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ABSTRACT Quantum processors require Quantum Error Correction Codes (QECC’s) for improving the
fidelity of quantum logic gates. Fault tolerant QECC’s are capable of providing error rate improvements
in quantum processors as long as the components are operating below a certain gate error probability. In
this contribution, we quantify the depolarization probability bound, below which transversal QECC’s would
give a better error probability than an uncoded gate. Both a low-complexity repetition code and Steane’s
7-bit QECC are characterized.
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LIST OF ACRONYMS
QECC Quantum Error Correction Code
CNOT Controlled-NOT
FER Frame-Error-Rate
OR Classical OR Gate
NISQ Near-term Intermediate-Scale Quantum

Computing

LIST OF SYMBOLS
|ψ〉 General Qubit
α, β General Probability Amplitudes
d Minimum Distance
t Error Correction Capability
n Number of physical qubits
k Number of information qubits
[n, k, d] Quantum Stabilizer Codes with parameters

n, k and d
GN N -qubit Pauli group
X Pauli X Gate
Y Pauli Y Gate
Z Pauli Z Gate
H Hadamard Gate
S S Gate
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U General Quantum Gate
C1 Pauli Group
C2 Clifford Group
C3 C3 Group
|φi〉 Control and Target Qubits in CNOT gate
ξ Quantum Channel
Ŝ Stabilizer Set
R Error Recovery
Ki Individual Stabilizer
D Number of components in circuit
Pe Channel flip probability
Pg Gate Error
⊗ Kronecker Tensor Product

I. INTRODUCTION
A fault tolerant Quantum Error Correction Code (QECC) is
by definition capable of avoiding the propagation of errors.
More explicitly, a [n, k, d] maximum-minimum-distance
QECC encodes k logical qubits into n physical qubits and has
a minimum distance of d , hence it is capable of correcting t =
[d − 1/2] individual physical qubit errors. Our design objec-
tive is to ensure that despite using realistic imperfect quantum
gates, the proliferation of errors does not lead to exceeding
the error correction capability of a fault tolerant QECC. More
formally, a quantum circuit that is protected by an [n, k, d]
QECC is fault tolerant if a single component failure occurring
with probability p results in less than t = (d−1)/2 individual
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FIGURE 1. Transversal CNOT gate.

qubit errors at the output of the circuit block [1]. Under this
idealistic assumption a physical qubit error introduced by a
single gate cannot escalate to an uncorrectable number of
errors, given the [n, k, d] QECC considered. However, if a
single gate error exhausts the [n, k, d] code’s error correction
capability, encountering a second gate error will result in error
proliferation. Let us assume that the probability of a single
gate error is p. Hence the probability of two simultaneous gate
errors isO(p2), provided that the error events are independent
of each other, while p� 1 and p2 < p.
Unfortunately, a bit-flip error on the control qubit in a

controlled-NOT (CNOT) gate will result in a deleteriously
applied NOT operation imposed on the target qubit, hence
resulting in two erroneous qubits, rather than one. Therefore
an originally correctable number of individual qubit errors
escalates to an uncorrectable number of correlated qubit
errors even if no additional component failure has occurred.

A fault tolerant implementation of the CNOT gate relies on
a so-called transversal architecture, as seen in Figure 1 [2].
The CNOT gate will be discussed in Section II-A and
Transversal Gates in Section V. To elaborate, the left hand
side of Figure 1 shows the uncoded circuit, whilst the right
hand side portrays the fault tolerantly encoded circuitry,
where the

⊕
represents a NOT gate and S is a syndrome

decoder. For the convenience of our discussions, here we
initially portray a simple R = 1

3 -rate repetition code which
is capable of correcting one error in each 3-qubit code word.
Hence it has a 33% error correction capability. Both the upper
and lower syndrome decoders of Figure 1 are only capable
of correcting a maximum of t errors. We arrange for the
logical connection of the ith physical qubit in the control state
with the ith qubit in the encoded target state, as observed in
Figure 1. For example, a bit-flip error on the second control
qubit of the upper syndrome decoder would only interact
with the second target qubit seen at the output of the lower
syndrome decoder in Figure 1. This circuit design limits the

propagation of qubit errors, since an error that is corrected
by the top syndrome decoder can only propagate to a single
error input to the lower syndrome decoder. Since the control
and target qubits are encoded separately, the error that has
proliferated through the transversal CNOT connection can
always be corrected.

Under the fault tolerant premise, it is assumed further-
more that no adjacent qubit failures occur either spatially or
temporally, since they are independent at each segment of
the circuit. However, repeated applications of an imperfect
gate would be more accurately represented by an error model
that includes temporal and/or spatial correlation in the gate
failure, since environmental perturbations may affect a group
of components in each others vicinity. Therefore assuming
independence of the component errors constitutes another
idealized simplifying assumption.

Furthermore, a common fault tolerant [n, k, d] encoding
technique relies on fault tolerant stabilizer measurements
used for preparing the encoded information [1]. However,
this requires knowledge of the state that we wish to encode.
More explicitly, in order to prepare an arbitrary state |ψ〉 =
α|0〉+β|1〉, the coefficients α and β must be known to us [3].
This has the drawback that unknown information cannot be
encoded. However, encoding unknown information is neces-
sary because in many practical schemes QECC decoding and
re-encoding are applied mid-way through the computation, as
demonstrated in [4].

Fortunately, there exist unitary encoding circuits, which
have the capability of encoding unknown information, but
regretfully again these are not fault tolerant by the above
definition. Having said that, these unitary encoding circuits
are still appealing, since they do not require additional ancilla
to encode the state. Unfortunately, fault tolerant state prepa-
ration techniques impose a substantial qubit overhead, since
the stabilizer must be repeated multiple times to guarantee
that a single error-free outcome can be obtained. In addition to
the above complications, the ancilla must be prepared without
error, hence potentially requiring the distillation of the error-
free states from a larger number of states. Therefore, since
the encoding circuit requires only (n − 1) qubits in addition
to the unknown information qubit, it is desirable to find a
solution for mitigating the error proliferation inherent in non-
fault tolerant circuits.

A fault tolerant quantum circuit must be able to cope with
both gate errors as well as proliferated errors. Gate error
may impose a qubit error on the circuit, while a perfect
gate may still propagate a qubit error. Another scenario is
that a poorly located and inaccurate gate will be subjected
to both qubit error and error proliferation at the same time.
The invention of fault tolerant QECCs in [8]–[11] addressed
this issue by re-thinking the construction of the traditional
quantum coding circuits so that single gate errors do not
overwhelm the QECC. The work of Aharonov and Kitaev
prove that a gate error rate threshold can be found [8], [9],
[12], [13] below which the QECC provides improvements to
the logical accuracy of a quantum computation. Moreover,
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TABLE 1. History of fault tolerant QECC.

when the components of a quantum processor operate below
the gate error threshold, fault tolerant quantum computation
is indeed achievable.

The seminal conception of fault tolerant QECC’s by Shor
[7] combined with the threshold theorem of Aharonov and
Ben-Or [12] provided a proof of concept that quantum com-
putersmay execute a quantum algorithm to a reasonable accu-
racy despite imperfect components. However, such schemes
were still impractical because the circuit construction relies
on the assumption that there is no restrictions on qubit inter-
actions. Unfortunately, this makes such schemes impractical
to implement in hardware. This gave rise first to the Toric
code of Kitaev [14] and later to Topologcial codes [17].
These schemes assume a lattice configuration of the qubits,
which have interactions amongst the nearest neighbour qubits
only. This makes the design of the hardware straightforward
and therefore topological constructions have become the
most popular methods of practical QECC implementations
[23], [24]. The Gottesman-Knill theorem [25] shows that the
Clifford gates can be simulated classically [26]. Moreover,
there is no code relying on a universal transversal gate set
[27], [28]. Magic state distillation is an efficient way of
implementing gates within a full gate set [18]. Raussendorf
and Harrington [19] also proposed a universal gate set for
topological codes by using CNOT gates with Magic state
distillation [20].

Against the aforementioned background, our novel contri-
butions are:

1) The nature of both quantum gate errors and of error
proliferation are reviewed and the application of
QECC’s in these scenarios is explored. We will demon-
strate that the transversal gate architecture is capable
of reducing the gate error probability.

2) We characterize the effects of the propagation of a
single gate error in basic QECC encoding circuits and
show when a non-fault tolerant encoding circuit can
still provide a Frame Error Ratio (FER) improvement
in conjunction with the fault tolerant transversal CNOT
gate scheme of Figure 1

FIGURE 2. The structure of this paper.

3) We present a channel model capable of characterizing
both gate errors and individual qubit errors. Finally,
the attainable FER improvements are quantified for the
transversal CNOT gate using Steane’s [7, 1, 3] code.

The structure of the paper is portrayed in Figure 2.

II. QUANTUM GATES
The unit of quantum computing is the quantum bit (qubit). A
qubit can reside in a superposition of the unit vectors |0〉 and
|1〉 corresponding to the classical bit values 0 and 1 [3], [29],
[30]. The information stored in a qubit is processed by quan-
tum logic gates. These are introduced in the following section,
starting with the most common two-qubit gate, namely the
CNOT gate.

A. THE CNOT GATE
The controlled-NOT gate (CNOT gate) is a two-qubit gate
that prepares entanglement between two quantum states. If
the control qubit is in state |1〉, the CNOT gate applies an
X gate (denoted ⊕) to the target qubit. The transformation
carried out by the CNOT gate is given by the following
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FIGURE 3. CNOT Gate with control qubit |φ1〉 and target qubit |φ2〉.

equations |AB〉 → |CD〉

|10〉 → |11〉|11〉 → |10〉|00〉 → |00〉|01〉 → |01〉,

where A and B represent the control and target qubit before
the CNOT gate, while C and D represent those after the
CNOT gate. Figure 3 shows the CNOT gate associated with
the control qubit |φ1〉 and target qubit |φ2〉. The equivalent of
an OR gate is applied to the target qubit. The arbitrary two-
qubit state |φ1〉|φ2〉, shown in Figure 3, can be described by

|φ1〉|φ2〉 = a|00〉 + b|01〉 + c|10〉 + d |11〉 =


a
b
c
d

 (1)

where the complex coefficients have the property that |a|2 +
|b|2+|c|2+|d |2 = 1. The action of the CNOT gate in Figure 3
has the following matrix representation

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2)

Then the action of the CNOT gate is shown to swap the
coefficients in the superposition state in Eq. (1) such that
|10〉 ↔ |11〉. This is shown by

CNOT |φ1〉|φ2〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



a
b
c
d



=


a
b
d
c

=a|00〉 + b|01〉+d |10〉+c|11〉 (3)

which is in accordance with the transformations listed in
Eq. (1).

B. THE PAULI GROUP
Quantum gates can be classified into three groups, namely the
Pauli (C1), Clifford (C2) and the C3 group, together known as
the Gottesman-Chuang hierarchy [15]. The Pauli group is the
most common one, which consists of the following gates

X =
(
0 1
1 0

)
Z =

(
1 0
0 −1

)

Y =
(
0 −i
i 0

)
I =

(
1 0
0 1

)
. (4)

The X gate has the effect of a bit-flip or a NOT gate on the
qubit. For example,

X |ψ〉 =
(
0 1
1 0

)(
α
β

)
=

(
β
α

)
= α|1〉 + β|0〉. (5)

Notice that the bit-flip swaps the coefficients α and β. Sim-
ilarly, the Z gate has the effect of a phase-flip on the state
Z |ψ〉 = α|0〉 − β|1〉, which introduces a negative relative
phase difference between the basis states. The Y gate acts like
both a bit and a phase-flip, since we have Y = XZ . Therefore
Y |ψ〉 = i(β|0〉 − α|1〉). Finally, the identity operator leaves
the qubit unchanged I |ψ〉 = |ψ〉.

Then let us define the Pauli group as [3]

C1 = {eP : P ∈ {I ,X ,Y ,Z }, e ∈ {±1,±i}}. (6)

Let us also define the group GN as all N -qubit tensor prod-
ucts1 of the Pauli operators X , Y , Z , I .

GN = {P1 ⊗ P2 ⊗ · · · ⊗ PN |Pj ∈ C1}. (7)

For example, the set G5 permutes a five-qubit register with
45 possible combinations. This contains the operator XZZXI ,
which has the effect of applying a bit-flip to the first and
fourth qubit as well as a phase-flip to the second and
third qubit.

C. OTHER GATE SETS
When an element of the Pauli group is conjugated by a
Clifford gate, it is mapped back to a Pauli gate. This defines
the Clifford Group as follows [31]

C2 = {U : UC1U†
∈ C1}. (8)

For example, the Clifford group includes the Hadamard, S
and CNOT gates

HXH†
= Z HZH†

= X HYH†
= −Y (9)

SXS† = −Y SZS† = Z SYS† = −X . (10)

These gates are defined by

H =
1
√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
.

There is another set of quantum gates exhibiting the prop-
erty that when a Pauli operator is conjugated by a C2 Clifford
gate, it is mapped back to the Clifford group. The set of gates
that have this property belong to what is called the C3 group
[32] defined as:

C3 = {U : UC1U†
∈ C2}. (11)

The T gate, the Toffoli gate and the controlled-Z gate belong
to the C3 group [3]. For example,

TXT †
= SX TZT †

= Z TYT †
= −iSY , (12)

where the T gate is defined by

T =
(
1 0
0 exp (iπ/4)

)
.

1Where Pj corresponds to the Pauli group for the jth qubit.
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III. STABILIZER CODES
A [n, k, d] stabilizer code maps k logical qubits to n physical
qubits. Then the code space is a 2k -dimensional sub-space of
a 2n-dimensional Hilbert space.

The stabilizer set Ŝ ∈ {Ki} is the n-qubit sub-group of
Gn that fixes the code space, when the stabilizers are mea-
sured. In this paper we use the subscript i of Ki to refer to
a specific stabilizer operator in Ŝ, while K is used without
a subscript, when the stabilizer operator is arbitrary. The
legitimate code space is the simultaneous+1 eigenspace of Ŝ
defined as

γ = {|ψ〉 s.t. K |ψ〉 = |ψ〉 ∀K ∈ Ŝ}. (13)

A stabilizer group Ŝ is a subgroup of GN that is closed under
multiplication. The set also has the property that −I 6∈ S,
since we have (−I )|ψ〉 = |ψ〉 only when |ψ〉 = 0. All
elements of Ŝ commute,2 so there is a simultaneous eigenstate
that can be measured for multiple operators. This can then be
chosen as the code space and is defined by the set of l = n−k
independent generators of Ŝ.
Since the stabilizers are tensor products of Pauli operators,

they inherit the properties of the Pauli group, namely that
they are unitary (K †K = I ) and hermitian (K = K †). This
means that the stabilizers will have only ±1 eigenvalues.
Therefore K |ψ〉 = |ψ〉 if |ψ〉 is in the +1 eigenspace of K ,
which means that |ψ〉 is stabilized by K . For example, the
[3, 1, 3] repetition code has the encoded states |0̄〉 ≡ |000〉
and |1̄〉 ≡ |111〉. This code is stabilized by the operators
ZIZ and IZZ . Since Z |0〉 = |0〉 and Z |1〉 = −|1〉, then
ZIZ |000〉 = |000〉 and IZZ |111〉 = |111〉.

A correctable error E anti-commutes with the stabilizer,
which means that KE = −EK [33]. For example, if
|ψ〉 is a legitimate code-word, then the stabilizer has the
effect [33]:

K (E|ψ〉) = −EK |ψ〉 = −E|ψ〉. (14)

Applying the stabilizer operator incurs a−1 phase difference
in the data. This is then passed onto the ancilla qubit by a
series of CNOT gates, shown in Fig. 7. A Hadamard gate is
then applied to the ancilla qubit so that when it is measured,
this returns the bit value of 1. The measurement outcome 1
triggers an error recovery operation, which corrects the error
E in the data returning it to the valid codeword state |ψ〉, i.e
back to a +1 eigenstate of K . This allows the stabilizer to
detect an error without the need for the data qubits |ψ〉 to be
measured directly [34].

A. REPETITION CODE
This section describes the [3, 1, 3] repetition code as intro-
duced in [3], [29], [35]. This is a d = 3 code and can correct
only a single bit or phase-flip error on a single qubit, depend-
ing on the design. In this section the specific version that
corrects a single qubit bit-flip error is described. However, the

2Commuting operators satisfy K1K2 = K2K1. Anti-commuting operators
satisfy K1K2 = −K2K1.

TABLE 2. Error recovery operators R for the [3,1,3] repetition code.

results for the phase-flip error are equivalent. The full circuit
of implementing the repetition code is shown in Figure 4. The
traditional n = 3 qubit unitary encoding circuit V is applied
to the unknown state |ψ〉 = α|0〉+β|1〉 and (n− k) auxiliary
qubits in the |0〉 state as follows [29]

|ψ〉 = V(|ψ〉 ⊗ |0〉⊗(n−k)). (15)

This results in the encoded state

|ψ〉 = α|0〉 + β|1〉 = α|000〉 + β|111〉. (16)

The encoded data is corrupted by the bit-flip channel ε(ρ).
If |ψ〉 is corrupted by a single bit-flip error with probability
Pe then we have:

ε(ρ) = (1− Pe)ρ +
Pe
3

(
(XII )ρ(XII )†

+ (IXI )ρ(IXI )† + (IIX )ρ(IIX )†
)
, (17)

where each error position is equiprobable. This is input to the
stabilizers K1 = ZZI and K2 = ZIZ .
The outcome of the stabilizer measurements is shown in

Table 2 alongside the required recovery operation R. Since
this is a d = 3 code, if there are more than a single qubit
error then the error recovery may in fact carry out a flawed
recovery, hence introduce additional error. Nevertheless, each
error recovery operator R in Table 2 corrects a single bit
flip error inflicted upon the state |ψ〉 in Eq. (16). Finally, the
inverse encoder V† in Figure 4 maps the recovered encoded
state to an estimate of the initial code word |ψ ′〉. This is the
reverse operation of the encoder V , hence n encoded qubits
are mapped back to k information qubits.

B. STEANE CODE
There are many substantially more powerful QECC’s, includ-
ing the original 9-qubit Shor code [36] and the so-called
perfect, 5-qubit code of [37]. This is referred to as being
‘perfect’3 in [37] because it is the highest-rate known code
capable of correcting a bit-flip and phase-flip error at a code
rate of 1

5 . In this section the [7, 1, 3] Steane code is described,
which is a common QECC that can correct any arbitrary
single-qubit error [39]. It’s circuit implementation is shown
in Figure 6.

3This is in contrast to the alternative definition of ‘perfect’ codes. In this
definition an [n, k] code is said to be perfect if the space of 2k messages,
along with the correctable error states, exhaust the 2n-element codeword
space [38]

VOLUME 8, 2020 83697



R. Cane et al.: Mitigation of Decoherence-Induced Quantum

FIGURE 4. [3,1,3] repetition code with encoding circuit V .

FIGURE 5. Traditional Steane encoding circuit suffering from X error
proliferation [2].

The encoded states can be prepared by the traditional
Steane encoding circuit V shown in Figure 5. This is applied
to the unknown state |ψ〉 = α|0〉+β|1〉 and (n− k) auxiliary
qubits as follows

|ψ〉 = V(|ψ〉 ⊗ |0〉⊗(n−k)) = α|0〉 + β|1〉. (18)

The full (n − k)-bit Steane code stabilizer set Ŝ = {Ki} is
defined as follows

K1 = IIIXXXX ,

K2 = XIXIXIX ,

K3 = IXXIIXX ,

K4 = IIIZZZZ ,

K5 = ZIZIZIZ ,

K6 = IZZIIZZ . (19)

The operation of each stabilizer effectively reduces the 27-
dimensional space to the 2-dimensional valid code space
spanned by the {|0〉, |1〉} states. The stabilizer set Ki ∈ Ŝ
defines k = 1 logical qubit encoded into n = 7 physical

qubits, and it is applied to the qubit register after the chan-
nel, as shown in Figure 5. The inverse encoder V † returns
the n-qubit code word state based on the recovered k-qubit
information state, denoted as |ψ ′〉.

It can be shown that the logical encoded states are

|0〉 =
1
√
8

[
|0000000〉+|1010101〉+|0110110〉 + |1100110〉

+ |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉
]

(20)

and

|1〉 =
1
√
8

[
|1111111〉+|0101010〉+|1001100〉 + |0011001〉

+ |1110000〉+|0100101〉 + |1000011〉 + |0010110〉
]
,

(21)

see [3], [40] for the full derivation.

C. NON-DESTRUCTIVE OPERATOR MEASUREMENT
This section describes how any error information hidden in
the data can be extracted with the aid of a stabilizer measure-
ments [33]. Let us now discuss how this is possible without
measuring the data qubits directly4 [3]. Figure 7 shows the
general circuit construction of the measurement of a general
single-qubit operatorK . A single-qubit operator is considered
for the ease of our discussion. However, in the context of a
syndrome decoder this may extend to a many-qubit operator
such as the K1 = ZZI stabilizer in the repetition code [3].
The stabilizer is implemented by two Hadamard gates on

either side of the control qubit of a controlled-K gate. If the
control qubit is in the |1〉 state, then a K gate is applied to
the target qubits. This circuit entangles the ancilla and data

4This example is based on question 4.34 in [3, p. 188] and its extension to
stabilizer operators in [3, p. 473]
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FIGURE 6. Full implementation of Steane’s code relying on the encoding
circuit V .

FIGURE 7. Measurement of single stabilizer operator K .

qubits in such a way that the measurement of the ancilla qubit
projects the data into the ±1 eigenstates of K .
Let us now consider this concept in more detail. Explicitly,

consider that the K gate has eigenvectors of |v±〉 with corre-
sponding eigenvalues of λ± = ±1. Assuming that the input
data qubits |ψ〉 are in superposition of the±1 eigenstates, we
arrive at:

|ψ〉 = α|v+〉 + β|v−〉, (22)

where α and β are arbitrary probability amplitudes5 satisfy-
ing |α|2 + |β|2 = 1.
Let us describe the evolution of the system at each time-

step of the circuit. First, the first Hadamard gate on the ancilla
qubit will have the effect of

|ψ〉|0〉
H
−→ |ψ〉|+〉 =

1
√
2

[
|ψ〉|0〉 + |ψ〉|1〉

]
= |ψ̃〉. (23)

Remembering that H |0〉 = |+〉 and |±〉 = 1
√
2
[|0〉 ± |1〉],

Eq. (23) is the state of the system before the controlled-K
gate.

Next, the K gate is only applied to the data when the
ancilla is in the |1〉 state, since this is the control qubit for the

5Note that |ψ〉 is the general case of a superposition of both legitimate
and illegitimate code word states, i.e a superposition of ±1 eigenstates of
K . The specific case where the state is error free is given by β = 0 where
|ψ〉 = |v+〉. In this case the outcome of the ancilla is always 0.

FIGURE 8. Single qubit gate error in the bit-flip channel.

controlled-K gate. This has the following effect on Eq. (23):
1
√
2

[
|ψ〉|0〉 + |ψ〉|1〉

]
→

1
√
2

[
|ψ〉|0〉 + K |ψ〉|1〉

]
= |ψ̃1〉.

(24)

Substituting Eq. (22) into the right hand side of Eq. (24)
and bearing in mind that K |v±〉 = λ±|v±〉, then

|ψ̃1〉 =
1
√
2

[
(α|v+〉 + β|v−〉)|0〉 + (α|v+〉 − β|v−〉)|1〉

]
,

(25)

which describes the system after the controlled-K gate and
before the final Hadamard gate.

The final Hadamard gate again takes the ancilla qubit
|0〉 → |+〉 and |1〉 → |−〉, therefore we have:

|ψ̃2〉 =
1
√
2

[
(α|v+〉 + β|v−〉)|+〉 + (α|v+〉 − β|v−〉)|−〉

]
.

(26)

Multiplying this out and simplifying it gives the system
before the ancilla measurement formulated as

|ψ̃2〉 = α|v+〉|0〉 + β|v−〉|1〉. (27)

Eq. (27) shows that a |0〉 is measured in the ancilla qubit
with probability6 |α|2. In this case the data qubits are in the
|v+〉 eigenvector. Relating this to a stabilizer code, this would
indicate that the data resides in a valid code word state [34].
The |1〉 state is measured in the ancilla qubit with probability
|β|2, indicating that the data qubits have been projected to the
|v−〉 eigenvector. The −1 eigenstates of a stabilizer operator
constitute the subspace orthogonal to the code space, which
means that it is an error that can be corrected [33]. Therefore
if a |1〉 is measured in the ancilla qubit, it indicates that the
data contains an error and a recovery operation is required to
put the data back into the code space. This is how the quan-
tum stabilizer measurement detects an error without directly
measuring the data qubits.

IV. QUANTUM GATE ERROR AND FAULT TOLERANT
CIRCUITS
A. SINGLE QUBIT GATE ERROR
First, let us introduce the density matrix notation. The density
matrix ρ of the pure state |ψ〉 = α|0〉 + β|1〉 is given by

ρ = |ψ〉〈ψ | = |ψ〉 ⊗ 〈ψ | =

(
|α|2 αβ

αβ |β|2

)
. (28)

6If the same calculation is repeated with the initial state as |v+〉, it can be
seen that the outcome of the ancilla qubit is always 0.
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FIGURE 9. A CNOT gate in the bit-flip channel having a gate error
probability of Pg suffering from the error effects of IX ,XI,XX with equal

probability
Pg
3 .

The density matrix is mathematically equivalent to the state
vector notation |ψ〉, but gives an alternative way of describing
the qubit that allows us to apply an error probability to the
channel.

The bit-flip channel affecting a single qubit state ρ applies
the X gate with probability p as follows

ξ (ρ)→ (1− p)ρ + pXρX , (29)

which is analogous to a classical Binary Symmetric Channel
(BSC) channel. The event of a gate error can be modelled by
first applying perfect transformation of the gate U followed
by the application of the bit-flip X [41]. This is shown in
Figure 8 and described by

ξ (UρU†) = (1− Pg)UρU†
+ PgXUρU†X . (30)

In general, where any arbitrary single-qubit gate has a gate
error probability of Pg, any arbitrary single-qubit error can be
encapsulated by the depolarizing channel [42]. This has the
following transformation of a single-qubit state [30]

ξ (ρ)→ (1− p)ρ +
p
3
(XρX + YρY + ZρZ ), (31)

where the initial state ρ is left unchanged with probability
1− p and either the X , Y or Z gates are applied with a proba-
bility of p3 [43]. The single-qubit gate error in the depolarizing
channel is modelled with the aid of the same methodology as
that of a gate error in the bit-flip channel characterized by
Eq. (30).

B. CNOT GATE ERROR
A CNOT gate subjected to the bit-flip channel having a gate
error probability Pg may suffer from the error effects of
IX ,XI and XX with equal probability of Pg

3 , as seen in Fig-
ure 9. Let us now assume that ρ′ = CNOT |ψφ〉〈ψφ |CNOT †

is a two-qubit state evolved by the CNOT gate described by
Eq. (2). Then a CNOT gate having a gate error probability of
Pg in the bit-flip channel is given by

ξ (ρ′)→ (1− Pg)ρ′ +
Pg
3
(IXρ′IX + XIρ′XI + XXρ′XX ).

(32)

Given an N = 2-qubit gate, there are 2N − 1 tensor products
of the operators I and X . In general, with J individual
operators in the channel and N qubits sent over the channel,
there are J N

− 1 channel operators excluding the operator

FIGURE 10. Error propagation in classical OR gate.

associated with N identities.7 In the case considered here, we
have N = 2 and J = 2, hence there are 3 combinations of I
and X in the bit-flip channel, excluding the operator II . These
are applied with a probability of Pg

J N−1 , except in the case of
no errors (i.e II ), which occurs with a probability of 1 − Pg.
Therefore the probability of a single error on the control or
target qubit is identical to that of a simultaneous error on both
the control and target qubit. A CNOT gate error in the two
qubit depolarizing channel is the same as that in Eq. (33)
except that 42 − 1 combinations of the J = 4 operators
{I ,X ,Y ,Z } are applied, each with probability Pg

15 .

ξ (ρ′) → (1− Pg)ρ′ +
Pg
15

(IXρ′IX + XIρ′XI

+XXρ′XX + IZρ′IZ + ZIρ′ZI + ZZρ′ZZ

+ IYρ′IY + YIρ′YI + YYρ′YY + XYρ′YX

+YXρ′XY + XZρ′ZX + ZXρ′XZ

+YZρ′ZY + ZYρ′YZ ). (33)

C. ERROR PROLIFERATION
Classical circuits are less susceptible to error propagation
than quantum circuits. Error propagation is defined as the
event where an error is passed on without increasing the num-
ber of errors. Let us consider the example of the classical OR
gate in Figure 10. This is an irreversible operation, because it
has two input bits and one output bit [44].More explicitly, this
gate takes input bits a and b and outputs c ≡ (a OR b).
The input bits a and b are effectively forgotten, when the
output is computed and cannot be recovered at the output of
the gate. For example, the output bit c = 1may arise from any
of the inputs 01, 10, 11. Therefore the input is not uniquely
recoverable after the gate has been applied to the information.

This particular feature of irreversible gates is advanta-
geous, when the input bits suffer from a bit-flip error. Con-
sider for example that the binary input string ‘ab’ contains
an error with Hamming weight wt(ab) ≥ 1. The output bit c
that follows must have an error with wt(c) = 1, since it is a
single bit. Therefore the overall number of errors in the circuit
either remains the same or it is reduced even when the gate
computes an erroneous input.

Unfortunately, this is not the case for the quantum
Controlled-NOT (CNOT) gate, as seen in Figure 11. The
dynamics of the quantum world are described by unitary

7For example, for N = 3 qubits in the bit-flip channel with combinations
of J = 2 operators {X , I }, there are 23 − 1 = 7 operators excluding III ,
which are as follows IIX , IXI ,XII ,XIX ,XXI , IXX ,XXX .
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FIGURE 11. Error proliferation in quantum CNOT gate.

FIGURE 12. Propagation of a single qubit error to three qubit error.

transformations, which preserve the dimensions of the sys-
tem. Therefore quantum gates are reversible, which means
that the number of input qubits is the same as the number
of output qubits [45]. For example, the quantum CNOT gate
takes the two-qubit state |ab〉 as its input and outputs the
two-qubit state |ac〉, where again we have c ≡ (a OR b).
Therefore, if the control qubit contains a bit-flip error, the out-
put state has two bit-flip errors, for example |10〉 → |11〉, as
demonstrated in Figure 11. Explicitly, underlining indicates
the erroneous positions.

Let us now consider this example in more detail, since the
data in the control qubit a is erroneous, this means that the
outcome of c = (a OR b) contains an error. This outcome
is stored in the target qubit and carried forward to the next gate
in the circuit, therefore future gates will further propagate
this error. Additionally, the erroneous control qubit |a〉 is not
absorbed by the OR gate. Instead it is preserved in the control
qubit, which may impose further degradation at a later time
step. In effect, the CNOT gate has proliferated the control bit
error to the target qubit and then failed to absorb the error
it started with. Hence, a qubit error propagates throughout
the circuit, wherever two-qubit gate connections are present.
Specifically, an increase in the weight8 of the error from
the input to the output state implies that an error has been
proliferated by the gate, potentially giving rise to avalanche-
like error proliferation.
Note that error proliferation may increase the qubit error

ratio evenwhen the CNOT gate itself is perfect. A perfect gate
has a gate error probability of Pg = 0. Let us now consider
the example of the [3, 1, 3] repetition encoder circuit shown
in Figure 12. Assuming that the CNOT gates in this circuit
are perfect, but a bit-flip error that occurred before the first
CNOT gate is proliferated by the subsequent gates results in

8The weight wt(S) of a quantum operator S is defined as the number of
qubits that differ from the identity operator. Therefore wt(XIZ ) = 2.

FIGURE 13. X and Z error proliferation in the CNOT gate. X errors are
proliferated by additionally passing them from the control to the target
qubit, while Z errors are proliferated by additionally passing them from
the target qubit to the to control qubit.

three individual qubit errors at the circuit’s output. Therefore
the circuit has increased the qubit error ratio with respect to
the input, despite the application of perfect CNOT gates.

D. ERROR PROLIFERATION BY CNOT GATES
In addition to their own intrinsic gate errors, a CNOT gate
may increase the error ratio in a circuit by proliferating pre-
existing qubit errors. If an X error corrupted the control qubit
before the CNOT gate, then the gate has the effect of copying
the control error to the target qubit, as seen in Figure 13 (a),
which can be represented as [35]

CNOT (XI )CNOT †
= XX . (34)

Similarly, the CNOT gate copies an existing phase error (Z )
on the target qubit, upwards to the control qubit, as seen in
Figure 13 (b) and represented by:

CNOT (IZ )CNOT †
= ZZ . (35)

E. DEFINITION OF FAULT TOLERANT QECC
A fault tolerant circuit construction mitigates both the gate
error and proliferation error probability. Formally, a quantum
circuit protected by an [n, k, d] QECC is said to be fault
tolerant, if a single gate error occurring with probability Pg
results in less than t = (d − 1)/2 individual qubit errors at
the output of the circuit [1], [34]. In other words, for a circuit
to be fault tolerant the propagation of a single gate error must
not overwhelm the QECC used for protecting the quantum
circuit. For example, the repetition code’s encoding circuit of
Figure 12 is not fault tolerant, because a single qubit error
may proliferate to t = 3 errors. Another example of a non-
fault tolerant circuit is constituted by the Steane encoding
circuit, of Figure 5, because a single CNOT gate error is
proliferated to t = 3 qubit errors. Since the Steane code is
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FIGURE 14. General transversal single-qubit gate.

a d = 3 code, this means that there exist single gate errors
that cannot be corrected, as exemplified in [29].

The benefit of a fault tolerant circuit is that it guarantees
that the QECC-protected scheme succeeds in achieving an
error rate improvement compared to the unprotected scheme.
For example, suppose that a component with error probability
of Pg is encoded by a circuit having x components. All x
components may also be assumed to have an error proba-
bility equivalent to that of the uncoded gate, namely Pg. To
achieve fault tolerance, the QECC must be able to correct
the qubit error probability for a total of x single gate error
scenarios. This guarantees that the final error rate will be
upper bounded by O(P2g), which is the probability of two
gates simultaneously incurring independent errors. Then the
inequality characterizing the coded and uncoded scheme by
O(P2g) < Pg is satisfied, showing that if the qubit error
that results from a single gate error can be corrected, it is
guaranteed that the QECC scheme will achieve a coded error
rate improvement. If any single gate error is left uncorrected,
then the coded error rate will be upper bounded byO(Pg) and
the QECC protected scheme cannot offer better error rates
than the uncoded scheme, namely we have O(Pg) > Pg.

V. QECC IMPROVES QUANTUM GATE ERROR
A. TRANSVERSAL GATES
The circuits that implement a QECC, such as the encoding
circuit, must be themselves fault tolerant [7]. However we
also wish to implement logical gates in order for our quantum
processor to be more useful than just a quantum memory
[24]. A fault tolerant method of improving the error rate of
a realistic imperfect quantum gate is the scheme popularly
referred to as the transversal gate [2], [33]. More explicitly,
a transversal gate allows a logical gate to be applied to an
encoded state.

This scheme is characterized by the bit-wise application
of the gate to an encoded state [11]. More specifically, to
implement a single-qubit gate U transversely it is applied
separately to each physical qubit in the n-qubit encoded state,

as demonstrated in Figure 14 [33]. The left hand side of
Figure 14 represents an single-qubit gate U applied to an
arbitrary uncoded state. The right hand side shows that the
transversal gate implementation U results in the same logical
evolution of the encoded state, as U results in for an uncoded
state. The bar above U (giving U ) indicates that this is a
transversal gate. Explicitly, the application of U to a n-qubit
encoded state |ψ〉 has the same logical effect of applying the
uncoded gate U to a k-qubit uncoded state |ψ〉. For example,
the X gate applies a bit-flip to |ψ〉 and X applies a bit-flip to
|ψ〉. This can be views as X representing the k-qubit uncoded
gate, while X is the n-qubit ‘encoded’ version.
You might wonder, why single-qubit transversal gates are

fault tolerant? If the components introduce errors indepen-
dently and the information is encoded in a d = 3 QECC, then
an uncorrectable error may only occur when two independent
components fail simultaneously. This happens with the prob-
ability of O(P2g), therefore achieving a beneficial error-rate
improvement compared to the uncoded single gate.

Error proliferation may hence be circumvented by a fault
tolerant gate construction, as shown in Figure 1. Specifically,
a transversal CNOT gate is applied on a bit-wise basis from
the ith qubit in the encoded control state to the ith qubit in the
encoded target state. Figure 1 shows that the CNOT gates are
specifically arranged in a way so that the qubits are coupled
with no more than a single CNOT gate connection. This
means that a single error in an encoded block may propagate
to no more than a single error in the other. This erroneous sce-
nario can always be corrected by the syndrome decoder, since
both the control and target qubits are encoded independently
by an [n, k, d] QECC. Therefore an uncorrectable error may
only occur when two CNOT gates simultaneously incur an
error with probability O(P2g), which satisfies the conditions
of fault tolerance.

B. PROCESSING QECC-INFORMATION BY LOGIC GATES
Logic gates can be applied to QECC-protected data, because
the QECC does not treat any permutation of a code word by a
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legitimate logical gate as an error. Instead, the logical gate has
the effect of transforming the data from one legitimate code
word to another, provided that the transversal gate is carefully
matched to a certain QECC, as described in this section.

Firstly, what kind of error is detectable by a general sta-
bilizer code? A correctable error E for a stabilizer code Ŝ is
constituted by the sub-group of Gn defined in Eq. (7) that anti-
commutes with Ŝ, where we have KE = −EK . For example,
if K ∈ Ŝ and |ψ〉 is a legitimate defined code word, then we
have:

K (E|ψ〉) = −EK |ψ〉 = −E|ψ〉, (36)

where E ∈ E . The error has the effect of shifting the logical
qubit out of the legitimate code space. The negative phase
value can be measured by the syndrome measurement and a
subsequent recovery operation can be applied to reverse the
effect of E .

If the measurement of the stabilizer operator results in an
+1 eigenvalue, it is assumed that state |ψ〉 is a legitimate
code word satisfying that K |ψ〉 = |ψ〉. However, if an error-
corrupted state |ψ

′
〉 = E|ψ〉 is inserted into this equation,

then we arrive at K |ψ
′
〉 = |ψ

′
〉 indicating that the error E

cannot be detected by the QECC. If an error commutes with
the stabilizer, it has the property of KE = EK . Then we have

K (E|ψ〉) = EK |ψ〉 = E|ψ〉, (37)

which gives the definition of an error that cannot be corrected
by a stabilizer code [33]. This is because the stabilizer mea-
surement results in an +1 eigenvalue, which is interpreted
as being in the legitimate code space. More formally, the
set of elements in Gn in Eq. (7) that commute with the
stabilizer EKE†

∈ K ∀ K ∈ Ŝ are the normalizer9 of Ŝ
in Gn, denoted by N (̂S) [34]. If an error commutes with the
stabilizer, it is undetectable, therefore this has the effect of an
uncorrectable error E . More formally, E ∈ N (̂S)− Ŝ.
A transversal gate U has the same properties as an uncor-

rectable error, because when a valid encoded gate is applied
to an encoded state, it will return another legitimate encoded
state [31]. In other words, the code will not detect an error,
when the gate is applied to the encoded qubits. This reveals
the set of transformations that act non-trivially on the code
word, yet do not shift the information outside the legitimate
code space.

Let us look at this idea from the perspective of applying
quantum gates to encoded qubits. A general encoded gate U
evolves the encoded data according to |ψ2〉 = U |ψ〉. This
state would be stabilized by an updated stabilizer UKU

†
,

which has the intended effect

UKU
†
U |ψ〉 = KU |ψ〉 = U |ψ〉. (38)

This is reminiscent of the ordinary stabilizer K |ψ〉 = |ψ〉,
which leaves a legitimate code word unchanged. Then a

9The set U such that UGnU†
= Gn is the normalizer of Gn, denoted by

N (Gn).

FIGURE 15. General transversal CNOT gate U f scheme.

transversal gate U is chosen for ensuring that

UKiU
†
= Kj ∀Ki,j ∈ Ŝ, (39)

where the encoded gate conveniently has no effect on the
stabilizer set. How is it justified that certain transversal gates
have this property?When S andU commute, then SU = US.
This means that

UKU
†
= UU

†
K = K , (40)

remembering that UU
†
= I . Therefore the transformations

U carried out by legitimate transversal gates for a given code
Ŝ are those, which commute with the stabilizer.

For example, a transversal bit-flip gate corresponds to the
bit-wise application of the X gate to each physical qubit,
denoted as X = X⊗n. For the Steane code, X is implemented
by applying n = 7 X gates directly to the physical qubits of
the encoded data. To check that X has the intended logical
transformation, X can be applied to Eq. (20) and Eq. (21).
Then to transform |0〉 to |1〉 we get X |0〉 = |1〉 and vice
versa. Similarly, Z = Z⊗7 has the effect of the logical phase-
flip, where Z |0〉 = |0〉 and Z |1〉 = −|1〉 can be used for
distinguishing whether the logical qubit is either |0〉 or |1〉.
Since we have XZX†

= −X and ZXZ†
= −Z , the stabilizer

set in Eq. (19) remains unchanged. For example, XKiX
†
= Kj

and ZKiZ
†
= Kj ∀Ki,j ∈ Ŝ.

VI. SYSTEM MODEL
The scheme seen in Figure 15 encodes a pair of unknown
qubits |φ1〉 and |φ2〉 using the unitary encoding circuit V . The
encoding at the top left corner of Figure 15 can be described
as

|φ1〉 = V(|φ1〉 ⊗ |0〉⊗(n−k)). (41)

The state |φ1〉 can be stabilized by Ŝ = {Ki}, which is
expressed as

Ki|φ1〉 = |φ1〉 ∀Ki ∈ Ŝ. (42)
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In this model Ŝ = {Ki} corresponds to the n − k stabilizer
operators. By measuring the stabilizers Ŝ the location of an
error in the data qubits can be determined. If there is an error,
the recovery operation R is applied to the data for returning
it to a legitimate code word state.

The encoded control and target qubit are input to the
transversal CNOT gate labelled by U f , as seen in Figure 15.
This block represents the logical action of a CNOT gate
applied to the encoded qubits. The transversal CNOT gateU f
evolves the encoded state |ψ1〉 = |φ1〉|φ2〉 to |ψ2〉 as follows:

|ψ2〉 = U f |ψ1〉. (43)

This is stabilized by U f ŜU
†
f . Assuming that the transversal

CNOT gate represents a legitimate logical transformation for
the chosen code, the stabilizer set remains invariant to the
application of U f , so that Ŝ = Ki⊗Kj satisfies U f ŜU

†
f = Ŝ.

This allows the intended logical evolution of the encoded
information to be preserved and any single qubit error occur-
ring within the data to be corrected.

1) FRAME-ERROR-RATE
Let us now consider the example of a transversal CNOT gate
protected by the 1

3 -rate repetition code of [29]. If more than
one qubits in the 6-qubit frame have a bit-flip error at time
step |ψ3〉 this will be counted as one frame error. A single
qubit error occurring within the top or bottom n = 3 qubits
after Uf , i.e. in |ψ2〉 seen in Figure 15, can be corrected
because in this scheme the control and target qubits are
encoded individually. For example, two qubit errors, one on
qubit 2 and the other on qubit 5, can be fully corrected, hence
no frame error is encountered at |ψ3〉. This is because qubit
2 is corrected by the upper syndrome decoder and qubit 5
by the lower syndrome decoder. However, a qubit error on
the first and second qubit cannot be corrected by the upper
decoder, since both qubit errors are processed by the same
d = 3 syndrome decoder. Therefore this scenario incurs a
frame error at |ψ3〉.

The frame-error-rate (FER) is defined by considering all
operations involved in the calculation of |ψ3〉, yielding

FER3 =
No. of frame errors
Total No. of frames

. (44)

The FER3 is a useful metric because it characterizes the
integrity of the transversal CNOT gate.

A. QUANTUM CHANNEL MODEL
In this model seen in Fig. 16 each gate of the circuit is
assumed to be an independent potential error location with
a probability of Pg. Then an independent individual qubit
channel is applied after this. The motivation for this hybrid
model is that qubit errors may not occur at the gate output
as independent events [41], hence the gate errors must also
be modelled individually with a probability of Pg. This is
because error proliferation results in correlated qubit errors,
which systematically spread through the two-qubit gates, as
detailed further in Section IV-C.

FIGURE 16. Combined channel model with gate error Pg (blue box) and
independent qubit error Pe (red box).

In this hybrid channel model, we assume that each CNOT
gate has a gate error rate probability Pg. In addition to gate
errors, the qubits may also suffer from decoherence with a
probability Pe, which encapsulates the effects of all other
circuit errors. Under these assumptions the uncoded circuit
has the following FER

FER = Pg + 2Pe, (45)

as shown in Figure 16. This channelmodel can also be applied
to the coded systemmodel of Figure 15. In this case the blocks
V and U f have independent gate errors, which may however
have a similar Pg. Hence, gate errors occur at gate locations
specific to the circuit construction for the particular QECC
chosen. Then an independent qubit flip channel is applied
at position |ψ2〉 of Fig. 15. Note that it is assumed that the
circuits of Ŝ and R are fault tolerant and therefore the gate
error probability in these circuits is negligible [1].

B. SIMULATION ASSUMPTIONS
This section makes clear the assumptions made in this simu-
lation:
• It is assumed that FER ≤ 1 for a given combination
of Pg and Pe. Hence, for this simulation Pg and Pe are
considered to be 0.1 or smaller [46]–[48].

• In this simulation each of the gate errors and qubit
errors are simulated independently. Therefore, all com-
binations of component errors are encompassed by this
simulation, which is run 106 times for each data point.
The most common scenario is a single-component error,
namely a gate error with a probability of Pg or a single
qubit error with a probability of Pe.

• The circuit gate error events are modelled by an indepen-
dent random variable, which determines the qubit error
incurred by each gate error. It is necessary to simulate
each gate separately in order to encapsulate the effects
of error proliferation in subsequent circuit components.
Error proliferation within the circuit outputs a pattern
of qubit errors specific to the circuit architecture. The
simulation results reflect this and the effect of error
proliferation on the FER.
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FIGURE 17. R =
1
3 Repetition code in bit-flip channel with various

channel flip probability Pe.

VII. RESULTS
In this section we will derive various FER bounds, which are
then verified by simulations.

A. A 1
3 -RATE REPETITION CODE

Let us first consider the frame error events imposed by pure
gate errors in the absence of bit-flip errors. For a circuit
block having a total ofD components and identical gate error
probabilities Pg, we can compute the upper bound of the FER
before error correction as

FER ≤
D∑
i=1

ηiPig where ηi =
(
D
i

)
. (46)

where ηi is given by the binomial coefficient defined by i-
combinations of D circuit components. The coefficients ηi
is then reduced to η̃i by the number of i-component failures,
resulting in an error pattern corrected by syndrome recovery.

As for the frame error events caused by the pure bit-flip
channel having a flip probability of Pe, at the right of Fig. 16
the state of having no qubit errors at the output of either
the control or the target sub-block occurs with probability
(1 − Pe)3. A correctable single-qubit error in any position
occurs with probability 3Pe(1−Pe)2. Any uncorrectable error
in either sub-block incurs a frame error, therefore the FER
after the recovery operation can be calculated as

FER = 1−
[
(1− Pe)3 + 3Pe(1− Pe)2

]2
. (47)

Let us now combine the FER contributions of both the gate
errors and bit-flip errors of Eq. (5). However, for simplicity,
we consider only the dominant term of i = 1 in the gate
error bound of Eq. (46), explicitly this is the dominant term,

FIGURE 18. R =
1
3 Repetition code in the Bit-flip channel with various

gate error values Pg.

because having several instantaneous gate errors has a lower
probability. Upon computing the decoded FER, we arrive at:

FER = 1−
[
(1− Pe)3 + 3Pe(1− Pe)2

]2
+ 2Pg + . . .

≈ 6P2e + 2Pg. (48)

Since the term of 6P2e in Eq. (48) can be deemed negligible,
for the coded scheme to offer a FER improvement it is
required that Pg ≤ 2Pe. In Figure 17 we have plotted the FER
vs. the gate error probability for both an uncoded CNOT gate
as well as for its 1

3 -rate repetition-coded counterpart using
dashed and continuous lines, respectively. The FER results
are parameterized by the bit-flip probability of our quantum
channel model of Figure 16. The circles in the figure indicate
the specific Pg values, below which the 1

3 -rate repetition code
provides FER reductions. The curves are parameterized by
the bit-flip probability Pe defined in Figure 16. To elaborate
further, Figure 18 shows that when Pg is smaller, the coded
scheme provides more rapid FER improvements, achieving
FER ≈ 2Pg, where 6P2e is negligible. However,when we
have Pe � Pg, the coded scheme’s FER is dominated by the
correlated gate error patterns encountered before recovery.
Therefore the FER floor is determined by 2Pg. The repetition
coding scheme hasD = 7 components, so we have η1 = 7 in
Eq. (46), meaning that η̃1 = 2, as detailed in the next section.

B. FURTHER EVALUATION OF REPETITION CODING
In this section the method of finding the analytical FER =
η̃1Pg = 2Pg is discussed in detail. We commence by consid-
ering the accumulated error probability before error correc-
tion at |ψ2〉 and determine how much this is reduced by with
the aid of syndrome decoding.
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FIGURE 19. A 1
3 -rate repetition encoder with Transversal CNOT Gate.

First, let us find the total accumulated error probability
before syndrome decoding, as represented by the FER at |ψ2〉

in Figure 19. The circuit has D = 7 CNOT gates, each
having gate error probability of Pg. Assuming that the gate
errors are independent, the FER at |ψ2〉 (FER2) is dominated
by the sum of all the single CNOT gate error probabilities.
Note that in this example the combinations of two, three,
. . . gate errors occurring with probabilityO(P2g),O(P3g) . . . are
ignored, since the probability of these scenarios in this chan-
nel model is low. Therefore, we have

FER2 = DPg = 7Pg. (49)

Naturally, we expect that some error patterns after a single
CNOT gate error can be corrected by the syndrome decoders.
This means that the final error rate at |ψ3〉 will obey:

FER3 = ηPg < 7Pg, (50)

where η is a scaling coefficient that we have to find by exhaus-
tively considering every error pattern occurring at |ψ2〉. If
a pattern can be corrected by the syndrome decoders, its
probability of occurrence is subtracted from Eq. (49) for
determining the experimental gate error probability, yielding
the final FER3.
Then the natural question arises, how many different error

patterns are accumulated at |ψ2〉 in Figure 19 after the occur-
rence of specific single CNOT gate errors? Each CNOT gate
in the circuit may suffer from any of the three possible bit-
flip error patterns of IX ,XI ,XX shown in Figure 9 with a

FIGURE 20. [3,1,3] Repetition code encoder V .

TABLE 3. Error patterns at the output of the [3,1,3] Repetition code
encoder V , as shown in Figure 20, after the propagation of a single CNOT
gate error in the bit-flip channel. Each scenario has a probability of
occurrence

Pg
3 .

probability of Pg
3 . Then in conjunction with D = 7 CNOT

gates, there are 21 possible error patterns occurring at |ψ2〉.
Fortunately, we do not have to consider all 21 error patterns

individually. Quantitatively, we will demonstrate later in this
section that we only have to analyze 6 patterns. Let us com-
mence by considering the gate error in the transversal CNOT
gate sectionU f of Figure 19. This section is constructed from
3CNOTgates and therefore contributes a total of 3Pg toFER2
in Eq. (49). Since the control and target qubit of each CNOT
gate is finally input into separate syndrome decoders, any bit-
flip error combination IX ,XI or XX imposed on the control
and target qubit of these gates can be corrected before |ψ3〉.
This is a benefit of the transversal gate being constructed
fault tolerantly and therefore no error proliferation takes place
in this section. Hence we do not have an error event that
cannot be corrected [33]. Therefore, Eq. (49) may initially
be reduced by 3Pg so that we have:

ηPg < 4Pg, (51)

since any individual error patterns resulting from these gate
errors will be corrected.

Now, only the gate error in the top and bottom encoder
of Figure 19 has to be considered individually. There are
four CNOT gates in total, which accounts for FER of 4Pg
in Eq. (51). Let us commence by only considering the top
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encoder in Figure 19, which has two CNOT gates to consider
(2Pg). This encoder has 6 possible error scenarios in the bit-
flip channel. Table 3 shows a comprehensive assessment of
the error pattern on the n = 3 qubits at the output of the
encoder for each bit-flip scenario. Inspection of Table 3 shows
that 3 out of the 6 error patterns contain only a single bit-
flip error. Then the operation of U f in Figure 19 copies the
same error pattern to the bottom three qubits, which is then
entered into the lower syndrome decoder. So a single error
entered into the top syndrome decoder will lead to a single
error input to the bottom one, both of which can be corrected.
Therefore error proliferation in the subsequent CNOT gates
can be avoided. Each scenario occurs with probability Pg

3 ,
therefore 3 × Pg

3 = Pg is the probability of frame error after
any gate error in the top encoder.

Hence, Eq. (51) can be reduced by Pg, giving ηPg <

3Pg. The only CNOT gates left to consider are those in the
lower encoder Vlower . This has the same circuit structure
as the upper encoder. Therefore, Table 3 also describes the
probability that the gate error occurring in the lower encoder
will lead to an error that can be corrected. Hence the final
FER3 at |ψ3〉 of Figure 19 after all possible CNOT gate errors
will be

FER3 = 2Pg, (52)

which yields η = 2 in Eq. (50).

C. TRANSVERAL CNOT GATE PROTECTED BY STEANE’s
CODE
Since Steane’s encoding circuit V is not fault tolerant, its FER
is upper bounded by

FER(1) ≈ η1Pg. (53)

The constant η1 is determined by the specific error patterns
produced by single gate errors that cannot be corrected. This
process is demonstrated in Fig. 5, where the error imposed
on the first CNOT gate leads to a larger number of errors
at the circuit output, causing error proliferation. Subsequent
CNOT gates copy this error throughout the circuit. Therefore
the proliferation of the error resulting from the initial single
gate failure results in multiple qubit errors that cannot be
corrected at the circuit output. Since the initial CNOT gate
failure occurred with probability Pg, this error event will add
a term of O(Pg) to the FER.
The independent gate error is modelled by assuming an

error location at each two-qubit CNOT connection in the cir-
cuit. Each gate failure is simulated as a perfect gate followed
by Pauli operators acting on the individual qubits defined by
the statistics corresponding to the depolarizing channel [41].
All other component errors are modelled by a single-qubit
depolarizing channel after the block labelled U f , as seen in
Figure 15. This incurs a frame error rate of

FER(2) ≈ η2P2e, (54)

FIGURE 21. FER of a transversal CNOT gate vs. the gate error probability
Pg parameterized by various depolarizing probabilities Pe.

where η2 is the number of two qubit error combinations in
the block that cannot be corrected by the upper and lower
syndrome decoder of Figure 19.

The coded scheme provides frame error rate improve-
ments, when the resultant error rate is lower than that of the
uncoded scheme, namely when FER(1)+FER(2) < Pg+2Pe.
Rearranging this gives the gate error threshold Pg < Pth,
which is the gate error rate below which coded improvements
are possible. This is defined by a condition for Pg and Pe
in conjunction with one another. Therefore the gate error
threshold is given by

Pth =
2Pe − η2P2e
η1 − 1

, (55)

which is the point at which the coded scheme starts to have a
better FER than the uncoded scheme.

A drawback of this scheme is that the FER is improved in
line with a reduction of Pg < Pth, as indicated in Fig. 21.
Fig.5 shows that the proliferation of qubit errors by CNOT
gates in Steanes code leads to the correlation of qubit errors
at the output of the Steane encoding circuit. Therefore a set
of error patterns occurring with probability O(Pg) consisting
of t > 1 individual qubit errors accumulate before the
transversal CNOT gate. Hence, the application of Steane’s
code introduces more errors than the uncoded scheme has,
when the gate error probability is high. The effects of error
proliferation overloading the decoder are seen in Figure 22,
where the resultant FER is lower-bounded at ≈ 20Pg.
However, our results demonstrate that coding is indeed

beneficial, when the statistically independent qubit decoher-
ence probability Pe is approximately an order of magnitude
higher than Pg for counteracting the effects of correlated
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FIGURE 22. FER of a transversal CNOT gate vs. the depolarizing
probability Pe parameterized by various gate error probabilities Pg.

errors. This is due to the fact that Steane’s code is capable
of correcting statistically independent individual qubit errors,
since it has a minimum distance of d = 3. More specifically,
Figure 21 shows that an uncoded system would suffer from
an FER floor at 2× 10−3, when the qubit decoherence error
probability is Pe = 10−3. However, a Steane code assisted
system is capable of reducing the FER below 2 × 10−3,
provided that the gate error probability is lower than Pth =
1.1× 10−4.

VIII. CONCLUSION
Fault-tolerant QECCs are capable of encoding unknown
states [1]. This is because the traditional unitary encoding cir-
cuits are not fault tolerant. Practical quantum circuits experi-
ence both gate-induced qubit errors with a probability ofPg as
well as qubit errors imposed by the decoherence probability
of Pe. We found that improved logical qubit reliability can
be attained using non-fault tolerant QECC’s when Pe is an
order of magnitude higher than Pg. However, this imposes
a strict condition on our quantum channel model, where
the channel parameters have to obey the specific conditions
unveiled in this treatise. In our future work, we will design
fault tolerant schemes for encoding unknown states in the
face of realistic quantum impairments using bespoke QECCs.
Another direction for this simulation is to consider circuits,
which have more transversal gates. A single transversal gate
can be implemented in each error correction step. Therefore,
multiple transversal gates can be constructed by repeatedly
implementing the scheme presented here in succession for a
certain circuit depth. This can be tested by simulations for
determining the effect of circuit depth on the gate error rate
thresholds.
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