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Abstract— In this contribution we show how Shannon’s coding theory
could be realized for Multiple-Input Multiple-Output (MIM O) channels
with the aid of EXtrinsic Information Transfer (EXIT) chart s and
the Maximum-Aposteriori Probability (MAP) algorithm. We r eview the
relationship between the channel capacity, EXIT charts andthe MAP
algorithm, outlining the principles of designing near MIMO -channel
capacity coding schemes. Both serial and parallel concatenated coding
schemes are designed based on these principles and near MIMO-channel
capacity performance is achieved.

I. I NTRODUCTION

The history of channel coding dates back to Shannon’s pioneering
work [1] in 1948, where he showed that it is possible to designa
communication system having an indefinitesimally low probability of
error, whenever the rate of transmission is lower than the capacity
of the channel. This motivated the search quest for codes that would
produce arbitrarily small probability of error at a transmission rate
close to the channel capacity. The classic coding design aims to
approach the channel capacity by optimum channel codes which
requires a huge number of trellis states or code memory, using a
non-iterative decoder.

A breakthrough in the history of error control coding was theinven-
tion of turbo codes by Berrouet al. [2] in 1993. Convolutional codes
were used as the component, which were combined with iterative
decoders employing the Maximum-Aposteriori Probability (MAP)
algorithm [3]–[5]. The results demonstrated that a performance close
to the Shannon limit can be achieved in practice with the aid of
binary codes using Binary Phase Shift Keying (BPSK) modulation.
Turbo codes were later designed also for higher-order modulation.
More specifically, bit-based Turbo Coded Modulation (TuCM)[6]
and symbol-based Turbo Trellis Coded Modulation (TTCM) [7]were
designed for attaining a higher spectral efficiency. The classic design
of iterative decoders was based on analysing the associateddistance
spectrum, which influenced the Bit-Error Ratio (BER) floor ofthe
code [8].

In order to analyze the convergence behaviour of an iterative decod-
ing/detection scheme, density evolution techniques [9] and EXtrinsic
Information Transfer (EXIT) charts [10], [11] were proposed. More
explicitly, as suggested by the terminology, density evolution tracks
the density distribution of the extrinsic probabilities, as the number
of decoding iterations increases [12]. Smilarly, EXIT charts track the
mutual information exchange between the component decoders in
consecutive iterations. It has been shown in [12], [13] thatthe area
between the EXIT curves of the components in an iterative decoder
is characteristic of the iterative decoder’s ability to approach the
channel’s capacity. This is often refered to as the ‘area-property’ of
the EXIT charts, which has been used by the binary EXIT chart [10]
for rendering a near-capacity binary code design to a curve fitting
problem.
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In this contribution, we present a unified portrayal of the channel
capacity and of the symbol-based EXIT charts [11], based on the
mutual information formula. We show that the area under the symbol-
based EXIT charts is related to the channel capacity. The outline of
the paper is as follows. The system model is described in Section II
and the EXIT charts is detailed in Section III. Two near-capacity
coding schemes are designed in Section IV and our conclusionis
offered in Section V.

II. SYSTEM MODEL
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Fig. 1. The block diagram of a 3-stage serially concatenation coding scheme.

Fig. 1 shows a 3-stage serially concatenated coding scheme,
where ui = {ui,1, ui,2, . . .} and xi = {xi,1, xi,2, . . .} denote
the sequences of information symbols and coded symbols of ‘En-
coder i’, respectively. The sequence of channel-contaminated re-
ceived symbols is denoted asy and the estimate ofu is denoted
as û. The interleaver and deinterleaver are represented byπ and
π−1, respectively. The notationsa(xi) = {a(xi,1), a(xi,2), . . .}
and e(xi) = {e(xi,1), e(xi,2), . . .} represent the sequences of the
a priori and extrinsic probability, respectively, for the coded
symbols of ‘Decoderi’. Similarly, a(ui) and e(ui) denote the
corresponding sequences ofa priori and extrinsic probability of
the information symbols of ‘Decoderi’.
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Fig. 2. The encoding and decoding of an intermediate encoderwhose input
symbols,u, emanate from an outer encoder and whose output symbols,x,
are fed to an inner encoder. Thea priori channels are used to model the outer
and inner decoders.

Fig. 2 illustrates the decoding model of the intermediate decoder,
i.e. the ‘Decoder 2’ of Fig. 1. We may use twoa priori channels to
model the outer and inner decoders following the approach of[12,
Fig. 1]. More explicitly, the topa priori channel in Fig. 2 is used
to model an inner decoder which has a transition probabilityof
P (yk|xk) signifying the probability of producingyk at its output
when the input isxk. Similarly, thea priori channel at the bottom
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of Fig. 2 is used to model an outer decoder, which has a transition
probability of P (vk|uk), representing the probability of producing
vk at its output, when the input isuk.

Let us consider a Multiple-Input Multiple-Output (MIMO) system,
which invokesNt transmit antennas andNr receive antennas. When
complex-valuedM-ary PSK/QAM is employed, the received signal
vector of the MIMO system can be written as:

y = Hx + n , (1)

where y = [y1, . . . , yNr ]T is an Nr-element vector of the re-
ceived signals,H is an (Nr × Nt)-element channel matrix,x =
[x1, . . . , xNt ]

T is anNt-element vector of the transmitted signals and
n = [n1, . . . , nNr ]T is an Nr-element noise vector. Each elements
of n is an Additive White Gaussian Noise (AWGN) process having
a zero mean and a variance ofN0/2 per dimension. There areM =
MNt number of possibleM-ary PSK/QAM phasor combinations
in the transmitted signal vectorx. Let us denotex as anM -ary
PSK/QAM signal vector.

The conditional probability of receiving a signal vectory, given
that an M -ary PSK/QAM signal vectorx(m), m ∈ {1, . . . , M},
was transmitted over Rayleigh fading channels is determined by the
Probability Density Function (PDF) of the noise, yielding:

p(y|x(m)) =
1

(πN0)Nr
exp

„

−||y − Hx(m)||2

N0

«

, (2)

where||(.)|| is the Frobenius norm of vector(.).

The capacity of Discrete-input Continuous-output Memoryless
Channel (DCMC) [14] for the MIMO system usingM -ary signalling
can be derived as [15], [16]:

C = log2(M) −
1
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where the exponentΨm,n is given by [16]:

Ψm,n =
−

˛

˛

˛

˛

˛

˛
H(x(m) − x(n)) + n

˛

˛

˛

˛

˛

˛

2

+ ||n||2

N0
. (4)

III. EXIT C HARTS

The EXIT charts [10], [11] visualize the input/output character-
istics of the constituent MAP decoders in terms of the average
mutual information transfer. Let us use the term ‘mutual information’
as the ‘per-symbol mutual information’, unless otherwise stated. In
the context of the intermediate decoder of Fig. 2, the EXIT chart
visualises the following mutual information exchange:

1) average mutual information ofu anda(u):

IA(u) =
1

Nu

Nu
X

k=1

I(uk; a(uk)) ; (5)

2) average mutual information ofx anda(x):

IA(x) =
1

Nx

Nx
X

k=1

I(xk; a(xk)) ; (6)

3) average mutual information ofu ande(u):

IE(u) =
1

Nu

Nu
X

k=1

I(uk; e(uk)) ; (7)

4) average mutual information ofx ande(x):

IE(x) =
1

Nx

Nx
X

k=1

I(xk; e(xk)) , (8)

where the number of symbols in the sequencesu andx are given by
Nu andNx, respectively. Since the intermediate decoder is associated
with four mutual information transfers according to Eqs. (5)–(8), two
three-dimensional EXIT charts [17], [18] are required for visualising
the four-dimensional mutual information transfer betweenthe inter-
mediate decoder (two-input, two-output) and the outer decoder (one-
input, two-output) as well as between the intermediate decoder and
the inner decoder (two-input, one output) of Fig. 1.

Provided that a MAP decoder is used, the averageextrinsic
mutual information ofu may be computed as [11]:

IE(u) =
1

Nu

Nu
X

k=1

H(uk) − H(uk|e(uk))

= log2(Mu) −
1

Nu
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"
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e(u
(m)
k ) log2(e(u

(m)
k ))

#

wheree(u
(m)
k ) = P (u

(m)
k |y, v[k]) is the extrinsic probability of the

hypothetically transmitted symbolu(m)
k , for m ∈ {1, . . . ,Mu},

which is provided by the MAP decoder and the expectation may
be removed, whenNu is sufficiently large, yielding:

IE(u) = log2(Mu) −
1

Nu

Nu
X

k=1

Mu
X

m=1

e(u
(m)
k ) log2(e(u

(m)
k )) . (9)

Similarly, we have [11]:

IE(x) = log2(Mx) −
1

Nx

Nx
X

k=1

Mx
X

m=1

e(x
(m)
k ) log2(e(x

(m)
k )) , (10)

wheree(x
(m)
k ) = P (x

(m)
k |y

[k]
, v) is the extrinsic probability of the

hypothetically transmitted symbolx(m)
k , for m ∈ {1, . . . ,Mu},

generated by the MAP decoder andNx is assumed to be sufficiently
large.

The averagea priori mutual information ofu andx may be model
using the following assumptions [11], [19]:

1) the LLRs of the bits are Gaussian distributed: the LLR of a
bit b, which can be either from the sequenceu or x, is given
by [10]:

z = hAb + nA , (11)

where the variance of the AWGNnA is σ2
A per dimension and

the equivalent ‘fading factor’ is given byhA = σ2
A/2 [10];

2) the bits in a symbol are assumed to be independent of each
other and uniformly distributed: the averagea priori mutual
information of a symbol sequenceu (or x), where each symbol
uk (or xk) consists ofLu (or Lx) bits, isLu (or Lx) times the
averagea priori mutual information of a bit in the symbol.

The averagea priori mutual information of a certain bit denoted as
b ∈ {b(1) = +1, b(2) = −1} and its LLRz may be expressed similar
to Eq. (3) as:

I(b; z) = 1 −
1

2
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, (12)

whereexp(ΨA
m,n) = p(z|b(n))/p(z|b(m)) and the conditional Gaus-

sian PDF is given by:

p(z|b) =
1

p

2πσ2
A

exp

„

(z − hAb)2

2σ2
A

«

, (13)

while the exponent is given by:

ΨA
m,n =
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(σ2

A/2)(b(m) − b(n)) + nA

˛
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Note that another interpretation of Eq. (12) was given in [10,
Eq. (14)]. We have a functionIA = I(b; z) = J(σA), with J(σA)
being monotonically increasing and therefore invertible.Hence, at a
given IA we may find the correspondingσA value fromJ−1(IA).
Finally one may compute the corresponding LLR valuez from
Eq. (11). Thea priori mutual information of aLu-bit symbol uk

is given by:

I(uk; z(k)) =

Lu
X

i=1

I(bu
(k,i); z

u
(k,i)) , (15)

where zu
(k) = {zu

(k,1), . . . , z
u
(k,Lu)} is the LLR sequence, which is

related to theLu bits of uk andzu
(k,l) is the LLR of bu

(k,l), which is
the lth bit in thekth symboluk.

IV. N EAR-CAPACITY CODE DESIGN

It is clear from Eqs. (3), (9), (10) and (12) that both the computa-
tion of the channel capacity and that of the EXIT chart is based on
the same mutual information formula. It was shown in [11], [12] that
when a MAP decoder is used, theextrinsic probability e(uk), which
is computed at the decoder’s output, contains the same amount of
information as the sequencesy and v[k] at the decoder’s input, i.e.
we have:

I(uk; e(uk)) = I(uk; y, v[k]) . (16)

Similarly, the extrinsic probability e(xk) contains the same amount
of information as the sequencesy

[k]
andv:

I(xk; e(xk)) = I(xk; y
[k]

, v) . (17)

Hence, the area under the EXIT curveIA is the same as the area under
the EXIT curveIE when the MAP algorithm is used in all decoders,
although the shape of the curve may change. In other words, the MAP
decoder acts like a lossless filter where its two outputs represent a
full statistical characterisation of the two sequences observed at its
input.

According to the properties of EXIT charts [12], the area under
the EXIT curve of the inner code equals to the capacity of the
communication channel (the uppera priori channel in Fig. 2), when
the communication channel’s input is given by equiprobableM -ary
symbols and thea priori channel (the lowera priori channel in Fig. 2)
is modeled using a Binary Erasure Channel (BEC) [12]. This area
property was formally shown to be valid for arbitrary inner codes
and communication channels, provided that thea priori channel is
modeled by a BEC [12]. Furthermore, the area under the EXIT curve
of the outer code equals to (1-R1), whereR1 is the outer code’s rate.

Let us consider a PSK/QAM MIMO mapper as the inner encoder
(‘Encoder 3’ of Fig. 1) and assume that ‘Decoder 3’ is a MIMO soft-
demapper. The decoder can be modelled using Fig. 2 where the upper
a priori channel is an uncorrelated Rayleigh fading MIMO channel
and the lowera priori channel models ‘Decoder 2’ of Fig. 1. Since
the MIMO channel is non-dispersive and uncorrelated in time, the
a posteriori probability of the soft MIMO demapper contains only
the channel transition termγk(s̀, s) of the MAP algorithm:

o(uk) = γk(s̀, s) = a(xk) · a(uk) . (18)

Hence, the associated symbol-basedextrinsic probability is given
by e(uk) = o(uk)/a(uk) = a(xk), which is independent of the
sequencev. Hence, based on Eq. (16) we have:

I(uk; e(uk)) = I(uk; yk) . (19)

In this case,IE(u) is independent ofIA(u), where IE(u) is a
constant acrossIA(u) = {0, . . . , IA,max}, with IA,max being the

capacity of the lowera priori channel. Since ‘Encoder 3’ represents
a one-to-one mapper, we haveI(uk; yk) = I(xk; yk). Hence, the
area under the EXIT curve of this soft demodulator can be computed
using Eqs. (8) and (19) as:

A =

Z IA,max

0

1

N

N
X

k=1

I(uk; e(uk)) dIA (20)

=

Z IA,max

0

dIA
1

N

N
X

k=1

I(xk; yk) (21)

= IA,max I(x; y) = IA,max C , (22)

whereC is the capacity of the MIMO channel (including the case
when Nt = Nr = 1) given by Eq. (3). Hence, it is shown that
the area under the symbol-based EXIT curve of a soft-demapper is
given by the product of the communication channel’s capacity C
and the capacity of thea priori channelIA,max. This area property
derived for the related symbol-based EXIT chart also indicates that
when the intermediate code (or the outer code of a 2-stage scheme)
is also symbol-based, all the mutual information gleaned from the
communication channel has been transfered to the soft-demapper’s
extrinsic symbol probability sequence. In this case, the link from x2

of ‘Encoder 2’ toa(x2) of ‘Decoder 2’ in Fig. 1 may be considered to
be a transformed MIMO channel, namelyIA(x2) = I(x2; a(x2)) =
C. Hence, if we employ a symbol-based ‘Encoder 2’ and a MAP
algorithm for all decoders, then the area under the EXIT curve of
e(u2) at the output of ‘Decoder 2’ can be shown to be:

A = C · IA(u2) . (23)
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Fig. 3. Normalized EXIT charts where the area under each EXITcurve is
0.5. The different soft-demapper types that compute the extrinsic probability
of 4-bit, 2-bit or 1-bit symbols are represented as MLs, MLm and MLb,
respectively.

Let us now consider aNt = Nr = 2 MIMO scheme usingM =
4-level QAM transmissions. The MIMO channel’s capacity computed
from Eq. (3) at a throughput ofη = 2 bit/s/Hz isEb/N0 = −1.43dB.
The MIMO mapper is considered to be the inner encoder (Encoder 3
of Fig. 1), whereL = Nt × log2(M) = 4 bits are mapped to
Nt = 2 transmit antennas, each employing 4QAM transmissions.
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Note that we may represent the input symbol of the MIMO mapper
as N number ofL = 4-bit symbols,2N number ofL/2 = 2-bit
symbols or4N number ofL/4 = 1-bit symbols. At the receiver, the
soft-demapper is used to compute the extrinsic probabilityof these4-
bit, 2-bit or 1-bit symbols. The EXIT curves recorded for the various
soft-demapper types are shown in Fig. 3 which were normalized to
unity by dividing theIA (or IE) values byIA,max = L = 4 bits. The
different soft-demapper types, which compute the extrinsic symbol
probability as that of4-bit, 2-bit or 1-bit symbols are represented
as MLs, MLm and MLb, respectively. The area under each of the
EXIT curves in Fig. 3 equals 0.5 (orA = 0.5 × L2 = 2L before
the normalization). It is shown in Fig. 3 that the EXIT curve for
MLs-4QAM is a horizontal line atIE = 0.5, while that for MLm-
4QAM and MLb-4QAM emerges fromIE < 0.5 and terminates at
IE > 0.5.

A. Serial Concatenated Scheme

We employed a recursive symbol-based unit-memory Unity-Rate
Code (URC) [18] as the intermediate encoder, where each in-
put/output symbol hasL = Nt × log2(M) = 4 bits and each
URC encoded symbol is mapped toNt = 2 transmit antennas,
where 4QAM transmission is used at each antenna. The symbol-based
URC encoder employs a modulo-M = 2L adder and it requiresM
number of trellis states. At the receiver a soft-demapper was used
to compute theM = 2L = 16-valued extrinsic symbol probability
for each of the URC encoded symbolx2,k for k ∈ {1, . . . , N},
where N = Nx = Nu is the number of symbols. These symbol
probabilities are fed to the URC decoder in order to compute the
extrinsic probability of the URC’s input information symbols u2,k for
k ∈ {1, . . . , N}. The EXIT curve of the MLs-4QAM-URC scheme
is shown in Fig. 3, which is based on the URC’s input information
symbol u2 while assumming the absence of iterative information
exchange with the soft-demapper. Observe in Fig. 3 that the MLs-
4QAM-URC scheme requires the sameEb/N0 value as the MLs-
4QAM arrangement in order to maintain an area of 0.5 under it.
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Fig. 4. Normalized EXIT charts for MLs-4QAM-URC and IRCC.

The EXIT curves of the MLm-4QAM-URC and MLb-4QAM-URC
schemes are also shown in Fig. 3, where the number of bits per

symbol entered into the URC encoder is given byL/2 = 2 and
L/4 = 1, when employing the MLm and MLb scheme, respectively.
When there is no iteration between the soft-demapper and theURC
decoder, the EXIT curve of the URC decoder depends on the firstIE

value of the soft-demapper. Hence, both the MLm-4QAM-URC and
ML b-4QAM-URC schemes require a higherEb/N0 value in order to
maintain an area of 0.5 under their EXIT curves, as shown in Fig. 3.
In other words, this loss of information (orEb/N0 value) cannot be
recovered if there is no iteration between the URC decoder and the
soft-demapper. In this case, we only need a 2D EXIT chart in order
to analyze the decoding convergence between the MLs-4QAM-URC
scheme and the outer code.

We employ the IRregular Convolutional Codes (IRCCs) of [20]
as the outer encoder, where 17 subcodes were constructed from
a memory-four mother code. We design the IRCC to match its
EXIT curve to that of the MLs-4QAM-URC scheme fed with
the information symbolsu2,k for k ∈ {1, . . . , N}. The resultant
normalized EXIT curves are shown in Fig. 4, where an EXIT tunnel
leading to the maximumIE(x1) value was created forEb/N0 values
in excess of−1.10 dB, which is as close as within0.33 dB from
the MIMO channel’s capacity. The corresponding IRCC weighting
coefficients are given by:αo = [0.172469z3 + 0.252871z5 +
0.214169z9 + 0.209495z13 + 0.15104z17 ], where the superscript
s = {3, 5, 9, 13, 17} of zs denotes the index of the subcodes used.

B. Parallel Concatenation Scheme

In contrast to the serial concatenated scheme of the previous
section, here we assume that ‘Encoder 1’ and ‘Encoder 2’ are parallel
concatenated as an outer code, which is the classic Turbo Code (TC)
arrangement. The ‘Encoder 3’ is the same MIMO mapper that was
used in Fig. 3. As argued earlier, it is impossible to recoverthe
information loss, when a bit-based outer encoder (or when a bit-
based interleaver) is used unless there are iterations between the outer
decoder and the inner decoder (soft-demapper), when communicating
over MIMO channels. However, a symbol-based TC that exhibits a
horizontal EXIT curve, which matches the MLs-4QAM EXIT curve
would require non-identical and symbol-based component codes in
the TC.

Let us consider a scheme where apart from having inner iterations
in the outer TC decoder, there are also outer iterations between
the TC decoder and the MIMO soft-demapper. We consider having
identical memoryν = 3 component codes for the outer TC, where
the component code’s generator polynomial is given byG = [13 6]8,
which has a similar structure to the TTCM scheme of [7] exceptthat
a bit-interleaver is used before the MIMO mapper (‘Encoder 3’). The
normalized EXIT curves of the MLb-4QAM and TC decoder (which
uses 16 TC iterations) is shown in Fig. 5, where the notationx1&2

is used to denote the TC-encoded symbol. An open EXIT tunnel
leading to the maximum value ofIE(x1&2) = 1 was created at
Eb/N0 = −0.85 dB, which is only0.58 dB away from the MIMO
channel’s capacity.

The normalized EXIT curves of theoptimal maximal-distance
Non-Systematic Convolutional Codes (NSCCs) [21] having a code
polynomial of G = [15 17]8 (code memoryν = 3) and G =
[10533 17661]8 (code memoryν = 12) are also shown in Fig. 5.
Note that approximately seven outer iterations are required between
the TC decoder and the MLb-4QAM for attainingIE ≈ 1. Each TC
component code has2ν = 8 trellis states, hence after 16 TC iterations
and 7 outer iterations, the MLb-4QAM-TC scheme will have traversed
through2×2ν ×16×7 = 1792 number of trellis states per decoded
bit. By contrast, the memory-12 maximal-distance NSCC decoder
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Fig. 5. Normalized EXIT charts for MLb-4QAM, TC and NSC.

evaluated212 = 4096 number of trellis states per decoded bit.
Despite its higher complexity, there was no open EXIT tunnelleading
to IE(x1&2) = 1 between the EXIT curves of either of the two NSCC
decoders and the MLb-4QAM scheme atEb/N0 = −0.85dB. Hence,
the memory-12optimal NSCC requires about4096/1792 ≈ 2.3
times higher complexity than the MLb-4QAM-TC scheme, and yet
fails to achieve decoding convergence to infinitesimally low BER at
Eb/N0 = −0.85dB.

V. CONCLUSIONS

We have shown the relationship between the computation of the
channel capacity, EXIT charts and the MAP algorithm. As seenin
Fig. 4, the classicoptimal coding design (i.e. NSCC) was inefficient
as it is very difficult to achieve a near-horizontal EXIT curve for
matching the EXIT curve of the soft-demapper. It was shown in
Fig. 3 that when communicating over MIMO channels, we need outer
iterations exchanging extrinsic information with the soft-demapper
unless a symbol-based decoder is employed, if approaching the
MIMO channel’s capacity is desired. It was shown that Shannon’s
communication theory could be realized for MIMO channels with the
aid of the MAP algorithm as well as by using an EXIT charts aided
code design and iterative decoding between two or three sub-optimal
codes. Hence, achieving near-capacity performance is feasible, when
the associated encoding/decoding complexity and decodingdelay is
affortable. The new challenge for code design is to approachthe
attainable rate at the lowest encoding/decoding complexity and the
lowest possible interleaving delay.
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[17] M. Tüchler, “Convergence prediction for iterative decoding of threefold
concatenated systems,” inGLOBECOM ’02, (Taipei, Taiwan), pp. 1358–
1362, 17-21 November 2002.

[18] S. X. Ng, J. Wang, M. Tao, L.-L. Yang and L. Hanzo, “Iteratively
decoded variable-length space-time coded modulation: code construction
and convergence analysis,”IEEE Transactions on Wireless Communica-
tions, vol. 6, pp. 1953–1963, May 2007.

[19] I. Land, P. Hoeher, and S. Gligorević, “Computation ofsymbol-wise
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