
1062 IEEE COMMUNICATIONS LETTERS, VOL. 24, NO. 5, MAY 2020

A Reconciliation Strategy for Real-Time Satellite-Based QKD

Xiaoyu Ai , Robert Malaney , and Soon Xin Ng

Abstract— In practical Quantum Key Distribution (QKD)
deployments we would like to design QKD solutions that provide
for a target QKD key rate, in bits/pulse, at a specified upper-
limit on the failure probability. However, in the finite-signalling
setting, in which all real-world QKD systems exist, the common
practice of achieving such a solution fails to deliver the maximum
throughput rate of the classical decoder. This in turn means that
the possibility that classical reconciliation becomes the bottleneck
of the entire QKD protocol is not minimised. A design strategy
that minimises this latter possibility, whilst achieving a target
QKD rate with a target ceiling on the failure probability has
not been developed – a situation we remedy here. Although our
new design strategy detailed here is for LDPC codes and applied
to two specific QKD protocols, the same strategy is generally
applicable to all classical decoders and all QKD protocols. It is
also deployable even in circumstances where the quantum bit
error is variable, such as in satellite QKD systems.

Index Terms— Quantum key distribution (QKD), LDPC codes,
key reconciliation, satellite communications.

I. INTRODUCTION

ASIGNIFICANT breakthrough in Quantum Key Distri-
bution (QKD) was established in 2016 by the Micius

Satellite in that, for the first time, a non-zero key rate was
achieved over 1200 km – an order of magnitude improvement
in distance relative to terrestrial deployments [1]. However,
in the proof-of-principle QKD experiment by Micius, the sifted
key is stored and processed after all the quantum signalling
is complete. For real-time deployment of QKD in space we
would like to consider the generation of key rates in real time:
a process that involves classical post-processing whilst incom-
ing quantum signals continue. In such a scenario, classical
processing should occur at a rate faster than the incoming
quantum signalling. Otherwise, the incoming quantum signals
cannot be processed quickly enough and must be stored or
discarded – an undesirable outcome in any pragmatic setting.

In the classical processing phase of QKD, the Key Recon-
ciliation1 (KR) is the slowest part of the process, and we focus
on that element here. We assume that Low-Density Parity
Check (LDPC) codes are utilised for the KR (although our
strategies developed will be independent of that). We also

Manuscript received January 21, 2020; revised February 19, 2020; accepted
February 21, 2020. Date of publication March 2, 2020; date of current
version May 8, 2020. The work of Xiaoyu Ai is supported by the Research
Training Program (RTP) Fee Offset and the Postgraduate Research Support
Scheme (PRSS) at the University of New South Wales, Australia. The
associate editor coordinating the review of this letter and approving it for
publication was T. De Cola. (Corresponding author: Xiaoyu Ai.)

Xiaoyu Ai and Robert Malaney are with the School of Electrical Engi-
neering and Telecommunications, University of New South Wales, Sydney,
NSW 2052, Australia (e-mail: x.ai@unsw.edu.au).

Soon Xin Ng is with the School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, U.K.

Digital Object Identifier 10.1109/LCOMM.2020.2977914
1The KR is a processing phase of a QKD protocol where Alice and Bob’s

raw key strings are made identical with the help of a parity check matrix and
a classical decoding algorithm [2].

ignore Privacy Amplification (PA), since for a given block
length we can always find an efficient implementation of it
that is faster than the KR [3].

In practical QKD deployments it would be useful to have
a QKD solution that provides real-time generation of secure
keys for a target QKD key rate (in bits/pulse2) with an upper
limit for the protocol failure probability. Designing solutions
that meet these two criteria poses a different challenge than
that most often addressed in the literature – the maximisation
of the bits/pulse QKD key rate [4]. However, maximisation
of the bits/pulse rate fails to deliver the maximum LDPC
decoding rate of the KR phase because no computational
complexity at the KR phase is considered in this bits/pulse
QKD rate. This in turn translates to a higher probability that
KR becomes the bottleneck of the QKD protocol. A strategy
that minimises this probability whilst achieving a target QKD
key rate and target failure probability is not established yet.
In this work we remedy this situation. Our new strategy points
the way to real-world QKD deployments that deliver on pre-set
specifications yet maximise the likelihood that no quantum
signals will be dropped due to the overflow of the finite-size
buffer.

Let us define � as the total failure probability of a QKD
protocol, ft as the target QKD key rate of the QKD protocol
(in bits/pulse), Q as the quantum bit error rate (QBER), Qtol

as the QBER tolerance, Rc as the LDPC code rate and C
as the LDPC decoding rate of the KR (in bits per arithmetic
operation). In this work, we devise a strategy that maximises
C for a given �, ft, and QBER. We apply this strategy to two
QKD protocols: the Asymmetric QKD protocol (A-QKD) [5],
[6] and the Loss-Tolerant QKD (LT-QKD) protocol in [4], [7].

The rest of this letter is organized as follows: Section II
introduces the QKD protocols considered in this letter.
Section III describes the security of the A-QKD protocol
in the finite-key regime and details the strategy for this
protocol. Section IV analyses the LDPC decoding rate. Finally,
Section V shows the design outcome for both protocols
and discusses the viability of our designed system in the
satellite-based scenario.

II. QKD PROTOCOLS CONSIDERED IN THIS LETTER

Unlike the well-known BB84 [8] protocol where Alice
and Bob discard half of their measurement results during
the key sifting, A-QKD allows Alice and Bob to discard
less measurement results during the same process since the
probability of choosing the X basis for measurement is higher
relative to choosing the Z basis [5].The security of A-QKD is
based on the assumption of a perfect quantum apparatus.

2In many works, “QKD key rate” refers to the ratio of the number of
secure key bits obtained (at the end of a QKD protocol) to the number
of transmitted pulses – normally derived via a security analysis. However,
we note that the computational complexity of the classical reconciliation phase
is not considered when calculating this QKD key rate.

1558-2558 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on May 27,2020 at 22:03:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9970-0290
https://orcid.org/0000-0001-9672-5601
https://orcid.org/0000-0002-0930-7194

AI et al.: RECONCILIATION STRATEGY FOR REAL-TIME SATELLITE-BASED QKD 1063

The LT-QKD protocol, on the other hand, tries to close
security loopholes raised by the imperfections of quantum
devices. As an advanced BB84-variant, LT-QKD is “loss
tolerant” in the sense that it is robust against the imperfection
of photon generation devices, specifically phase modulation
errors in the state preparation phase [7]. In [4], Mizutani
et al provide an information-theoretic security analysis of the
LT-QKD protocol in the finite-key regime.

III. DESIGN STRATEGY

A. The Generic Design Strategy

In this section, we describe the generic steps of our design
strategy with a given � and ft. We start with an initial Rc

and then: (i) find the minimum block length where ft is
met; (ii) design a rate-Rc LDPC code; (iii) calculate C; (iv)
reduce Rc and return to (i) until the maximum of C is
found. We note that (i) is dependent on the designated QKD
protocol and its security analysis in the finite-key regime.
Actual implementation will vary somewhat from this generic
design – dependent on the adopted QKD protocol. The detailed
strategy for the A-QKD protocol is shown next.

B. Detailed Strategy for A-QKD

We adopt the finite-length security analysis of A-QKD
in [6]. The A-QKD protocol is �-secure if it is �cor-correct
and �sec-secret with �cor + �sec ≤ � [6]. The protocol is �cor-
correct if the probability that Alice’s final key is not equal to
Bob’s is upper bounded by �cor. The protocol is �sec-secret if
the joint system formed by Alice’s final key and Eve’s system
is �sec close to the ideal system where Alice’s key is uniformly
distributed and Eve’s system is not correlated to Alice’s key
when the protocol does not abort [6]. We assume �cor and
�sec are set individually by the user (other strategies based on
a given � only are discussed later).

In the A-QKD protocol, a term that accounts
for statistical fluctuations is introduced, namely,

μ =
√

(N+K)(K+1)
NK2 log 2

�sec
, where K = N

(
1 − p−1

x

)2

is the number of samples used to estimate QBER, N is the
length of the key of the input to the PA (the LDPC block
length), and px is the probability of selecting the X basis
during the state preparation [6]. For the given �cor and �sec,
the security analysis of the A-QKD protocol in the finite-key
regime can be used to calculate the upper bound of length of
the final secure keys, l, as a function of Qtol and N . Thus,
assuming that the quantum states are prepared in the X or Z
basis, the upper bound of the QKD rate, fA

s (Qtol, N) ≤ lp2
x

N ,
is obtained by [6]:

fA
s (Qtol, N) ≤ p2

x

1 − h(Qtol + μ) − Nleak − log 2
�cor�2sec

N
,

(1)

where h(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy function and Nleak = (1 − Rc)N is the number of
bits disclosed in the KR. We assume here the bound given
by Eq. (1) is tight [6], and for purposes of calculation set the
inequality to an equality. However, strictly speaking the QKD
rate in bits/pulse we use is only an upper bound on the target
key rate.

Fig. 1. A diagram showing all the steps of Strategy-I.

Detailing the generic steps of our strategy in Section III-A,
we obtain the design strategy specifically for A-QKD (denoted
by Strategy-I) for the user-defined �sec, and �cor (or �). In the
following we assume the QBER is fixed and known (we
discuss later the satellite scenario, in which QBER is variable).
Setting �sec, �cor, ft, px and Qtol (or �, ft, px and Qtol) as
inputs, Rc = 1− h(Qtol +μ) as the initial value, we describe
Strategy-I in Fig. 1.

We note that LDPC code design is an optimisation problem
with constraints: for a given QBER and a code rate, find
each coefficient in the symbol and check degree polynomial,
λ(x) and ρ(x), respectively, so that the decoding threshold is
maximised. To solve this optimisation problem, the common
approach is to apply Differential Evolution [9] as the numerical
solver and the Density Evolution Algorithm (DEA) [10] to
determine the threshold.

Our end result is that we have found, for a given channel
represented by a QBER, the LDPC code that minimises the
probability of KR being the bottleneck of the entire QKD
protocol, whilst achieving a desired QKD key rate.

IV. LDPC DECODING RATE

In this section, we illustrate how the complexity analysis
of the LDPC decoding is used to calculate nit and nit

op in

Step 3 of Strategy-I for the given N , λ(x) =
∑dλ

i=2 λix
i−1

and ρ(x) =
∑dρ

i=2 ρix
i−1 where dλ and dρ are the maximum

symbol and check node degree, respectively. It is shown
in [11] that for the binary symmetric channel (BSC), nit is
a decreasing function of the distance between a given rate-Rc

LDPC code and the capacity at the given QBER [12]. Taking
the trade-off between nit and this distance into account, we can
improve C by reducing Rc at Step 4 of Strategy-I.

A. The Number of Decoding Iterations

nit is the number of decoding iterations that is executed by
the decoder to reach a given decoding error, �cor. Generally,
nit can be analysed by applying the DEA over the BSC based
on the assumption of a cycle-free Tanner Graph. However,
in practice, LDPC codes with finite size always contain
cycles [13]. As QBER increases to a transition value Qth,

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on May 27,2020 at 22:03:52 UTC from IEEE Xplore. Restrictions apply.

1064 IEEE COMMUNICATIONS LETTERS, VOL. 24, NO. 5, MAY 2020

messages propagated in a finite-size Tanner Graph start to
circulate at a certain iteration number. We also calculate nit

from the girth of the LDPC Tanner Graph constructed by a
specific construction algorithm. Therefore, we obtain nit by
considering two cases:

• Case 1: we obtain the number of decoding iterations from
the DEA, nDEA

it where 0 ≤ Q ≤ Qth;
• Case 2: we obtain the number of decoding iterations with

the girth analysis of the Progressive Edge Growth (PEG)
algorithm [13], nPEG

it where Q ≥ Qth.
Note that Qth is the value of the QBER when nDEA

it = nPEG
it .

In Case 1, we adopt the DEA for the serial-schedule Belief
Propagation (BP) decoder because this decoding algorithm
requires less iterations relative to the flooding-schedule BP
decoder [14]. For a given QBER and an LDPC code defined
by the degree distribution pair, λ(x) and ρ(x), the decoding
error after the jth iteration, pj , is a monotonously decreasing
function of j [14]. Therefore, we analyse nDEA

it by using the
following equation for a given QBER:

nDEA
it = arg min

j
{pj = f(Q, j, λ(x), ρ(x)) ≤ �cor, j ∈ N},

(2)

where f(Q, j, λ(x), ρ(x)) is the recursive function of the DEA
for the serial-schedule BP decoder. Now we show the explicit
form of f(Q, j, λ(x), ρ(x)) in the BSC. It is shown that pj is
obtained by [14]:

pj =
∫ 0

−∞
Ω0

pdx =
∫ 0

−∞

{
PL|C(u, j)Ω2u

p + (1 − PL|C(u, j))

Ω2u
p ∗ λ(Γ−1(ρ(Γ(Ω2u+2

p))))
}

dx, (3)

where PL|C(u, j), u = j − 1, · · · , 1, 0 is the probability that
a symbol node is recognized as a leaf node in a computation
tree at Tier 2j (calculated by Proposition III-5 in [14]), Ωj

p

is the density of the decoding error at the jth iteration, Γ(x)
and its inverse Γ−1(x) represent the two transforms of the
probability mass function defined in [10], and the operator ∗
represents the discrete convolution. The initial density is given
by Ω2u

p = Qδ(x− log Q
1−Q) + (1−Q)δ(x + log Q

1−Q), where
δ(x) is the Dirac Delta Function [10]. For BSC, Eq. (3) can
be rewritten as follows [14], [15]:

pj = QPL|C − (1 − PL|C)
[dλ∑

k=1

λk

[
Qg(ρ(1 − 2p2u+2), k, b)

+ (1 − Q) g(−ρ(1 − 2p2u+2), k, b)
]]

(4)

where b is given in Section III-B in [15] and g(x) is given
by [15]:

g(x, k, b) =
k−1∑
t=b

(
k − 1

t

) (
1 + x

2

)t (
1 − x

2

)k−1−t

. (5)

For Case 2, we consider that the parity check matrix used in
the KR is constructed by the PEG algorithm [13] for the given
degree distributions. We first relate nPEG

it to the girth, G, of the
LDPC parity check matrix, and nPEG

it can be upper bounded
by nPEG

it < G
4 , where G is obtained by G = 2(�a� + 2), and

a is obtained by [13]: a =
log((1−Rc)Ndρ− (1−Rc)Ndρ

dλ−(1−Rc)N+1
)

log(dρ−1)(dλ−1)
− 1 .

Putting the two cases together, nit is obtained by using the
following equation:

nit(Q, N) =

{
nDEA

it , Q ≤ Qth

nPEG
it , Q > Qth,

(6)

where Qth is equal to Q when nDEA
it = nPEG

it .

B. The Number of Arithmetic Operations

Based on the pseudo-code (Table 1 of [16]) of the
serial-schedule BP decoder, we analyse nit

op for the given
λ(x), ρ(x), and N by counting the number of floating point
arithmetic operations involved in each step of the algorithm
within one decoding iteration. We note that the Log-Likelihood
Ratio (LLR) messages with value x are transformed between
R and {−1, 1} × R by φ(x) = {sign(x),− log tanh(|x|2)}
and its inverse φ−1(sign, x) = ((−1) · sign) log tanh(|x|2).
The addition (subtraction) that is defined in the domain,
{−1, 1} × R, costs one floating point and one bit-wise
operation. We omit the computational cost of the bit-wise
operation and only consider the floating-point operations here.
The detailed numbers of operations for different arithmetic

operations are: 4M(
∑dρ

i=2 iρi) additions, 2M(
∑dρ

i=2 iρi) cal-

culations of φ(x) and M(
∑dρ

i=2 iρi) calculations of φ−1(x)
where M = (1 − Rc)N is the number of rows in an LDPC
parity check matrix. Therefore, the nit

op can be determined
by summing the number of floating point operations together:

nit
op = 7(1 − Rc)N(

∑dρ

i=2 iρi).

V. SIMULATION RESULTS

A. The A-QKD Protocol

The results obtained from the use of Strategy-I for the
A-QKD are shown (red curves) in Fig. 2 for Q ∈ [0.01, 0.1].
We set ΔR = 0.1. In our simulations we have set Qtol to 0.01
higher than the true QBER. This is a pragmatic choice and
previous optimisation studies have shown this to be a setting
(averaged over a range of QBER) that maximises the key rate
for a set security setting [6]. Due to the fact that nit is a
non-decreasing function of the QBER, the C obtained from
Strategy-I under this assumption is the worst case scenario.
To obtain the results shown we apply Strategy-I at each QBER
to ensure that C at each QBER is maximised for each � and
ft. We see that for a given � = �cor + �sec and ft, the general
trend is that C decreases as the QBER increases. Not shown
in Fig. 2 is that the Rc obtained by the strategy (the minimum
Rc at each QBER) is a monotonically decreasing function of
the QBER. For a low QBER, the C is higher because the
obtained Rc is found significantly below capacity (resulting
in significantly lower nit) while ft is still met. However, for
a high QBER, the C is penalized because the obtained Rc is
close to capacity (a higher Rc is needed so as to ensure that
a finite N > 0 consistent with the ft is found).

In Fig 2, we also plot the LDPC decoding rate for a widely
used rate-adaptive reconciliation scheme [2], hereby referred
as the RRP (Rate-adaptive Reconciliation using Puncturing)
scheme. For each estimated QBER, this scheme adapts an
LDPC code via puncturing and shortening so that amount of

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on May 27,2020 at 22:03:52 UTC from IEEE Xplore. Restrictions apply.

AI et al.: RECONCILIATION STRATEGY FOR REAL-TIME SATELLITE-BASED QKD 1065

Fig. 2. The LDPC decoding rate C (in bits per arithmetic operation) vs. Q
(Q̂) for the ε-secure A-QKD (LT-QKD) protocol for different target QKD rate.
For A-QKD, we consider ft = 0.01 and ft = 0.001 for εcor = 9 × 10−11

(εcor = 9 × 10−15) and εest = 10−11 (εest = 10−15), respectively.
px is set to 0.75. As for the LT-QKD, we consider the following parameter
settings: Ntag = 0 and pfail = 0; For ε = 10−10 (10−14), εcor = εs = ε

2
,

εz = εcor
2

, εpa = εph =
ε2s
16

, and pA
Z = pB

Z = 0.8.

the syndrome bits disclosed at the KR phase can be minimised.
The LDPC decoding rate obtained using the RRP scheme for
the A-QKD protocol is shown in Fig. 2, where we have set
� = 10−10 and ft = 0.01. In Fig. 2, we observe that our
strategy leads to higher C relative to the RRP scheme.

In Fig. 2, for a given QBER, in the case where we decrease
� and/or increase ft, C is penalized by the increasing nit

because the obtained Rc is closer to the capacity at this
QBER. We also find that N is increasing in the same case but
the increasing N does not affect C because nit

op also scales
as O(N). We can easily convert C (in bits per arithmetic
operation) in Fig. 2 into a bits/second (BPS) rate via C

tp
, where

tp is the hardware-dependent time required for one arithmetic
operation.3

We note that the C
tp

calculated is an averaged BPS rate over
the timescale, td, of LDPC decoding. In the cases where N is
large, td can be large.4 Typical values of N found for A-QKD
are shown in Table I for various security settings. Clearly,
in any operational setting for real-time QKD we would want
td to be set below a well-defined threshold timescale, tth.

The above discussion leads us to our definition of a viable
QKD system. For an �-secure QKD protocol, we define a
viable system to be a system for which (i) C

tp
and the incoming

sifted key rate (in BPS), Rs, satisfy C
tp

≥ Rs for all QBER
that delivers non-zero QKD key rate; and (ii) td < tth.

B. Other QKD Protocols

Although Strategy-I is based on the A-QKD protocol, this
strategy can be applied to other QKD protocols with minor
changes. As an example, we consider the LT-QKD protocol

3For example, for a HP Z8 G4 workstation we find tp = 8×10−8 seconds.
This in turn means C

tp
equals 5.12 Mbps, 0.97 Mbps, at Q = 0.01 and 0.05,

respectively.
4For example, using tp = 8× 10−8 seconds we find that td ∼ 40 seconds

when N = 108.

[4] mentioned in the introduction and devise a strategy for
this protocol via a simple change to Step 1 of Strategy-I.

To briefly describe the security analysis for the LT-QKD
protocol from [4], let us first define �pa as the collision
probability of the 2-universal hash function used in the PA
(embedded in �sec in A-QKD), Edet as the number of phase
errors in single-photon detection events using the Z basis, Ndet

as the total number of single-photon detection events using the
Z basis, EU

det as the upper bound of the confidence interval
when estimating Edet, and NL

det as the lower bound of the
confidence interval when estimating Ndet, �ph as the upper
bound of the probability that the estimated Edet is larger than
EU

det, and �z as the upper bound of the probability that Ndet

is less than NL
det.

In the parameter estimation step, instead of directly estimat-
ing the QBER from the testing set as in A-QKD, Alice needs
to estimate Edet and Ndet separately. This leads to the two new
parameters in the security analysis – �ph and �z . The LT-QKD
protocol described in [4] is �-secure if it is �cor-correct and
�sec-secret with � = �cor + �sec = �cor +

√
2(�pa + �ph) +

�z . Thus, for the user-defined �z , �pa, �ph, and �cor,
the QKD rate of the LT-QKD, fL

s (Q̂, N), is upper bounded
by [4]:

fL
s (Q̂, N)≤

pd

(
NL

det

(
1 − h

(
Q̂

))
− Nleak − log2

2
�cor�pa

)
N

(7)

where Q̂ = EU
det(�ph)

NL
det

(�z)
is related to the estimated QBER from

the quantum channel (see [4] for exact definition), and pd

is the probability that Alice and Bob select the same basis
for the quantum measurement. In [4], pd = pA

ZpB
Z , where pA

Z

(pB
Z) is the probability of Alice (Bob) selecting the Z basis for

the quantum measurement. NL
det and EU

det are calculated by
Eq. 21 and 24 in [4].

We describe the revised strategy designed specifically for
the LT-QKD protocol for the user-defined �z , �pa, �ph, and
�cor. Compared to the A-QKD protocol, the estimation of
QBER in the LT-QKD protocol is more complex because
both Edet and Ndet need to be estimated with the confidence
levels associated with the given �ph and �ph, respectively.
Setting �z , �pa, �ph, �cor, ft, pA

Z , pB
Z and Q̂ (or �, ft,

pA
Z , pB

Z and Q̂) as inputs, Rc = 1 − h(Q̂) as the initial
value, we obtain this revised strategy by replacing Step 1 of
Strategy-I with the following: If Rc > 0, determine the
minimum N > 0 that satisfies fL

s (Q̂, N) ≥ ft using Eq. (7);
The strategy terminates if Rc ≤ 0 or no finite N > 0 can be
found.

The results of this revised strategy for the LT-QKD protocol
are shown (blue curves) in Fig. 1. The general trend found for
LT-QKD is the same as the trend for A-QKD, albeit at lower
LDPC decoding rates C. We also find that the RRP scheme
still leads to lower C compared to our strategy. However,
we observe that C goes to zero for LT-QKD. This is due to the
fact that no finite N , which satisfies fL

s (Q̂, N) ≥ ft, can be
found for Q̂ > 0.04 (Q̂ > 0.03 when � = 10−14). The values
of N for different security settings for the LT-QKD protocol
are given in Table I.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on May 27,2020 at 22:03:52 UTC from IEEE Xplore. Restrictions apply.

1066 IEEE COMMUNICATIONS LETTERS, VOL. 24, NO. 5, MAY 2020

TABLE I

TYPICAL VALUES OF N (IN bits) FOR DIFFERENT ε, ft AND Q (Q̂)

C. Satellite-Based QKD Protocols

We now return to the discussion of satellite-based
QKD. In satellite-based QKD, the QBER is very much a
time-dependent quantity [1]. If our strategy is to be applicable
to such a setting, we must repeat it for every QBER that is
estimated. In doing this we note that the coherence timescale
of the satellite-to-ground channel, is of order 10-100 ms [1]
– a timescale significantly longer than the time to reload a
processing system with a new LDPC code retrieved from
on-board memory [17].

This fast reloading of codes allows us to adapt our strat-
egy for space-based deployments in the following manner.
We a-priori build a look-up table consisting of a set of
LDPC codes which maximise C

tp
at the given QBER in the

anticipated range of the satellite-to-ground channel, typically
0 − 0.1 (above this range QKD rates approach zero for other
reasons [6]). Upon estimating the QBER at any instant in time,
the LDPC code that maximises C

tp
for that QBER is selected.

For most satellite deployments our system will be viable
(defined in Section V-A) for a wide range of parameter
settings. For example, in a variable channel consistent with
the range of QBER reported by Micius [1], we find that
for a failure probability bound of � = 10−10 and key rate
ft = 0.01, the incoming quantum signal rate would have to
exceed 10.2c (7.5c) (Mbps) in order for the LDPC decoder to
become the bottleneck in real-time deployments of the A-QKD
(or LT-QKD) protocol, where c = 8×10−8

tp
.

D. Other Design Strategies

Our design strategies for the A-QKD and LT-QKD protocols
can also be applied to several modified input and output
requirements. For example, in A-QKD a user can instead set
a value of �, with the values of �cor and �sec then obtained
while maximizing the QKD key rate under the constraint �cor+
�sec ≤ � and a given QBER [6]. Note that this maximization
leads to extra computations. That is, we would jointly find
the optimal �sec and �cor that maximises fA

s (Qtol, N) for
all N . Then, we would search N within an a-priori defined
interval, [0, 1014] and find the minimum N that satisfies
fA

s (Qtol, N) ≥ ft.
Similarly for LT-QKD users could also set � and find the

optimal values of �z , �pa, �ph, and �cor that maximise the QKD
key rate. Explicitly, if � was used as the input, we would jointly
find the optimal �z , �pa, �ph, �cor that maximise fL

s (Q̂, N) for
all N . Then, we would search N within an a-priori defined
interval, [0, 1014] and find the minimum N that satisfies
fL

s (Q̂, N) ≥ ft.

VI. CONCLUSION

In this work we have devised a design strategy where a
quantum key distribution system achieves a target bits/pulse
key rate with a specified total failure probability whilst
maximising the bits-per-second rate of the key reconciliation
phase. This strategy generally holds for various protocols,
different classical decoding algorithms, and can be applicable
to the time-varying quantum channel in satellite-based situ-
ations. Variants of our strategy can be applied to different
design criteria resulting in a plethora of strategies all with
the common thread that the design outcomes are conditioned
on the decoding rate being maximised. Such an outcome
minimises the probability that quantum signals will be dis-
carded. We expect that our strategies point the way to the
real-world deployment of practical quantum key distribution
systems where all quantum signals can be utilised in the key
growth with maximised probability.

REFERENCES

[1] S.-K. Liao et al., “Satellite-to-ground quantum key distribution,” Nature,
vol. 549, p. 43, Aug. 2017.

[2] D. Elkouss, J. Martinez, D. Lancho, and V. Martin, “Rate compatible
protocol for information reconciliation: An application to QKD,” in
Proc. IEEE Inf. Theory Workshop (ITW), Jan. 2010, pp. 1–5.

[3] Z. Yuan et al., “10-Mb/s quantum key distribution,” J. Lightw. Technol.,
vol. 36, no. 16, pp. 3427–3433, Aug. 15, 2018.

[4] A. Mizutani et al., “Quantum key distribution with setting-choice-
independently correlated light sources,” npj Quantum Inf., vol. 5, p. 8,
Jan. 2019.

[5] H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key
distribution scheme and a proof of its unconditional security,” J. Cryptol.,
vol. 18, pp. 133–165, Apr. 2005.

[6] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-
key analysis for quantum cryptography,” Nature Commun., vol. 3, no. 1,
p. 634, Jan. 2012.

[7] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, and K. Azuma, “Loss-tolerant
quantum cryptography with imperfect sources,” Phys. Rev. A, Gen. Phys.,
vol. 90, no. 5, Nov. 2014, Art. no. 052314.

[8] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” in Proc. IEEE Int. Conf. Comput., Syst.
Signal Process., vol. 175, Dec. 1984, p. 8.

[9] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim., vol. 11, pp. 341–359, Dec. 1997.

[10] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke,
“Design of capacity-approaching irregular low-density parity-check
codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637,
Feb. 2001.

[11] B. Smith, M. Ardakani, W. Yu, and F. Kschischang, “Design of irregular
LDPC codes with optimized performance-complexity tradeoff,” IEEE
Trans. Commun., vol. 58, no. 2, pp. 489–499, Feb. 2010.

[12] I. Sason and R. Urbanke, “Parity-check density versus performance
of binary linear block codes over memoryless symmetric chan-
nels,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1611–1635,
Jul. 2003.

[13] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[14] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedules for LDPC decoding,” IEEE Trans. Inf. Theory, vol. 53, no. 11,
pp. 4076–4091, Nov. 2007.

[15] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Improved low-density parity-check codes using irregular graphs,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[16] E. Sharon, S. Litsyn, and J. Goldberger, “An efficient message-passing
schedule for LDPC decoding,” in Proc. 23rd IEEE Conv. Electr. Elec-
tron. Eng., Sep. 2004, pp. 223–226.

[17] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully parallel sto-
chastic LDPC decoders,” IEEE Trans. Signal Process., vol. 56, no. 11,
pp. 5692–5703, Nov. 2008.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on May 27,2020 at 22:03:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

