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Abstract—The recent launch of the Micius quantum-enabled
satellite heralds a major step forward for long-range quantum
communication. Using single-photon discrete-variable quantum
states, this exciting new development proves beyond any doubt
that all of the quantum protocols previously deployed over lim-
ited ranges in terrestrial experiments can in fact be translated to
global distances via the use of low-orbit satellites. In this paper we
survey the imminent extension of space-based quantum commu-
nication to the continuous-variable regime—the quantum regime
perhaps most closely related to classical wireless communications.
The continuous variable regime offers the potential for increased
communication performance, and represents the next major step
forward for quantum communications and the development of
the global quantum Internet.

Index Terms—Quantum key distribution, free space optical,
satellite communication, continuous variable quantum.

I. MOTIVATION AND INTRODUCTION

MOORE’S Law has remained valid for half-a-century!
As a result, contemporary semi-conductor technology

is approaching nano-scale integration. Hence nano-technology
is about to enter the realms of quantum physics, where many
of the physical phenomena are rather different from those of
classical physics. Hence this treatise contributes towards com-
pleting the ‘quantum jig-saw puzzle’ by paving the way from
classical wireless systems to their perfectly secure quantum-
communications counterparts, as heralded in [1] and [2].

• The Inspiration: In order to circumvent the specific lim-
itations of the classical wireless systems detailed in [1],
we set out to bridge the separate classical and quan-
tum worlds into a joint universe, with the objective of
contributing to perfectly secure quantum-aided commu-
nications for anyone, anywhere, anytime across the globe,
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Fig. 1. Stylized vision of future global quantum communications unifying
the separate classical and quantum systems into a joint secure universe for
anyone, anywhere, anytime.

as indicated by the stylized vision of the near-future
quantum communications scenario seen in Fig. 1.

• The Reality: However, quantum processing is far from
being flawless - it has substantial challenges, as detailed
in this contribution. Nonetheless, at the time of writing
long-range quantum communications via satellites has
become a reality.

Amongst its numerous intriguing attributes, quantum com-
munication has the potential to achieve secure communications
at confidence levels simply unattainable in classical commu-
nications settings. This is due to the fact that quantum physics
introduces a range of phenomena which have no counterpart
in the classical domain, such as quantum entanglement and
the superposition of quantum states.1 The exploitation of such
effects, both before and after the transmission of information
in the quantum domain, can in effect lead to communications
possessing ‘unconditional’ security.

1The superposition of a logical one and zero may be viewed as a coin
spinning in a box, where we cannot claim to show its state being ‘head’
or ‘tail’. When we stop spinning the coin, and lift the lid of the box, the
superposition-based quantum state collapses back into the classical domain as
a consequence of us observing it.
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Fig. 2. Basic quantum communications schematic for transmitting classical information over a secure quantum channel. Preparation: Encoding classical
information into quantum states. Channel: Secure quantum transmission using optical fiber or free space optical. Measurement: Decoding the received
quantum states, yielding classical information.

Quantum communication entails the transfer of quantum
states from one place to another via a quantum channel. In
a generic form, quantum communication consists of three
steps: (i) the preparation of quantum states - where the orig-
inal classical information is encoded into quantum states;
(ii) the transmission of the prepared quantum states over a
quantum channel such as optical fiber or a free-space opti-
cal (FSO) channel - where the states are transmitted from
a transmitter, held by Alice, to a receiver, named Bob; and
(iii) detection - where the received states are decoded using
quantum measurement resulting in some output classical infor-
mation. A schematic including these three steps is shown
in Fig. 2.

A key motivation for quantum communication of Fig. 2
is that the quantum information, mapped for example to
the polarization of a photon, can be shared more securely
than classical information. The well-known example of this
is quantum key distribution (QKD) [3], whose unconditional
security has been theoretically proved (classical cryptogra-
phy schemes are not proved to be secure). We also note the
close connection between quantum communication and quan-
tum entanglement. A pair of quantum states are said to be
entangled if, for example, changing the polarization of a pho-
ton results in an instantaneous polarization change for its
entangled pair. Einstein referred to this as a ‘spooky action
at a distance.’ Important quantum communication protocols
utilizing entangled states include QKD, quantum teleporta-
tion [4]–[6], and entanglement swapping (teleportation of
entanglement) [7].

In terms of representing the quantum states in quantum
communications, discrete-variable (DV) and continuous-
variable (CV) descriptions have been used [8], [9]. In the
former, information is mapped to discrete features such as
the polarization of single photons [3]. The detection of such
features would then be realized by single-photon detectors. In
DV technology information is mapped to two (or to a finite
number of) basis states. The standard unit of DV quantum
information in the two basis form is the quantum bit, also
known as the ‘qubit.’ In a qubit, information is carried as a
superposition of two orthogonal quantum states which can be
represented mathematically as:

|ψ〉 = a1|0〉+ a2|1〉 (1)

with |a1|2 + |a2|2 = 1, where the complex numbers a1
and a2 can be considered as probability amplitudes. The

Fig. 3. Fundamental characteristics of qubits: (a) Superposition &
Measurement: A qubit exists in superposition of the states |0〉 and |1〉.
However, when measured, it collapses to the state |0〉 with a probability of
|a1|2 and the state |1〉 with a probability of |a2|2. Hence, measurement of the
qubit perturbs its coherent superposition. (b) No-cloning Theorem: An arbi-
trary quantum state cannot be cloned. Assume a hypothetical cloning operator
Uc , it is straightforward to show that cloning of a state |ψ〉 is not equivalent
to cloning the constituent basis states, hence a quantum cloning operator Uc
does not exist. (c) Entanglement: Qubits are said to be entangled, if measur-
ing one qubit reveals information on the value of the other. In the example
given, if the first qubit is found to be in the state |0〉 (or |1〉) upon mea-
surement, then the second qubit also exists in the state |0〉 (or |1〉), hence a
mysterious relation exists between the two entangled qubits.

notation |.〉 is used to indicate that the object is a vector.2

Explicitly, the superimposed state of Eq. (1) implies that the
qubit concurrently exists in the states |0〉 and |1〉. However,
it collapses to one of the two states upon measurement.
Fig. 3 summarizes the fundamental attributes of qubits, which
makes quantum communication absolutely secure.

As an alternative approach, CV encoding has also been
introduced [10], [11], and it is this type of encoding
that forms the focus of this work. Such encoding is

2Note we have utilised the standard quantum mechanical notation for a
vector in a vector space, i.e., |ψ〉, where ψ is a label for the vector (any label
is valid). The entire object |ψ〉 is sometimes called a ‘ket’. Note also that 〈ψ|
is called a ‘bra’ which is the Hermitian conjugate or adjoint of the ket |ψ〉.
In quantum mechanics, bra-ket notation is a standard notation for describing
quantum states.
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more appropriate for quantum information carriers such
as laser light. In CV technology, information is usu-
ally encoded onto the quadrature variables of the opti-
cal field [10]–[15], which constitute an infinite-dimensional
Hilbert space. Detection of these variables is normally real-
ized by high-efficiency homodyne (or heterodyne) detectors,
which are capable of operating at a faster transmission rate
than single-photon detectors [16]–[18]. The field’s quadrature
components (representing the quantum state) can be consid-
ered as related to the amplitude and phase of the laser light.
Hence, CV states can be generated and detected using off-the-
shelf state-of-the-art optical hardware [10]–[15]. In quantum
mechanics, the quadrature components can also be considered
as corresponding to the position and momentum of a harmonic
oscillator.

There are generally three quantum communication scenar-
ios, namely, the use of optical fibers, the use of terrestrial
FSO channels, and the use of FSO channels to satellites.
These scenarios are complementary and all may be expected
to play a role in the emerging global quantum communication
infrastructure. Fiber technology has the key advantage that
once in place, an unperturbed channel from A to B exists.
In fact, in fiber links the photon transfer is hardly affected
by external conditions such as background light, the weather
or other environmental obstructions. However, fiber suffers
both from optical attenuation and polarization-preservation
problems, which therefore limit its attainable distance to a
few hundred kilometers [19]–[30]. These distance limitations
may be overcome by the development of suitable quantum
repeaters [31]. Losses in fiber are due to inherent random
scattering processes, which increase exponentially with the
fiber length. Explicitly, the transmissivity determining the
fraction of energy received at the output of a fiber link of
length L is given by τ = 10−αfiberL/10, where the value of
αfiber is highly dependent on the wavelength. Losses are min-
imised at the wavelength of 1550 nm, where for silicon fiber
αfiber � 0.2 dB/km.

Replacing the fiber channel with a FSO channel has
the immediate advantage of lower losses [32]–[35], largely
because the atmosphere provides for low absorption. The
atmosphere also provides for almost unperturbed propaga-
tion of the polarization states. Additionally, FSO channels
offer convenient flexibility in terms of infrastructure estab-
lishment, with links to moving objects also feasible [36]–[38].
However, terrestrial FSO quantum communications remain
ultimately distance-limited, due to (amongst other issues)
the curvature of the Earth, potential ground-dwelling line-of-
sight (LoS) blockages, as well as atmospheric attenuation and
turbulence.

FSO quantum communication via satellites [39]–[69] has
the additional advantage that communications can still take
place, even when there is no direct free-space LoS from A to
B. That is, assuming that LoS paths from a satellite to two
ground stations exist, satellite-based FSO communication can
still proceed. The range of satellite-based communication is
also potentially much larger than that allowed by direct ter-
restrial FSO connections, since the former circumvents the
terrestrial horizon limit and there are lower photonic losses

at high altitudes. In satellite-based FSO communications, only
a small fraction of the propagation path (less than 10 km)
is through the atmosphere - meaning most of the propaga-
tion path experiences no absorption and no turbulence-induced
losses. The utilisation of satellites also allows for fundamental
studies on the impact of relativity on quantum communica-
tions [39]. The key disadvantage of satellite-based quantum
communications is, however, atmospheric turbulence-induced
loss. The above discussions are summarized in Fig. 4.

The quantum communication system of Fig. 4 has given
rise to new security paradigms. At the time of writing most of
the classical cryptography schemes are based on the Rivest-
Shamir-Adleman (RSA) protocol [70] in which the encryption
key is public. These cryptography schemes are based on the
concept of one-way functions, i.e., on functions which are easy
to compute but extremely difficult to invert. Hence, the grade
of security of these schemes cannot be irrevocably proved
in principle. In fact, the security of these schemes is not
unconditional, since they are based on certain computational
power assumptions. Thus, if quantum computers were avail-
able today with a substantial amount of parallel computational
power, RSA cryptography schemes could be broken. However,
unconditional security is indeed possible using the so-called
one-time pad scheme of [71], where a symmetric, random
secret key is shared between the transmitter and receiver. To
elaborate, in the one-time pad scheme, the transmitter (Alice)
encodes the message by applying modulo addition between
the plaintext bits and an equal number of random bits of the
shared secret key. At the receiver, Bob decodes the received
message by applying the same modulo addition between the
received ciphertext and the shared secret key. If Alice and Bob
never reuse their key, the one-time pad scheme of [71] cannot
be broken, in principle. However, the main problem of this
scheme is the generation of the secret key - a key which is as
long as the message itself and must be used only once. This
problem becomes severe, when a large amount of informa-
tion has to be securely transmitted. Partially because of this
limitation, public-key cryptography is more widely used than
the one-time pad scheme. However, QKD, which is based on
the laws of quantum physics, allows Alice and Bob to gen-
erate secret keys that can later be used to communicate with
unconditional information-theoretic security, regardless of any
future advances in computational power. Explicitly, the secu-
rity of QKD is based on some of the fundamental principles of
quantum physics. From an attacker’s perspective, the ultimate
goal is to have a perfect copy of the quantum state sent by
Alice to Bob. However, it is impossible to acquire this owing
to the no-cloning theorem mentioned in Fig. 3, which states
that it is impossible to create an identical copy of an arbitrary
unknown quantum state, while keeping the original quantum
state intact [72], [73]. This simple, but crucial, observation can
be traced back to the fact that quantum mechanics is a linear
theory.

Fig. 5 shows the schematic of a QKD system, which can be
divided into two main stages. Firstly, a quantum communica-
tion part where a pair of distant and trusted parties, Alice and
Bob, generate two sets of correlated data through the trans-
mission of a significant number of quantum states over an
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Fig. 4. Insights into the quantum communications system of Fig. 2.

Fig. 5. A schematic of a QKD system: Alice and Bob are connected by a
quantum channel, to which Eve has full access without any limitation (other
than those constrained by the laws of physics). They are also connected by an
authenticated classical channel, which Eve can only monitor. The final shared
key between Alice and Bob, which is unconditionally secure, can then be
used to transmit (encode and decode) secret messages.

insecure quantum channel.3 Secondly, by the use of a classi-
cal post-processing protocol [74], [75] operated over a public
but authenticated (meaning that the transferred data is known
to be unaltered) classical channel, Alice and Bob extract from
their correlated data a secret key that is unknown to a poten-
tial eavesdropper, Eve. The final key, which is unconditionally
secure can then be used to transmit secret messages [76], [77].
Note that in QKD the quantum channel is open to any possible
manipulation by Eve, which means that Eve has full access to

3The term ‘insecure’ here indicates the presence of an eavesdropper.
However, please note that an eavesdropper cannot make a copy of the trans-
mission, since quantum channel is intrinsically protected against copying
owing to the no-cloning theorem. An eavesdropper can only ‘listen to’, or
more specifically ‘measure’, the quantum information.

the quantum channel without any computational (classical or
quantum) limitation other than those imposed by the laws of
quantum physics. However, Eve can only monitor the public
classical channel, without modifying the messages (since the
channel is authenticated).

In line with the quantum communication system of Fig. 4,
there are two main techniques of implementing QKD, namely
DV-QKD and CV-QKD. As the name implies, DV-QKD maps
the key information to a single photon’s phase or polariza-
tion [3], [78], [79], and invokes single-photon detectors. By
contrast, CV-QKD maps the key information to the quadra-
ture variables of the optical field and exploits homodyne (or
heterodyne) detection [10]–[15], which can be implemented
using off-the-shelf optical hardware. Hence, CV-QKD may be
viewed as a specialized application of classic optical commu-
nications. More precisely, CV-QKD is one of the few quantum
applications, which rely on state-of-the-art communications
technology, hence ensuring a relatively smooth transition from
the classical to the ultra-secure quantum regime. Motivated by
this, we set out to survey and characterise the capabilities of
CV quantum technology, in particular the family of satellite-
based quantum communications solutions, which is essential
for realizing our vision of the global quantum communications
system encapsulated in Fig. 1. Since CV entanglement has
been widely relied upon as a basic resource for CV-QKD [80],
our survey is focused on satellite-based CV quantum commu-
nication in the context of CV entanglement distribution and
its application to CV-QKD. A brief comparison of this survey
to other published surveys on topics related to CV quantum
communication is presented in Table I, which are mostly tar-
geted towards the specialized quantum fraternity. By contrast,
we have adopted a slow-paced tutorial approach for bridging
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TABLE I
COMPARISON OF THIS STUDY WITH AVAILABLE SURVEYS

Fig. 6. Paper rationale.

the classical as well as the quantum working groups. For the
readers’ convenience, the rationale of this paper is captured in
Fig. 6, while a detailed paper outline is given in Fig. 7.

II. HISTORICAL OVERVIEW OF THE IMPLEMENTATION OF

QUANTUM KEY DISTRIBUTION SYSTEMS

In this section, we survey the major milestones achieved
in the implementation of free-space QKD systems, which are
chronologically arranged in Table II.

QKD constitutes the most studied quantum communica-
tion protocol, and has been deployed over both fiber and
FSO channels. Indeed, the implementation of QKD over
optical fibers has already been commercialised [90]–[92].
Terrestrial FSO quantum communications have been success-
fully deployed over very long distances [32]–[35]. In 2007,
entanglement-based QKD and decoy-state QKD were realized
over a 144 km FSO link between the Canary Islands of La
Palma and Tenerife [78], [79], [93]. In addition to QKD, long-
distance terrestrial FSO experiments have also been carried
out to implement both entanglement distribution [93], [94] and
quantum teleportation [95], [96]. The above long-distance FSO
quantum communication experiments have been implemented
at night. However, in a recent experiment FSO terrestrial QKD
over 53 km has also been demonstrated during the day by
choosing an appropriate wavelength, spectrum filtering and
spatial filtering [97]. Nonetheless, in both fiber and FSO QKD
implementations, the increasing levels of channel attenuation
and noise tend to limit the maximum distance of successful
key distribution to a few hundred kilometers.

A promising way of extending the deployment range of
QKD is through the use of satellites. Indeed, it is widely antic-
ipated that the reliance on satellites will assist in the expansion
of quantum communication to global scales [39]–[69]. Full-
scale verifications of satellite-based QKD have been reported
in [36] (by demonstration of QKD between an aeroplane and
a ground station), in [37] (by demonstration of QKD using a
moving platform on a turntable, and a floating platform on a
hot-air balloon), and in [38] (by demonstration of QKD from a
stationary transmitter to a moving receiver platform traveling
at an angular speed equivalent to a 600 km altitude satellite).
Furthermore, several satellite-based quantum communication
projects have been reported in [41]–[46]. In [47]–[49], a
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Fig. 7. Paper structure.

satellite-to-ground single-photon downlink was simulated by
reflecting weak laser (coherent) pulses (emitted by the ground-
based station) off a low-Earth-orbit (LEO) satellite. In addi-
tion to experimental demonstrations, quantum communications
with orbiting satellites have also been investigated by a grow-
ing number of feasibility studies [39], [50]–[61]. Recently, the
in-orbit operation of a photon-pair source aboard a nano-
satellite has been reported, which demonstrates photon-pair
generation and polarization correlation under space condi-
tions [64].

Quantum communication via satellites has very recently
been given an enormous boost with the launch of the world’s
first quantum satellite, Micius, by China [66]. Building on the
previously mentioned experiments, this new LEO satellite cre-
ates entangled photon pairs, sending them down to Earth for
subsequent processing in a diverse range of communication
scenarios. For example, using Micius, satellite-based distribu-
tion of entangled photon pairs in the downlink to two terrestrial
locations separated by 1203 km has been demonstrated [67].
Quantum teleportation of single-photon qubits from a ground
station to Micius through an uplink channel has also been
demonstrated [68]. Extensions of this technology to signifi-
cantly smaller satellites has just been reported for a Japanese
micro-satellite and an optical ground station [65].

All of the previous FSO quantum communication
systems referred to above have been focussed on DV
technologies [32]–[69], [78], [79], [93]–[97]. They are based
on single-photon technology and use single-photon detectors.

Such detectors are impaired by background light, and involve
spatial, spectral and/or temporal filtering in order to reduce
this noise [97]. By contrast, in CV quantum communication,
homodyne detection (in which the signal field is mixed with
a strong coherent laser pulse, called the “local oscillator”) is
used for determining the field quadratures of light. Homodyne
detectors offer better immunity to stray light [16], since the
local oscillator is also capable of assisting in both spatial and
spectral filtering. Also, such homodyne detectors are more
efficient than single-photon detectors, since the p-i-n (PIN)
photodiodes used in them offer higher quantum efficiencies
than the avalanche photodiodes of single-photon detectors.
Hence, CV-QKD can generally be considered to be more
robust against background noise than DV-QKD.

In [16] and [98] the feasibility of a point-to-point CV-
QKD (with coherent polarization states of light) has been
demonstrated over a 100 m FSO link. In [99]–[101] the non-
classical properties of CV quantum states propagating through
the turbulent atmosphere have been analysed. Gaussian4 entan-
glement distribution through a single point-to-point atmo-
spheric channel and its applicability to CV-QKD have been
studied in [102]. The entanglement properties of quantum
states in the turbulent atmosphere have also been studied
in [103] and [104]. Satellite-based CV quantum communica-
tion in the context of Gaussian and non-Gaussian entangle-
ment distribution, and its application to CV-QKD, have been
investigated in detail in [105]–[109]. The results presented
in [105]–[109] apply for both a single point-to-point atmo-
spheric channel, and in combined satellite-based atmospheric
channels where the satellite acts as a relay. Recently, a point-
to-point CV quantum communication experiment relying on
the coherent polarization states of light has been established
over a 1.6 km FSO link in an urban environment [110]. The
distribution of polarization squeezed states5 of light through
an urban 1.6 km FSO link has also been demonstrated [111].
Recently, an experiment has been carried out relying on homo-
dyne detection at a ground station of optical signals transmitted
from a geostationary satellite [112]. This experiment is impor-
tant in that it clearly demonstrates the feasibility and potential
of satellite-based CV-QKD implementations.

III. INTRODUCTION TO CV QUANTUM SYSTEMS

Any isolated physical system is associated to a Hilbert
space, i.e., a complex vector space with inner product. The
system is completely described by its state vector, which is a
unit vector in the system’s Hilbert space.

The simplest quantum mechanical system is a qubit, which
has a two-dimensional Hilbert space. Supposing |0〉 and |1〉

4Gaussian quantum states are CV states with field quadratures exhibiting
a Gaussian probability distribution.

5In quantum optics, there is an uncertainty relationship for the quadrature
components of the light field, stating that the product of the uncertainties in
both quadrature components is at least some quantity times Planck’s con-
stant. Hence, the uncertainty relationship dictates some lowest possible noise
(i.e., uncertainty) amplitudes for the quadrature components of the light. In
squeezed light, a further reduction in the noise amplitude of one quadrature
component is carried out by squeezing the uncertainty region of that quadra-
ture component, which is at the expense of an increased noise level in the
other quadrature component.
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TABLE II
MAJOR ACHIEVEMENTS IN THE IMPLEMENTATION OF FREE-SPACE QUANTUM COMMUNICATIONS

form an orthonormal6 basis for this Hilbert space, an arbi-
trary state vector in the Hilbert space can be written as
|ψ〉 = a1|0〉+ a2|1〉, where a1 and a2 are complex numbers.
The normalization condition for state vectors (or the condi-
tion that |ψ〉 be a unit vector), 〈ψ|ψ〉 = 1, is equivalent to
|a1|2 + |a1|2 = 1.7 When we measure a qubit in the basis
{|0〉, |1〉} we obtain either the result |0〉, with probability |a1|2,
or the result |1〉, with probability |a2|2.

Now we can extend a two-dimensional Hilbert state to an
arbitrary-dimensional Hilbert state (even infinite-dimensional).
A quantum state with finite-dimensional Hilbert space is
called discrete-variable quantum state, and a quantum state
with infinite-dimensional Hilbert space is called continuous-
variable quantum state. In an arbitrary-dimensional Hilbert
space the arbitrary quantum state |ψ〉 can be expanded in an
arbitrary orthonormal basis as |ψ〉 =

∑
i ψi |vi 〉, where the

complex number ψi is ψi = 〈vi |ψ〉. By definition the basis is
complete (i.e.,

∑
j |vj 〉〈vj | = I , with I the identity operator)

and orthonormal (i.e., 〈vi |vj 〉 = δij ).
Now let us consider the quantum measurement of an arbi-

trary quantum state |ψ〉. Quantum measurements are described
by operators8 M̂m , where the index m refers to the measure-
ment result. Note that the measurement operators satisfy the
completeness equation

∑
m M̂ †

mM̂m = I . Considering the ini-
tial quantum state |ψ〉, the probability that outcome m occurs
as a result of the quantum measurement M̂m upon the state
|ψ〉 is given by pm = 〈ψ|M̂ †

mM̂m |ψ〉, and the state of the
system after the measurement collapses onto 1√

pm
M̂m |ψ〉.

Due to the completeness of the measurement operators we
have

∑
m pm = 1.

A projective measurement is described by an observable
M̂ . Each observable quantity is associated with a Hermitian
operator whose eigenvalues correspond to the possible values

6A set of vectors |i〉 is orthonormal if each vector is a unit vector, and
distinct vectors are orthogonal, i.e., 〈i |j 〉 = δij , where δij is the Kronecker
delta function.

7Note that the overlap 〈ϕ|ψ〉 indicates the inner product between the
vectors |ψ〉 and 〈ϕ| (the adjoint of the vector |ϕ〉) in the Hilbert space.

8The operator serves as a linear function which acts on the states of
the system. While quantum states correspond to vectors in a Hilbert space,
operators can be regarded as matrices.

of the observable. The observable has a spectral decompo-
sition M̂ =

∑
m λm P̂m , where P̂m = |um 〉〈um |. The

vectors |um 〉 are the orthonormal set of eigenvectors of the
observable M̂ with real-valued eigenvalues λm which satisfy∑

m |um 〉〈um | = I . The probability for obtaining the mea-
surement result λm upon measuring the state |ψ〉 is given by
pm = |〈um |ψ〉|2. Hence, the probability pm is determined by
the size of the component of |ψ〉 in direction of the eigenvec-
tor |um 〉. When the measurement result λm is obtained, the
quantum state |ψ〉 collapses onto 1√

pm
P̂m |ψ〉.

One form of a CV quantum system is that represented by
N bosonic modes, such as those corresponding to N quan-
tized radiation modes of the electromagnetic field [9], [83],
[85]–[87], [113], [114]. A single photon has four degrees of
freedom, helicity (polarization) and the three components of
the momentum vector. In principle, quantum information can
be encoded into any one of these degrees of freedom. A sin-
gle ‘mode’ of an electromagnetic field refers to a specific
combination of these photonic degrees of freedom. In many
circumstances different modes can be simply represented by
different frequencies (since frequency is related to momen-
tum). For a beam of photons, the number of photons in the
beam constitutes another means to encode quantum informa-
tion. Quantum information encoded into the quadratures of
the electromagnetic field (formally defined below) are related
to an encoding in this additional degree of freedom. Since the
quadrature operators have continuous spectra, we can describe
the values of such operators as CV variables.

A single mode of a CV system can be described as a single
quantum harmonic oscillator of a specific frequency, where
the electric and magnetic fields play the ‘roles’ of the position
and momentum [115]. It will be useful to further illustrate
this concept. Consider the case of a single-frequency radia-
tion field confined to a one-dimensional cavity with walls that
are perfectly conducting. Assume the z-axis is parallel to the
length of the cavity and the cavity walls are located at z =
0 and z = L. The electric field within the cavity will form
a standing wave. Without loss of generality, we can take the
electric field to be polarized perpendicular to the z-axis, and
in the positive x-direction (we take the x and z coordinates to
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be in same plane and the y plane perpendicular to the x plane).
In terms of the distance vector r and time t, the electric field
can then be written as E (r , t) = exEx (z , t), where ex is a
unit-length polarization vector. Given our boundary conditions,
and assuming a radiation source-free cavity, the electric field
satisfying Maxwell’s equations can be written as [115]

Ex (z , t) =

√(
2ω2

Voε0

)

q(t) sin(kz ), (2)

where k = ω/c is the wave number (ω is the frequency of
the mode and c is the speed of light in vacuum), ε0 is the
vacuum permittivity, q(t) is a time-dependent factor having the
dimension of length (meters), and Vo is the effective volume
of the cavity.9 For the present purposes we will assume the
frequency is one of those allowed by the boundary conditions,
namely, ωn = c(nπ/L), where n = 1, 2, . . ..

Similarly, the magnetic field can be written B(r , t) =
eyBy (z , t), where ey is a unit-length polarization vector,
and [115]

By (z , t) =
μ0ε0
k

√(
2ω2

Voε0

)

p(t) cos(kz ). (3)

Here p(t) = q̇(t), where the dot denotes the time derivative,
and μ0 is the vacuum permeability. Based on these equations
it is then straightforward to show that the Hamiltonian, Ho ,
of the electromagnetic field can be written as [115]

Ho =
1

2

∫

dVo

(

ε0E
2
x (z , t) +

1

μ0
B2
y (z , t)

)

. (4)

Substituting Ex (z , t) and By (z , t) in Ho from Eq. (2)
and Eq. (3) respectively and exploiting that sin2(ωc z ) +
cos2(ωc z ) = 1 the Hamiltonian of the single-mode electro-
magnetic field can be written as

Ho =
1

2

(
p2 + (ωq)2

)
. (5)

This equation can be compared with the Hamiltonian of the
classical harmonic oscillator for a particle of mass m viz.,
Ho = 1

2 (p
2/m + (mωq)2), where we have taken the gen-

eralised coordinate q = x and set p = mẋ , x being the
position. Comparing these two Hamiltonians, it can be seen
that a single-mode electromagnetic field is formally equivalent
to a harmonic oscillator of unity mass, where the electric and
magnetic fields play roles similar to that of the position and
momentum of a particle.10

In quantum systems we replace variables, such as q, p,
E, B and H of the classical system, by their corresponding
operator11 equivalents, e.g., q̂ , p̂, Ê , B̂ and Ĥ . Then the
Hamiltonian of the single-mode electromagnetic field becomes
Ĥo = 1

2 (p̂
2 + (ωq̂)2). As such, we can now see how a single

mode of a CV system can indeed be described as a single
quantum harmonic oscillator. Furthermore, note that the oper-
ators q̂ and p̂ are Hermitian (or self-adjoint). In quantum

9To apply this formalism to the free field we calculate the physical
observables we are interested in and then simply take the limit V0 → ∞.

10We emphasize that the terms ‘position’ and ‘momentum’ here simply
refer to the similar roles played by the field quadratures and position and
momentum of a particle - e.g., the ‘position quadrature’ does not in any
manner refer to the position of a photon.

11Note that operators can be regarded as matrices. In fact, the operator and
matrix viewpoints turn out to be completely equivalent [8].

physics Hermitian operators correspond to observable quan-
tities, where an observable is an operator that corresponds to
a physical quantity, such as position or momentum, that can
be measured.

However, it will be useful to introduce non-Hermitian
operators â (the annihilation operator) and â† (the creation
operator). These can be written as,

â = (2�ω)(−1/2)(ωq̂ + i p̂), (6)

â† = (2�ω)(−1/2)(ωq̂ − i p̂), (7)

where � = h/2π, with h being Planck’s constant. These
bosonic field operators satisfy the commutation relation
[â, â†] = 1, where the commutator between two operators
x̂ and ŷ is defined to be [x̂ , ŷ ] = x̂ ŷ − ŷ x̂ . Note that since
the annihilation and creation operators are non-Hermitian, they
correspond to non-observable quantities.

It can be easily shown that our new non-Hermitian operators
have a time dependence, under free evolution, which can be
expressed as â = â(0) exp(−iωt) and â† = â†(0) exp(iωt).
As such, the electric field operator can then be re-written as

Êx (z , t)

=

√(
�ω

V0ε0

)

sin(kz )
[
â exp(−iωt) + â† exp(iωt)

]
. (8)

Removing the time dependence in the creation and annihilation
operators by re-setting â = â(0) and â† = â†(0), we can in
turn define the quadrature operators (see later discussion on
the freedom to choose the specific form of these)

X̂1 =
1

2

(
â + â†

)
, (9)

X̂2 =
1

2i

(
â − â†

)
. (10)

In terms of the quadrature operators we can then re-write
Êx (z , t) as

Êx (z , t) = 2

√(
�ω

V0ε0

)

sin(kz )
[
X̂1 cos(ωt) + X̂2 sin(ωt)

]
.

(11)

As such, we can see that the quadratures X̂1 and X̂2 can
be considered as the amplitudes of the electric field’s time-
dependent cos and sin components, respectively. Clearly, these
components are 90◦ out of phase with each other - hence the
name, quadratures. The quadratures satisfy the commutation
relation [X̂1, X̂2] = i/2.12

A CV system of N modes follows a similar description to
that we have just given for a single mode, except of course
the Hilbert space containing the multimode system is larger.
The N-mode system may be described by a Hilbert space
given by the tensor product H = ⊗N

k=1Hk , where Hk is a
single-mode Hilbert space associated with the k-th mode. The

12This can be derived from the constraint imposed by quantum mechanics
that [q̂ , p̂] = i�. Note, that in contrast to classical physics where any two
observables commute, i.e., their commutator is zero (which means it is pos-
sible to know precisely the value of both observables at the same time), in
quantum mechanics the quadrature observables of the electromagnetic field
do not commute.
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creation and annihilation operators for each mode then satisfy
the commutation relationships

[âk , âk ′ ] =
[
â†
k , â

†
k ′
]
= 0,

[
âk , â

†
k ′
]
= δkk ′ , (12)

where δkk ′ is the Kronecker delta function.
Consider again the single-mode Hilbert space Hk . This is

spanned by the Fock, or number-state basis, {|n〉k}∞n=0, where
the Fock state |n〉k is the eigenstate of the number operator
n̂k = â†

k âk , i.e., n̂k |n〉k = n|n〉k . Put simply, |n〉k represents
the state of the electromagnetic field containing exactly n pho-
tons (quanta) of frequency ωk . Note that for each mode k there
exists a vacuum state which contains no quanta of the field,
namely, |0〉k , satisfying âk |0〉k = 0. The action of the bosonic
field operators over the Fock states is given by [9], [87]

âk |n〉k =
√
n|n − 1〉k , â†

k |n〉k =
√
n + 1|n + 1〉k . (13)

Having now formally defined the vacuum state, it is prob-
ably useful to note for the unwary that some apparent
inconsistency lies lurking in the literature (including the many
references of this work). This applies to both the constant
value applied to �, as well as the nomenclature itself. We note
that our quadrature operators, as defined thus far, can be used
to form q̂ =

√
2�/ωX̂1 and p̂ =

√
2�ωX̂2; from which we

can easily show consistency with [q̂ , p̂] = i�. In many works
we will find that q̂ and p̂ written in this form (and also in
‘dimensionless’ form with, say, � = ω = 1) are also referred
to as the ‘quadratures.’ Also, in many works the cofactor of
1/2 in front of our definitions of X̂1 and X̂2 is replaced by
some other constant, e.g., 1/

√
2 or 1-allowable re-definitions

of course. It is straightforward to determine the vacuum expec-
tation value for any well-defined operator (or function of that
operator), e.g., 〈0|X̂ 2

1 |0〉 = 1/4, and 〈0|q̂2|0〉 = �/(2ω). It
is common to set � to some numerical constant, usually 1/2,
1 or 2. However, no consistency exists in the literature on
this either. Setting � = 2 has the convenience of setting the
vacuum-state variance of the q̂ and p̂ operators to 1 (when ω
is set to unity).13

Bearing in mind the above discussion of inconsistency in
nomenclature, we adopt henceforth that � = 2 and ω = 1
(unless stipulated otherwise). We also redefine the ‘quadrature’
operators to be q̂k and p̂k , now given by the simpler form
q̂k = âk + â†

k and p̂k = i(â†
k − âk ). This will make the

notation to follow less cluttered.
Defining the vector of quadrature operators for N modes

as R̂ = (q̂1, p̂1, . . . , q̂N , p̂N ), the commutation relationship
between the quadrature operators can be written as [R̂i , R̂j ] =

2iΩij , where R̂i (R̂j ) is the i-th (j-th) element of the vector
R̂, and Ωij is the element of the matrix

Ω =
N⊕

k=1
Ω0 , Ω0 =

(
0 1
−1 0

)

. (14)

Since a Hermitian operator has an orthogonal set of eigen-
vectors with real-valued eigenvalues, the quadrature operator
q̂ (p̂) (which is Hermitian) is an observable with continuous

13Note the variance of q̂ in the vacuum state is just 〈0|q̂2|0〉 since the
vacuum expectation of q̂ is zero (variance = 〈0|q̂2|0〉 − 〈0|q̂ |0〉2). Similar
is the case for p̂.

eigenspectra, i.e., q̂ |q〉 = q |q〉 (p̂|p〉 = p|p〉), with orthogonal
eigenvectors or eigenstates |q〉 (|p〉) having continuous eigen-
values q∈ R (p∈ R). Note that the two sets of eigenstates |q〉
and |p〉 identify two different bases (i.e., two different sets of
orthogonal and complete eigenstates), and each set constitutes
a common basis for CV quantum information. A CV quantum
state can be defined as a continuous-valued superposition of
the field’s eigenstates.

All the physical information about a quantum system is con-
tained in its quantum state, represented by a density operator
ρ̂, which is a trace-one positive operator. A pure quantum state
(i.e., the state of an isolated physical system which does not
have any interaction with the environment) is described by a
unit vector |ψ〉 in Hilbert space, and its density operator is
given by ρ̂ = |ψ〉〈ψ|.

Unlike pure states, mixed states cannot be described by
a single vector in the Hilbert space, because the knowledge
about the state preparation is incomplete. In fact, a mixed state
is a statistical mixture of pure states, and is described by its
associated density operator. The density operator describing
a mixed state is in the form of ρ̂ =

∑
i pi |ψi 〉〈ψi |, where

the pure quantum state |ψi 〉 in which the system is prepared
occurs with probability pi . A quantum state ρ̂ is said to be a
pure state, when we have ρ̂2 = ρ̂. In fact, for pure states we
have Tr(ρ̂2) = 1, and for mixed states we have Tr(ρ̂2) < 1,
where Tr denotes trace.

For a general mixed quantum state ρ̂ =
∑

i pi |ψi 〉〈ψi |
the mean value of the observable M̂ is given by 〈M̂ 〉 =∑

i pi 〈ψi |M̂ |ψi 〉 = Tr(ρ̂M̂ ), where 〈.〉 denotes the mean
value, and the variance of the observable M̂ is given by
V (M̂ ) = 〈M̂ 2〉 − 〈M̂ 〉2, where V(.) is the variance. Note
that the fluctuations in the quadrature operators (i.e., q̂ and
p̂) of the electromagnetic field can be characterized by the
variance of these observables, or by the standard deviation
(i.e., the square root of the variance) of these observables
denoted by Δ(.), which is sometimes referred to as the
uncertainty of the quadrature operators. Note also that for
non-commuting operators Â and B̂ where [Â, B̂ ] = Ĉ , we
have Δ(Â)Δ(B̂) ≥ 1

2 |〈Ĉ 〉|. Since the quadrature operators
of the electromagnetic field do not commute ([q̂ , p̂] = i�),
there exists an uncertainty relation for the uncertainty of the
quadrature operators, called the Heisenberg uncertainty prin-
ciple. In a N-mode CV system the Heisenberg uncertainty
principle is defined for the quadrature operators of each mode
k, and is given by V (q̂k )V (p̂k ) ≥ 1 (recall again � = 2).
According to the uncertainty principle if we prepare a large
number of quantum systems in identical states, and then mea-
sure the quadrature q̂ of some of those states, and measure
the quadrature p̂ of others, then the variance of the q̂ results
times the variance of the p̂ is at least one. Note again, that
the quadrature variance of the vacuum state of a single mode
is one, i.e., we have V (q̂) = V (p̂) = 1, which is the low-
est possible variance reachable symmetrically by the q̂ and p̂
quadratures according to the uncertainty relationship.

A quantum state ρ̂ of a N-mode CV system can also
be described in terms of a characteristic function χc(ξ) =
Tr(ρ̂D̂(ξ)), where D̂(ξ) = exp(i R̂Ωξ) is the Weyl operator
[9], [87], and ξ ∈ R

2N . The quantum state ρ̂ can also be
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described in terms of a Wigner function (quasi-probability
distribution), which is given by the Fourier transform of the
characteristic function χc as [9], [87]

W (R) =

∫

R2N

d2N ξ

(2π)2N
exp(−iRΩξ)χc(ξ), (15)

where R = (q1, p1, . . . , qN , pN ) is the vector of quadra-
ture variables, with the real-valued variables q and p being
the eigenvalues of the quadrature operators. Note that for a
single-mode quantum state the probability distribution of a
quadrature measurement (marginal distribution) is obtained
from the Wigner function of the quantum state by integration
over the conjugate quadrature.

The CV quantum states can be visualized using their Wigner
function in a phase-space representation, where the axes are
defined by a pair of conjugate quadrature variables q and p.
In such a phase space, a classical optical field is represented
by a single point corresponding to its complex-valued field
amplitude. However, the quantum states of light cannot be rep-
resented by a single point, since conjugate quadrature variables
cannot be measured simultaneously with arbitrary precision
due to the Heisenberg uncertainty relationship. Hence the
Wigner function is utilized to represent the quantum states
in the phase space [9], [85]–[87].

A. Gaussian Quantum States

Gaussian quantum states (for a detailed review, see [86],
[87], [114]) are completely characterized by the first moment
(or the mean value) of the quadrature operators 〈R̂〉 and a
covariance matrix M , i.e., a matrix of the second moments of
the quadrature operators defined as

Mij =
1

2
〈R̂i R̂j + R̂j R̂i 〉 − 〈R̂i 〉〈R̂j 〉. (16)

The covariance matrix of a N-mode quantum state is a
(2N × 2N) real symmetric matrix, which must satisfy the
uncertainty principle, viz., M + iΩ ≥ 0. By definition, a
Gaussian state having N modes is a CV state whose Wigner
function is a Gaussian distribution of the quadrature variables
given by

W (R) =
exp
(
−1

2 (R − 〈R〉)M−1 (R − 〈R〉)T
)

(2π)N
√

det(M )
. (17)

Some important examples of Gaussian states are vacuum
states [9], [86], [87], [115], coherent states [9], [86], [87],
[115], thermal states [9], [86], [87], [115] and squeezed
states [9], [86], [87], [115]. We discuss some of these Gaussian
states further.

1) Vacuum State: The Wigner function of the vacuum state
with respect to the conjugate quadrature variables q and p
is shown in Fig. 8(a), in which the Wigner function is cen-
tered at (0, 0), which means that the vacuum state has a zero
mean. The covariance matrix of the vacuum state is the iden-
tity matrix, which means that a vacuum state has a symmetric
distribution of the quadrature components (see Fig. 8(a)) with
both the quadrature components having noise variance of one.
This noise is usually termed the vacuum noise or quantum
shot noise.

2) Coherent State: A coherent state is generated by apply-
ing the displacement operator D̂ to the vacuum state formu-
lated as |α〉 = D̂(α)|0〉, where D̂(α) = exp(αâ† − α∗â) is
the displacement operator and α = (q + ip)/2 is the complex
amplitude. Since the displacement operator does not change
the variance of the quadratures, coherent states - similarly to
vacuum states - exhibit the lowest possible variance reach-
able symmetrically by the q̂ and p̂ quadratures. The coherent
state is the eigenstate of the annihilation operator, which is
formulated as â|α〉 = α|α〉. To elaborate a little further, this
state has a mean value of 〈R̂〉 = (q , p), and the covariance
matrix is equal to the identity matrix, which means that a
coherent state has a symmetric distribution of the quadrature
components with both the quadrature components having noise
variance equal to one. This symmetric distribution can be seen
in Fig. 8(b), where the Wigner function of the coherent state
with a mean value of (3, 5) (which is the centre of the Wigner
function) is shown with respect to the conjugate quadrature
variables q and p. Note that coherent states are much easier to
generate in the laboratory than any other Gaussian state. For
example, the laser field is in a coherent state. As an impor-
tant application in the context of quantum communication,
coherent states are used to distribute secret keys in Gaussian
CV-QKD protocols [13], [14], [116], [117].

3) Thermal State: Thermal states can be described as a
mixture of coherent states. The thermal state has a zero
mean and a covariance matrix Mth = vtI associated with
vt = 2n̄ + 1, where vt is the noise variance of each quadra-
ture component, n̄ >0 is the average number of photons and
I is the (2 × 2)-element identity matrix. This form of the
covariance matrix means that a thermal state has a symmetric
distribution of the quadrature components, which can be seen
in Fig. 8(c) where the Wigner function of the thermal state
with vt = 5 is shown with respect to the conjugate quadrature
variables q and p. Note that in the generic form of quan-
tum communication the quantum noise of the channel is in a
thermal state, called thermal noise.

4) Single-Mode Squeezed Vacuum State: According to the
Heisenberg uncertainty relationship, the lowest possible vari-
ance reachable symmetrically by the q̂ and p̂ quadratures is
one, i.e., the noise variance of the vacuum state. A reduc-
tion in the variance of the q̂ (or p̂) quadrature below the
vacuum noise is possible by squeezing. In squeezing, the vari-
ance of one continuous variable is in fact decreased below the
vacuum noise, while the variance of the conjugate variable
is increased. For instance, in a q̂-squeezed light, the vari-
ance of the q̂ quadrature is reduced below the vacuum noise,
while the variance of the p̂ quadrature is increased above
the vacuum noise. A single-mode squeezed vacuum state is
generated by applying the single-mode squeezing operator of
Ŝs(rs) = exp [rs(â

2 − â†2)/2] [9], [86], [87], [115] to the
vacuum state, where rs ∈ [0,∞) represents the single-mode
squeezing parameter.14 Such a squeezed state has zero mean
and a covariance matrix of M = diag [ exp(−2rs), exp(2rs)]

14Note, in general, squeezing parameters are complex numbers. For sim-
plicity (and to be consistent with most of the literature) we limit them here
to real numbers.
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when the quantum fluctuations of the q̂ quadrature have been
squeezed. In this case for the single-mode squeezing repre-
sented by rs >0 we have V (q̂) < 1 and V (p̂) >1. This means
that a single-mode squeezed state does not have a symmetric
distribution of the quadrature components, since the variance
of one of the quadratures is reduced by squeezing at the
expense of an increase in the variance of the conjugate quadra-
ture by the counterpart operation of anti-squeezing. Note, the
state still obeys the Heisenberg uncertainty relationship. Such
an asymmetric distribution of quadrature components can be
seen in Fig. 8(d), where the Wigner function of the single-
mode squeezed vacuum state with rs = 0.5 is shown. Here,
the q̂ quadrature is squeezed. In terms of applications in quan-
tum communications, single-mode squeezed vacuum states are
also utilized to distribute secret keys in Gaussian CV-QKD
protocols [12], [118]. Note that for rs = 0, the single-mode
squeezed state corresponds to the vacuum state.

5) Two-Mode Squeezed Vacuum State: A two-mode
squeezed vacuum (TMSV) state is generated by apply-
ing the two-mode squeezing operator of Ŝt (r) =
exp [r(â1â2 − â†

1 â
†
2)/2] [9], [86], [87], [115] to a pair of

vacuum states |0〉|0〉, where r ∈ R is the two-mode
squeezing parameter, and the indices 1 and 2 represent the
two modes. A TMSV state is described in the Fock basis
as [9], [86], [87], [115]

|TMSV〉 =
∞∑

n=0

qn |n〉1|n〉2, where

qn =
√

1− λ2λn , (18)

and λ = tanh(r). The two-mode squeezing in dB is
given by −10log10[exp(−2r)]. Such a squeezed state has
a zero mean, and a covariance matrix in the following
form [9], [86], [87], [115]

M =

(
v I

√
v2 − 1Z√

v2 − 1Z v I

)

, (19)

where v = cosh (2r) is the quadrature variance of each
mode, and Z = diag(1, −1). Note that the two-mode squeez-
ing operator Ŝt cannot be factorised into the product of the
two single-mode squeezing operators Ŝs . Hence, the TMSV
state is not a product of the two single-mode squeezed vac-
uum states. In fact, the squeezing (anti-squeezing) operation
applied to the quantum fluctuations does not squeeze (anti-
squeeze) the variance of the individual modes, but rather
that of the superposition of the two modes, so that we have
V (q̂−) = V (p̂+) = exp(−2r) and V (q̂+) = V (p̂−) =
exp(2r), where q̂− = (q̂1 − q̂2)/

√
2, p̂+ = (p̂1 + p̂2)/

√
2,

q̂+ = (q̂1+ q̂2)/
√
2, and p̂− = (p̂1− p̂2)/

√
2. For a two-mode

squeezing operation with r>0, we have V (q̂−) = V (p̂+) < 1
and V (q̂+) = V (p̂−) > 1. The correlations between the
quadratures of the two modes are known as Einstein-Podolski-
Rosen (EPR) correlations, which indicate the presence of
bipartite entanglement. Hence, for the two-mode squeezing
operation with r>0 the two modes are entangled, where the
entanglement increases upon increasing r. The TMSV state
associated with r>0 is the most commonly used Gaussian
entangled state [9], [83], [86], [87], [113], [114]. In the limit

Fig. 8. The Wigner function of the important single-mode Gaussian states
including vacuum state, coherent state with a mean value of (3, 5), thermal
state with vt = 5, and single-mode squeezed vacuum state with rs = 0.5
and with q̂ quadrature being squeezed.

of r → ∞ we have a maximally entangled state having per-
fect correlations, yielding q̂1 = q̂2 and p̂1 = −p̂2. Note that
for r = 0 the TMSV state corresponds to two (non-entangled)
vacuum states.

The Gaussian entangled squeezed states can be generated
by parametric down conversion in a non-degenerate optical
parametric amplifier [119]–[123], where a crystal having an
optical nonlinearity is pumped by a bright laser beam. A pho-
ton of the incoming pumping beam spontaneously transfigures
in the non-linear crystal into a lower-energy pair of photons,
termed as the signal and the idler [119]–[123]. In Type-II
parametric down conversion, which is known as a source
of entangled states in the CV domain, the signal and idler
are in orthogonal polarizations, forming a Gaussian entangled
squeezed state [119]–[123]. In this process, the pump photons
of frequency 2ωp are converted into pairs of entangled photons
having a pair of different-frequency modes, namely modes 1
and 2 of frequency ω1 and ω2, where 2ωp = ω1 + ω2. An
alternative way of generating the Gaussian entangled squeezed
state is by mixing two orthogonally single-mode squeezed
vacuum states, where one of the states is squeezed in the q̂
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quadrature and the other one is squeezed in the p̂ quadra-
ture. This mixing can be achieved by a balanced (or 50:50)
beam splitter. Note that the single-mode squeezed vacuum
state can be generated by Type-I parametric down conversion
in a degenerate optical parametric amplifier, where the pump
photons of frequency 2ωp are split into pairs of photons having
the same frequency and polarization [123].

Finally, note that by invoking local unitary operators the
first moment of every two-mode Gaussian state can be set to
zero and the covariance matrix can be transformed into the
following standard form [86], [87], [114]

Ms =

(
A C

CT B

)

, (20)

where we have A = aI, B = bI, C = diag(c+, c−),
a, b, c+, c− ∈ R.

B. Homodyne Detection

The homodyne detection of Fig. 9(a) represents the most
common measurement in CV quantum information process-
ing [9], [86], [87]. This detection scheme can be used for
determining or observing the quadrature operator q̂ (or p̂) of a
mode. The scheme of Fig. 9(a) is experimentally implemented
by combining the target mode (relying on the annihilation
operator â) with a local oscillator via a balanced beam split-
ter. The local oscillator is assumed to be in a bright coherent
state |αLO 〉. Since |αLO 〉 is represented by a large number
of photons, the local oscillator can be described by a classical
complex amplitude αLO . The two output modes of the beam
splitter can then be approximated by â1 = (αLO+ â)/

√
2 and

â2 = (αLO − â)/
√
2.

The intensity of each outgoing mode is then measured using
a photodetector, which converts the photons of the electromag-
netic mode into electrons, and hence into an electric current -
which is termed as the photo-current î . The photo-current is
proportional to the number of photons in the electromagnetic
mode. Hence, the pair of photodetectors of the two output
modes of the beam splitter generate the photo-currents of

î1 ∝ n̂1 = â†
1 â1 =

(
α∗LO + â†

)
(αLO + â)/2,

î2 ∝ n̂2 = â†
2 â2 =

(
α∗LO − â†

)
(αLO − â)/2. (21)

Then the difference between the photo-currents î1 and î2 is
measured, or more specifically, î1 − î2 ∝ (α∗LO â + αLO â†)
is measured. Considering a local oscillator associated with
αLO = |αLO | exp(iΘ), where |αLO | and Θ are the magnitude
and phase of the local oscillator respectively, the quadrature
operator q̂ (p̂) can be measured by setting the local oscillator’s
phase as Θ = 0 (Θ = π/2).

In contrast to homodyne detection, heterodyne detection
allows us to measure both the quadrature operators q̂ and p̂
of a mode simultaneously [9], [86], [87]. A heterodyne detec-
tor combines the target mode with a vacuum ancillary mode
into a balanced beam splitter. Then, homodyne detection is
applied to the conjugate quadratures of the two output modes,
i.e., to q̂ of one output mode and p̂ of the other one, which
are measured using homodyne detection. The ‘price’ to pay

Fig. 9. (a) Homodyne detection: The signal mode is combined with the
local oscillator in a balanced beam splitter. Each output mode of the beam
splitter is then measured using a photodetector, which generates a photo-
current proportional to the photon numbers of the output mode. By measuring
the difference between the two photo-currents, the q̂ (or p̂) quadrature operator
of the signal mode can be measured depending on the phase of the local
oscillator. (b) Heterodyne detection: The signal mode interacts with a vacuum
mode in a balanced beam splitter. By applying homodyne detection to the
conjugate quadratures of the two output modes, both the quadrature operators
of the signal mode can be measured simultaneously at the price of introducing
an additional noise term into the measurements.

for this simultaneous detection is the introduction of an addi-
tional noise term into the measurements (due to the mixing
into the signal of the vacuum state). The implementation of
heterodyne detection is shown in Fig. 9(b).

C. CV Entanglement

We have already discussed the notion of entanglement.
Indeed, this property is one of the most important proper-
ties of quantum mechanics, and is widely recognized as a
basic resource for quantum information processing and quan-
tum communications (for review, see [83], [87], [113], [114]).
We now attempt to quantify the entanglement property of CV
states more carefully. We focus our attention on bipartite CV
entanglement, which relies on the entanglement between two
CV quantum systems. Let us consider the pair of CV quantum
systems A and B having Hilbert spaces HA and HB , respec-
tively. The Hilbert space of the composite system is given
by the tensor product HA ⊗ HB . By definition, a bipartite
quantum state ρ̂AB relying on the Hilbert space HA ⊗ HB
is said to be separable, if it can be formulated as a probabil-
ity distribution over a pair of uncorrelated states expressed as
ρ̂AB =

∑
i pi ρ̂

A
i ⊗ ρ̂Bi , where the quantum state ρ̂Ai (ρ̂Bi ) acts

on the Hilbert space HA (HB ), pi ≥ 0, and
∑

i pi = 1. If a
quantum state ρ̂AB is separable, then its partial transpose ρ̂PTAB
with respect to either subsystem is positive [124]. The partial
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transposition of ρ̂AB represents the transposition with respect
to only one of the two subsystems, for example to system B.
By definition, a state is stated to be entangled, when it is not
separable in the above-mentioned sense.

The grade (or quantifiable measure) of entanglement in
a pure bipartite quantum state |ψ〉 (with density operator
ρ̂AB = |ψ〉〈ψ|) can be quantified by the entropy of entan-
glement Ev (|ψ〉). The entropy of entanglement stipulates the
number of entangled qubits (measured in ebits)15 that can
be extracted from the state. It also can be considered as
the amount of entanglement required to generate the state.
The entropy of entanglement is given by the von Neumann
entropy of the reduced density operators ρ̂A or ρ̂B , where
ρ̂A = TrB (ρ̂AB ) and ρ̂B = TrA(ρ̂AB ), with TrA and TrB
denoting the partial trace [83], [87], [113], [114].

For a Gaussian state ρ̂, the von Neumann entropy S (ρ̂)
is given by S (ρ̂) =

∑
k g(νk ), where we have g(x ) =

[(x + 1)/2]log2[(x + 1)/2]− [(x − 1)/2]log2[(x − 1)/2], and
νk are the symplectic eigenvalues16 of the covariance matrix
of the state. For a pure two-mode entangled state in the form
of |ψ〉 =

∑∞
n=0 qn |n〉1|n〉2, the entropy of entanglement is

given by Ev (|ψ〉) = −∑∞
n=0 q

2
n log2q

2
n .

Among the different quantifiable measures used as a grade
of entanglement for a mixed bipartite quantum state ρ̂AB =∑

i pi |ψi 〉〈ψi |, the most well-known is perhaps the entan-
glement of formation [125], [126], Ef . This is defined as
Ef (ρ̂AB ) = min

{pi ,|ψi 〉}
∑

i piEv (|ψi 〉), where the minimum is

taken over all the possible pure-state decompositions of the
mixed state ρ̂AB . The entanglement of formation gives the
minimal amount of entanglement of any ensemble of pure
states realizing the given state ρ̂AB - meaning it quantifies
the minimum amount of entanglement needed to prepare the
quantum state ρ̂AB from a mix of pure entangled states. In
fact, given an entangled state ρ̂AB , the entanglement of forma-
tion expresses the number of maximally entangled states we
need to create ρ̂AB . In general, this measure of entanglement
is difficult to calculate.

The distillable entanglement is another measure for entan-
glement, and is the amount of entanglement that can be
distilled from a given mixed state [113]. This quantity is also
hard to calculate in general, since it would require optimization
over all possible distillation protocols. However, there is an
entanglement measure which is easy to compute, and gives an
upper bound on the amount of distillable entanglement. This
measure is the so-called logarithmic negativity [127], [128].

15An ebit (entanglement qubit) as the unit of bipartite entanglement is the
amount of entanglement that is contained in a maximally entangled two-qubit
state (Bell state). In fact, it is said that each of the Bell states contains one
ebit of entanglement.

16For an arbitrary N-mode covariance matrix M , there exists a sym-

plectic matrix S such that M = SMdS
T , where Md =

N⊕
k=1

νk I

is a diagonal matrix, and the N positive quantities νk are the symplectic
eigenvalues of M . Note that a symplectic matrix S is a matrix with real
elements that satisfies the condition SΩST = Ω where Ω is defined in
Eq. (14) [87], [114]. For example, given a two-mode Gaussian state associ-
ated with a covariance matrix M = {A,C ;CT ,B}, where A = AT ,
B = BT , and C are 2 × 2 real matrices, the symplectic eigenval-
ues of M are given by ν2± = (Δ±

√
Δ2 − 4 det(M ))/2, where Δ =

det(A) + det(B) + 2 det(C ) [87], [114].

The logarithmic negativity (LN) exhibits the following prop-
erties. (i) ELN is a non-negative function, ELN (ρ̂AB ) ≥ 0.
(ii) If ρ̂AB is separable, ELN (ρ̂AB ) = 0. (iii) ELN (ρ̂AB )
does not increase on average under local (quantum) operations
and classical communications. The logarithmic negativity of a
bipartite state ρ̂AB is defined as [127]

ELN (ρ̂AB ) = log2[1 + 2N (ρ̂AB )], (22)

where N (ρ̂AB ) is the negativity defined as the absolute value
of the sum of the negative eigenvalues of ρ̂PTAB . The logarithmic
negativity quantifies as to what degree the quantum state fails
to satisfy the positivity of the partial transpose condition.

In the special case of two-mode Gaussian states, we are
able to determine the logarithmic negativity through the use
of the covariance matrix [83], [87], [114]. Given a two-
mode Gaussian state associated with a covariance matrix
M = {A,C ;CT ,B} where A = AT , B = BT , and C
are 2 × 2 real matrices, the logarithmic negativity is given
by [83], [87], [114]

ELN (M ) = max[0,−log2(ν̃−)], (23)

where ν̃− is the smallest symplectic eigenvalue of
the partially transposed M . This eigenvalue is given
by [83], [87], [114]

ν̃2− =

(

Δ−
√

Δ2 − 4 det(M )

)

/2, (24)

where Δ = det (A) + det (B) − 2det (C).

D. Gaussian Lossy Quantum Channel

Consider a fixed-attenuation channel described by a trans-
missivity of 0 ≤ τ ≤ 1 and thermal noise variance of Vn ≥ 1.
Note that in the optical frequency domain the average number
of photons is very low even at room temperature (300K), hence
the thermal noise has a negligible impact on the signal. In fact,
in the optical frequency domain the noise variance is effec-
tively unity, simply representing the vacuum noise. However,
in the millimeter-wave domain the thermal noise exhibits a
variance, Vn , which is much higher than unity. More specifi-
cally, we have Vn = 2n̄+1 with n̄ being the average number
of photons [129]–[132]. In order to suppress the thermal noise,
the system has to be operated at very low temperatures, e.g.,
<100mK. The average number of photons for a single mode
is given by [129]–[132] n̄ = [exp(hf /kBTb)− 1]−1, where f
is the frequency of the mode, kB is the Boltzmann’s constant,
and Tb is the temperature.

A fixed-attenuation channel is a Gaussian channel, which
transforms the Gaussian input states into Gaussian states. For
example, if a single-mode Gaussian quantum state is trans-
mitted through a fixed-attenuation channel, it will remain
Gaussian at the output of the channel even though it has
experienced channel loss. We can model the impact of a
fixed-attenuation channel of transmissivity τ and thermal noise
variance Vn on the single-mode input Gaussian state ρ̂ by a
beam splitter transformation, with the transmissivity of the
beam splitter being τ and reflectivity 1−τ . In this channel
representation shown in Fig. 10 the Gaussian input state is
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Fig. 10. The beam splitter representation of a fixed-attenuation channel with
transmissivity τ and thermal noise variance Vn . In this channel representa-
tion, the transmitted signal mode is combined with a thermal mode of variance
Vn in a beam splitter of transmissivity τ . In the case of a pure-attenuation
channel (without thermal noise), the signal mode is simply combined with a
vacuum mode of variance Vn = 1.

combined with the thermal noise in the beam splitter, such
that one input mode of the beam splitter is the Gaussian
input state ρ̂ having the corresponding quadratures of q̂1, p̂1
and the second input mode is the thermal noise with cor-
responding quadratures of q̂2, p̂2. As a result of the beam
splitter transformation we have the output modes 1′ (corre-
sponding to the received quantum state ρ̂′ at the output of the
channel) and 2′ with corresponding quadratures of q̂ ′1, p̂′1 and
q̂ ′2, p̂′2 respectively. These output quadratures can be described
by [87]

R̂out =

( √
τI

√
1− τI

−√
1− τI

√
τI

)

R̂in , (25)

where R̂in = (q̂1, p̂1, q̂2, p̂2), and R̂out = (q̂ ′1, p̂′1, q̂ ′2, p̂′2). As
a result, the quadrature variance of the received quantum state
at the output of the channel is given by V (q̂ ′1) = τV (q̂1) +
(1− τ)Vn , and V (p̂′1) = τV (p̂1) + (1− τ)Vn .

Let us now use such a channel representation to analyse
the evolution of a two-mode Gaussian quantum state over a
fixed-attenuation channel (the general multimode case can be
significantly more complex, e.g., [133]). We consider a TMSV
state with zero mean and covariance matrix in the form of
Eq. (19) as the input quantum state of the channel. There are
two settings for the transmission of a two-mode quantum state
between two parties, namely, the single-mode transfer and the
two-mode transfer [134]. We discuss each of these in detail.

Single-mode transfer: In this setting, the TMSV source is
placed at one of the parties’ site. In this case, only one mode
(mode 2) is transmitted through a fixed-attenuation channel,
with the other mode (mode 1) remaining unaffected. The
Gaussian output state has a zero mean and covariance matrix
in the following form [87], [134]

Msm =

(
vI

√
τ
√
v2 − 1Z√

τ
√
v2 − 1Z (τv + (1− τ)Vn )I

)

, (26)

where v = cosh (2r) is the quadrature variance of each mode
in the input TMSV state (r being the two-mode squeezing
parameter).

Two-mode transfer: In this setting, the TMSV source is
placed somewhere between the two parties. In this case, one
mode (mode 1) of the TMSV state is transmitted through
a fixed-attenuation channel with transmissivity τ1 and ther-
mal noise variance Vn1, while the other mode (mode 2)

being transmitted through another fixed-attenuation channel
with transmissivity τ2 and thermal noise variance Vn2. The
Gaussian output state has a zero mean and covariance matrix
in the following form [87], [134]

Mtm =

(
(τ1v + (1− τ1)Vn1)I

√
τ1τ2

√
v2 − 1Z√

τ1τ2
√
v2 − 1Z (τ2v + (1− τ2)Vn2)I

)

.

(27)

Here, we have assumed that the pair of fixed-attenuation chan-
nels are independent and that the two thermal noises are
uncorrelated.

IV. CONTINUOUS VARIABLE QUANTUM KEY

DISTRIBUTION

CV-QKD protocols using Gaussian quantum states have
been richly analysed in theory [12], [13], [15], [87], [118],
[135], [136], and they have also been implemented exper-
imentally [14], [20], [21], [23]–[25], [80], [137]–[140].
Among these contributions, the authors of [12]–[14], [20],
[21], [23]–[25], [118], and [137]–[140] exploit the so-
called prepare-and-measure (PM) scheme, where Alice pre-
pares CV quantum states and encodes the key informa-
tion onto the quantum states, which are then transmitted
over an insecure quantum channel to Bob. At the output
of the channel Bob receives the quantum states and mea-
sures them using classical homodyne or heterodyne detectors.
As a result, correlated, but non-identical, data is created
between Alice and Bob. Each PM scheme of CV-QKD can
be represented by an equivalent entanglement-based (EB)
scheme [15], [80], [87], [118], [135], [136], where Alice gen-
erates a two-mode entangled state,17 with one mode being
held by Alice and the other mode being transmitted through
an insecure quantum channel to Bob. Again, Alice and Bob
then proceed by measuring/observing their own modes using
classical homodyne or heterodyne detectors in order to create
correlated but non-identical data. Following the generation of
the correlated data, Alice and Bob proceed with classical post-
processing over a public, but authenticated, classical channel
(in both the PM scheme and EB scheme), so as to generate a
key, which remains secret even in the presence of Eve.

A. Prepare-and-Measure Approach

The PM CV-QKD is derived from the classic DV BB84 pro-
tocol of [3]. Hence, for the sake of enhancing readability, we
commence by detailing the DV BB84 protocol before delving
deeper into the specific instantiations of PM CV-QKD.

The DV BB84 protocol, conceived in 1984, is named after
its inventors Bennett and Brassard. It derives it’s strength from
the two fundamental laws of quantum physics, namely the ‘no-
cloning theorem’ and the ‘measurement’ of Fig. 3. Table III
lists an example of the DV BB84 protocol, which proceeds as
follows:

1) Alice generates a string of random bits, called the ‘raw
key’, which is much longer than the desired length of
the key.

17Please refer to Section III-C for CV entanglement.



HOSSEINIDEHAJ et al.: SATELLITE-BASED CV QUANTUM COMMUNICATIONS: STATE-OF-THE-ART AND PREDICTIVE OUTLOOK 895

TABLE III
PREPARE-AND-MEASURE DISCRETE VARIABLE BB84 QKD EXAMPLE (IN THE ABSENCE OF EVE AND NOISE). (1) RANDOM BINARY KEY

GENERATED. (2) RECTILINEAR OR DIAGONAL POLARIZATION RANDOMLY SELECTED. (3) QUANTUM STATE PREPARED BY ENCODING THE

BINARY KEY OF STEP (1) USING THE POLARIZATIONS OF STEP (2). (4) MEASUREMENT BASIS RANDOMLY SELECTED. INSTANCES WHERE

THE PREPARATION AND MEASUREMENT BASIS MATCH ARE MARKED IN GREEN. (5) RECEIVED STATES MEASURED USING THE BASIS OF

STEP (4). (6) DETECTED STATES MAPPED ONTO BITS. INSTANCES WHERE THE DETECTED AND RAW KEY BITS DIFFER ARE MARKED

IN RED. (7) ONLY THOSE BITS RETAINED, WHICH HAVE THE SAME PREPARATION AND MEASUREMENT BASIS. (8) ERROR RATE

ESTIMATED FOR DETECTING THE PRESENCE OF EVE. (9) INFORMATION RECONCILIATION CORRECTS ERRORS IN THE

SIFTED KEY. (10) CORRECTED KEY FURTHER SHORTENED USING PRIVACY AMPLIFICATION,
HENCE REDUCING EVE’S INFORMATION ABOUT THE KEY

2) Alice exploits two conjugate pairs of states for encoding
the classical raw key into photon polarizations (qubits).
Specifically, the states within the pair are orthogonal,
while the two pairs are the conjugates of each other. In
our example, we consider the rectilinear polarization (+
in Table III), which maps bit 0 and 1 onto the vertical
(↑) and horizontal (→) polarizations, respectively, and
the diagonal polarization (× in Table III), which maps
bit 0 and 1 onto the 45◦ (↗) and 135◦ (↘) polariza-
tions, respectively. Alice randomly chooses either the
rectilinear or diagonal polarization for the action termed
as state preparation.

3) Alice encodes the raw key of Step (1) seen in Table III
based on the randomly chosen polarizations of Step (2)
in Table III using + or × and sends the resultant qubits
to Bob over an insecure quantum channel.

4) Neither Bob nor Eve knows the encoding basis of
Step (2) in Table III used by Alice. Therefore, Bob ran-
domly chooses either the rectilinear (+) or the diagonal
(×) basis for measuring the received qubits. Bob’s cho-
sen basis are listed in Step (4) of Table III. Since both
Alice and Bob randomly choose the polarization basis,
they will end up choosing the same basis roughly half
of the time. These instances have been marked in green
in Steps (2) and (4) of Table III.

5) If Bob measures the qubits received in the same basis
as they were prepared in Step (2) of Table III, then he
detects the transmitted bit correctly, provided that the
quantum channel is noiseless and there is no eavesdrop-
per. By contrast, if the measurement basis is not the
same as the preparation basis, then there is only a 50%
chance that Bob will detect the bit correctly. For exam-
ple, let us consider the second bit of Table III having the
value 0, which is encoded in the rectilinear basis (+),
but measured in the diagonal basis (×). A bit value 0 in
the rectilinear basis may also be expressed as a function
of the diagonal basis:

| ↑〉 ≡ 1√
2
| ↗〉+ 1√

2
| ↘〉. (28)

Consequently, when ↑ is measured in the diagonal basis,
it is equally likely to collapse either to the state | ↗〉
(bit 0) or the state | ↘〉 (bit 1).

6) The detected polarizations of Step (5) may be decoded
by invoking the same classical-to-quantum mapping as
the encoding operation at the transmitter. Bob detects
the bit correctly approximately 75% of the time. All
incorrect instances of bit detection are marked in red in
Steps (1) and (6) of Table III. Hence, Alice and Bob
acquire a correlated key through Steps (1) to (6).

7) Alice and Bob then communicate over an authenticated
classical channel for further processing the correlated
key they possess, hence termed as ‘classical post-
processing’. This post-processing commences with ‘bit
sifting’ during which Alice shares the basis used for
preparation in Step (2) of Table III, while Bob shares
the basis of Step (5) in Table III used for measurement.
Both Alice and Bob discard the specific bits whose
preparation basis and measurement basis differ, because
these instances may result in incorrect detection,
which are marked in red in Step (6) of Table III and
statistically represent about 25% of the bits. This in
turn ensures that both Alice and Bob possess the same
secret key in the absence of Eve, provided that the
quantum channel is noiseless. The length of this key
is approximately half of that of the raw key, in which
about half of the basis were different.

8) Recall that qubits cannot be cloned. Therefore, if
Eve is listening to the insecure quantum channel, she
cannot acquire a copy of the quantum information.
Furthermore, Eve unaware of the specific basis in
which Alice maps the classical bits onto the qubits,
until Alice reveals this information during the classical
post-processing stage. Consequently, similar to Bob,
Eve chooses a random basis for measurement, while
listening to the quantum-domain session between Alice
and Bob. This in turn introduces errors in the shared
key. Hence, for the sake of determining the presence
of Eve, Alice and Bob share a subset of the key and
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estimate the fraction of errors. If the resultant error
ratio is higher than a pre-determined threshold, the
transmission is considered ‘insecure’ and hence aborted.

9) By contrast, if the transmission is found to be secure,
the process termed as ‘information reconciliation’ is
invoked for correcting the dependencies between Alice’s
and Bob’s key, which may include for example the
dependencies arising from errors inflicted by a realistic
imperfect quantum channel as well as those due to
measurements by Eve. Let us now briefly elaborate
on the effect of channel errors. Consider the first bit
of Table III, which is prepared and measured in the
same basis. As shown in Table III, Alice transmits the
quantum state | →〉 corresponding to the classical bit
1. Let us consider the scenario where a channel error is
inflicted on Alice’s quantum state during transmission,
so that Bob receives the erroneous state | ↑〉. Now
even if Bob measures the received quantum state in
the same basis as it was prepared, his detected output
will be incorrect. Explicitly, Bob will detect bit 0 upon
measurement in the rectilinear basis (+), while Alice
transmitted bit 1. Hence, channel errors also introduce
dependencies between Alice’s and Bob’s keys.

10) Eve may acquire information about the secret key by
measuring a subset of the key as well as by listening to
the public classical information shared during the error
reconciliation process. For the sake of reducing this
information, the technique of ‘privacy amplification’ is
invoked. Explicitly, privacy amplification generates a
shorter key from the corrected key of Step (9), hence
reducing Eve’s information about the shared key.

In contrast to the PM DV-QKD scheme of Table III, which
transmits qubits, a Gaussian PM CV-QKD scheme exploits
Gaussian CV quantum states, as shown in Fig. 11.

Explicitly, the CV quantum states prepared by Alice are
Gaussian states (squeezed states or coherent states) which
are modulated by Gaussian distributions [12]–[14], [20], [21],
[24], [25], [118], [135], [137], [138], [140]. In fact, Alice
encodes a classical random variable drawn from a Gaussian
distribution onto a Gaussian quantum state, which is trans-
mitted to Bob, and then measured by him, thus extracting
a classical random variable which is correlated with Alice’s.
Furthermore, in contrast to the discrete measurement opera-
tions of Table III, the measurements of the received quantum
states are made by Gaussian measurements, namely by clas-
sical homodyne or heterodyne detection. Hence, Alice and
Bob share correlated Gaussian data in contrast to the corre-
lated binary stream of PM DV-QKD. The resultant correlated
Gaussian distributed random variable (rv) is then processed
classically for the sake of generating a virtually error free and
secure binary key.

We may notice in Fig. 11 that four different variants of a
Gaussian PM CV-QKD protocol exist, since we have two types
of Gaussian quantum states, i.e., squeezed and coherent states,
and two types of detectors, i.e., homodyne and heterodyne
detectors, which are detailed in Section III. In the succeeding
subsections, we provide further insights into each of these four
variants with the aid of slow-paced quantitative examples.

1) PM CV-QKD Relying on Squeezed States & Homodyne
Detection: Table IV gives an example of CV-QKD protocol
using squeezed states and homodyne detection [12], which
proceeds as follows:

1) Alice generates a real random Gaussian-distributed vari-
able a with zero mean μ = 0 and variance σ2 = vm , as
exemplified in Step (1) of Table IV.

2) Alice then decides to encode the Gaussian variable a
into either a p-squeezed or a q-squeezed vacuum state by
randomly choosing the p̂ or q̂ quadrature component for
squeezing. More specifically, Alice generates a binary
random variable u for choosing the p̂ or q̂ quadrature for
squeezing. The chosen quadratures are listed in Step (2)
of Table IV.

3) Alice next proceeds with quantum state preparation.
Explicitly, Alice prepares a single-mode squeezed
vacuum state having the covariance matrix M =
diag(1/v , v), where v = exp(2rs), and rs is the single-
mode squeezing. The prepared squeezed state is then
modulated (displaced) by an amount a of Step (1)
in Table IV, where the modulation variance satisfies
vm = v − 1/v . Specifically, depending on the quadra-
tures chosen in Step (2) of Table IV, Alice either sends a
q-squeezed state having a first moment of (aq , 0), aq =
a , or a p-squeezed state associated with the first moment
(0, ap), ap = a , as illustrated in Step (3) of Table IV.
For example, let us consider the first element of raw
Gaussian key having the value of 0.9 in Step (1) of
Table IV. Since p̂ quadrature is chosen in Step (2) of
Table IV for preparing the first quantum state, Alice pre-
pares a p-squeezed state having the first moment (0, 0.9).
The prepared and modulated squeezed states are then
transmitted over an insecure quantum channel to Bob.

4) For each incoming quantum state, Bob randomly
chooses either the q̂ or the p̂ quadrature for detection
depending on his own binary random variable u′, as
shown in Step (4) of Table IV.

5) Bob measures the received quantum state in either the
q̂ or the p̂ quadrature using homodyne detection based
on the chosen quadratures of Step (4). Note that in
order to warrant security, Alice and Bob choose differ-
ent basis for preparation and measurement (in a random
fashion). Consequently, when the preparation and mea-
surement basis are the same, which are marked in
green in Steps (2) and (4) of Table IV, Bob accu-
rately detects the transmitted quantum state, provided
that the transmission channel is noiseless and there is
no eavesdropper. For example, Bob chooses p̂ quadra-
ture for the first element of Gaussian key, as shown in
Step (4) of Table IV. Since the first element was also
prepared in the same quadrature, Bob correctly detects
a p̂-squeezed state having the first moment (0,0.9). By
contrast, if the preparation and detection quadratures do
not match, Bob detects a modified version of the trans-
mitted state, which are marked as blank red cells in
Table IV.

6) Finally, Bob obtains a real variable bq = b or bp = b
corresponding to the q̂ or the p̂ detection quadratures.
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Fig. 11. The quantum communication stage of Gaussian CV-QKD protocol in a PM scheme, which consists of three steps; preparation, transmission, and
detection. In a full-Gaussian protocol Alice encodes a classical Gaussian-distributed random variable (a) onto Gaussian quantum states (squeezed or coherent
states). The prepared states are transmitted through an insecure quantum channel to Bob. In the detection step, received quantum states are measured using
Gaussian measurements (homodyne or heterodyne detection) to obtain a classical Gaussian-distributed random variable (b), which is correlated with Alice’s
random variable (a).

TABLE IV
PREPARE-AND-MEASURE CV-QKD EXAMPLE RELYING ON SQUEEZED STATES AND HOMODYNE DETECTION (IN THE ABSENCE OF EVE AND NOISE).

(1) REAL RANDOM VARIABLE a GENERATED USING A GAUSSIAN DISTRIBUTION HAVING MEAN μ = 0 AND VARIANCE σ2 = vm . (2) p̂ OR q̂
QUADRATURE RANDOMLY CHOSEN FOR SQUEEZING. (3) SQUEEZED STATE PREPARED HAVING THE FIRST MOMENT (a, 0), IF q̂ QUADRATURE IS

CHOSEN IN STEP (2) AND THE MOMENT (0, a), IF p̂ QUADRATURE IS CHOSEN IN STEP (2). (4) p̂ OR q̂ DETECTION QUADRATURE RANDOMLY

SELECTED. INSTANCES WHERE THE PREPARATION AND DETECTION QUADRATURES MATCH ARE MARKED IN GREEN. (5) RECEIVED STATES

DETECTED USING THE QUADRATURES OF STEP (4). THE DETECTION OUTCOME IS NOISY (OR CORRUPTED), WHEN THE PREPARATION AND

DETECTION BASIS DO NOT MATCH, HENCE ARE MARKED IN RED. (6) DETECTED STATES MAPPED ONTO GAUSSIAN KEY. (7) ONLY

THOSE KEY VALUES ARE RETAINED, WHICH HAVE THE SAME PREPARATION AND MEASUREMENT QUADRATURE

The resulting variables constitute the detected Gaussian
key, as shown in Step (6) of Table IV.

7) Following the measurement of all incoming states by
Bob, classical post-processing over the public channel
commences via a sifting operation. In this operation,
Alice and Bob reveal to each other which of the two
randomly selected quadratures they used for preparing
(Alice) and measuring (Bob) the information, discarding
non-tallying random bit pairs (i.e., u �= u′). A natu-
ral way of achieving this is that Alice reveals for each
Gaussian rv the specific value of u (i.e., whether she
displaced the q̂ or the p̂ quadrature), and Bob only
retains those, where he measured the relevant tally-
ing quadrature (i.e., u = u′), as shown in Step (7) of
Table IV.

Let us now consider the second variant of Fig. 11.
2) PM CV-QKD Relying on Squeezed States & Heterodyne

Detection: Another squeezed-state protocol was developed
in [118], in which Bob uses heterodyne detection rather
than homodyne detection and measures both the q̂ and p̂

quadratures for obtaining (bq , bp). In the sifting step of this
protocol, Bob then disregards one of his quadrature measure-
ments, depending on Alice’s specific choice of quadrature
preparation. This protocol can be seen as a noisy version of
the protocol with squeezed states and homodyne detection,
since the heterodyne detection imposes vacuum noise on the
measurement. When Bob’s Gaussian rv are the reference of
error correction (see below) in the classical post-processing,
the heterodyne detection protocol exhibits a better robustness
against the channel noise than the protocol associated with
homodyne detection [118]. Let us now focus our attention on
the third variant of Fig. 11.

3) PM CV-QKD Relying on Coherent States & Homodyne
Detection: Table V gives an example of the PM CV-
QKD protocol using coherent states and homodyne detec-
tion [13], [14], [116], which can be described as
follows:

1) Alice generates random real numbers aq cho-
sen from an independent Gaussian distribution of
variance v ′m .
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TABLE V
PREPARE-AND-MEASURE CV-QKD EXAMPLE RELYING ON COHERENT STATES AND HOMODYNE DETECTION (IN THE ABSENCE OF EVE AND NOISE).

(1) REAL RANDOM GAUSSIAN VARIABLE aq GENERATED. (2) REAL RANDOM GAUSSIAN VARIABLE ap GENERATED. (3) COHERENT STATE PREPARED

HAVING A MEAN VALUE OF (aq , ap). (4) p̂ OR q̂ DETECTION QUADRATURE RANDOMLY SELECTED. (5) RECEIVED STATES DETECTED USING THE

QUADRATURES OF STEP (4). (5) DETECTED STATES MAPPED ONTO GAUSSIAN KEY. (6) ALICE RETAINS aq OR ap DEPENDING ON BOB’S

DETECTION QUADRATURES. THE RETAINED KEY VALUES ARE MARKED IN GREEN IN STEPS (1) AND (2)

2) Alice also generates another set of random real numbers
ap , which are also chosen from an independent Gaussian
distribution of variance v ′m .

3) Alice then prepares a coherent state, which is modu-
lated (displaced) by the amounts of aq and ap generated
previously in Steps (1) and (2), so that the result-
ing coherent state has a mean value of (aq , ap). For
example, aq = 0.9 and ap = 1.2 are chosen for the
first element of key in Steps (1) and (2), respectively.
Consequently, Alice prepares a coherent state having a
mean value of (0.9,1.2). The prepared coherent states
transmitted over an insecure quantum channel to Bob.

4) Bob generates a random variable u′ for each incoming
state and chooses either the q̂ or the p̂ quadrature for
detection depending on the value of u′.

5) Finally, Bob measures either the q̂ or the p̂ quadrature
component using homodyne detection depending on the
chosen quadratures of Step (4), hence obtaining a real
variable bq or bp , respectively. For example, as can be
seen in Table V, p̂ quadrature is chosen in Step (4)
for detecting the first element of the key. Consequently,
when Bob measures the first received coherent state
using the p̂ quadrature, he obtains a value of 1.2.

6) When the quantum communication phase is completed
and all the incoming states have been measured by Bob,
classical post-processing over a public channel is com-
menced by applying sifting, where Bob reveals for each
Gaussian rv the specific value of u′ (i.e., whether he
measured the q̂ or the p̂ quadrature), and Alice retains
aq or ap depending on the value of u′. Note that in this
protocol only one of the two real random variables gen-
erated by Alice is used for the key after the sifting stage.
For example, Alice only retains ap = 1.2 for the first
element of key, since Bob measured the received state
in the p̂ quadrature. The retained key values are marked
in green in Steps (1) and (2) of Table V.

Finally, we now consider the fourth variant of Fig. 11.
4) PM CV-QKD Relying on Coherent States & Heterodyne

Detection: Another coherent-state protocol was developed
in [117], where Bob uses heterodyne detection rather than
homodyne detection and measures both the q̂ and p̂ quadrature
components for obtaining (bq , bp) at the cost of imposing

vacuum noise on the measurement. In this protocol, sifting
is no longer needed, since both of the real random variables
generated by Alice are used for the generation of the key,
hence potentially resulting in higher secret key rates.

All the four CV-QKD protocols discussed above in the con-
text of Fig. 11 yield a correlated Gaussian key between Alice
and Bob. Please note that the Gaussian key generated in the
examples above is the same for both Alice and Bob. However,
when Eve is present or in the inevitable presence of noise,
Bob’s key will be a noisy version of Alice’s key. Hence, Bob
and Alice will possess correlated but unidentical Gaussian
keys. Analogous to the PM DV-QKD of Table III, parameter
estimation is then performed (in the classical post-processing
stage, following the sifting step), where the two parties reveal
a randomly chosen subset of their correlated but unidentical
Gaussian key. This allows them to estimate the parameters of
the channel, such as the channel’s transmissivity and the level
of channel noise, as well as to limit the maximum amount
of information Eve can infer about their values. This step is
followed by an information reconciliation procedure, which
involves quantizing Alice’s and Bob’s correlated Gaussian data
into binary keys as well as performing error correction, hence
resulting in a near-error-free binary key. As discussed further
later, this procedure normally relies on the employment of
low density parity check (LDPC) codes [20]. QKD can be
operated in two reconciliation scenarios, namely direct rec-
onciliation [141] and reverse reconciliation [13], [14]. In the
direct reconciliation protocol Alice’s Gaussian data constitute
the reference and she sends classical correction information to
Bob which may be overheard by Eve. Then Bob corrects his
key elements to arrive at the same values as Alice. By contrast,
in the reverse reconciliation protocol Bob’s Gaussian data con-
stitute the reference and must be estimated by Alice (also by
Eve) [13], [14]. Based on the upper bound on Eve’s informa-
tion estimated during the parameter estimation stage, Alice and
Bob apply a privacy amplification protocol, which produces a
shorter binary key in the spirit of expurgating Eve’s informa-
tion about the shared key, hence Eve’s information about the
key is substantially reduced.

Whilst in Fig. 11 we had four variants, now there are
eight protocol choices for characterising Gaussian CV-QKD
in a PM scheme. Explicitly, this is because we must consider
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Fig. 12. Gaussian CV-QKD implementation parameters.

both the type of quantum state (squeezed states or coherent
states) which Alice prepares, and also the type of detection
(homodyne or heterodyne detection) which Bob applies to
the received states, as well as the specific type of reconcilia-
tion (direct reconciliation or reverse reconciliation). However,
recall that all PM schemes have an equivalent EB scheme.
Hence, different variants of CV-QKD may be implemented
using the parameters summarized in Fig. 12. Next we discuss
the entanglement-based approach for implementing CV-QKD
protocols.

B. Entanglement-Based Approach

All the Gaussian PM protocols can be described in an uni-
fied way using the EB scheme [87], [135] shown in Fig. 13.
Here Alice generates a TMSV state, which we refer to as
ρ̂AB . She keeps mode A, and sends mode B to Bob. At some
time later, Alice and Bob use an unbalanced beam splitter of
transmissivity (TA at Alice’s side and TB at Bob’s side), to
carry out generalized heterodyne detections. If Alice applies
homodyne detection (TA = 1), the prepared state should be
a squeezed state and if Alice makes a heterodyne detection
(TA = 1/2), the prepared state should be a coherent state. The
security of the CV-QKD protocols is mostly analysed using
their equivalent EB scheme, where a two-mode entangled state
is shared between Alice and Bob before their detection obser-
vations. Note, in the security analysis of CV-QKD discussed
next we will assume that the number of exchanges between
Alice and Bob is considered to be infinite (the asymptotic
regime). This assumption is adopted in most QKD security
analyses since the ability to estimate some quantities (e.g.,
average values) exactly in the infinite sample-limit, greatly
simplifies the analyses.

C. CV-QKD Security Analysis

The most powerful, and most general, attack that Eve
can implement against QKD is known as a coherent
attack [87], [135]. In this attack, Eve prepares her ancillary
system in a global quantum state, which means she prepares
an arbitrary joint (entangled) state of the ancillae. After the
interaction of the global ancillary system with the signals sent
by Alice, the output ancillary system is stored in a quan-
tum memory. Once the classical post-processing relying on

Fig. 13. The quantum communication stage of Gaussian CV-QKD proto-
col in an EB scheme. Alice generates a Gaussian two-mode entangled state
(TMSV state) ρ̂AB . She keeps mode A, and sends mode B through an insecure
quantum channel to Bob. If Alice applies homodyne detection, i.e., TA = 1
(heterodyne detection, i.e., TA = 1/2) to mode A, she remotely projects
the other mode of the entangled state onto a squeezed state (coherent state).
Similar to the PM scheme, Bob measures the received state using a Gaussian
measurement (homodyne detection, i.e., TB = 1 or heterodyne detection,
i.e., TB = 1/2). As a result of their measurements, Alice and Bob end up
with two sets of classical Gaussian-distributed random variables which are
correlated to each other.

the public channel is finished, Eve applies an optimal joint
measurement over the ancillary system stored in the quantum
memory to maximize her knowledge on the quantum informa-
tion of the trusted parties. The security analysis of CV-QKD
in the face of coherent attacks is very complex. However,
under some trivial constraint imposed on the classical post-
processing protocol, collective attacks are just as detrimental
as coherent attacks [142]. In a collective attack against QKD
Eve prepares her ancillary system in a product state of identi-
cally prepared ancillae. After interaction of each ancilla with
a single signal sent by Alice, the output ancilla is stored in a
quantum memory. Once the classical post-processing is com-
pleted, Eve applies an optimal joint measurement over the
ensemble of ancillae in the quantum memory.

For a realistic reconciliation algorithm, the asymptotic CV-
QKD key rate (bits per pulse) against collective attacks is
given by [87] and [135] K = ξIAB − IE , where IAB is
the mutual information between Alice and Bob (i.e., between
Alice’s variable, a, as well as Bob’s variable, b), and 0< ξ <1
is the reconciliation efficiency. This efficiency reflects that in
a realistic reconciliation algorithm, Alice and Bob acquire not
all of the maximum attainable mutual information. Note that
for a perfect reconciliation algorithm we will have ξ = 1.
Furthermore, IE is the Holevo bound defined in [87] and [135]
as an upper bound on the quantum information stolen by Eve.
In the reconciliation step, if we assume that Alice’s data rep-
resents the reference, then IE = IAE is the Holevo bound
on the mutual information between Eve’s quantum memory
and Alice’s variable. By contrast, if we assume that Bob’s
data is the reference, then IE = IBE is the Holevo bound
on the mutual information between Eve’s quantum memory
and Bob’s variable. Note that IAB remains the same, regard-
less of whose data represents the reference of reconciliation.
It was also shown [143] that in the family of collective
attacks, Gaussian attacks based on Gaussian operations18 are

18Gaussian operations are linear operations with respect to the quadra-
ture amplitudes. Such operations maintain the Gaussian character of Gaussian
states.
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Fig. 14. Implementation of optimal collective Gaussian attack (entangling-
cloner attack) by Eve, in which Eve prepares an entangled state, ρ̂E1E2

,
interacts mode E1 with the signal sent from Alice in a beam splitter (with the
same transmissivity as the channel transmissivity). The output mode, mode B′,
is transmitted to Bob through a perfect quantum channel. The other output,
mode E ′

1, and the other arm of Eve’s entangled state, mode E2, are stored in
Eve’s quantum memory, to be collectively measured at the end of the classical
post-processing.

the optimal attacks Eve can implement so as to minimize the
secret key rate K.19

Let us consider a Gaussian CV-QKD protocol in the EB
scheme, where Alice generates a TMSV state ρ̂AB , and keeps
mode A while sending mode B to Bob over an insecure
quantum channel. In the optimal collective Gaussian attack
(which is also referred to as the entangling-cloner attack [14])
shown in Fig. 14, Eve models the quantum channel (with
transmissivity of 0 ≤ τ ≤ 1 and thermal noise variance of
ω ≥ 1) by a TMSV state ρ̂E1E2

having a quadrature vari-
ance of ω and a beam splitter of transmissivity τ . In fact,
the quadrature variance of ρ̂E1E2

and the transmissivity of
the beam splitter in Fig. 14 are tuned in order to inject the
same noise and to impose the same attenuation as in the
original channel, respectively. In this beam splitter Eve com-
bines the signal mode gleaned from Alice (mode B) with
one mode (mode E1) of the TMSV state. The first output
of the beam splitter (mode B′) which is the quantum signal
received by Bob is given by q̂B ′ =

√
τ q̂B +

√
1− τ q̂E1

, and
p̂B ′ =

√
τ p̂B +

√
1− τ p̂E1

. The second output of the beam
splitter (mode E ′

1) and mode E2 of the TMSV state ρ̂E1E2

are stored by Eve in a quantum memory. Once the classi-
cal post-processing over the public channel is completed, this
quantum memory is detected by means of an optimal joint
measurement which estimates Alice’s data (in direct reconcil-
iation) or Bob’s data (in reverse reconciliation). Note that in a
Gaussian CV-QKD protocol, the asymptotic key rate against
optimal collective Gaussian attacks can be calculated through
the equivalent EB scheme based on the covariance matrix of
the two-mode entangled state shared between Alice and Bob
before their detection observations [87], [135], [136].

V. FREE-SPACE CHANNELS TO AND FROM SATELLITES

A. Sources of Loss in FSO Channels

The main sources of loss in FSO communication are
diffraction, absorption, scattering and atmospheric turbu-
lence [144]–[148], as encapsulated in Fig. 15. As will be dis-
cussed in this section, Diffraction-induced beam-spreading and

19Gaussian collective attacks are as strong as coherent attacks in the limit
of an infinite number of quantum states exchanged, however, it is not known
this is the case for a realistic finite-length key protocols.

Fig. 15. Sources of losses in FSO channels and their effects on optical signal.
Diffraction-induced beam-spreading and turbulence-induced beam-wandering
as well beam-spreading dominate in good weather conditions.

turbulence-induced beam-wandering as well beam-spreading
are dominant in good weather conditions, while absorption,
scattering and scintillation are known to be relatively minor
issues in good weather conditions.

Diffraction: Diffraction is a ubiquitous form of the nat-
ural wave propagation phenomenon experienced by light
beams, and leads to beam-spreading (beam-broadening).
Consequently, a certain fraction of the transmitted beam may
not be collected by the receiver, since the diameter of the
received beam is longer than the receiver’s aperture, hence
resulting in divergence loss, which increases upon increasing
the length of the link. This loss may be mitigated by increasing
the receiver’s aperture as well as by reducing the transmis-
sion wavelength. However, a suitable compromise between the
divergence loss, receiver size and cost as well as other trans-
mission losses must be struck. Furthermore, a narrow beam is
desirable to reduce diffraction losses, but this makes the link
more sensitive to any misalignment between the transmitter
and receiver.

Absorption and scattering: Absorption and scattering are
imposed by the constituent gases and particles of the atmo-
sphere. Both absorption as well as scattering impose atten-
uation on an optical wave. Explicitly, absorption is the phe-
nomenon where the energy of optical wave is absorbed by
the atmospheric particles, while scattering results in redistribu-
tion of the optical energy in arbitrary directions. Furthermore,
both effects are strongly wavelength-dependent and become
more pronounced when the transmission wavelength is com-
parable to the size of the atmospheric particles. Both scattering
and absorption can be neglected, since they can be substan-
tially mitigated by an appropriate choice of the communication
wavelength. Explicitly, there is a negligible absorption at
the visible wavelengths spanning from 0.4 to 0.7 mm. For
these reasons, scattering and absorption was also neglected
in [18], [54], [100]–[102], [110], and [149]–[151]. However,
adverse weather conditions, for example fog, rain and snow,
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may severely limit the transmissivity of atmospheric channels,
as discussed below:

• Fog includes particles having dimensions comparable to
the transmission wavelength, hence it is the main source
of atmospheric absorption and scattering. More specifi-
cally, dense fog may ultimately make optical transmission
infeasible [152]. The impact of fog is generally quanti-
fied in terms of atmospheric visibility and the associated
attenuation per unit length in dB/km. Explicitly, visi-
bility is defined as the distance traversed by a parallel
beam of light until its intensity drops to 2% of the orig-
inal value [153], while the specific attenuation of fog in
dB/km, denoted as αfog, may be represented using the
popular empirical Mie scattering model [147]:

αfog(λ) =
3.91

V

(
λ

550

)−p

, (29)

where V is the visibility range in km, λ is the operating
wavelength (550 nm is used as a reference wavelength
for visibility range) and p is the size distribution coef-
ficient of scattering obtained from the Kim or Kruse
model [153]. Specifically, the Kim model gives [154]:

p =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1.6 V > 50
1.3 6 < V < 50
0.6V + 0.34 1 < V < 6
V − 0.5 0.5 < V < 1
0 V < 0.5,

(30)

while the Kruse model gives [155]:

p =

⎧
⎨

⎩

1.6 V > 50
1.3 6 < V < 50

0.585V
1
3 V < 0.6.

(31)

• From the detrimental effects of fog, rain and snow, rain
has the least impact, because the size of rain droplets
is large as compared to the transmission wavelength.
The specific attenuation due to rain my be predicted
using [147]:

αrain = k1R
k2 , (32)

where R is the rain rate in mm/hr, while k1 and k2 are
modeling parameters, whose value depends on both the
size of rain droplets and on the temperature.

• The attenuation due to snow is higher than that of rain,
but less than that of fog. However, heavy snow may
severely reduce the link’s availability, making it compa-
rable to that of fog. The specific attenuation of snow is
given by [147]:

αsnow = aS b , (33)

where S is the snow rate in mm/hr, while the constants
a and b are set to:

a = 5.42× 10−5 + 5.49, b = 1.38 (34)

in dry snowy conditions and to:

a = 1.02× 10−4 + 3.78, b = 0.72 (35)

in wet snowy conditions.

Hence, adverse weather conditions may significantly attenuate
the optical signal, hence substantially degrading the avail-
ability of the FSO link. The transmission wavelength should
be judiciously chosen to minimize these losses. Furthermore,
sufficient link margin should be maintained for the sake of
enhancing the link’s availability.

Atmospheric turbulence: Atmospheric turbulence arises due
to random fluctuations in the refractive index caused by
stochastic variations of temperature. The atmosphere con-
tains turbulent random inhomogeneities of various scales -
also referred to as turbulent eddies [145]. They range from
a large-scale (the outer scale of turbulence) to a small-scale
(the inner scale of turbulence). These eddies affect optical
wave-propagation through the atmosphere in different ways,
depending on their size. In general, large scale eddies produce
refractive effects and hence predominately distort the phase
of the propagating wave, while small scale eddies are mostly
diffractive in nature and therefore distort the amplitude of the
wave [144], [145]. The most important effects resulting from
the atmospheric eddies are beam-wandering, beam-spreading
and beam-scintillation [144]–[146], [148]. We describe each of
these three effects in more detail: (i) Random deviation of the
beam from its original path is referred to as beam-wandering,
which is caused by large-scale turbulent eddies, whose
size is large compared to the beam-width. Beam-wandering
causes time-varying power fades [54], [145], [146], [148].
(ii) Atmospheric turbulence results in a randomly fluc-
tuating beam-width in the receiver’s aperture plane. The
broadening of the beam-width (when averaged over time)
beyond that due to diffraction is termed as turbulence-induced
beam-spreading [54], [57], [101], [145], [148], [156]. (iii) We
define scintillation by fluctuations in the received irradi-
ance (intensity) within the beam’s cross section. Scintillation
includes the temporal variation in the received irradi-
ance and spatial variation within the receiver’s aperture.
Scintillation is mainly caused by small-scale turbulent
eddies [144]–[146], [148].

B. Sources of Loss in FSO Channels to and From Satellites

In satellite-based quantum communications, the uplink and
downlink channels are very different, since the atmospheric
turbulence layer only occurs near the transmitter on an uplink,
and only near the terrestrial receiver on a downlink. In
the following, we briefly highlight how these two chan-
nels are affected by the above-mentioned turbulence-induced
effects.

Uplink channels: For typical dimensions of the aperture
size embedded in the ground station, the uplink optical beam
first propagates through the turbulent atmosphere and its
beam-width is much narrower than the size of the large-
scale turbulent eddies [54], [145], [146], [148]. This makes
beam-wandering the dominant effect in the uplink [54], [145],
[146], [148]. Turbulence-induced beam-spreading also occurs
to some extent in the uplink [54], [145]. As a result, the beam
received by the satellite (when averaged over time) is wider
than that associated with diffraction [54], [145]. Fig. 16 illus-
trates these two atmospheric effects, namely beam-wandering
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Fig. 16. Illustration of beam-wandering (i.e., random deviation of the beam
from its original path) and beam-spreading (including spreading induced by
diffraction and spreading induced by turbulence) in uplink channels.

and beam-spreading in the uplink. Scintillation is not dominant
in the uplink [145], [148].

Downlink channels: In contrast to the uplink case, the down-
link optical beam propagates through the turbulent atmosphere
only in the final part of its path. Considering the typical aper-
ture size of the optical system embedded in the satellite, the
beam-width at its entry into the atmosphere is likely to be
larger than the scale of the turbulent eddies. As such, beam-
wandering in the downlink tends to be less important relative
to uplink channels [54], [145], [146], [148]. The photonic
losses in the downlink are likely to be dominated by diffraction
effects [54], [57]. Scintillation can occur to some extent in the
downlink [145], [148]. However, as a consequence of aper-
ture averaging, the downlink scintillation effects imposed on
the detector tend to be negligible, when the receiver includes
a large-diameter (>0.5 m) telescope [144], [145], [148].

C. Atmospheric Fading Channels

In atmospheric channels the transmissivity, ηt , fluctuates
due to turbulence-induced effects. These fading channels
can be characterized by the probability distribution of the
transmission coefficients, η (where η =

√
ηt ), which is

denoted by p(η). For a fading channel associated with the
probability distribution p(η) the mean fading loss in dB is
given by −10log10(

∫ η0
0 η2p(η)dη), where η0 is the maximum

value of η.
As discussed in Section V-B, beam-wandering is the domi-

nant turbulence-induced effect in the uplink. As an aside, we
note that beam-wandering is expected to dominate the fading
contributions in many terrestrial atmospheric communication
scenarios [100], [102], [110], [111], [150].

D. Beam-Wandering Model

Here, we describe the probability distribution of the chan-
nel coefficients when the channel effects are dominated by
beam-wandering. In the first instance we will assume that the
beam-width at the receiver’s aperture is fixed. That is, initially
we will ignore any fluctuations in the beam-width caused by
atmospheric turbulence.

In practice, beam-wandering causes the beam-center to be
randomly displaced (along the x and y coordinates) from the
center of the receiver’s aperture plane. More explicitly, the

beam’s center position (xl , yl ) randomly fluctuates around
a fixed point, (xd , yd ), hence its two-dimensional Gaussian
distribution is given by [100]

p(xl , yl ) =
1

2πσ2b
exp

(

− (xl − xd )
2 + (yl − yd )

2

2σ2b

)

, (36)

where σb is the beam-wandering standard deviation. Thus,

the beam-deflection distance, l =
√

x2l + y2l , i.e., the dis-
tance between the beam-center and the aperture-center at (0, 0)
fluctuates according to the Ricean distribution [100]

p(l) =
l

σ2b
I0

[
ld

σ2b

]

exp

(

− l2 + d2

2σ2b

)

, (37)

where d =
√
x2d + y2d is the distance between the aperture-

center and the fluctuation-center (xd , yd ), while I0[.] is the
modified Bessel function. Note that d = 0 means that the
beam-center fluctuates around the aperture-center. In beam-
wandering the channel transmission coefficient, η, is a function
of the beam-deflection distance, l, and is given by [100]

η2 = η20 exp

(

−
(

l

S

)γ)

, (38)

where γ is the shape parameter, S is the scale parameter and
η0 is the maximum value of η. The latter three parameters are
given by

γ = 8h
exp(−4h)I1[4h]

1− exp(−4h)I0[4h]

[

ln

(
2η20

1− exp(−4h)I0[4h]

)]−1

,

S = β

[

ln

(
2η20

1− exp(−4h)I0[4h]

)]−(1/γ)

,

η20 = 1− exp(−2h), (39)

where I1[.] is the modified Bessel function, and where h =
(β/W )2, with β being the receiver’s aperture radius and W the
beam-spot radius at the receiver’s aperture. Note that both β
and W have the same units (meter). A schematic illustration of
beam-wandering is shown in Fig. 17. According to Eqs. (37)
and (38), the probability distribution p(η) can be described by
the log-negative Weibull distribution [100]

p(η) =
2S2

σ2bγη

(

2 ln
η0
η

)
(

2
γ
−1

)

I0

[
Sd

σ2b

(

2 ln
η0
η

) 1
γ

]

× exp

(
−1

2σ2b

[

S2
(

2 ln
η0
η

) 2
γ

+ d2

])

(40)

for η ∈ [0, η0], with p(η) = 0, otherwise. In some of the
earlier literature, e.g., [157], the log-normal distribution was
used. However, at the time of writing we are aware that the
log-negative Weibull distribution more accurately describes
the operationally important distribution tail [100]. In Fig. 18
the log-negative Weibull distribution is shown for fixed val-
ues of the beam-wandering standard deviation σb and the
receiver’s aperture radius β, and for different values of the
beam-spot radius at the receiver’s aperture W (the mean fading
loss increases with increasing W). In Fig. 19 the log-negative
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Fig. 17. A schematic illustration of beam-wandering in the receiver’s aperture
plane, where the beam-center (xl , yl ) is randomly displaced (along the x and
y coordinates) from the center of the receiver’s aperture plane located at (0, 0).

Fig. 18. The log-negative Weibull distribution for σb = 0.7, β = 1, and
d = 0 with different values of W. For these parameters, W = 0.8 leads to a
mean fading loss of 2.7 dB and W = 2 leads to a mean fading loss of 5.5 dB.

Weibull distribution is shown for the fixed values of W and
β, with different values of σb (the mean fading loss increases
with increasing σb).

Let us now we analyse the influence of beam-width fluc-
tuations (caused by atmospheric turbulence) on the beam-
wandering model just given. We refer to this effect as
turbulence-induced beam-spreading. In doing this analysis, we
will assume beam deformation does not occur - meaning the
beam shape remains circular as it traverses the atmospheric
channel (beam-deformation has been analysed in [101]). In
turbulence-induced beam-spreading, the beam-spot radius W
randomly changes in the receiver’s aperture plane [101] with
the probability distribution p(W). Including this effect in our
beam wandering model, the transmission coefficient of the
channel, η, is now a function of the two random variables
l and W according to Eqs. (38) and (39). We define a new
variable Θ by setting Θ = 2 ln(Ww0

), where w0 is the initial

Fig. 19. The log-negative Weibull distribution for W = 1.1 and β = 1, and
d = 0 with different values of σb . For these parameters, σb = 1.5 leads to
a mean fading loss of 7.4 dB and σb = 5.5 leads to a mean fading loss of
17.8 dB.

beam-spot radius at the radiation source. This is useful since
Θ randomly changes according to a normal distribution with
the mean value 〈Θ〉 and standard deviation σΘ [101]. Hence
we have

p(Θ) =
1

√
2πσ2Θ

exp

(

− (Θ− 〈Θ〉)2
2σ2Θ

)

. (41)

With the inclusion of beam-width fluctuations in beam wan-
dering, the calculation of a closed-form solution for p(η) is not
straightforward. However, given the knowledge of the proba-
bility distribution of p(l) of Eq. (37) and p(Θ) of Eq. (41),
we can calculate certain important quantities after averaging
over all values of the channel’s transmission coefficient. For
instance, the mean fading loss in dB of a fading channel
with the inclusion of beam-width fluctuations is now given
by −10log10(

∫
η2(l ,Θ)p(l ,Θ)dldΘ). Assuming that atmo-

spheric turbulence is isotropic [101] and d = 0, the mean
fading loss in dB of a fading channel (after the inclusion
of beam-width fluctuations in the beam-wandering model) is
given by −10log10(

∫
η2(l ,Θ)p(l)p(Θ)dldΘ). Note, with the

inclusion of beam-width fluctuations, the maximum value of
the channel’s transmission coefficient η0 is no longer fixed but
rather randomly changes.

Optical losses in the downlink are usually orders of mag-
nitude lower relative to uplinks [40], [66]–[68]. This means
that if the “price” is paid in terms of placing the critical quan-
tum technology on board the satellite (rather than the easier
case of maintaining the quantum technology in ground sta-
tions), then much better quantum communication channels can
be obtained. As alluded to earlier, the principal reason for
this improvement is that in the downlink, diffraction of the
beam is the main contributor to photon losses - not beam-
wandering as in the uplink (see Fig. 20). The important fact
is that by the time the downward-link beam hits the main
turbulence-inducing layers of the atmosphere (this layer com-
mences at about 20 km from ground level) the beam is much
closer to its target and therefore any induced beam-wandering
is less effective. Clearly, as opposed to most communication
channels, there will be no directional reciprocity in channel
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Fig. 20. Illustration of diffraction-induced beam-spreading as the main
contributor to photon losses in downlink channels.

throughput for quantum communications with satellites. The
recent experimental deployments of quantum communication
in space have mostly exploited the more favourable down-
link channel conditions [66], [67]. The losses in the downlink
can then be modelled quite simply (to first order) through
diffraction-only effects with the beam divergence following a
λ/D scaling, where D is the diameter of the satellite telescope
and λ is the transmission wavelength [40].

E. Estimation of a FSO Channel

Note that the rate of atmospheric fluctuations we consider
are on the order of a few kHz, which is at least a thousand
times slower than the typical transmission rates [145]. This
means that the channel’s transmission coefficient can be mea-
sured at the cost of additional (classical) transmission and
receiver complexity [17], [149], [150], [158]. These chan-
nel measurements may be carried out using several schemes,
e.g., by transmitting coherent (classical) light pulses that
are intertwined with the quantum information [149], [150]
or by transmitting a local oscillator (i.e., a strong coher-
ent laser pulse which is mixed with the signal field in the
homodyne detection and serves as a phase reference) [17].
In [17] measurement of the atmospheric channel’s transmis-
sion coefficients was carried out in real time at the receiver
by passing a local oscillator through the channel in a mode
orthogonally polarized to the signal. The technique of measur-
ing the atmospheric channel’s transmission coefficient by an
auxiliary classical laser beam was introduced in 2012 [149],
and its practical employment was demonstrated for a one-way
communication link in 2015 [150]. The same technique based
on the intensity of the signal itself was realized in [158].

VI. ENTANGLEMENT DISTRIBUTION AND CV-QKD
IMPLEMENTATION VIA SATELLITE

A. Entanglement Distribution and Standard QKD Protocols

In the context of satellite-based quantum communication
we are faced with two different channels, namely, the uplink

Fig. 21. Illustration of various architectures for implementing satellite-based
quantum communication. In (a) ((b)) quantum states are transmitted from
the ground station (satellite) to the satellite (ground station) over an uplink
(a downlink) channel. In (c) quantum states are transmitted from one ground
station over an uplink channel to the satellite, and then reflected at the satel-
lite to the second ground station over a downlink channel. In (d) quantum
states are generated on board the satellite, and then transmitted through dif-
ferent downlink channels to separate ground stations. In (e) quantum states are
transmitted from two separate ground stations over two different uplinks to
the satellite, at which quantum measurements are performed on the received
quantum states, and the classical measurement results are communicated back
to the ground stations.

(ground-to-satellite) channels and the downlink (satellite-to-
ground) channels. In the uplink, the ground station trans-
mits signals to the satellite receiver, and in the downlink,
the satellite transmits signals to the ground station receiver.
Correspondingly, there are several possible architectures for
implementing satellite-based quantum communication depend-
ing on the types of links utilized. Some of these config-
urations are illustrated in Fig. 21. Explicitly, the schemes
(a) and (b) illustrate the uplink and downlink channels,
respectively (both links have been demonstrated in the DV
domain [65], [66], [68]). In scheme (c) of Fig. 21, the deploy-
ment of quantum technology at the satellite is minimized, since
the satellite is utilized only in a reflector mode (i.e., a sim-
ple relay). As a proof of concept for the reflecting paradigm,
we note the recent experimental tests of [47]–[49], where
single photons (weak laser coherent pulses) emitted by the
ground station were reflected (and subsequently detected on
the ground) by a LEO satellite via the satellite’s cube retro-
reflectors. In scheme (c) the complex quantum engineering
components are limited to the ground stations, since the source
of quantum states is located in one of the ground stations and
the receiver of quantum states is located in the other ground
station. Although satellite reflection towards another station
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constitutes a sophisticated engineering task in its own right,
it does not require onboard generation of quantum commu-
nication information. There are many practical advantages in
deploying quantum communication technology at the ground
stations, such as lower-cost maintenance, and the ability to
rapidly upgrade as new quantum technology matures. The
other schemes, (d) and (e), in Fig. 21 can be considered as
space-based high-complexity schemes, since they involve the
deployment of quantum technology at the satellite. In scheme
(d) (again already demonstrated for DV states [67]) the source
of quantum states is located on board the satellite, with both
ground stations acting as receivers. In scheme (e) the two
ground stations transmit quantum states to the satellite. In the
satellite, quantum measurements are performed on the received
states and the classical measurement results are communicated
back to the ground stations. Scheme (e) can be utilized in
support of entanglement swapping and measurement-device-
independent protocols so as to implement QKD between the
two ground stations.

Let us reconsider the quantum communication architectures
of Fig. 21 for CV entanglement distribution and for CV-QKD
implementation. We assume that the source of quantum com-
munication in the transmitter(s) is a two-mode entangled state
associated with modes 1 and 2. In the scheme (a) (the scheme
(b)) of Fig. 21, a two-mode entangled state is generated by
Alice at the ground station (satellite) with one mode, mode 1,
kept by Alice, while the other mode, mode 2, is transmit-
ted to Bob located at the satellite (ground station) over the
uplink (downlink). In the scheme (c) of Fig. 21, a two-mode
entangled state is generated by Alice at the ground station
transmitter with one mode, mode 1, held at the ground sta-
tion transmitter and the other mode, mode 2, transmitted over
the uplink to the relay satellite. The received mode is then
reflected in the satellite and transmitted through the downlink
to Bob at the ground station receiver. In the scheme (d) of
Fig. 21, a two-mode entangled state is generated on board of
the satellite with both modes then sent over the separate down-
links to Alice and Bob located at the separate ground stations.
In the scheme (e) of Fig. 21, Alice and Bob are located in
the separate ground stations, both initially possessing a two-
mode entangled state. One mode of each entangled state is
kept by a ground station transmitter and the second mode of
each state is transmitted over the uplink to the relay satellite,
in which on-board entanglement swapping is performed on
the arriving modes. To elaborate a little further, entanglement
swapping [7] is a standard quantum protocol conceived for
establishing entanglement between distant quantum systems
that have never interacted [159]–[162]. It is the central mech-
anism of quantum repeaters [31], enabling the distribution
of entanglement over large distances. In the scheme (e) of
Fig. 21, the received modes are swapped at the satellite via a
CV Bell measurement [82], where the two modes are mixed
through a balanced beam splitter. Explicitly, the q̂ quadrature
of one of the output modes of the beam splitter and the p̂
quadrature of the output mode are separately measured by
two homodyne detectors. This process is sometimes described
by saying that the two output modes of the beam splitter are
conjugately homodyned [82]. The classical outcome of the

Fig. 22. Entanglement swapping between two ground stations via satellite:
The two-mode entangled state of modes 1 and 2 (modes 3 and 4) is initially
owned by Alice (Bob). Mode 1 (mode 4) is kept by Alice (Bob) and mode 2
(mode 3) is then transmitted over the uplink to the relay satellite. The received
modes 2′′ and 3′′ (where the ′′ indicates that the modes have now incurred
losses) are mixed through a balanced beam splitter and the q̂ quadrature of
one of the output modes and the p̂ quadrature of the other one are measured
by two homodyne detectors. The classical outcome of the Bell measurement
is then communicated to Alice and Bob. As a result, there would exist an
entangled state shared between modes 1 and 4.

Bell measurement is then communicated to Alice and Bob
so that they can optimally displace their modes, according to
the measurement outcome, in order to maximize the resultant
entanglement shared between the ground stations. This entan-
glement swapping scheme between two ground stations via
satellite is shown more explicitly in Fig. 22.

As a result of the entanglement distribution in each quan-
tum communication scheme of Fig. 21, there would exist an
entangled state shared between Alice and Bob. Once the entan-
gled states have been shared between the stations, for each
scheme of Fig. 21, Alice and Bob are able to invoke CV-
QKD protocols in the EB scheme by applying homodyne or
heterodyne detection of their own modes. The level of entan-
glement produced by the quantum communication schemes
considered here as well as the quantum key rates of the EB CV-
QKD protocols in these schemes have recently been analyzed
in [105]–[109].

In the schemes (a), (b), and (c) of Fig. 21 the entan-
gled source originates from one of the trusted parties (Alice).
However, in the scheme (d) of Fig. 21 the entangled source
originates from the satellite, which in some circumstances
may be controlled by the eavesdropper, Eve. In [136], it has
been shown that in the context of the EB CV-QKD protocols
Alice and Bob can still generate a secure key, even when Eve
controls the entanglement source.

B. Measurement-Device-Independent QKD Protocols

In the scheme (e) of Fig. 21 the entangled source orig-
inates from both trusted parties (Alice and Bob), however,
the Bell measurement at the satellite may be controlled by
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Eve. In [163], it has been demonstrated that in CV-QKD pro-
tocols the secret key to be shared between the two trusted
parties can be generated by the measurement of an untrusted
intermediate relay. In measurement-device-independent (MDI)
protocols of QKD [163]–[165], Alice and Bob are not con-
nected by direct links, and an intermediate relay is used for
completing the communication link. In MDI protocols the
measurement device is the intermediate relay, whose opera-
tion may be controlled by an adversary. Fig. 22 is in fact one
example of a scenario over which a MDI protocol may be
implemented.

The security of CV-MDI protocols is usually analysed using
EB schemes that invoke CV entanglement swapping at the
relay similar to that shown in Fig. 22 Although CV-MDI
protocols are practically implemented in a PM scheme (see
below).

In the EB equivalent of the Gaussian MDI-QKD protocols, a
pair of TMSV states associated with the quadrature variance of
v = cosh (2r) (where r is the two-mode squeezing), is initially
owned by Alice and Bob. One mode of each entangled state is
held by Alice and Bob, while the second mode of each state is
transmitted to the intermediate relay over the insecure channel.
The received modes are swapped via a CV Bell measurement
at the intermediate relay. The swapping process continues by
the relay communicating the Bell measurement result through
a classical public channel to Alice and Bob. After receiv-
ing the Bell measurement outcome, Bob displaces his mode,
while Alice keeps her mode unchanged. Then Alice and Bob
measure their modes by homodyne (or heterodyne) detectors
to create correlated data. After the establishment of a suffi-
ciently large amount of correlated data, Alice and Bob proceed
with the classical post-processing over an authenticated public
channel to create a secret key.

In the EB scheme of the Gaussian MDI-QKD protocols, if
Alice and Bob apply a homodyne detection of their modes, the
scheme becomes equivalent to the PM scheme, in which Alice
and Bob prepare squeezed states, and if Alice and Bob apply
a heterodyne detection of their modes, the scheme becomes
equivalent to the PM scheme in which Alice and Bob prepare
coherent states. We discus these PM schemes next.

The MDI implementation of Gaussian CV-QKD protocols
in the PM scheme depends on whether the Gaussian resource
is a squeezed or a coherent state. If a squeezed state, Alice
prepares her mode in a squeezed state with the quadrature
variance v = exp(2rs), where rs is the single-mode squeez-
ing. Which one of the two quadratures is to be squeezed is
based on a randomly generated bit. The chosen quadrature
is then modulated by a random Gaussian-distributed variable
with zero mean and variance vm conditioned on vm = v−1/v .
The same procedure is applied independently at Bob’s side.
If the Gaussian resource is a coherent state, Alice prepares
her coherent-state mode with each quadrature independently
modulated by a random Gaussian-distributed variable having
zero mean and variance of v ′m . Likewise Bob.

Following transmission to the satellite of the modes belong
to Alice and Bob, and irrespective of the Gaussian resource
used, the satellite makes a CV Bell measurement on each mode
pair, announcing the results. Alice and Bob undertake some

modification of their data based on these results and undergo
some classical post-processing to end up with a shared key.
More details of this process can be found in [108].

Note the modulation variance v ′m (in the protocol
using coherent states) can reach very high values, e.g.,
v ′m = 60 [163]. With the use of squeezed states, however,
achieving high values of squeezing reamins experimentally
challenging. As such, quadrature variance v and of the modu-
lation variance vm are limited in the range of values attained.
Note that v = 5.05 is equivalent to the two-mode squeezing
of 10 dB [166]. Note also that vacuum squeezing at 15 dB is
currently the highest obtainable in any experiment [167].

Previous contributions on MDI-QKD protocols have mainly
been focussed on fixed-attenuation channels [30], [163],
[168]–[177]. In [108], a MDI implementation has been inves-
tigated in order to establish Gaussian CV-QKD protocols
between two ground stations, where the communication occurs
between the ground stations via a LEO satellite over a pair
of independent atmospheric channels. In this CV-MDI pro-
tocol the measurement device is the satellite itself, which
can be controlled by an adversary. In [108], it has been
demonstrated that while the CV-MDI protocol is only fea-
sible for low-loss fixed-attenuation channels, the protocol is
capable of achieving a beneficial secure key rate even for
transmission over high-loss atmospheric channels. Note that
in MDI-QKD the devices of Alice and Bob have to be
trusted [30], [163], [168]–[177]. Nonetheless, it has recently
been shown that QKD is possible even when the device of
one of the parties is untrusted [178]–[180]. The security of
this one-sided device-independent protocol using CV quan-
tum states has recently been investigated both theoretically
and experimentally [181], [182].

We note that MDI protocols represent a step closer to full
device-independent protocols. These latter protocols are based
on Bell violation measurements at the receivers, and repre-
sent the most robust form of QKD (the form that requires
the least number of assumptions). Although some work has
been carried out in relation to CV states in device independent
QKD (e.g., [183]), practical progress is limited due to the very
low key rates expected. CV MDI-QKD protocols, with their
reduced assumptions on how the measurement device must
operate, currently represent the most robust form of QKD that
still lead to reasonable key rates. The MDI protocols remain
unconditionally secure in their generation of keys - the best
an adversary in charge of the measurement device can do is
drive the key rate to zero (e.g., by broadcasting false Bell
measurement results).

C. Entanglement Determination and Quantum Key Rate
Computation

The evolution of quantum states as they prorogate through
atmospheric fading channels can be considered in two differ-
ent scenarios. In the first scenario, the transmission coefficient
η of the atmospheric fading channel is unknown, while in
the second scenario it is known. In this latter scenario, it is
assumed that the transmission coefficient can be measured in
real time at the receiver.



HOSSEINIDEHAJ et al.: SATELLITE-BASED CV QUANTUM COMMUNICATIONS: STATE-OF-THE-ART AND PREDICTIVE OUTLOOK 907

1) Scenario 1 (The Transmission Coefficient of the Fading
Channel Is Unknown): Here, we consider the distribution of
a two-mode entangled state over satellite-based atmospheric
fading channels. In fact, we assume that the transmitter ini-
tially possesses a two-mode (mode 1 and mode 2) entangled
state ρ̂, with one (or more) of the modes transmitted to the
receiving station(s) through atmospheric fading channels. This
leads to two operational settings.

Single-mode transfer: In this setting we assume that mode 1
of ρ̂ remains at the ground station (satellite), while mode 2 of
ρ̂ is transmitted to the satellite (ground station) over the fading
uplink (downlink) characterized by the probability distribution
p(η) and the maximum transmission coefficient of η0. The
density operator of the two-mode state at the ground station
and satellite for each realization of the transmission coefficient
η is given by ρ̂′(η). Since η is a random variable, the elements
of the total density operator of the resultant mixed state ρ̂′t are
calculated by averaging the elements of the density operator
ρ̂′(η) over all possible transmission coefficients of the fading
channel, giving the ensemble-averaged state of [107]

ρ̂′t =
∫ η0

0
p(η)ρ̂′(η) dη. (42)

Now, let us consider the initial two-mode entangled state
ρ̂ at the transmitter being a Gaussian state [102], [103],
[105], [106], [184]. In this case the resultant ensemble-
averaged state ρ̂′t is a non-Gaussian mixture of the Gaussian
states ρ′(η) obtained for each realization of η. Since the
resultant ensemble-averaged state shared by the ground sta-
tion and the satellite is a non-Gaussian state, it cannot
be completely described by its first and second moments.
Therefore, the final entanglement computed based on the
covariance matrix of the resultant ensemble-averaged state
will represent only the Gaussian entanglement between the
ground station and the satellite, but not the total distributed
entanglement [102], [103], [105], [184]. In order to calculate
the total shared entanglement between the stations, the entan-
glement has to be computed based on the density operator of
the resultant ensemble-averaged state [107].

Note that if we use the shared entanglement created for sub-
sequent use in QKD, i.e., a EB CV-QKD protocols operating
over atmospheric fading channels,20 then the same concept
(use of ensemble averaged states) is invoked when the quan-
tum key rate is calculated. Note that when the quantum key
rate is in fact calculated based on the covariance matrix of the
resultant ensemble-averaged state ρ̂′t , the key rate computed is
only related to the Gaussian component of ρ̂′t [106].

Two-mode transfer: In this setting we assume that the satel-
lite initially possesses a two-mode entangled state ρ̂, with
mode 1 transmitted to ground station 1 over a fading down-
link obeying the probability distribution of p1(η1) and having
the maximum transmission coefficient of η01, while mode 2 is
transmitted to ground station 2 over a different fading down-
link characterized by the probability distribution p2(η2) and

20Note that in [185], a fast-fading channel has been considered where the
users are only able to estimate the probability distribution of the channel’s
transmission coefficient but not its instantaneous values, while the eaves-
dropper has full control of the fast-fading channel, so that she chooses the
instantaneous transmission coefficient of the channel.

having the maximum transmission coefficient of η02. Here,
the two fading downlinks are assumed to be independent.
The density operator of the two-mode state at the ground
stations for each realization of the transmission coefficients
η1 and η2 is given by ρ̂′(η1, η2). The elements of the total
density operator of the resultant mixed state ρ̂′t are cal-
culated by averaging the elements of the density operator
ρ̂′(η1, η2) over all possible transmission coefficients of the
two separate fading channels, giving the ensemble-averaged
state of [107]

ρ̂′t =
∫ η01

0

∫ η02

0
p1(η1)p2(η2)ρ̂

′(η1, η2) dη1dη2. (43)

2) Scenario 2 (The Transmission Coefficient of the Fading
Channel Can Be Measured): Let us now assume a modified
scenario, in which the variable transmission coefficient of the
atmospheric fading channel is measured with the aid of a sep-
arate coherent signal. For example, when a local oscillator
in a polarized mode orthogonal to the signal is sent through
the channel. Although this increases the complexity of the
system, the grade of entanglement (and hence the quantum
key rate of the EB CV-QKD protocols implemented based
on this entanglement) generated between the stations will be
increased.

When considering this scenario in the single-mode transfer
setting where the transmission coefficient η is measured at
the receiving station, the final entanglement can be calculated
as [107]

E =

∫ η0

0
p(η)E

[
ρ′(η)

]
dη, (44)

where E [ρ′(η)] is the grade of entanglement of a state received
through the channel of transmission coefficient η.

In this scenario, when the initial two-mode entangled state
ρ̂ at the transmitter is a Gaussian state, the mixed states ρ′(η)
collected at the receiver during each transmission coefficient
window remain Gaussian, because within each (small) fad-
ing bin we can assume that the transmission coefficient is
constant and therefore the states during that particular bin
remain Gaussian. In this case, the grade of entanglement of
the mixed Gaussian state ρ′(η), i.e., E [ρ′(η)] can be calculated
based on the covariance matrix of ρ′(η), which results in E of
Eq. (44) representing the total entanglement shared between
the stations [107].

Considering this scenario in the EB CV-QKD protocols
communicating over atmospheric fading channels, which are
implemented based on the shared entangled states between
the stations, the same concept is true when the quantum
key rate is calculated. In fact, due to the relatively long
coherence time of the atmospheric channel, it may be pos-
sible to devise a scheme, in which quantum key rates
are derived for each realization of the fading (each fad-
ing bin realized), and summed [107]–[109], [186]. Indeed,
the quantum key rate K [ρ′(η)] resulting from the mixed
Gaussian state ρ′(η) can be calculated based on the covari-
ance matrix of ρ′(η), and then the total key rate shared
between the stations is calculated by K =

∫ η0
0 p(η)K [ρ′(η)]

dη [107]–[109].
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Similarly, considering this scenario in the two-mode trans-
fer setting, where the transmission coefficients η1 and η2 are
measured at the two receiving stations, the final grade of
entanglement can be calculated as [107]

E =

∫ η01

0

∫ η02

0
p1(η1)p2(η2)E [ρ̂′(η1, η2)] dη1dη2, (45)

where E [ρ̂′(η1, η2)] is the entanglement of a state that has
traversed two channels having the transmission coefficients of
η1 and η2 [107]–[109].

D. Enhancement of Quantum Communication Performance

Satellite-based communication channels tend to suffer from
high uplink losses on the order of 25-30 dB (and beyond)
for a LEO satellite receiver [40], [52], [145], while single
downlink channels are anticipated to have losses of 5-10 dB
for a LEO satellite transmitter [40], [52], [145]. Under such
high losses, entanglement distribution and QKD via satellite
will remain a fruitless endeavor without the beneficial inter-
vention of the post-selection strategy [102] and entanglement
distillation techniques [184] detailed below.

1) Post-Selection: Although atmospheric fading degrades
both the entanglement and the quantum key rate, its
effects may be mitigated. Post-selection of high transmission-
coefficient windows, as introduced in [102] for the case of a
single point-to-point fading channel, is capable of improving
both the entanglement and the quantum key rate. To elaborate a
little further, in the post-selection strategy, a subset of the chan-
nel transmittance distribution, namely that associated with the
high transmission coefficient, is selected to contribute to the
resultant post-selected state and to the post-selected key rate.

To elaborate on the post-selection strategy, in addition to
the quantum states, coherent (classical) light pulses are trans-
mitted through the channel in order to estimate the channel’s
transmission coefficient η at the receiver. The received quan-
tum state is either retained or discarded, conditioned on the
channel’s transmission coefficient being higher or lower than
the post-selection threshold ηth . Although this post-selection
strategy can be invoked for enhancing the grade of entangle-
ment and the quantum key rate between the transmitter and
receiver, estimation of the channel’s transmission coefficient
will impose additional complexity on both the transmitter and
receiver. The operation of this form of post-selection in the
scheme (c) of Fig. 21 has been invoked in [105] for enhancing
the grade of Gaussian entanglement and in [106] for increasing
the quantum key rates between the ground stations.

2) Entanglement Distillation: The other strategy, which
can be used in order to enhance the grade of entanglement
between the transmitter and receiver is entanglement distilla-
tion that is based on quantum measurement techniques without
relying on channel estimation. Entanglement distillation rep-
resents the protocol of extracting a subset of states with a
higher degree of entanglement from an ensemble of entangled
states [187]. In fact, entanglement distillation may be viewed
as a purifying protocol that selects highly entangled pure states
from a set of entangled states that have become mixed as
a result of imperfect transmission [188]–[191]. It has been
shown that if the entangled states are Gaussian, entanglement

distillation cannot be performed using only Gaussian opera-
tions carried out by linear optical components, such as beam
splitters and phase shifters, homodyne detection and classi-
cal communication [192]–[194]. However, when the Gaussian
entangled states are transmitted through a fading channel,
the state at the output of the channel is a non-Gaussian
mixed state (a non-Gaussian mixture of Gaussian states), and
therefore the aforementioned no-go theorem does not apply.
In [184], a method has been proposed for distilling entangle-
ment from (initially) Gaussian entangled states received over a
single point-to-point fading channel. This is achieved by car-
rying out a weak measurement (based on a beam splitter and
a homodyne detector) applied to the received non-Gaussian
mixed state. The entanglement distillation is implemented at
the receiver by extracting a small portion of the received
mixed state using a tap beam splitter. A single quadrature
(for instance, the q̂ quadrature) is then measured by applying
homodyne detection to the tapped beam. If the measurement
outcome is above the threshold value qth , then the remaining
state is retained, otherwise it is discarded. The operation of this
form of entanglement distillation in the scheme (c) of Fig. 21
has been invoked in [105] for enhancing the Gaussian entan-
glement between the ground stations (which consequently
leads to an improvement in the quantum key rates of the EB
CV-QKD protocols).

Note that when entangled states are conveyed over a fading
channel, both the above-mentioned post-selection and entan-
glement distillation strategies act as “Gaussification” methods
in the sense that the resultant conditioned states approach a
Gaussian form due to the enhanced concentration of low-loss
states in the final ensemble-averaged state. Note also that using
the above-mentioned post-selection and entanglement distil-
lation strategies, the entanglement established between the
transmitter and receiver is only probabilistically increased.

Another entanglement distillation technique is based on
applying an initial non-Gaussian operation to the Gaussian
entangled states (that again increases the entanglement proba-
bilistically), which is followed by a Gaussification step that
iteratively drives the output non-Gaussian state towards a
Gaussian state. Non-deterministic noiseless linear amplifica-
tion has been identified as a method of distilling Gaussian
entanglement [196] and [195], [197]–[203]. It has been shown
that the non-deterministic noiseless linear amplification is
capable of distilling improved CV entanglement [196], [199],
[200] and enhancing CV-QKD performance [201]–[203], when
applied after the lossy channel to the quantum states received.
The non-Gaussian operations which result in the generation
of non-Gaussian entangled states will be discussed in detail in
the next section.

VII. NON-GAUSSIAN CV QUANTUM COMMUNICATION

OVER ATMOSPHERIC CHANNELS

In the CV domain, previous efforts invested in entan-
glement distribution and QKD over atmospheric channels
have been predominately focussed on Gaussian states [16],
[98], [102], [103], [105], [106], [108], [110], [111].
Although Gaussian quantum states are well understood
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both from a theoretical and from an experimental
perspective [86], [87], [114], the employment of CV
non-Gaussian quantum states21 for quantum communication
has also garnered interest [204]–[224]. Non-Gaussian quantum
states are valuable resource for a range of protocols, including
teleportation [204]–[208], [212]–[214], cloning [222], [223]
and CV-QKD protocols [219]–[221], [224]. For two impor-
tant reasons, entangled non-Gaussian states are particularly
interesting in the context of quantum communication via
satellite. The first of these reasons is that the distillation of
Gaussian entanglement is impossible using only Gaussian
operations [192]–[194]. However, mixed non-Gaussian states
can undergo entanglement distillation without any addi-
tional requirements. The second reason is that, relative to
Gaussian entanglement, non-Gaussian entanglement can be
shown in some circumstances to be more robust against
decoherence [212], [217], [218].

A. Non-Gaussian Entangled States

CV non-Gaussian states are mostly generated by applying
non-Gaussian operations, such as photon subtraction [204],
[205], [207]–[210], [213], [214], photon addition [206], [207],
[209], [211], [214] and photon replacement [212], [214] to
incoming Gaussian states. We discuss here non-Gaussian
entangled states which are created probabilistically by
applying non-Gaussian operations to (i.e., at the receiver)
Gaussian TMSV states. Note that a non-Gaussian operation
can be applied to either a single mode, or to both modes,
of the incoming Gaussian entangled state. Also note the
non-Gaussian operation can be applied to the incoming mode
at the sender (i.e., incoming from the local TMSV production
site), or at the receiver side (after propagation through the
atmosphere). Unless otherwise stated, we will consider the
former process in the following.

For the generation of an entangled photon-subtracted
squeezed (PSS) state [204], [205], [207]–[210], [213], [214],
each mode of an incoming TMSV state interacts with a vac-
uum mode in a beam splitter. One of the outputs of each
beam splitter feeds a photon number resolving detector. When
both detectors simultaneously register k photons, which are
considered to be non-Gaussian measurements, a pure non-
Gaussian state is heralded with a probability of 0 < Psb < 1.
This photon-subtraction operation is shown in Fig. 23(a) for
k = 1. A PSS state can also be generated by applying the pho-
ton subtraction technique described above to a single mode
of the TMSV state [214]. The generation of non-Gaussian
states via photon subtraction as described above has been
experimentally demonstrated in [225]–[227]. Note that in the
photon-subtraction operation, other types of photon detectors
such as on/off photon detectors (which only distinguish the
presence and absence of photons, and are considered a non-
Gaussian measurement) can also be used for generating a
PSS state from a TMSV state [205], [208]. In this case the
non-Gaussian output state is a mixed state.

21Note that only pure states having a positive Wigner function are Gaussian
states. However, the Wigner function of non-Gaussian pure states takes on
negative values.

An entangled photon-added squeezed (PAS) state [206],
[207], [209], [211], [214] is generated by adding a single pho-
ton to each mode of a TMSV state. This single-photon addition
is performed at a beam splitter, as shown in Fig. 23(b), with
one of the outputs of each beam splitter being detected by
an on/off photon detector. A pure non-Gaussian state is then
generated (with a probability of 0< Pab <1) when a vacuum
state is registered in both detectors simultaneously. Note that
the final creation probability of a PAS state is obtained by
multiplying Pab by the probability of creating the two addi-
tional photons required. A PAS state can also be generated by
applying the photon addition technique described above to a
single mode of the TMSV state [214]. Note that the addition
of single photons to coherent states and to thermal states of
light has been experimentally realized in [228] and [229].

By contrast, an entangled photon-replaced squeezed (PRS)
state [212], [214] is generated according to Fig. 23(c), where
each mode of a TMSV state interacts with a single photon
in a beam splitter, with one of the outputs of each beam
splitter being detected by a photon number resolving detector.
When both detectors register a single photon simultaneously,
a pure non-Gaussian state is heralded with a probability of
0< Prb <1. The final creation probability of a PRS state is
obtained by multiplying Prb by the probability of creating the
two additional photons required. A PRS state can also be gen-
erated by applying the photon replacement process described
above to a single mode of the TMSV state [214].

B. Evolution of Non-Gaussian Entangled States Over a
Lossy Channel

Unlike Gaussian states, the evolution of non-Gaussian
states cannot be analysed solely through the covariance
matrix. Previous contributions have analysed the evolution
of non-Gaussian states for transmission over fixed-attenuation
channels relying on the so-called Master equation approach
of [215], the characteristic function approach of [212] or
the Kraus operator approach of [217]. Here we discuss
the general approach of Kraus representation [230] of the
channel in order to directly analyze the evolution of the
entangled states (Gaussian or non-Gaussian) through the chan-
nel. Considering a quantum state associated with the density
operator ρ̂in as the input of a trace-preserving22 completely
positive channel, the output density operator of the channel
can be described in an operator-sum representation of the form
ρ̂out =

∑∞
�=0G�ρ̂in G†

� , where the Kraus operators G� sat-
isfy

∑∞
�=0G�G

†
� = I , with I being the identity operator.

In [230], the Kraus operators of a wide range of channels
including a fixed-attenuation channel subject to vacuum noise
(i.e., Vn = 1 in Fig. 10) are given. In [217], the Kraus opera-
tors of a fixed-attenuation channel subject to vacuum noise but
with additional Gaussian noise is given. The results of [230]
have been generalized to a fixed-attenuation channel subject
to thermal noise (i.e., Vn > 1 in Fig. 10) in [132].

22In a trace-preserving channel, the trace of the density operator is
preserved, which means the trace of the output density operator of the channel
remains one.
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Fig. 23. Implementation of non-Gaussian operations on the Gaussian TMSV
state. (a) Photon subtraction: each mode of the input TMSV state interacts
with a vacuum mode in a beam splitter, with one output of the each beam
splitter feeding a photon detector. If the two detectors simultaneously detect
a single photon, a PSS state is heralded on the non-measured outputs. (b)
Photon addition: each mode of the input TMSV state interacts with a single
photon in a beam splitter, with one output of the each beam splitter feeding
a photon detector. If the two detectors simultaneously detect vacuum state, a
PAS state is heralded on the non-measured outputs. (c) Photon replacement:
each mode of the input TMSV state interacts with a single photon in a beam
splitter, with one output of the each beam splitter feeding a photon detector. If
the two detectors simultaneously detect single photons, a PRS state is heralded
on the non-measured outputs.

C. Entanglement Determination and Quantum Key Rate
Computation

Following the evolution of pure non-Gaussian states over
the lossy channel(s), the quantum state of the channel output

is a non-Gaussian mixed state. In general it is not possible
to analytically determine the total grade of entanglement of
the mixed non-Gaussian states after transmission over a lossy
channel. Since the grade of entanglement is determined by
the output density operator ρ̂out , which possesses an infi-
nite number of elements, a numerical method is required for
approximating the matrix ρ̂out by its truncated-dimensional
version, as discussed in [107], [109], [132], and [205] whilst
ensuring that the trace of the truncated matrix is close to 1.

Given the non-deterministic nature of the non-Gaussian
operations, in the context of non-Gaussian entanglement distri-
bution, there are two key performance indicators, namely the
grade of entanglement E between two stations following the
transmission of a pulse through the lossy channel(s), and the
entanglement-generation rate RE , where we have RE = Pc E ,
with Pc being the creation probability of the initial non-
Gaussian state. The evolution of a wide range of non-Gaussian
entangled states in both single-mode and two-mode transfer
over atmospheric fading channels has been investigated both
when the transmission coefficient of the atmospheric fading
channel is unknown and when it is estimated in real time [107].
The work of [107] considered operational scenarios where the
non-Gaussian entangled states transmitted through the atmo-
spheric channel are created “just-in-time” via non-Gaussian
operations applied to the Gaussian entangled input states that
would otherwise be transmitted directly over the communi-
cation channel. In this scenario transmitting the incoming
Gaussian state directly over the atmospheric channel would
be the best option in terms of maximizing the entanglement-
generation rate. However, if the transmission rates of all the
states through the channel could be equalized for example with
the aid of quantum memory (see [107] for more details), some
non-Gaussian states lead to enhanced entanglement transfer
relative to that obtained by Gaussian state transfer.

The performance of CV-QKD protocols has been analysed
in [109] for transmission over atmospheric fading channels,
where the source is constituted by PSS states in the con-
text of EB CV-QKD protocols. In [109], one mode of the
PSS state remains at the ground station (satellite), while the
other photon-subtracted mode is transmitted to the satellite
(ground station) over the fading uplink (downlink) channel
characterized by the probability distribution p(η) and max-
imum transmission coefficient of η0. When the transmission
coefficient of the atmospheric channel can be measured in real
time, after acquiring each realization of η, the key rate K(η) is
calculated based on the covariance matrix of the mixed non-
Gaussian state at the output of the channel. The final key rate
is then computed as K = Pc

∫ η0
0 K (η)p(η) dη in units of bits

per pulse, with Pc being the creation probability of the initial
non-Gaussian entangled state. The resultant key rate repre-
sents a lower bound on the actual key rate of the CV-QKD
protocol. However, to determine the actual resultant key rates
(not just its lower bounds), K(η) must be computed based on
the density operator of the mixed non-Gaussian output state.

In [107] and [109] the non-Gaussian operations are first
applied to the initial Gaussian states, with the resultant non-
Gaussian states being transmitted through the atmospheric fad-
ing channel. An alternative approach would be to transmit the
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initial Gaussian states through the atmospheric channel, and
then apply the non-Gaussian operations after the atmospheric
channel to the quantum states received. In [212], the distil-
lation of CV entanglement using a coherent superposition-
based non-Gaussian operation has been studied, where the
non-Gaussian operation is the superposition of the photon
subtraction and of the photon addition operations, and where
the non-Gaussian operation is applied either before or after a
fixed-attenuation channel.

VIII. COMPARISON WITH DISCRETE-VARIABLE

TECHNOLOGIES

The family of DV systems invoked for satellite-based quan-
tum communications constitutes an alternative technology,
which has been deployed in Micius [66]–[68]. In space-based
deployment, a range of pragmatic issues comes into play when
considering the pros and cons of DV vs. CV implementations.
Perhaps the strongest argument in favour of DV systems in
the space-based context is that photon losses have a less grave
impact on quantum information processing in DV systems. In
CV systems the photon losses in the channel introduce vacuum
noise, leading to a reduction in the correlation between Alice
and Bob’s data. By contrast, in DV systems, photon losses
reduce the communication efficiency, but they do not trigger a
false single-photon detection event. A photon is either lost in
the channel, in which case Bob does not register anything, or
it is simply detected at Bob’s detector. In high-loss scenarios,
this effect can lead to advantages for DV systems. However,
this benefit may by outweighed by other considerations, as
discussed briefly below. More details on satellite-based DV
quantum communication can be found elsewhere, for example
in [40].

The performance of DV-QKD [231] is limited both by
the difficulty of single-photon generation, as well as by
the expense of single-photon detectors. It is a challenge to
construct a true single-photon source owing to implementa-
tion challenges. Alternatively, single-photon sources can be
approximated using an attenuated laser (weak coherent state
pulses) [232], [233]. By contrast, CV-QKD systems rely
on low-cost implementations and are potentially capable of
supporting higher key rates than DV-QKD systems. Recall
that CV-QKD can be implemented by modulating both the
amplitude and phase quadratures of a coherent laser and
can be subsequently measured in the receivers using homo-
dyne detectors, which operate faster and more efficiently than
the single-photon detectors. Moreover, CV-QKD systems are
more compatible with standard telecommunication encoding,
transmission and detection techniques. All these advantages
potentially allow CV-QKD protocols to achieve higher secret
key rates than DV-QKD systems.

Furthermore, the single-photon detectors of DV systems
are very sensitive to background light sources. By contrast,
the homodyne detectors used for CV systems offer beneficial
robustness to background light. Indeed, an explicit advantage
of using a local oscillator is that it has an ‘automatic’ spectral-
domain filtering effect. Consequently, homodyne detectors
remain to a large extent unimpaired in daylight conditions

TABLE VI
COMPARISON OF DV-QKD AND CV-QKD

without the extra filtering that are needed by the single-photon
detectors [16]. Furthermore, in CV systems, a tapped compo-
nent of the local oscillator can be simply obtained and mea-
sured, thereby allowing for direct monitoring of atmospheric
fluctuations effects, such as beam wandering (which can then
be compensated for using adaptive optics [16], [98], [110]).

Both DV and CV-QKD systems have protocols which are
able to generate unconditional secure key [76]. However, the
performance of QKD systems can be evaluated in terms of the
generation “rate” of the final secure key. Due to the fact that
the impact of photon losses on QKD performance is different
for DV and CV systems (as discussed earlier), for low-loss
channels where CV-QKD is secure (i.e., generates positive key
rates), the key rate generated from CV-QKD can be higher
than the key rate from DV-QKD [163] (due to the use of
faster and more efficient transmission and detection technol-
ogy in CV-QKD systems). However, for high-loss (and noisy)
channels where CV-QKD is not secure (i.e., not able to gener-
ate positive key rates), DV-QKD can be secure, and generate
positive key rates. Thus, the secure transmission range (or the
maximum transmission distance) of DV-QKD systems can be
higher than CV-QKD systems.

Table VI summarizes the pros and cons of DV-QKD and
CV-QKD. Nonetheless, the issue of whether DV or CV
systems should be deployed as the quantum information carrier
in space-based quantum communications remains very much
an open issue at the time of writing. Ultimately, it could
well be that hybrid DV+CV architectures, accommodating
time-variant atmospheric conditions, turn out to be the most
beneficial in many circumstances. The employment of such
hybrid architectures has been extensively studied for example
in [234].

IX. FUTURE DIRECTIONS

Quantum communication via satellite is in its infancy.
Building on the early work and verification studies (both
experimental and theoretical) of many researchers, e.g., [16],
[32]–[69], [78], [79], [93]–[112], [235], and [236] the pioneer-
ing experimental result of the Micius [66]–[68] collaboration
has now provided us with the first glimpse of what is truly
achievable via space-based platforms. However, there remains
much to do before quantum communications via satellites can
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be considered mainstream. This is especially so in the CV
quantum domain, where no space-based deployments have
yet been achieved, despite the numerous theoretical studies,
e.g., [16] and [98]–[111]. We briefly mention here some of
the research topics within space-based CV quantum com-
munications that we consider of particular interest to any
multi-disciplinary engineering community.

A. Channel Transmissivity Measurements

The Micius [66]–[68] data provides us with our first real
insight into the channel conditions experienced by quantum
states, as they traverse through the turbulent atmosphere, to
and from Earth. The measured photonic losses in the down-
link [66], [67] and in the uplink [68] are now available (the
losses in the latter case were a minimum of 41 dB). Leveraging
this data for better understanding the channel conditions expe-
rienced by CV states as they travel to and from Earth would
be an insightful, but costly endeavour. As discussed earlier
in Section VIII, the loss of photons in the CV context fun-
damentally affects any subsequent information processing, as
opposed to the DV case, where photons not received can be
simply ignored. Ultimately, the study of how the CV states are
affected by the atmosphere reduces to a determination of the
statistical distribution of the channel transmissivity. Detailed
knowledge of this distribution has wide ranging implications
for studies pertaining to non-classical signatures of CV states
traversing through atmospheric channels [104], as well as for a
host of CV-based applications. The latter outcome is due to the
fact that many applications are very sensitive to the channel’s
transmissivity [105]–[109]. As discussed previously, beyond
the dominant effects of beam wandering and beam broaden-
ing, other more subtle effects induced by the atmosphere can
play a non-negligible role. These effects include beam defor-
mation, attenuation, absorption and scattering. Sophisticated
theoretical studies of these effects are now becoming avail-
able, and in general these models are found to be consistent
with terrestrial experiments carried out over a wide range
of turbulence conditions [101], [237], [238]. Experimental
confirmations of existing turbulence models in the realm of
Earth-to-satellite (and vice versa) channels would be very
important. Of particular importance would be a robust valida-
tion of the beam-wandering models used for the transmissivity
statistics in the Earth-to satellite channels [100]–[102], and
the validation of the beam-broadening models expected to
dominate the satellite-to-Earth channels [57].

B. Error Reconciliation

The reconciliation phase of any QKD protocol is perhaps
the area of quantum communications most closely associ-
ated with classical communications. In the DV scenario, long
LDPC codes can be used to correct transmission errors.
For scenarios, where DV quantum measurements are mapped
directly to binary outcomes, the transmission of bits via a
classical binary symmetric channel can be adopted as the
underlying model. A range of high-performance LDPC codes
which approach reconciliation factors close to 1 in the large
key length limit are known for such channels [239]–[241].

However, in the CV setting the extraction of binary infor-
mation is substantially more involved. Currently, there are
two main techniques that are widely adopted in this regard,
namely, slice reconciliation [20], [242], and multi-dimensional
reconciliation [24], [243]. For the low signal to noise ratios
(SNRs) routinely anticipated for satellite communications, the
multi-dimensional reconciliation technique is likely to be more
appropriate. In this context, multi-dimensional reconciliation
via multi-edge LDPC codes is considered by many as the most
appropriate path due to the high performance of such codes
at low SNRs [24].

Nonetheless, numerous open research issues remain.
Perhaps the most important of these is constituted by the
finite key effects. Much of the work in formally determin-
ing the security of a key within QKD systems assumes having
an infinite key length. However, in reality, this assumption is
never satisfied and the consideration of the finite-length key
effects must be analysed. This is an issue that affects both
the DV [244] and CV security analyses [181], [245]–[248].
This problem is of particular concern for space-based QKD
due to the short transit times of LEO satellites. Hence, the
finite-length key processing invoked in the context of CV-QKD
conceived for satellites has to be considered. Naturally, this
analysis will be strongly dependent on the specific CV-QKD
protocol adopted. Finite-length key based analyses of standard
coherent state protocols [249], of MDI protocols [250], [251]
and of full device-independent protocols [252] follow quite
distinct paths.

Beyond the finite-length effects within the reconciliation
decoding phase, the construction of near-capacity adaptive-rate
LDPC codes for CV space-based implementations would be
useful. Again, these issues are particularly relevant to satellite-
based communication due to the time-variant properties of the
channel. For LEO satellites we can expect the SNR to exhibit
quite rapid variations versus time, as the satellite appears above
the horizon and disappears again. Furthermore, for a given set
of orbital parameters, we could anticipate the SNR’s evolu-
tion versus time to be reasonably predictable. Adaptive-rate
LDPC codes well suited for counteracting the SNR vs time
evolution should be constructed. The employment of punctur-
ing techniques [253] used for multi-edge LDPC codes appears
to be an appropriate pathway to achieving this [254]. These
studies are only in their early phases of development, hence
further research into the design of adaptive-rate codes as a
path to low-complexity CV-QKD via satellites is expected to
be fruitful. An important focus of such future studies should
be the maintenance of high reconciliation efficiencies over the
anticipated range of SNRs [255].

Finally, we note that in principle other codes beyond LDPC
codes could be used in the CV-QKD reconciliation phase.
Currently, however, limited work has been reported in this
area. Nonetheless, we do note some work on turbo codes [256]
applied to the CV domain, as reported in [257] (for use of such
codes in the DV domain see [258], [259]). Furthermore, polar
codes [260] have recently been invoked for CV-QKD in [261].
These contributions suggest that further performance compar-
isons using various error correction codes for the CV-QKD
reconciliation phase may become fruitful.
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C. CV Quantum Error Correction Codes

Of special importance for CV quantum communications
are the non-Gaussian operations that form the basis of quan-
tum error correction. Such operations are required due to the
no-go theorem, stipulating that Gaussian errors cannot be cor-
rected by purely Gaussian operations [262]. It is possible to
build a pathway from standard classical LDPC codes to qubit
error correction codes, and then to CV error correction codes.
Following on from the original CV error correction protocols
of [263]–[265], there are several examples of CV quantum
error correction codes appearing in [197] and [266]–[272].
However, in the context of space-based implementations there
is evidence to suggest that direct non-Gaussian measurement
at the receiver is likely to be the most fruitful pathway to CV
error correction - at least in the short term.

In Section VII-A we have discussed a host of non-Gaussian
operations in the form of photon subtraction and addition
techniques that were used to form our non-Gaussian states,
as seen in Fig. 23. Such operations can also be used for
producing CV entanglement distillation - a form of quan-
tum error correction for CV variables. Photon subtraction
and addition techniques are becoming mainstream in labora-
tories throughout the world and the imminent integration of
such techniques directly into future satellite communications
is expected. In QKD implementations though, a balance must
be struck between the relatively low probabilities of success
for the subtraction/addition operations required and the resul-
tant degradation of the key rates. More detailed studies of these
design options for space-based communications are warranted.

D. The Interface With Classical Terrestrial Networks

Although fundamentally a breakthrough, the birth of space-
based quantum communications can be seen from a more
pragmatic perspective - it will allow for the creation of the
global “Quantum Internet”. This new Internet will interconnect
a vast range of devices, from mobile devices all the way
through to the much anticipated quantum computers. These
devices will be able to transfer quantum information and
communicate with each other in an unconditionally secure
manner. Importantly, this new network will consist of not only
quantum communication channels but also of classical com-
munication channels. As such, consideration of how best to
accommodate integration of the quantum information received
via satellites into a wider integrated network will be required.
Currently, very little detailed thought has been given to this
ambitious enterprise, and therefore there is much opportunity
for high-impact future research in the context of the integrated
system-oriented vision of Fig. 1.

In the CV setting, perhaps the integration of CV quantum
information into the microwave setting is the most important
example. The implementation of quantum communication pro-
tocols in the optical frequency domain is usually preferred,
which is an explicit benefit of the negligible background
thermal radiation at optical frequencies, hence all of our dis-
cussions have been in this domain. However, the advent of
super-conducting microwave quantum circuits have led to an

increasing interest in the implementation of quantum com-
munication protocols in the microwave regime [129]–[131],
[273]–[279]. These interests are further fuelled by advances
in macro electro-optomechanical resonators that are capable
of coupling quantum information with the microwave-optical
interface [276], [278], [279]. With the advent of this tech-
nology, quantum information created via super-conducting
circuits may be readily upconverted to the optical regime for
direct transfer to an overhead satellite. The satellite could then
communicate that information optically to a second terrestrial
receiver with subsequent conversion back to the microwave
regime for storage, error correction or further information
processing. Such a scenario could well represent how future
quantum computers will share information globally through
the quantum Internet. We also note that it is even possible to
directly transmit quantum information via microwave carriers
to nearby wireless receivers [132]. The development of such
integration techniques for the quantum Internet is still in its
infancy.

X. CONCLUSION

We have discussed the recent research advances that are
most relevant to CV quantum communication via low-Earth-
orbit satellites. Recent experimental results gleaned from the
Micius satellite on a range of DV-based quantum commu-
nication protocols indicate that CV quantum communication
via large distances over the ether has become entirely plau-
sible. We have outlined many of the technical advances in
the field of CV quantum communication encompasses and
highlighted a range of technical challenges it faces. As com-
pared to the DV technology, CV systems bring with them the
compelling benefit of inherent compatibility with the state-of-
the-art optical technology. Explicitly, while DV sources and
detectors are difficult to implement and expensive, CV systems
can be easily implemented with the aid of off-the-shelf lasers
and homodyne (or heterodyne) detectors. Hence, the many
advantages of this intriguing technology warrant its experi-
mental deployment to make the vision of the perfectly secure
future quantum-communications scenario portrayed in Fig. 1
a reality.

Our hope is valued Colleague that you would join this
community-effort...
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