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On the MIMO Channel Capacity of
Multi-Dimensional Signal Sets

S. X. Ng, Member, IEEE, and L. Hanzo,Fellow, IEEE.

Abstract— In this contribution, the capacity of Multi-Input
Multi-Output (MIMO) systems using multi-dimensional phase-
shift keying/quadratic-amplitude modulation signal setsis evalu-
ated. It was shown that transmit diversity is capable of narrowing
the gap between the capacity of the Rayleigh-fading channeland
the AWGN channel. However, since this gap becomes narrower
when the receiver diversity order is increased, for higher-
order receiver diversity the performance advantage of transmit
diversity diminishes. A MIMO system having full multiplexi ng
gain has a higher achievable throughput than the corresponding
MIMO system designed for full diversity gain, although this is
attained at the cost of a higher complexity and a higher SNR. The
tradeoffs between diversity gain, multiplexing gain, complexity
and bandwidth are studied.

Index Terms— Capacity, diversity, Multiple-Input Multiple-
Output (MIMO), multiplexing.

I. I NTRODUCTION

The capacity,C, of a Single-Input Single-Output (SISO)
AWGN channel was quantified by Shannon in 1948 [1], [2].
Since then, substantial research efforts have been invested in
finding channel codes that would produce an arbitrarily low
probability of error at a transmission rate close toC∗ =
C/T , whereT is the symbol period. We note however that
Shannon’s channel capacity is only defined for Continuous-
Input Continuous-Output Memoryless Channels (CCMC) [3],
where the channel input is a continuous-amplitude, discrete-
time Gaussian-distributed signal and the capacity is only
restricted either by the signalling energy or by the bandwidth.
Therefore we will refer to the capacity of the CCMC as the
unrestricted bound.

By contrast, in the context of discrete-amplitude QAM [4]
and PSK [3] signals, we encounter a Discrete-Input
Continuous-Output Memoryless Channel (DCMC) [3]. There-
fore, the capacity of the DCMC is more pertinent in the
design of channel coded modulation schemes. With the advent
of powerful space-time coding schemes [5]–[7], the Multi-
Input Multi-Output (MIMO) channel capacity is of immediate
interest. Note that multiple antennas can be utilised for pro-
viding diversity gain and/or multiplexing gain [8]. Specifically,
Space-Time Trellis Coding (STTC) [5] and Space-Time Block
Coding (STBC) [6], [9] were designed for achieving diversity
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gains by conveying the same information through different
paths over the MIMO channel in order to combat the channel-
induced fading. By contrast, Bell Lab’s Layered Space-
Time (BLAST) [7] scheme transmits independent information
in parallel over the MIMO channel for the sake of achieving
multiplexing gain, hence increasing the attainable transmission
rate. Furthermore, both STTC and STBC schemes are capable
of achieving full transmit diversity1 at the cost of providing
no multiplexing gain, while the BLAST scheme was designed
for achieving full multiplexing gain at the cost of having no
transmit diversity gain. The tradeoffs associated with having
partial diversity gain and partial multiplexing gain when
communicating over MIMO channels was studied in [8].

Note however that the STTC scheme [5] is also capable of
achieving temporal or time diversity gain, which is commonly
referred to as coding gain. On the other hand, the BLAST
scheme [7] is unable to provide spatial diversity or temporal
diversity, since both of these have been utilised for achieving
full multiplexing gain. The STTC scheme may be viewed
as a rate-1/Nt channel code, whereNt is the number of
transmit antennas. By contrast, the BLAST scheme [7] may be
viewed as a rate-1 channel code. Despite having different code
rates, both the STTC and BLAST schemes share the same
MIMO channel capacity. This is similar to the case, where
two different-rate temporal domain channel codes share the
sameM -ary QAM SISO channel capacity, when transmitting
M -ary QAM signals across the SISO channels. By contrast,
the orthogonal STBC may be viewed as a rate-1/Nt spatial-
domain repetition coding scheme. The STBC scheme may also
be viewed as a MIMO system, which employs an orthogonal
spreading code in the spatial and temporal domains [10]. Note
that the STBC scheme is unable to provide temporal diversity
gain due to employing an orthogonal code. Hence, the capacity
of the ‘spatial-domain-spread’ STBC MIMO scheme is lower
than that of the non-spread MIMO scheme. Nonetheless, the
code orthogonality of the STBC scheme facilitates a low-
complexity ‘de-spreading’ detection compared to the high-
complexity ML detection employed by the STTC scheme. The
BLAST scheme also achieves its best performance, when ML
detection is invoked.

However, the MIMO channel’s capacity was only found for
the CCMC in [11]–[15]. Furthermore, only the SISO AWGN
channel capacity was found for multi-dimensional signal sets,
such asM -ary orthogonal signalling [3] andL-ary PSK based
L-orthogonal signalling [16], [17]. More specifically, theL-

1A system is said to have a full transmit diversity, when the transmit
diversity order is identical to the number of transmit antennas [6].
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orthogonal PSK signal [17], [18] is a hybrid form ofM -ary or-
thogonal and PSK signalling, combining the benefits of power-
efficient and error-resilientM -ary orthogonal signalling [3,
p. 284] as well as bandwidth-efficient PSK signalling. At this
stage we note that STTC and STBC schemes have so far been
exclusively designed for complex-valued (two-dimensional)
PSK/QAM signal sets, but not for multi-dimensional signal
sets.Against this background, the novel contribution of
this treatise is that we derive channel capacity formulae
applicable to MIMO systems employing multi-dimensional
signal sets, in the quest for more error-resilient, power-
efficient and bandwidth-efficient MIMO channel coding
schemes.

The paper is organised as follows. In Section II the multi-
dimensional signal set is described. In Sections III and IV,
the channel capacity formulae are derived for the specific
orthogonal STBC based MIMO system and the general MIMO
system, respectively. In Section V the capacity and bandwidth
efficiency of the MIMO channel are investigated. Finally, our
conclusions are offered in Section VI.

II. M ULTIDIMENSIONAL SIGNAL SET

The dimensionality of a time- and band-limited signal is
defined as [19, pp. 348-351]:

D = 2WT, (1)

where W is the bandwidth andT is the signalling period
of the finite-energy signalling waveform. In anL-orthogonal
PSK signal set [16], [17], there areV = WT independentL-
ary PSK subsets. The total number of waveforms isM =
V L and the number of dimensions isD = 2V , which is
independent ofL. Specifically, anL-orthogonal PSK signal
requires splitting the original PSK symbol period intoV
number of proportionately shortened PSK symbol periods and
hence necessitatesV times the bandwidth of PSK signalling,
in order to transmitlog2(M) bits. The vector representation
of L-orthogonal PSK signalling may be formulated as:

xm = xLPSK
l φk, m = 1, . . . , M , (2)

where l = ((m − 1)%L) + 1 and a%b is the remainder
of a/b, while k =

(

⌊m−1
L

⌋ + 1
)

and xLPSK
l is the classic

two-dimensionalL-ary PSK signal. Furthermore, the orthonor-
mal basis functionφk = (φk[1], . . . , φk[v], . . . , φk[V ]) is a
vector of V elements, which may be constructed from non-
overlapping signalling pulses as follows:

φk[i] =

{

1, i = k,
0, i 6= k.

(3)

Figure 1 illustrates an example ofL = 8-orthogonal PSK
signalling splitting the original signalling interval into V = 2
subintervals at the cost of doubling the required bandwidth.
The total number of waveforms isM = V L = 16 and the
number of dimensions isD = 2V = 4. Note that only one
of the V = 2 timeslots of durationTp is active during the
symbol period ofTs = V Tp. Therefore,L-orthogonal PSK
signalling achieveslog2(V ) bits higher capacity at the cost
of V times lower bandwidth efficiency, than that of classic
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Fig. 1. An L-orthogonal PSK example conveying 4 bits per symbol using
L = 8-ary PSK subset, where the total symbol periodTs consists ofV = 2

LPSK subset’s signalling durationsTp.

L-ary PSK signalling. As we can see from Figure 1, there
are V subsets ofL phasors and each subset is assigned to
one of theV orthonormal basis functionsφk, hence, each
subset of phasors is orthogonal to each other. However, the
L phasors assigned to the sameφk behave as in ordinary
L-ary PSK signalling. HenceL-orthogonal PSK signalling
constitutes a hybrid form ofM -ary orthogonal signalling and
PSK signalling. ForV = 1, L-orthogonal PSK signalling
represents classic two-dimensionalL-ary PSK signalling. As a
further contribution to the current state-of-the-art, we extended
the concept ofL-orthogonal PSK signalling toL-orthogonal
QAM signalling and we will quantify the achievable capacity
of L-orthogonal QAM in Figures 3 to 8.

To elaborate a little further, theD = 2V -dimensionalL-
orthogonal PSK/QAM scheme conveyslog2(M) bits using
V timeslots and orthogonal transmissions, where the total
throughput islog2(M)/V bits per timeslot. Hence aV -fold
bandwidth expansion occurred compared to theD = 2-
dimensional PSK/QAM scheme, which conveyslog2(M) bits
per timeslot. However, if a2V -dimensional PSK/QAM scheme
conveysV log2(M) bits using V timeslots, then the total
throughput will beV log2(M)/V = log2(M) bits per times-
lot, which is similar to that of the two-dimensional PSK/QAM
scheme. Hence, there is no bandwidth expansion. The multi-
dimensional lattice code [20] belongs to the family of non-
orthogonal multi-dimensional PSK/QAM schemes, where an
effective throughput oflog2(M) bits per timeslot is attained,
regardless of the signal dimensionality ofD = 2V . Hence
the bit/s/Hz bandwidth efficiency of the non-orthogonal multi-
dimensional PSK/QAM scheme is the same as that of the two-
dimensional PSK/QAM scheme, when communicating over
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SISO or MIMO channels. Therefore, the capacity of the non-
orthogonal multi-dimensional PSK/QAM scheme is simply
V times the bandwidth efficiency of the two-dimensional
PSK/QAM scheme. For this reason, in this paper we mainly
focus our attention on the capacity of the multi-dimensional
L-orthogonal PSK/QAM scheme. Note however that the or-
thogonality of theL-orthogonal PSK/QAM scheme is not
exploited for achieving diversity or multiplexing gain, but only
for attaining a higher error-resilience in a fashion similar to
that of the classicM -ary orthogonal scheme [21].

III. T HE SPECIFIC MIMO CHANNEL CAPACITY OF THE

ORTHOGONAL STBC SYSTEM

When classicD = 2-dimensional PSK/QAM is employed,
the received signal at receiveri of Alamouti’s orthogonal
STBC [6] havingNt = 2 transmit antennas andNr receive
antennas can be transformed into [22]:

yi =

Nt
∑

j=1

|hi,j |2x + Ωi = χ2
2Nt,ix + Ωi , i = {1, . . . , Nr}

(4)

where we define~y = (y1, . . . ,yNr
)T as theNr-element

complex-valued received signal vector. Furthermore,x is the
complex-valued transmitted signal,hi,j is the complex-valued
Rayleigh fading coefficient between transmitterj and receiver
i, χ2

2Nt,i =
∑Nt

j=1 |hi,j |2 represents the chi-squared distributed
random variable having2Nt degree of freedom at receiver
i and Ωi is the ith receiver’s complex-valued AWGN after
transformation, which has a zero mean and a variance of
χ2

2Nt,i
N0/2 per dimension, whereN0/2 is the original noise

variance per dimension. More specifically, due to the code
orthogonality of STBC, the MIMO channel was transformed
into a Single-Input Multi-Output (SIMO) channel, where the
equivalent Rayleigh fading coefficient between the transmitter
and theith receiver is given byχ2

2Nt,i
and the equivalent noise

at theith receiver is given byΩi.
It was shown in [23] that a full-rate, full-diversity orthog-

onal STBC also exists forNt > 2. Let us now generalise
Equation (4) for each component of the aD > 2-dimensional
L-orthogonal PSK/QAM scheme as:

yi[d] = χ2
2Nt,i

[d]x[d] + Ωi[d] , (5)

where yi = (yi[1], . . . , yi[D]), x = (x[1], . . . , x[D]) and
Ωi = (Ωi[1], . . . , Ωi[D]). Note that whenD > 2, we have
D/2 number of differentχ2

2Nt,i
values for theD-dimensional

signals. Specifically, we haveχ2
2Nt,i

[k] = χ2
2Nt,i

[k + 1] for
k ∈ {1, 3, 5 . . .}, since a complex channel has two dimensions.
Furthermore,Ωi[d] has a variance ofχ2

2Nt,i
[d]N0/2 per each

D dimensions.
The conditional probability of receiving aD-dimensional

signal vector~y given that aD-dimensionalM -ary signalxm,
m ∈ {1, . . . , M}, was transmitted over an AWGN channel is
determined by the PDF of the noise, yielding:

p(~y|xm) =

D
∏

d=1

Nr
∏

i=1

1√
πN0

exp

(−(yi[d] − xm[d])2

N0

)

(6)

whereN0/2 is the channel’s noise variance. For the orthogonal
STBC MIMO system of Equation (5), we have:

p(~y|xm) =

(

1√
πN0

)NrD

·

exp

(

D
∑

d=1

Nr
∑

i=1

−(yi[d] − χ2
2Nt,i

[d]xm[d])2

χ2
2Nt,i

[d]N0

)

. (7)

The channel capacity for the STBC MIMO system usingD-
dimensionalM -ary signalling over the DCMC can be derived
from that of the Discrete Memoryless Channel (DMC) [24]
as:

CSTBC
DCMC = max

p(x1)...p(xM )

M
∑

m=1

∞
∫

−∞

. . .

∞
∫

−∞

p(~y|xm)p(xm) ·

D-fold

log2

(

p(~y|xm)
∑M

n=1 p(~y|xn)p(xn)

)

d~y [bit/sym], (8)

wherep(xm) is the probability of occurrence for the trans-
mitted signalxm. It was shown in [24, p. 94] that for a
symmetric DMC, the full capacity may only be achieved
by using equiprobable inputs. Hence, the right hand side of
Equation (8) is maximised, when the transmitted symbols are
equiprobably distributed, i.e. when we havep(xm) = 1/M
for m ∈ {1, . . . , M}. Hence, we arrive at:

log2

(

p(~y|xm)
∑M

n=1 p(~y|xn)p(xm)

)

= − log2

(

1

M

M
∑

n=1

p(~y|xn)

p(~y|xm)

)

,

= log2(M) − log2

M
∑

n=1

exp (Ψm,n) , (9)

where the termΨm,n is given by:

Ψm,n =

D
∑

d=1

Nr
∑

i=1

(

−
(

yi[d] − χ2
2Nt,i[d]xn[d]

)2

χ2
2Nt,i

[d]N0

+

(

yi[d] − χ2
2Nt,i

[d]xm[d]
)2

χ2
2Nt,i

[d]N0

)

,

=

D
∑

d=1

Nr
∑

i=1

(

−
(

χ2
2Nt,i[d](xm[d] − xn[d]) + Ωi[d]

)2

χ2
2Nt,i

[d]N0

+
(Ωi[d])2

χ2
2Nt,i

[d]N0

)

. (10)

By substituting Equation (9) andp(xm) = 1/M into Equa-
tion (8) we have:

CSTBC
DCMC

=
log2(M)

M

M
∑

m=1

∞
∫

−∞

. . .

∞
∫

−∞

p(~y|xm) d~y −

D-fold
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1

M

M
∑

m=1

∞
∫

−∞

. . .

∞
∫

−∞

p(~y|xm) log2

M
∑

n=1

exp (Ψm,n) d~y

D-fold

=log2(M) − 1

M

M
∑

m=1

E

[

log2

M
∑

n=1

exp(Ψm,n)

∣

∣

∣

∣

xm

]

[bit/sym]

(11)

whereE[A|xm] is the expectation ofA conditioned onxm

and the expectation in Equation (11) is taken overχ2
2Nt,i

[d]
and Ωi[d] for i = {1, . . . , Nr}. This expected value can be
estimated using the Monte Carlo averaging method. More
specifically, Equation (11) represents the capacity of the
MIMO DCMC, when employing STBC for achieving full
diversity gain forD-dimensional,M -ary PSK/QAM signals
with the aid ofNt number of transmit antennas andNr number
of receive antennas.

Note that in a SISO AWGN channel we haveχ2
2Nt,i

[d] =
Nt = 1 and hence the noise variance ofΩi[d] is
N0/2 per each dimension. ForD = 2-dimensional sig-
nalling, Equation (10) can be simplified to:Ψm,n =
∑Nr

i=1

−|χ2

2Nt,i(xm−xn)+Ωi|
2+|Ωi|

2

χ2

2Nt,i
N0

, where we havexk =

xk[1] + jxk[2] and Ωi = Ωi[1] + jΩi[2]. It is reassuring to
note that in the simplified case of SISO AWGN channels,
Equations (10) and (11) agree with the results of [25]. The
average SNR can be determined from [16], [25] as:

SNR =
1
M

∑M
m=1

∑D
d=1 |xm[d]|2

∑D
d=1 E[(Ωi[d])2]

=
Es

DN0/2
, (12)

where Es is the average energy of theD-dimensionalM -
ary symbolxm and D N0

2 is the average energy of theD-
dimensional AWGN. Additionally, the energy of the signal
sets is further normalised by

√
Nt. More specifically, we have

xk[d] = x̃k[d]/
√

Nt, wherex̃k[d] is thekth modulated signal,
k = {1, . . . , M}, of dimensiond in the case ofNt = 1.
In an AWGN channel, the channel capacity is not expected
to increase, whenNt is increased. However, if the transmitter
knows the complex Rayleigh-distributed channel coefficient of
each of the MIMO links, the transmitted power to be assigned
to the various transmit antennas can be distributed according
to the “water-filling” principle [12], [15] in order to increase
the achievable capacity.

The capacity formula of Equations (10) and (11) can also be
applied to real-valued signal sets, such asM -ary orthogonal
signals, as well as to amplitude-modulated signals following
straightforward adjustments of the signalling space dimension-
ality, the channel fading and the noise. The MIMO CCMC
capacity (unrestricted bound) of the STBC scheme designed
for achieving full diversity gain can be derived based on the
equivalent SIMO channel of Equation (4) as:

CSTBC
CCMC= E

[

WT log2(1 +

Nr
∑

i=1

χ2
2Nt,i

SNR

Nt

)

]

[bit/sym]

= E

[

D

2
log2(1 + χ2

2N

SNR

Nt

)

]

[bit/sym] (13)

where χ2
2N =

∑Nr

i=1 χ2
2Nt,i

=
∑Nr

i=1

∑Nt

j=1 |hi,j |2 and the
expectation is taken overχ2

2N . Again, the achievable capacity

can be further enhanced by distributing the transmitted power
according to the “water-filling” principle, when the channel
knowledge is available at the transmitter [12], [15].

IV. T HE GENERAL MIMO CHANNEL CAPACITY

In a two-dimensional MIMO system there areM = LNt

number of possibleL-ary PSK/QAM phasor combinations in
the transmitted signal vector~x = (x1, . . . ,xNt

)T , wherexj

is the two-dimensionalL-ary PSK/QAM signal emitted from
antennaj. The STTC scheme of [5] designed for attaining
transmit diversity and coding gain may be viewed as a rate-
1/Nt channel code, where there are onlyL1 = L legiti-
mate space-time codewords out of theLNt possible phasor
combinations during each transmission period. By contrast,
the BLAST scheme [7] designed for attaining multiplexing
gain may be viewed as a rate-1 channel code, where allLNt

phasor combinations are legitimate during each transmission
period. In the case of the SISO system, the higher the temporal
diversity (coding gain) the lower the coding rate and hence
a lower throughput is resulted. Similarly, in the case of the
MIMO system, the higher the transmit diversity (a maximum
of orderNt) the lower the coding rate (multiplexing gain) and
hence a lower throughput is yielded.

Let us consider a general MIMO system, which invokesNt

transmit antennas andNr transmit antennas. We will refer to
this general MIMO system as the ML-detected MIMO system
for the sake of differentiating it from the orthogonal STBC
based MIMO system of Section III. WhenD = 2-dimensional
L-ary PSK/QAM is employed, the received signal vector of
the MIMO system is given by:

~y = H~x + ~n , (14)

where~y = (y1, . . . ,yNr
)T is an Nr-element vector of the

received signals,H is an Nr × Nt channel matrix,~x =
(x1, . . . ,xNt

)T is an Nt-element vector of the transmitted
signals and~n = (n1, . . . ,nNr

)T is an Nr-element noise
vector, where each elements in~n is an AWGN having a
zero mean and a variance ofN0/2 per dimension. The two-
dimensional signalling based Equation (14) can be generalised
for D = 2V -dimensional signals as:

~y[v] = H[v]~x[v] + ~n[v] , (15)

where~Y = (~y[1], . . . , ~y[V ]) is defined as the2V -dimensional
received signal vector,~X = (~x[1], . . . , ~x[V ]) is defined as
the 2V -dimensional transmitted signal vector,H[v] is thevth
element of the2V -dimensional channel matrix and~n[v] is
the vth element of the2V -dimensional AWGN vector. As
we have seen in Figure 1, there are (V − 1) number of
subsets that are orthogonal to a particular subset in2V -
dimensionalL-orthogonal PSK/QAM signalling. There are
a total of V Nt number of possible transmitted phasor con-
stellation combinations in the2V -dimensionalL-orthogonal
PSK/QAM signalling. However, from theV Nt number of
constellation combinations only (V − 1) are orthogonal to a
particular phasor constellation, since the dimensionality is still
D = 2V .

To elaborate a little further, let us define a set of basis
functions,~Φk, which are not necessarily orthogonal to each
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φ1,1[1] = 1 φ1,1[2] = 0 ~Φ1
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Fig. 2. TheV
Nt=4 phasor constellation combinations for theD=2V =4-

dimensionalNt=2 ML-detectedL-orthogonal PSK/QAM signalling scheme.

other, for representing theV Nt possible transmitted phasor
constellation combinations, wherek ∈ {1, . . . , V Nt}. More
specifically, the above-mentioned basis function~Φk may be
described by anNt×V matrix, which can be constructed from
non-overlapping signalling pulses for each of the rows, where
there is only a single ‘1’ in each of theNt rows. Explicitly,
we have~Φk = (~φk[1], . . . , ~φk[v], . . . , ~φk[V ]), where~φk[v] =
(φk,1[v], . . . , φk,j [v], . . . , φk,Nt

[v])T is anNt-element column
vector andφk,j [v] ∈ {0, 1}. The relationship between the
transmittedNt-element vector~x[v], the L-ary PSK/QAM
signalxL

j transmitted from thejth transmit antenna and thevth
column vector of the basis function~φk[v] may be formulated
as:

~x[v] = ~xL · ~φk[v]

=
(

xL
1 φk,1[v], . . . ,xL

j φk,j [v], . . . ,xL
Nt

φk,Nt
[v]
)T

(16)

where~xL = (xL
1 , . . . ,xL

j , . . . ,xL
Nt

)T is the Nt-element col-
umn vector representing theNt L-ary PSK/QAM phasors
transmitted fromNt transmitters. Again, there areV Nt number
of transmitted phasor constellation combinations in a general
MIMO system and each constellation combination can host
LNt number ofL-ary PSK/QAM phasor combinations. Hence,
the total number of possible combinations for~X is given by:

M = (V L)Nt . (17)

Figure 2 portrays theV Nt=22=4 legitimate phasor constella-
tion combinations for theNt=2 MIMO D=2V =4-dimensional
L-orthogonal PSK/QAM signalling scheme. As shown in
Figure 2, we can always find (V − 1)=1 orthogonal phasor
constellation combination for each of theV Nt=4 possible
phasor constellation combination. In other words, the vectors
(~Φ1, ~Φ2) and (~Φ4, ~Φ3) constitute theV =2 orthogonal basis
functions for this system.

The conditional probability of receiving a2V -dimensional
signal vector~Y given that a2V -dimensionalM -ary signal
vector ~Xm, m ∈ {1, . . . , M}, was transmitted over Rayleigh

fading channels is determined by the PDF of the noise,
yielding:

p(~Y|~Xm) =

V
∏

v=1

1

(πN0)
Nr

exp

(−||~y[v] − H[v]~xm[v]||2
N0

)

,

=
1

(πN0)NrV
exp

(

V
∑

v=1

−||~y[v] − H[v]~xm[v]||2
N0

)

.

(18)

The channel capacity of the ML-detected MIMO system using
2V -dimensionalM -ary signalling over the DCMC can be
written as:

CML
DCMC = max

p(~X1)...p(~XM )

M
∑

m=1

∞
∫

−∞

. . .

∞
∫

−∞

p(~Y|~Xm)p(~Xm)

V-fold

· log2

(

p(~Y|~Xm)
∑M

n=1 p(~Y|~Xn)p(~Xn)

)

d~Y [bit/sym]

(19)

where the right hand side of Equation (19) is maximised,
when we havep(~Xm) = 1/M for m ∈ {1, . . . , M}. Hence,
Equation (19) can be simplified to:

CML
DCMC= log2(M) − 1

M

M
∑

m=1

E

[

log2

M
∑

n=1

exp(Ψm,n)

∣

∣

∣

∣

~Xm

]

[bit/sym] (20)

whereE[A|~Xm] is the expectation ofA conditioned on~Xm

and the expectation in Equation (20) is taken overH[v] and
~n[v], while Ψm,n is given by:

Ψm,n =
V
∑

v=1

− ||H[v](~xm[v] − ~xn[v]) + ~n[v]||2 + ||~n[v]||2
N0

,

=
V
∑

v=1

Nr
∑

i=1

−
∣

∣

∣

~hi[v](~xm[v] − ~xn[v]) + ni[v]
∣

∣

∣

2

+ |ni[v]|2

N0

(21)

where~hi[v] is the ith row of H[v] andni[v] is the AWGN at
the ith receiver.

It was shown in [12], [15] that the MIMO capacity of the
CCMC can be expressed as:

CML
CCMC = E

[

WT

r
∑

i=1

log2

(

1 + λi

SNR

Nt

)

]

, (22)

wherer is the rank ofQ, which is defined asQ = HHH for
Nr ≥ Nt or Q = HHH for Nr < Nt. Furthermore,λi is the
ith eigenvalue of the matrixQ. The extension of Equation (22)
to D-dimensional signalling can be carried out by noting that
WT = D/2 = V .

When communicating over AWGN channels and assuming
that there is no path loss, we havehi,j = 1 for all i andj in the
channel matrixH, hence the rank ofQ becomes unity and the
only non-zero eigenvalue is given byλ1 = Nr ×Nt [15]. The
capacity of the AWGN CCMC becomes identical to that of
the orthogonal STBC scenario characterised in Equation (13),
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whereχ2
2N/Nt = Nr. Therefore, no multiplexing or transmit

diversity gain may be attained in an AWGN CCMC. On the
other hand, we haveH~x = Nr

∑Nt

j=1 xj , when communi-
cating over an AWGN DCMC. More explicitly, the signals
transmitted from theNt transmit antennas may cancel out
each other and result in a severe interference. Hence, no
multiplexing or transmit diversity gain may be attained in the
AWGN DCMC and its capacity is also the same as that of
the orthogonal STBC scheme quantified by Equations (10)
and (11), whereχ2

2Nt,i
[d] = Nt.

Note that the closed-form evaluation of the MIMO CCMC
capacity in Equation (22) has been given by [13, Equation
(40)] and in [14]. A closed-form evaluation of the channel
capacity for the MIMO CCMC when employing STBC in
Equation (13) may also be derived based on [13], [14].
However, a closed-form evaluation of the MIMO DCMC
channel capacity in Equations (11) and (19) is computationally
complex due to the existence of the ‘summation overM
exponential functions’ in the multidimensional integral.In this
case, the Monte Carlo averaging method is the most efficient
approximation technique of computing the expectation terms.

V. NUMERICAL RESULTS

In this section, we will evaluate both the capacity and band-
width efficiency of MIMO channels for the scenario, when the
transmitter does not have any channel knowledge. Explicitly,
the bandwidth efficiency is computed by normalising the
channel capacity, as it transpires from Equations (11), (13),
(19) and (22), with respect to the product of the bandwidth
W and the signalling periodT :

η =
C

WT
=

C

D/2
[bit/s/Hz]. (23)

The bandwidth efficiently is typically plotted against theSNR
per bit given by:Eb/N0 = SNR/η. We denote the ‘L =
16-orthogonal QAM scheme havingV = v’ as ‘16QAM,
V = v’ for brevity. Again, L = 16-orthogonal PSK/QAM
signalling havingV = 1 represents classic two-dimensional
L-ary PSK/QAM signalling.
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Fig. 3. The capacity of the orthogonal STBC MIMO uncorrelated Rayleigh-
fading channel and AWGN channel for 16QAM havingV = 1 (M = 16,
D = 2) andV = 2 (M = 32, D = 4).
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Fig. 4. The bandwidth efficiency of the orthogonal STBC MIMO uncorrelated
Rayleigh-fading channel and AWGN channel for 16QAM havingV =

1 (M = 16, D = 2) andV = 2 (M = 32, D = 4).

Figure 3 illustrates the achievable capacityC of both the
uncorrelated MIMO Rayleigh-fading channel and that of the
AWGN channel for 16QAM signalling having bothV = 1
and V = 2, when aiming for a full diversity gain using
an orthogonal STBC scheme. As shown in Figure 3, the
achievable capacity of the Rayleigh-fading channel increases,
as the number of transmit antennasNt increases from 1 to
4, approaching the capacity of the AWGN channel, which is
independent ofNt. Figure 4 depicts the bandwidth efficiencyη
of both the uncorrelated MIMO Rayleigh-fading channel and
that of the AWGN channel for 16QAM signalling having both
V = 1 andV = 2, when aiming for a full diversity gain using
an orthogonal STBC scheme. It is shown in Figure 4 that as
Nr increases, the bandwidth efficiency of the AWGN channel
also improves, hence the corresponding performance over
Rayleigh-fading channels follows the same trend. However,
the attainable extra transmit diversity gain of the Rayleigh-
fading channel reduces, asNr increases, since a near-AWGN
performance is achieved by the high-order receiver diversity.
As seen by comparing Figures 3 and 4 for the systems having
Nr = 1, the achievable channel capacity increases as the
signal dimensionalityD increases, although this is attained at a
reduced bandwidth efficiency. However, the error-resilience of
the power-efficient multi-dimensional orthogonal signalsalso
improves as the dimensionality increases [3]. As evidencedin
Figure 4, at lowEb/N0 the bandwidth efficiencyη of 16QAM
attained in conjunction with bothV = 1 andV = 2 converges
to the unrestricted bound. Note that the unrestricted boundis
independent of the signal dimensionality.

Let us now compare the achievable capacity of the or-
thogonal STBC MIMO system to that of the general (ML-
detected) MIMO system in Figures 5 and 6, where the number
of receivers isNr = 1 and Nr = 2, respectively. As we
can see from Figure 5, the Rayleigh fading CCMC capacity
(unrestricted bound) of the ML-detected MIMO system is
higher than that of the orthogonal STBC system by a constant
margin, when we haveNr = 1 and Nt = 2. However, the
Rayleigh fading DCMC capacity of the ML-detected MIMO
system is identical to that of the orthogonal STBC system,
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Fig. 6. The capacity of the MIMO uncorrelated Rayleigh-fading channel
and AWGN channel for 16QAM havingV = 1 (M = 16, D = 2) and
V = 2 (M = 32, D = 4) whenNr = 2.

when the channel SNR is low. When the number of receivers
is increased toNr = 2, the gap between the Rayleigh fading
CCMC/DCMC capacity of the ML-detected MIMO system
and that of the orthogonal STBC system increases as the SNR
increases, which is depicted in Figure 6. Hence, the capacity
loss of the orthogonal STBC MIMO system increases, asNr

and the SNR increases. However, the ML-detected MIMO
system, which has(V L)Nt number of possible transmitted sig-
nals, imposes a higher detection complexity compared to that
of the orthogonal STBC system, which has onlyV L number
of possible transmitted signals. Hence, it is more beneficial to
employ the orthogonal STBC system when invoking a low-rate
channel coding scheme, which results in a low throughput,
since a lower detection complexity is required compared to
that of the ML-detected MIMO system, especially when we
haveNr = 1. By contrast, a higher capacity can be attained
with the aid of the ML-detected MIMO system at the cost of
a higher complexity and a higher SNR.

Let us now compare the Rayleigh fading MIMO channel
capacity of the STBC, STTC and BLAST MIMO schemes at

Nt = Nr = 2 and V = 1 in Figure 6. At a throughput of
C = 4 bit/symbol the required SNRs for the STTC/BLAST
and STBC schemes are approximately 7.0 dB (Eb/N0 = 1 dB)
and 14.5 dB (Eb/N0 = 8.5 dB), respectively. Since both the
STBC and STTC schemes achieve a full transmit diversity
gain, the gap between the capacity curves of STBC and STTC
quantifies the attainable temporal diversity gain (or coding
gain) for the STTC scheme. Hence the STTC scheme is
capable of achieving an additional coding gain of 7.5 dB
compared to the STBC scheme at a throughput of 4 bit/symbol.
Similarly, with the aid of a rateRo = 1/2 outer channel code,
the BLAST scheme is capable of benefitting from the coding
gain of the outer channel code and hence achieve a similar
performance to the STTC scheme at a throughput of8Ro = 4
bit/symbol. However, the BLAST scheme by itself requires
an SNR of approximately 27.0 dB (orEb/N0 = 18.0 dB)
in order to achieve a full multiplexing gain of 8 bit/symbol.
Hence, when aiming for a near error-free performance, the
BLAST scheme which exhibits a full transmit multiplexing
gain is18.0 − 8.5 = 9.5 dB inferior in terms of the required
Eb/N0 in comparison to the orthogonal STBC scheme, which
exhibits a full transmit diversity gain. In other words, the
full spatial diversity offers an achievable gain of9.5 dB
in this MIMO system. Furthermore, the BLAST scheme is
18.0− 1.0 = 17.0 dB inferior in terms of the requiredEb/N0

compared to the STTC scheme, which exhibits a full transmit
diversity gain plus a coding gain. Hence, a total of17.0 dB
Eb/N0 reduction was offered by the spatial and temporal
diversity. In the same way, the tradeoffs associated with having
partial transmit multiplexing and transmit diversity gainmay
also be quantified based on the corresponding MIMO DCMC
channel capacity curves. Note further that the capacity of the
Rayleigh fading MIMO channel of the ML-detected system
is higher than that of the AWGN MIMO channel. However,
the capacity of the Rayleigh fading MIMO channel of the
orthogonal STBC system is lower than that of the AWGN
MIMO channel.

The asymptotic capacity of a DCMC system is given by
log2(M) bit/symbol, where we haveM = (V L)Nt for a
ML-detected MIMO system andM = V L for an orthogonal
STBC system. Hence, a variety of different systems may be
designed for achieving a givenM by changing the values
of V , L and Nt. As we can see from Figure 7, where
we haveM = 256 for all schemes, the different system
designs achieve a different performance, despite having the
same asymptotic capacity of 8 bit/symbol. Again, neither
the BLAST nor the STBC schemes achieve a coding gain,
unless an outer code is employed. However, for achieving the
same asymptotic capacity usingV = 1, the full diversity
based orthogonal STBC MIMO system has to employ the
higher-order modulation scheme of 256QAM compared to
the 16QAM arrangement used by the BLAST scheme. As
can be seen from Figure 7, the full diversity advantage of
STBC cannot compensate for the minimum Euclidean distance
loss imposed by employing 256QAM. This observation is
also applicable for higher dimensionality signalling, where
the BLAST MIMO system havingL=4 and V =4 performs
better than the orthogonal STBC system havingL=64 and
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V =4. In the context of the ML-detected MIMO system, a
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scheme that employs a lowerL and a higherNt (L=4, Nt=4,
V =1) may yield a higher capacity compared to a scheme that
invokes a higherL and a lowerNt (L=16,Nt=2, V =1), when
aiming for the sameM , albeit this is achieved at the cost of a
higher hardware complexity. When the signal dimensionality
is increased from two (V =1) to eight (V =4), the achievable
capacity also increases at the cost of a higher bandwidth
requirement. The bandwidth efficiency of theM=256-based
schemes characterised in Figure 7 is shown in Figure 8. As we
can see from Figure 8, the bandwidth efficiency of the eight-
dimensional scheme is poorer than that of the two-dimensional
scheme. The performance difference between the ML-detected
MIMO system and the orthogonal STBC system is also more
apparent in terms of their bandwidth efficiency. Again, the
ML-detected scheme havingL=4, Nt=4 and V =1 is more
bandwidth efficient than the ML-detected arrangement having
L=16, Nt=2 andV =1.

VI. CONCLUSIONS

The capacity formulae of DCMC were derived for a specific
orthogonal STBC MIMO system and for a general MIMO
system, when employing multidimensional signal sets. The
orthogonal STBC MIMO system was found to have a lower
capacity, since its code orthogonality prevents it from achiev-
ing temporal diversity. Furthermore, STTC is a specific MIMO
system, which attains full transmit diversity and a coding gain,
whereas BLAST is a specific MIMO system, which achieves
only the full transmit multiplexing gain. It was shown that
transmit diversity is capable of narrowing the gap between
the capacity of the Rayleigh-fading channel and the AWGN
channel. However, the transmit diversity advantage becomes
modest, when the receiver diversity order is increased since
the remaining capacity gap becomes narrower. Hence, it is
better to utilise temporal diversity for enhancing the error
resilience while employing multiple transmitters for attaining
transmit multiplexing gain, when sufficient receiver diversity
is achieved. When aiming for a similar asymptotic capacity,
the highest bandwidth efficiency is attained, when employing
a two-dimensional ML-detected MIMO system having the
lowestL and the highestNt, at the cost of a higher hardware
complexity. By contrast, the highest capacity was achievedat a
given asymptotic capacity, when a ML-detected MIMO system
having the highest dimensions, a lowL and a highNt was
employed, although this was achieved at the cost of a higher
bandwidth requirement.
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[25] G. Ungerböck, “Channel Coding with Multilevel/PhaseSignals,” IEEE
Transactions on Information Theory, vol. 28, pp. 55–67, January 1982.

Soon Xin Ng (M’03) received a first-class B.Eng.
degree in Electronics Engineering and the Ph.D. de-
gree in mobile communications from the University
of Southampton, U.K, in July 1999 and December
2002, respectively.
He is currently continuing his research as a postdoc-
toral research fellow at the University of Southamp-
ton, U.K. His research interests are mainly in adap-
tive coded modulation, channel coding, turbo cod-
ing, space-time coding, joint source and channel
coding and MIMO systems. He published numerous

papers in this field.
Lajos Hanzo (M’91-SM’92-F’04) received his Mas-
ter degree in electronics in 1976 and his doctorate
in 1983. In 2004 he was awarded the Doctor of Sci-
ences (DSc) degree by the University Southampton,
UK.
During his 28-year career in telecommunications
he has held various research and academic posts
in Hungary, Germany and the UK. Since 1986 he
has been with the Department of Electronics and
Computer Science, University of Southampton, UK,
where he holds the chair in telecommunications. He
has co-authored 11 John Wiley/IEEE Press books

totalling about 9000 pages on mobile radio communications,published in
excess of 500 research papers, organised and chaired conference sessions,
presented overview lectures and has been awarded a number ofdistinctions.
He is a non-executive director of the Virtual Center of Excellence (VCE),
Basingstoke, U.K., and an enthusiastic supporter of the industrial liaison. He
also offers a range of industrial esearch overview courses.He has coauthored
12 John Wiley/IEEE Press books on mobile radio communications, totaling
about 9000 pages, published in excess of 600 research papers, organized
and chaired conference sessions, and presented overview lectures. Further
information on research in progress and associated publications may be found
at http://www-mobile.ecs.soton.ac.uk.
Dr. Hanzo is Fellow of the Royal Academy of Engineering (FREng) and
IEE. He is an IEEE Distinguished Lecturer of both the Communications
Society and the Vehicular Technology Society. He has been awarded a number
of distinctions. He is also the Governor of the IEEE Vehicular Technology
Society and the Editor of the PROCEEDINGS OF THE IEEE.


