(Lin),
which is fed back to Din for the next iteration. This process is
repeated until convergence is achieved or the preset number
of iterations is reached. Finally, based on the a posteriori
information Poout(Lout), aMAP decision is performed to deter-
mine the most likely error coset L̃out, which is then used
by the recovery operation R to yield the estimated logical
qubits

∣∣∣ψ̃out〉 . The a posteriori and extrinsic information out-
puts from both the SISO decoder Din and Dout are computed
using the degenerate MAP algorithm [8], [11].

B. QBER PERFORMANCE EVALUATION
A rate-1/9 QTC consisting of two serially concatenated iden-
tical rate-1/3, memory-3 [3,1,3] QCCs is considered in all our
simulations throughout this paper. More explicitly, the [3,1,3]
QCC employed as both the outer and inner component codes
correspond to the code configuration termed as ‘‘PTO1R’’
in [10].2 The seed transformation for the ‘‘PTO1R’’ configu-
ration in decimal notation is given by [10]:

U = {1355, 2847, 558, 2107, 3330,

739, 2009, 286, 473, 1669, 1979, 189}10, (9)

and we define the overall configuration of the QTC as
‘‘PTO1R-PTO1R’’ where the first and second ‘‘PTO1R’’
terms correspond to the ‘‘PTO1R’’ configuration employed
by the outer code and inner code, respectively.

The qubit error rate (QBER) performance of the existing
QTC in the face of depolarizing channels associated with dif-
ferentµ is depicted in Fig. 4. The performance of the existing
QTC is slightly improved for a higher µ value, but only in
the high p-value region, for example for p > 0.14 in Fig. 4.
On the other hand, in the low p-value region, we can see
that the performance of the existing QTC is degraded upon
increasing the µ value. If we consider the QBER of 10−6,
the existing QTC encountering the memoryless channels
(µ = 0) has the best performance. However, the existing
QTC does not seem to work well for channels exhibiting
memory (µ > 0), since the performance of the existing QTC
becomes worse for higher values of µ. This is expected due
to the assumption of µ = 0 used in existing QTCs and as the
actual µ deviates away from 0, the performance degradation
of existing QTCs becomes more significant. Therefore, a new

2The ‘‘PTO1R’’ term was denoted in [10] referring to the first code
configuration suggested in [8] by D. Poulin (‘‘P’’), J-P. Tillich (‘‘T’’) and
H. Ollivier (‘‘O’’).
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FIGURE 4. QBER performance of the rate-1/9 QTC (using the
‘‘PTO1R-PTO1R’’ configuration of [10]) transmitted over depolarizing
channels associated with different µ for a maximum of 8 iterations and
an interleaving depth of 3× 103 qubits.

QTC-based coding scheme has to be designed for exploiting
the error-correlation characterized by different values of µ.

IV. QUANTUM TURBO CODING DESIGN EXPLOITING
THE ERROR-CORRELATION
In Section II-B, it was shown that the capacity of the depo-
larizing channels increases with µ. However, the results of
Fig. 4 suggest that the existing QTCs encountering a channel
exhibiting memory perform worse than over the memory-
less channel especially for channels associated with a higher
value of µ. Therefore, a new quantum turbo coding scheme
known as QTC-EEC is conceived for exploiting the error-
correlation imposed by the channel and for circumventing the
performance degradation exhibited by the existingQTCs. The
proposed QTC-EEC relies on the appropriate modification
of the MAP algorithm employed by the inner decoder to
incorporate the memory state of the previous error. In this
section, we shall first present the modified MAP algorithm,
followed by its EXIT chart analysis and by the performance
evaluation of the proposed QTC-EEC.

A. MODIFIED MAP ALGORITHM CONCEIVED FOR
EXPLOITING THE ERROR-CORRELATION
The degenerate MAP algorithm [8], [11] employed for the
existing QTC assumes that the quantum channels are mem-
oryless. In order to exploit the memory of the depolarizing
channels, the algorithm employed by the inner decoder has to
be modified. Based on the Markovian correlated-error model
described in Section II-A, the Markov state of the previous
error can be incorporated into the existing trellis states of the
QCC and this results in an increase of the total number of
trellis states from 4min to 4min+1 states. The modified MAP
algorithm is based on this trellis expansion, which is the price
paid for exploiting the correlation µ for the computation of
the a posteriori probabilities.

The correlated errors of depolarizing channels with mem-
ory can be characterized by the transition probabilities given

in Eq. (4), which depend on the value of the depolarizing
probability p and on the correlation parameter µ. We will
exploit these transition probabilities in our modified MAP
algorithm and since the transition probabilities have already
included p, we can omit the contribution from the channel’s
output information Pch. Instead, we include it along with the
transition probabilities qA|A′ in the modified MAP algorithm,
where A′ and A are the binary-representations of the Pauli
operators A′ and A, respectively and {A′,A} ∈ G1.3 In the
proposed QTC-EEC, the modified MAP algorithm is only
employed by the inner SISO decoder Din, while the outer
SISO decoderDout still employs the original degenerateMAP
algorithm [8], [11]. The modification of the degenerate MAP
algorithm is based on a similar technique of modifying the
MAP algorithm for correlated binary sources in the classical
domain [45]–[47].

The degenerate MAP algorithm is executed in the classic
domain, hence we will replace the Pauli operators P , L, S
and G by the classic binary-representation P, L, S, and G,
respectively using the Pauli-to-binary isomorphism, which
maps each qubit onto two classical bits [8], [11]. For the
sake of generalization, we will omit the subscript ‘in’ and
‘out’ whenever our discussions apply for both the inner and
outer decoders throughout the following discussions. For a
sequence of T blocks of k logical qubits (correspondingly,
n physical qubits),4 let L = [L1,L2, . . . ,Lt , . . . ,LT ] andP =
[P1,P2, . . . ,Pt , . . .PT ] where Lt ∈ Gk and Pt ∈ Gn. More
explicitly, Lt = [L1t ,L

2
t , . . . ,L

k
t ] and Pt = [P1t ,P

2
t , . . . ,P

n
t ].

Based on the circuit representation of a QCC [11], we have

(Mt : Pt ) = (Mt−1 : Lt : St )U , (10)

where the colon (:) represents the concatenation operation,U
is the 2(n+m)×2(n+m) seed transformation matrix andM ∈
Gm is the memory state having a length of 2m bits. The seed
transformation U can be decomposed as U = (UM : UP),
where UM and UP are binary matrices constructed by the
first 2m columns and the last 2n columns of U , respectively.
Hence, we have

Mt = (Mt−1 : Lt : St )UM , (11)

Pt = (Mt−1,Lt : St )UP. (12)

We have derived the a posteriori probabilities, Po(Lin,t ) and
Po(Pin,t ) using the modified degenerate MAP algorithm as
follows:

Po(Lin,t ) , P
(
Lin,t |Sxin

)
,

∝

∑
ν,σ,ξ

Pa(Lin,t ) · αt−1(ν, ξ ) · βt
(
Min,t ,P

nin
in,t

)
· qP1in,t |ξ

·

nin∏
j=2

q
Pjin,t |P

j−1
in,t

(13)

3Since A′ and A are the binary-representation of Pauli operatorsA′ andA,
respectively, we have qA|A′ = qA|A′ and similarly, pA = pA for
{A′,A} ∈ G1.

4The T number of blocks may include the block(s) of terminated qubits.
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and

Po(Pin,t ) , P
(
Pin,t |Sxin,t

)
,

∝

∑
ν,λ,σ,ξ

Pa(Lin,t = λ) · αt−1(ν, ξ ) · βt
(
Min,t ,P

nin
in,t

)
· qP1in,t |ξ

·

nin∏
j=2

q
Pjin,t |P

j−1
in,t
, (14)

where ν ∈ Gm, λ ∈ Gk , σ ∈ Gn−k and ξ ∈ G1, while
σ = (σx : σz) having σx = Sxt . The variable ξ corresponds
to all possible errors imposed on the nin-th qubit at time
instant t − 1, i.e. Pninin,t−1 = ξ . Based on Eq. (11) and
Eq. (12), we have Min,t = (ν : Lin,t : σ )UM and Pin,t =
(ν : Lin,t : σ )UP, where Pin,t = [P1in,t ,P

2
in,t , . . . ,P

nin
in,t ]

and Lin,t = [L1in,t ,L
2
in,t , . . . ,L

kin
in,t ]. The ∝ sign indicates that

the left-hand-side term is proportional to the corresponding
right-hand side term, with the proportionality factor for a
fixed t being given by normalization. This ensures that for
a fixed t , the sum of probabilities of the left-hand-side term,
e.g., Po(Lin,t ) in Eq. (13) and Po(Pin,t ) in Eq. (14) is always
equal to 1.

The forward recursive coefficient αt and the backward
recursive coefficient βt−1 are formulated as:

αt

(
Min,t ,P

nin
in,t

)
, P

(
Min,t ,P

nin
in,t |S

x
in≤t

)
,

∝

∑
ν,λ,σ,ξ

Pa(Lin,t= λ) · αt−1(ν, ξ ) · qP1in,t |ξ
·

nin∏
j=2

q
Pjin,t |P

j−1
in,t

(15)

and

βt−1

(
Min,t−1,P

nin
in,t−1

)
, P

(
Min,t−1,P

nin
in,t−1|S

x
in>t−1

)
,

∝

∑
λ,σ

Pa(Lin,t = λ) · βt
(
Min,t ,P

nin
in,t

)
· qP1in,t |P

nin
in,t−1

·

nin∏
j=2

q
Pjin,t |P

j−1
in,t
, (16)

respectively, where Min,t = (Min,t−1 : λ : σ )UM and
Pin,t = (Min,t−1 : λ : σ )UP.
The boundary conditions for αt at t = 0 and βt at t = Tin

can be computed as:

α0

(
Min,0 = γ,P

nin
in,0 = A

)
=

{ pA
2m
, if γ x = Sxin,0

0, if γ x 6= Sxin,0
(17)

and

βTin

(
Min,Tin = γ,P

nin
in,Tin
= A

)
= qγ 1|A ·

min∏
j=2

qγ j|γ j−1 , (18)

respectively, where A ∈ G1, γ ∈ Gm and γ x is the
X-component of γ .

The marginal a posteriori probabilities Po
(
L jin,t

)
for j ∈

{1, . . . , k} and Po
(
Pjin,t

)
for j ∈ {1, . . . , n} are then com-

puted from Po(Lin,t ) and Po(Pin,t ), respectively. The marginal
extrinsic probabilities Pe

(
L jin,t

)
for j ∈ {1, . . . , k} and

Pe
(
Pjin,t

)
for j ∈ {1, . . . , n} can then be computed by taking

out the a priori information from the resultant a posteriori
information, i.e. we have

Pe
(
L jin,t

)
∝

Po
(
L jin,t

)
Pa
(
L jin,t

) , (19)

Pe
(
Pjin,t

)
∝

Po
(
Pjin,t

)
Pa
(
Pjin,t

) . (20)

It is worth noting that at µ = 0 (memoryless channels),
we have qA|A′ = pA for {A′,A} ∈ G1 and hence, the term
qP1in,t |ξ

∏nin
j=2 qPjin,t |P

j−1
in,t

in Eq. (13), Eq. (14) and Eq. (15) can

be simplified to

qP1in,t |ξ
·

nin∏
j=2

q
Pjin,t |P

j−1
in,t
=

nin∏
j=1

pPjin,t
= Pa(Pin,t ), (21)

and similarly in Eq. (16),

qP1in,t |P
nin
in,t−1
·

nin∏
j=2

q
Pjin,t |P

j−1
in,t
=

nin∏
j=1

pPjin,t
= Pa(Pin,t ). (22)

Therefore, the computation of the a posteriori probabilities
using the modified degenerate MAP algorithm is equivalent
to the computation of the a posteriori probabilities using the
original degenerate MAP algorithm [8], [11] at µ = 0.

B. EXIT CHART ANALYSIS AND QBER
PERFORMANCE EVALUATION
EXIT-charts constitute an essential tool that has been widely
used for the design of near-capacity classical codes as a ben-
efit of its capability of visualizing the convergence behavior
of iterative decoding schemes [48], [49]. The classical non-
binary EXIT chart technique of [50] and [51] was adapted to
the quantum syndrome decoding approach in [12] which was
realized by exploiting the equivalent classical representation
of the quantum code and based on the analogy of thememory-
less depolarizing channel with the binary symmetric channel.
The EXIT chart conceived for the quantum domain models
the a priori information related to the error-sequence imposed
on the logical qubits (or physical qubits), unlike its classical
counterpart where the a priori information concerning the
uncoded (or encoded) bits is modeled.
In this treatise we adopt the quantum-domain EXIT

charts [12] to evaluate the EXIT characteristics of the inner
SISO decoder Din and of the outer SISO decoder Dout in
Fig. 3 for depolarizing channels with memory. There are four
information terms involved in the exchange of information
betweenDin andDout and the information is given in terms of
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the average mutual information (MI) for the EXIT chart anal-
ysis. The four information quantities involved are the average
a priori MI of Din corresponding to Lin denoted as Ia(Lin),
the average extrinsic MI of Din corresponding to Lin denoted
as Ie(Lin), the average a priori MI of Dout corresponding
to Pout denoted as Ia(Pout) and lastly, the average extrinsic
MI of Dout corresponding to Pout denoted as Ie(Pout). The
EXIT-functions Tin for Din and Tout for Dout are given by

Ie(Lin) = Tin(Ia(Lin), p, µ) (23)

and

Ie(Pout) = Tout(Ia(Pout)), (24)

respectively. The value of Ie(Lin) is affected not only by the
Ia(Lin) value but also by the depolarizing probability p and
by the Markovian correlation µ of the depolarizing channel
exhibiting memory. Meanwhile, the value of Ie(Pout) depends
only on the value of Ia(Pout).

FIGURE 5. EXIT curves of the inner decoder of the existing QTC and the
proposed QTC-EEC for the ‘‘PTO1R’’ configuration of [10] for transmission
over depolarizing channels having different µ evaluated at p = 0.23.

The EXIT curves of the inner SISO decoder employing the
original MAP algorithm (for QTC) and the modified MAP
algorithm (for QTC-EEC) for transmission over depolarizing
channels having different µ values are portrayed in Fig. 5.
It can be observed that as the channels exhibiting stronger
error-correlation, the EXIT curves of the QTC emerge from
a higher Ie(Lin) value at Ia(Lin) = 0 and terminated at a
lower Ie(Lin) value at Ia(Lin) = 1.5 On the other hand,

5It was found in [7] that theQCCswithout pre-shared entanglement cannot
be simultaneously recursive and non-catastrophic. All QCCs including the
‘‘PTO1R’’ code have non-recursive and non-catastrophic properties. Hence,
QTCs with a QCC as the inner code have a bounded minimum distance and
the EXIT curve for the inner decoder is only capable to reach (x, y) = (1, 1)
point at very low values of p, whereas the classical recursive inner codes can
reach (x, y) = (1, 1) point for any p value [12].

extrinsic MI Ie(Lin) gains are observed for the QTC-EEC
across all Ia(Lin) values, as µ increases. The proposed
QTC-EEC using the modified MAP algorithm achieves
higher extrinsic MI Ie(Lin) values than the existing QTC that
uses the original MAP algorithm for µ > 0. At µ = 0,
our proposed inner decoder (QTC-EEC) has identical EXIT
curves to the existing inner decoder (QTC)6 since our mod-
ified MAP algorithm is simplified to the original MAP
algorithm at µ = 0. The Ie(Lin) gains achieved by our
proposed inner decoder (QTC-EEC) over the existing inner
decoder (QTC) would improve the decoding convergence
threshold at a higher depolarizing probability p.

FIGURE 6. EXIT chart and two snapshot decoding trajectories of the
rate-1/9 QTC-EEC for the ‘‘PTO1R-PTO1R’’ configuration of [10]
transmitted over depolarizing channels having µ = 0.6. An interleaving
depth of 3× 104 qubits was used.

Fig. 6 shows the matching between the EXIT curves of the
proposed inner decoder at different p values and of the outer
decoder for a depolarizing channel associated with µ = 0.6.
It can be deduced from Fig. 6 that the convergence threshold
pE is at p = 0.225, since the tunnel between the curves
corresponding to the inner and outer decoders is marginally
open at this point and increasing p beyond p = 0.225,
to say p = 0.23 closes the EXIT tunnel. Fig. 6 also depicts
two snapshot decoding trajectories at p = 0.225 using an
interleaver length of 3×104 qubits. The trajectories are based
on the actual performance and it can be seen in Fig. 6 that the
trajectories are well-matched with the corresponding EXIT
curves. Therefore, the accuracy of our EXIT chart predictions
is verified.

The convergence threshold pE at µ = 0 and µ = 0.2 is
given in Table 1. The noise limit p∗ for µ = {0, 0.2, 0.6}

6In the simulations, we deliberately used the same samples for both
decoders to show the similarity of both decoders at µ = 0.
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TABLE 1. Distance to capacity for the QTC-EEC over depolarizing channels
having µ = {0,0.2,0.6}.

is obtained from the corresponding capacity curve seen in
Fig. 2. The distance from the limit given as pE/p∗ [37] is
then determined as tabulated in Table 1 for the depolarizing
channels associated with µ = {0, 0.2, 0.6}. The memoryless
channel at µ = 0 has the shortest distance from the limit,
which is 0.78 and the distance from the limit for µ = 0.2
and µ = 0.6 is not far from that of the memoryless chan-
nel scenario associated with the distance of 0.77 and 0.76,
respectively. The ‘‘PTO1R’’ configuration was specifically
designed for memoryless channels in [8] and [10]. This sug-
gests that the performance of the proposed QTC-EEC can be
potentially improved by using different code configurations
in order to approach the capacity limit. The search for the
optimal inner and outer component codes of the QTC-EEC
for different µ values remains an open problem for future
investigations.

FIGURE 7. QBER performance of the rate-1/9 existing QTC and of the
proposed QTC-EEC for transmission over depolarizing channels exhibiting
memory relying on the ‘‘PTO1R-PTO1R’’ configuration of [10] for a
maximum of 8 iterations and an interleaving depth of 3× 103 qubits.

The QBER performance of the proposed QTC-EEC in
the face of depolarizing channels associated with µ =

{0, 0.2, 0.6} is depicted in Fig. 7. The turbo-cliff region starts
around the p = pE (pE value, as seen in Table 1), since a rapid
QBER drop can be observed as p decreases beyond p = pE.
Therefore, our EXIT chart predictions are consistent with the
QBER simulation results. The performance curves can be
improved to closely approach p = pE by increasing the num-
ber of iterations and by using higher interleaving depths [48].
Fig. 7 also compares the performance of the proposed
QTC-EEC to that of the existing QTC at µ = {0, 0.2, 0.6}.

We have deliberately used the same set of samples for the
QTC-EEC at µ = 0 to demonstrate that the same perfor-
mance is achieved at µ = 0 as that of the existing QTC. As µ
increases, we can observe the performance degradation of the
existing QTC especially in the error-floor region, whereas,
the performance of QTC-EEC is significantly improved and
better performance gains were achieved than by the existing
QTC at µ = 0.

FIGURE 8. QBER performance of the proposed QTC-EEC and of the
QTC-MD for transmission over depolarizing channels exhibiting memory
relying on the ‘‘PTO1R-PTO1R’’ configuration of [10] having a coding rate
of 1/9 and an interleaving depth of 3× 103 qubits.

Fig. 8 compares the QBER performance between the
proposed QTC-EEC and the QTC relying on the Markov
decoder (QTC-MD) at µ = 0.2 and 0.6. The QTC-MD
scheme is a three-stage serially concatenated decoding
scheme consisting of two component decoders of the existing
QTC, where a Markov decoder is invoked for exploiting the
error-correlation. The Markov decoder is based on the MAP
algorithm designed for the classical soft-bit source decoding
in [52] and [53], but here we consider the soft decoding ben-
efits of error-correlation instead of source-correlation. The
proposed QTC-EEC has an increased computational com-
plexity as the number of trellis states at the inner decoder
is expanded by a factor of 4 compared to the existing QTC,
i.e., from 4min to 4min+1 trellis states, where we have min = 3
for the ‘‘PTO1R’’ configuration. The decoding complexity is
proportional to the product of the total number of trellis states
(both component decoders) and the number of iterations.
Therefore, the QTC-EEC associated with 8 iterations has a
complexity proportional to (43+44)×8 = 2560. For the sake
of a fair comparison in terms of the complexity, 20 iterations
are invoked for the existing QTC

(
resulting in a complexity

of∝ (43+43)×20 = 2560
)
and the QTC-MD

(
resulting in a

complexity∝ (43+43+4)×20 = 2640
)
. It can be observed

that at a QBER of 10−4, the proposed QTC-EEC outperforms
the QTC-MD schemes for depolarizing channels associated
with µ = 0.2 and 0.6.
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V. JOINT DECODING AND ESTIMATION OF THE
CORRELATION PARAMETER
In the previous section, we have shown the efficiency of the
proposed QTC-EEC in exploiting the error-correlation from
quantum channels exhibiting memory given, that we have
the knowledge of µ. However, the value of µ is unknown
in practical communication systems and it may vary from
one transmission to another, depending on the condition of
the channel at the point of the transmission. In this section,
we propose a joint decoding and estimation scheme termed
as QTC-EEC-E for the simultaneous estimation of µ while
performing the iterative decoding.

The estimation is performed every time the modified
MAP algorithm employed by the inner decoder is activated.
Before invoking iterative decoding, we assume that the initial
value of µ is given by µ̂ini = 0.5. The error imposed on
the physical qubits of the inner code is given by Pin =
[Pin,1,Pin,2, . . . ,Pin,t , . . .Pin,Tin ] where we have Pin,t =
[P1in,t ,P

2
in,t , . . . ,P

j
in,t , . . . ,P

nin
in,t ]. Hence the total number of

qubits transmitted for the whole frame isN = Tin×nin, which
corresponds to N channel uses. The error imposed on the
j-th qubit at time instant t of Pin, i.e. P

j
in,t corresponds to

the error corrupting the (nin(t − 1)+ j)-th qubit of the whole
frame. Therefore, we denote Pjin,t as Anin(t−1)+j and can alter-
natively represent Pin as Pin = [A1,A2, . . . ,Ai, . . . ,AN ],
where we have i = nin(t − 1)+ j.

The procedure of estimating the correlation parameter µ is
as follows:
• Step-1: Compute the joint a posteriori probability
Po(Ai−1 = A′,Ai = A) for {A′,A} ∈ G1 and i ∈
{2, 3, . . . ,N }. This can be carried out by computing
the joint a posteriori probability Po

(
Pninin,t−1,Pin,t

)
from

Eq. (14) (used in the modified MAP algorithm) as
follows:

Po
(
Pninin,t−1 = A′,Pin,t

)
, P

(
Pninin,t−1 = A′,Pin,t |Sxin,t

)
,

∝

∑
ν,λ,σ

Pa(Lin,t = λ) · αt−1(ν,A′) · βt
(
Min,t ,P

nin
in,t

)

· qP1in,t |A′
·

nin∏
j=2

q
Pjin,t |P

j−1
in,t
. (25)

Let us now represent Po
(
Pninin,t−1,Pin,t

)
as

Po
(
Anin(t−1),Anin(t−1)+1,Anin(t−1)+2, . . . ,Anin(t−1)+nin

)
.

(26)

We can then obtain the marginal probabilities
Po(Anin(t−1),Anin(t−1)+1), Po(Anin(t−1)+1,Anin(t−1)+2),
. . . , and Po(Anin(t−1)+nin−1,Anin(t−1)+nin ) from
Eq. (26).

• Step-2: Find the transition probabilities q̄A|A′ = P(Ai =
A|Ai−1 = A′) from the a posteriori probabilities using

q̄A|A′ =

N∑
i=2

Po(Ai−1 = A′,Ai = A)

N∑
i=2

Po(Ai−1 = A′)

. (27)

• Step-3: The relationship of qA|A′ and the correlation
parameter µ is given by qA|A′ = (1 − µ)pA + µδA′A.
Hence, the correlation parameter µ̂A′A that corresponds
to each q̄A|A′ can be expressed as follows:

µ̂A′A =


q̄A|A′ − pA
1− pA

, if A′ = A

1−
q̄A|A′

pA
, if A′ 6= A,

(28)

where pA is the probability of the Pauli operator A
imposed on the transmitted qubits.

• Step-4: Obtain the estimated µ̂ by finding the mean of
the set {µ̂A′A}. Since µ ∈ [0, 1], if µ̂ < 0, then µ̂ = 0
and if µ̂ > 1, then µ̂ = 1.

• Step-5: Update the transition probabilities using the
estimated µ̂, where the updated transition probabilities
defined as q̂A|A′ are given by q̂A|A′ = (1 − µ̂)pA +
µ̂δA′A. The inner SISO decoder will then use the updated
transition probabilities q̂A|A′ , when invoking the MAP
decoding during the next iteration.

• Step-6: Step-1 to Step-5 is repeated at every iteration to
re-estimate µ̂ and correspondingly, q̂A|A′ .

The performance comparison whenµ is unknown between
the QTC-EEC-E and QTC-EEC (µ = 0.5 is assumed)
for transmission over depolarizing channels associated with
µ = {0.2, 0.6, 0.7} after 20 iterations is portrayed in Fig. 9.

FIGURE 9. QBER performance of the QTC-EEC-E with unknown µ, of the
QTC-EEC with unknown µ and of the ideal system of QTC-EEC with
known µ after 20 iterations. All the coding schemes rely on the
‘‘PTO1R-PTO1R’’ configuration of [10] having a coding rate of 1/9 and an
interleaving depth of 3× 103 qubits.
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The superiority of the QTC-EEC-E is demonstrated, since
we can observe that the QTC-EEC-E equipped with the
estimation capability outperforms the QTC-EEC having no
estimation capability for all the evaluated cases, when the
knowledge of µ is not available at the receiver. Since the
QTC-EEC always assumes µ = 0.5 regardless of the actual
µ value, the performance gap between the QTC-EEC-E and
QTC-EEC becomes more significant, when the actual µ of
the channel is further away from µ = 0.5. Moreover, it can
be observed that there is almost no performance loss between
the QTC-EEC-E with unknown µ and the ideal system of
QTC-EEC with known µ. Therefore, a near-perfect estima-
tion using the proposed QTC-EEC-E is demonstrated.

FIGURE 10. QBER as a function of the decoding iteration number for the
QTC-EEC-E with unknown µ and the ideal system of QTC-EEC with known
µ over depolarizing channels having µ = 0.6. All the coding schemes rely
on the ‘‘PTO1R-PTO1R’’ configuration of [10] associated with a coding rate
of 1/9 and an interleaving depth of 3× 103 qubits.

Fig. 10 shows the QBER performance of both the
QTC-EEC-E (with unknown µ) and of the QTC-EEC (with
known µ) as a function of the number of iterations at
µ = 0.6. The performance of the QTC-EEC-E converges
to the QBER level of the ideal QTC-EEC having a known
µ after a number of iterations for all the evaluated cases at
p = {0.19, 0.20, 0.21}. This suggests that the QTC-EEC-E
is capable of achieving the same performance as the ideal
system but it requires more iterations to reach the steady-state
QBER. The number of additional iterations required depends
on the value of µ̂ini (the initial value of µ̂). Observe in Fig. 10
that µ̂ini = 0.5 can reach the steady-state of the QBER much
faster than when µ̂ini = 0. This is simply because µ̂ini = 0.5
is closer to the actual µ = 0.6 and therefore the closer the
value of µ̂ini to the actual µ, the less iterations are required
for reaching the steady-state of the QBER.

VI. CONCLUSIONS
In this paper, the design of QTCs for depolarizing channels
exhibiting memory has been considered. The performance
of an existing QTC over depolarizing channels exhibiting
memory has been investigated and it has been shown that the

performance of the existing QTC in the low p-value region is
degraded for channels having a higher correlation. In order to
circumvent the performance degradation problem, QTC-EEC
has been proposed for exploiting the error-correlation when
performing iterative decoding. The proposed QTC-EEC is
capable of achieving the convergence threshold at a higher
depolarizing probability for channels with a higher value
of the correlation parameter and furthermore, sharp turbo-
cliff without significant error-floor can be seen exhibited by
the proposed QTC-EEC. We have shown that the proposed
QTC-EEC achieves a performance near to the capacity and
outperforms the relevant benchmark systems, i.e. both the
existing QTC and the QTC-MD in all the evaluated cases.
For systems with unknown correlation parameter, we have
conceived a joint decoding and estimation scheme based on
the QTC-EEC scheme termed as QTC-EEC-E. Simulation
results have revealed that the proposed QTC-EEC-E achieves
the same performance as that the ideal system having perfect
knowledge of the correlation parameter and hence, demon-
strate the accurate estimation of the proposed QTC-EEC-E.
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