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Abstract—Arikan’s polar codes are capable of approaching
Shannon’s capacity at a low encoding and decoding complexity,
while conveniently supporting rate adaptation. By virtue of
these attractive features, polar codes have found their way into
the 5G New Radio (NR). Hence, in this paper we provide a
comprehensive survey of polar codes, highlighting the major
milestones achieved in the last decade. Furthermore, we also
provide tutorial insights into the operation of the polar encoder,
decoders as well as their code construction methods. We also
extend our discussions to quantum polar codes with an emphasis
on the underlying quantum-to-classical isomorphism and the
syndrome-based quantum polar decoders.
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I. INTRODUCTION

Information is the resolution of uncertainty,
Claude Shannon.

The inception of classical coding theory dates back to
1948 [1], when Claude Shannon introduced the notion of
‘channel capacity’. Explicitly, Shannon predicted in his semi-
nal paper [1] that virtually error-free transmission over noisy
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channels can be achieved by invoking error correction codes
having a coding rate R lower than the channel capacity C
and having an infinitely long codeword length. The capacity
of an Additive White Gaussian Noise (AWGN) channel having
the bandwidth B (Hz) and the noise power spectral density of
N0/2 (Watts/Hz) per dimension is quantified by the Shannon-
Hartley theorem as follows:

C = B log2

(
1 +

S

N0B

)
, (1)

when the average transmitted power is S Watts. Hence,
the maximum permissible coding rate of an error correction
code operating close to capacity is limited by the Signal-to-
Noise Ratio (SNR) ( S

N0B
) and the bandwidth (B) under the

assumption of tolerating infinite implementation complexity
and transmission delay. Similarly, the capacities of a Binary
Symmetric Channel (BSC) or a Binary Erasure Channel (BEC)
are specified by their respective channel characteristics, i.e. by
the state cross-over probability of the BSC and the erasure
probability of the BEC, again assuming infinite processing and
time resources. However, practical systems can neither afford
an infinite implementation complexity nor can they tolerate
an infinite transmission delay. So, we need optimized codes,
which perform close to Shannon’s capacity limit, while guar-
anteeing the desired target performance metrics, as illustrated
in Fig. 1.

Shannon quantified the capacity limit and proved the ex-
istence of ‘capacity-achieving’ codes based on the ‘random-
coding’ argument. However, he did not give any recipes
for constructing such capacity-achieving codes. Over the last
seven decades, researchers have endeavored to design optimum
codes, which are capable of operating close to the capacity
limit, while also striking a compelling trade-off amongst the
desired performance metrics of Fig. 1. Broadly speaking, this
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Fig. 1: Factors driving the code design optimization.

quest has pursued two avenues: the algebraic coding avenue
and the probabilistic coding avenue, as portrayed in the stylized
road map of Fig. 2. Algebraic coding was the main research av-
enue for the first few decades. The aim of this coding paradigm
is to design powerful codes by exploiting finite-field arithmetic
to maximize the minimum Hamming distance1 between the
codewords for a given coding rate, or more specifically for
the given information word length k and codeword length n.
This has given rise to a range of popular coding families,
which includes for example Hamming codes [2], Reed-Muller
(RM) codes [3], [4], Bose-Chaudhuri-Hocquenghem (BCH)
codes [5], [6], Reed-Solomon (RS) codes [7] and Redundant
Residue Number System (RRNS) codes [8], [9]. Unfortunately,
maximizing the minimum distance of codewords along the
algebraic avenue of Fig. 2 does not promise a ‘capacity-
achieving’ design. Nonetheless, algebraic codes have found
their way into practical applications by virtue of their strong
error correction capabilities (or equivalently low Bit Error Rate
(BER) floors). Explicitly, these codes are useful, when the

1The Hamming distance between two vectors is equal to the number of
positions at which the corresponding elements (bits or symbols) differ.
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Fig. 2: Road map portraying the evolution of classical channel coding theory. The algebraic avenue aims at maximizing the
minimum distance, while the probabilistic avenue leads to capacity approaching designs.
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received information is in the form of hard decisions. For
example, RS codes are used in magnetic tape and disk storage
as well as in several standardized systems, such as the deep-
space coding standard [10], where they typically constitute an
outer layer2 of error correction (known as the outer code) to
reduce the BER floor resulting from the failure of the inner
layer of error correction (called the inner code).

In contrast to the algebraic coding avenue, the probabilistic
coding avenue has succeeded in paving the way to capacity.
Explicitly, the probabilistic coding avenue of Fig. 2 is in-
spired by Shannon’s random coding philosophy and strives
for achieving a reasonable trade-off between the performance
and the complexity. This design avenue has led to the con-
struction of convolutional codes [11], Low Density Parity
Check (LDPC) codes [12]–[14], turbo codes [15], [16] as
well as polar codes [17]. The probabilistic coding paradigm
also includes various ‘turbo-like’ iterative coding schemes, for
example turbo BCH codes [18], turbo Hamming codes [19],
and the Unity Rate Code (URC)-assisted and IRregular Con-
volutional Coded (IRCC) concatenated schemes of [20], [21],
as well as the coded modulation schemes, including Trellis
Coded Modulation (TCM) [22]–[24], Bit-Interleaved Coded
Modulation (BICM) [25], [26], BICM with Iterative Decod-
ing (BICM-ID) [27], and Turbo Trellis Coded Modulation
(TTCM) [28]. In particular, the turbo and LDPC codes made
it possible to operate arbitrarily close to the Shannon limit,
while the polar codes finally managed to provably approach
the capacity, albeit at infinitely long codeword lengths. Despite
being a relatively immature coding scheme, polar coding has
proved to be a fierce competitor of turbo and LDPC codes, both
of which have been ruling for over two decades. Polar codes
have already found their way into the 5G New Radio (NR)
for the control channels of the enhanced Mobile BroadBand
(eMBB) and the Ultra-Reliable Low-Latency Communication
(URLLC) use-cases as well as for the Physical Broadcast
CHannel (PBCH). Polar codes have also been identified as
potential candidates for the data and control channels of the
massive Machine Type Communication (mMTC) use-cases.

Polar codes emerged in at once, when the apprehension
that ‘coding is dead’ started looming again3. Hence, the
discovery of polar codes re-energized the coding community
and equipped them with a radically different approach for
approaching Shannon’s capacity. In addition to its influence
on the classical coding theory, polar codes have also attracted
considerable attention within the quantum research community.
Motivated by the growing interest in polar codes, in this paper
we provide a comprehensive survey of both the classical as well
as quantum polar codes, taking the readers through the major
milestones achieved and providing a slow-paced tutorial on
the related encoding and decoding algorithms. This tutorial

2Outer layer is with respect to the channel. The inner layer is closer to the
channel.

3The notion that ‘coding is dead’ first officially surfaced in the IEEE
Communication Theory Workshop held in St. Petersburg, Florida, in April
1971, where a group of coding theorists concluded that there was nothing
more to do in coding theory. This workshop became famous as the ‘coding is
dead’ workshop.

paper sets the necessary background for understanding the
operation of the Third Generation Partnership Project (3GPP)
5G NR polar codes, which have been surveyed in [29], [30].
It is pertinent to mention here that, to the best of authors’
knowledge, only two survey papers [31], [32] exist on polar
codes at the time of writing. In [31], the author’s have
provided a succinct overview of the fundamental concepts
pertaining to polar codes, including the encoding, decoding and
construction methods, while [32] focuses on the Application
Specific Integrated Circuit (ASIC) implementation of polar
decoders. By contrast, this paper has a broader scope, since
we provide in-depth tutorial insights (with explicit examples)
as well as a comprehensive survey on polar encoders, decoders
as well as polar code construction methods.

Fig. 3 provides the overview of the paper. We commence
our discourse in Section II, where we discuss Arikan’s channel
polarization philosophy, which is the key to approaching Shan-
non’s capacity. We then survey the polar encoding and decod-
ing algorithms in Section III and Section IV, respectively, with
detailed tutorial insights. Continuing further our discussions,
we present the polar code design principles and guidelines in
Section V. In Section VI, we detail the transition from the
classical to the quantum channel polarization by identifying
the underlying isomorphism. Based on the isomorphism of
Section VI, we proceed to quantum polar codes in Section VII.
Finally, we conclude our discussions in Section VIII.

II. THE PHILOSOPHY OF CHANNEL POLARIZATION

Polar codes rely on the phenomenon of channel polarization,
which is the key contributor towards approaching Shannon’s
capacity. Channel polarization is basically the process of
redistributing channel capacities among the various instances,
or more precisely uses, of a transmission channel without
affecting, while conserving the total capacity, as encapsulated
in Fig. 4. Explicitly, channel polarization implies that a set
of given channels is polarized into perfect and useless (or
completely random) channels, having capacities of 1 and 0,
respectively. This in turn makes the channel coding problem
trivial, since the perfect channels may be used for transmitting
uncoded information without any errors, while the useless
channels can be discarded.

Let us consider N uses of a B-DMC W , each having a
capacity of I(W ), as exemplified in Fig. 4. In the asymptotic
region, i.e. when N is infinitely large, channel polarization
results in k = N × I(W ) perfect channels having near-1
capacity and (N −k) useless channels having near-0 capacity.
Thereafter, k information bits are sent uncoded (rate-1) through
the induced perfect channels, while the (N − k) inputs to
the induced useless channels are frozen, implying that known
redundant bits are sent across these channels (rate-0)4. Hence,
the resultant coding rate is equivalent to the channel capacity,

4An induced bit-channel is a hypothetical end-to-end channel, which con-
sists of the encoder, the real channel and the decoder, as discussed further in
Section II-A. Hence, the information sent across the real channels is encoded.
However, the resulting induced bit-channels may be viewed as rate-1 and
rate-0 channels, since they exhibit a capacity of 0 and 1, respectively.
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i.e. we have:

R =
k

N
=
NI(W )

N
= I(W ). (2)

But how do we achieve channel polarization? This is where
Arikan’s polar codes come in [17], which inspired researchers
to develop more sophisticated coding schemes for achieving
channel polarization. More explicitly, polar encoders convert
the N inputs into bits that can be sent across the real channels
at Shannon’s capacity.

A. Arikan’s Polar Codes

Arikan’s polar codes [17] achieve channel polarization by re-
cursively invoking the simple 2-bit encoding kernel of Fig. 5a.
More specifically, two uses of the B-DMC are combined using
a single eXclusive-OR (XOR) gate at the encoder. This step
is termed as ‘channel combining’ and the resultant compound
channel is denoted by W 2, which has a capacity of:

C(W 2) = I(u1, u2; y1, y2) = I(x1, x2; y1, y2) = 2× I(W ).
(3)

Polarization

Perfect Channels

Useless Channels

W

W

W

W ...

...

Wk

Wk+1

WN

...

W1

C = N × I(W ) = k

I(W1) = 1

I(Wk) = 1

I(Wk+1) = 0

I(WN) = 0

C =
N∑
i=1

I(Wi) = k

Fig. 4: The philosophy of channel polarization: the total capac-
ity of N B-DMCs is redistributed, resulting in k = N ×I(W )
perfect channels having unit capacity each and (N − k)
useless channels having zero capacity, without affecting the
total capacity. Perfect channels are used for transmitting k
information bits, while the useless channels are frozen.

For simplicity, let W be a BEC having an erasure probability
of ε. Hence, the total capacity of the compound channel W 2

is:
C(W 2) = 2× I(W ) = 2× (1− ε) . (4)

According to the chain rule [33], Eq. (3) may also be expressed
as follows:

C(W 2) = I(u1, u2; y1, y2)

= I(u1; y1, y2) + I(u2; y1, y2|u1)
= I(u1; y1, y2) + I(u2; y1, y2, u1), (5)

since u is an independently and identically distributed random
variable, u1 and u2 are independent. Eq. (5) implies that the
compound channel W 2 may be split into the two single-bit
channels W1 and W2 of Fig. 5b and Fig. 5c, respectively,
which are defined as follows:

W1
4
= u1 → (y1, y2) (6)

W2
4
= u2 → (y1, y2, u1) . (7)

This splitting process, which occurs at the decoder, redis-
tributes the total capacity between the two induced bit channels
W1 and W2, so that one of the channels gets better, while the
other gets worse.

Resuming our example of a BEC, let us calculate the
capacities of the two induced channels. The first bit-channel
W1 of Fig. 5b has no information about u2. So, the receiver
estimates u1 based on the received bits y1 and y2 as follows:

û1 = y1 ⊕ y2, (8)

where ⊕ denotes modulo-2 addition. Hence, u1 can be decoded
only when neither y1 nor y2 is erased. Hence, the erasure
probability of the induced bit-channel W1 is:

ε1 = 1− (1− ε)2 = 2ε− ε2, (9)
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Fig. 5: Arikan’s 2-bit polar code, relying on channel combining
and channel splitting for channel polarization.

which is worse than that of the original channel W . Conse-
quently, W1 is the worse channel, also denoted as W−, having
a reduced capacity of:

I(W−) = 1− ε1 = 1− 2ε+ ε2. (10)

The second bit channel of Fig. 5c outputs u1 as well as y1
and y2. Explicitly, the availability of u1 implies that we have
a ’genie’ decoder or a side-information channel, which reveals
the value of u1. Consequently, u2 can be decoded as long as
neither y1 nor y2 is erased. Hence, the erasure probability of
the induced channel W2 is:

ε2 = ε2, (11)

which is lower than that of the original channel W . This
implies that W2 is the better channel, also denoted as W+,

which has a capacity of:

I(W+) = 1− ε2 = 1− ε2. (12)

Based on Eq. (10) and Eq. (12), we may conclude that:

I(W−) ≤ I(W ) ≤ I(W+), (13)

which implies that W− (or equivalently W1) tends to polarize
towards zero-capacity, while W+ (or equivalently W2) tends
to polarize towards unit capacity. It is pertinent to mention here
that the equality in Eq. (13) holds only when W is an extreme
channel having a capacity of either 0 or 1. Furthermore, the
total capacity remains unaffected, since we have:

I(W−) + I(W−) = 2× I(W ). (14)

To elaborate further, let us assume that ε = 0.5, hence we
have:

I(W ) = 0.5

I(W1) = I(W−) = 0.25

I(W2) = I(W+) = 0.75, (15)

where we may observe that the value of I(W−) gets closer to
zero, while that of I(W+) gets closer to one. The impact of
channel polarization may be enhanced by recursively invoking
the basic encoding kernel of Fig. 5a, which is labeled ‘G2’.
More specifically, as exemplified in Fig. 6, a compound
channel W 4 can be constructed by using two copies of the
compound channel W 2. In the first layer of polarization,
two independent copies of W 2 are invoked, inducing two
good channels W+ and two bad channels W−, which have
the capacities of 0.25 and 0.75, respectively, for ε = 0.5.
In the second layer of polarization, the bad channels are
coupled using the encoding kernel G2 of Fig. 5a, which is
simply a XOR gate marked in red in Fig. 6. Recall that the
encoding transformation of Fig. 5a yields a bad and a good
channel, whose capacities may be calculated using Eq. (10)
and Eq. (12), respectively. Consequently, the red XOR gate of
Fig. 6 polarizes the two W− channels into a worse channel
W−− and a better channel W−+, having capacities of 0.0625
and 0.4375, respectively. We may observe here that the second
layer of polarization polarizes the first channel more towards
the zero capacity, while the capacity of the other channel tends
to increase towards one.

Similarly, the second layer of polarization couples the two
good channels W+ using the XOR gate marked in green in
Fig. 6. This second XOR gate induces the channels W+−

and W++ having capacities of 0.5625 and 0.9375, respec-
tively. Hence, a two-layered polarization yields two strongly
polarized channels W−− and W++, which exhibit a higher
degree of polarization than the channels W− and W+. It
is important to point out that the bits in Fig. 6 are indexed
according to their decoding order, which will be discussed
further in Section IV. Furthermore, it may also be observed
that the bits in Fig. 6 follow a bit-reversed indexing. Ex-
plicitly, bit reversing implies that a number i ∈ {1, N}
having the n-bit binary representation i1i2 . . . in, for n =
log2N , is mapped onto its bit-reversed counterpart having
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Fig. 6: 4-bit compound channel W 4 (bit-reversed indexing):
it is constructed from two 2-bit channels W 2 by coupling
the bad channels W− using the red XOR gate and the
good channels W+ using the green XOR gate (viewing the
schematic from right to left). This enhances the strength of
polarization yielding two strongly polarized channels W−−
and W++.

the binary representation inin−1 . . . i1. Consequently, the four
inputs of Fig. 6 {1, 2, 3, 4} having the binary representations
{00, 01, 10, 11} are indexed as {1, 3, 2, 4} corresponding to
their bit-reversed binary representations {00, 10, 01, 11}. This
bit-reversed order of the bits may also be obtained from the
labels {W−−,W+−,W−+,W++} of the induced channels
by mapping + and − onto 1 and 0, respectively. Hence, the
sequence {W−−,W+−,W−+,W++} yields the bit-reversed
order {00, 10, 01, 11}. The inputs of Fig. 6 may be re-wired
to follow the natural indexing order, as shown in Fig. 7. Bit-
reversed indexing of Fig. 6 facilitates hardware implementa-
tions, while the natural indexing of Fig. 7 is more apt for
software implementations. In this paper, we will follow the
the natural indexing of Fig. 7.

The polarization of the induced bit-channels of the com-
pound channel W 4 may be enhanced by invoking a third
layer of polarization using two independent copies of W 4,
resulting in the compound channel W 8. The process may be
repeated recursively using the generalized channel combining
transformation of Fig. 8 until either the desired length N or
the desired polarization strength is achieved. Fig. 8 shows the
schematic of GN for constructing an N -bit compound channel
WN . The associated capacities of the induced bit-channels can

x4

x3

x2

x1

W

W

y4

y3

W

W

y2

y1u1

u2

u3

u4

G2

G2

G4

W 4

Fig. 7: 4-bit compound channel W 4 (natural indexing), which
is obtained by re-wiring the inputs of Fig. 6.

be recursively calculated as follows:

I
(
WN

2i−1
)
= I

(
W

N/2
i

)2

I
(
WN

2i

)
= 2I

(
W

N/2
i

)
− I

(
W

N/2
i

)2
, (16)

for 1 ≤ i ≤ N/2, where WN
i denotes the ith induced bit-

channel of an N -bit compound channel WN . Please note that
the recursive calculation of capacities given in Eq. (16) is only
valid for BECs.

The encoding transformation of Fig. 8 embeds n layers of
polarization, when the codeword length is N = 2n. Each layer
of polarization makes the bad channels worse and the good
channels better, which is typically referred to as the ‘Matthew
effect’, and demonstrated using the polarization martingale of
Fig. 9, which converges to 0 and 1, when N is infinitely
long. To elaborate further, Fig. 10 shows the bit-wise mutual
information intensity map for increasing codeword length. We
may observe in Fig. 10 that the proportion of near-0 and near-
1 bit-channels increases as the codeword length is increased
from 32 to 4096. Please note that the bit-channel indices in
Fig. 10 are sorted based on their mutual information values.
Hence, polar codes do not polarize the channels completely at
finite codeword lengths. Explicitly, in contrast to the perfect
and useless channels of Fig. 4 having capacities of 1 and 0,
respectively, finite-length polar codes polarize the underlying
channels into the set of good and bad channels, which tend
to polarize towards the absolute 1 and 0 capacity, when the
codeword length is infinitely long.
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Fig. 8: Channel combining transformation GN for constructing
an N -bit compound channel WN . It is constructed from
two (N/2)-bit transformations by coupling their corresponding
outputs using a XOR gate (viewing the schematic from left to
right).

B. Non-Arikan Polar Codes

Channel polarization is a general technique and is hence
not restricted to Arikan’s polar code [34], [35]. The channel
combining and channel splitting procedures of Fig. 5 may be
generalized for an arbitrary encoder GN , as shown in Fig. 11
and Fig. 12, respectively. More specifically, the encoder GN
of Fig. 11 is a one-to-one N -bit mapper, which constructs a
compound channel WN by coupling N uses of a B-DMC.
The total capacity of the resultant channel WN is:

C(WN ) = I(uN1 ; yN1 ) = I(xN1 ; yN1 ) = N × I(W ), (17)

where aji denotes the vector (ai, ai+1, . . . , aj). Analogous to
Eq. (5), the chain rule may be applied to Eq. (17), as follows:

C(WN ) = I(uN1 ; yN1 ))

= I(u1; y
N
1 ) + I(u2; y

N
1 |u1) + . . . I(uN ; yN1 |uN−11 )

=
N∑

i=1

I(ui; y
N
1 |ui−11 )

=
N∑

i=1

I(ui; y
N
1 , u

i−1
1 ). (18)

Hence, the compound channel WN may be split into N
induced bit-channels, so that the ith bit-channel is defined as:

Wi
4
= ui →

(
yN1 , u

i−1
1

)
, (19)

which is also illustrated in Fig. 12. More specifically, the
induced bit-channel Wi takes the input ui ∈ X , yielding the

Fig. 9: [0, 1]-bounded polarization martingale for a BEC I(W )
having ε = 0.5. The mutual information of the induced bit-
channels Wi converges to 0 or 1 upon increasing the codeword
length N .
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Fig. 10: Mutual information intensity map for a BEC at ε = 0.5
and codeword lengths of 32, 64 and 4096. The strength of
polarization enhances upon increasing the codeword length.

output (yN1 , u
i−1
1 ) ∈ YN × X i−1, where X and Y denote the

input and output alphabets of the channel W . Any random
N -bit permutation GN may exhibit good polarization charac-
teristics, as identified by Shannon’s random coding argument.
However, Arikan’s polar codes bring with them the benefit of
a simple recursive structure, which is easy to implement.

Arikan’s polar codes, relying on the 2-bit kernel G2 of
Fig. 5a, exhibit an error exponent of 1/2. This implies that
the net error probability of the resultant polar code decays
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Fig. 11: Channel combining: the encoder GN combines the N
uses of a B-DMC to construct a compound channel WN .
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Fig. 12: Channel splitting: the ith induced bit-channel Wi.

exponentially with the square root of the codeword length
N , when N is sufficiently large. For the sake of achieving
a higher error exponent, higher-dimensional kernels, relying
on more than 2 bits, were used by Korada et al. [36] for
polarizing B-DMCs. Korada et al. [36] also conceived a
general formalism for designing BCH-based l-bit kernels,
which achieve error exponents close to 1 for large values of l.
The notion of code decomposition (also called code nesting)
was used in [37], [38] for increasing the error exponents of
higher-dimensional kernels, while BCH, RS and Golay code
based kernels were explored in [39]–[42] for the sake of
increasing the minimum distance of polar codes. Furthermore,

the phenomenon of channel polarization was generalized to
non-binary channels in [43], [44], while RS-based non-binary
constructions were investigated in [45]–[47]. Finally, the idea
of mixed kernels, consisting of sub-kernels of arbitrary non-
binary alphabet sizes, was investigated in [48], [49]. The
resultant polar codes provided attractive benefits both in terms
of the error correction performance as well as the decoding
complexity. However, the codeword length was limited to
N = ln. For the sake of obtaining arbitrary codeword lengths,
puncturing and shorterning techniques were exploited in [50]–
[52], while multi-kernel polar codes, invoking multiple l-bit
kernels, were conceived in [53], [54]. Nonetheless, in this
paper, we will focus on Arikan’s polar codes.

III. POLAR ENCODERS

Recall from Section II-A that polar codes induce a set
of good and bad channels, so that information bits can be
transmitted through the induced good channels, while the input
to the induced bad channels are frozen. When the codeword
length N is infinitely long, the channels are polarized into k
good channels (or the so-called perfect channels) and (N −k)
bad channels (or the so-called useless channels). Hence, a
polar code encodes k information bits into N coded bits using
(N − k) redundant bits, which are called the ‘frozen bits’.
It is characterized by the parameters (N, k,F , uF ), where
F ⊂ {1, 2, . . . , N} specifies the location of frozen bits,
while uF is an (N − k)-bit vector of frozen bits, which are
known to the decoder. The performance of polar codes rely
on the parameters N , k as well as F . In particular, F is
channel specific and must be optimized for the channel under
consideration, as discussed further in Section V. However,
the performance of polar codes is unaffected by the value of
frozen bits, more precisely the vector uF , if the channel is
symmetric. Generally, uF is assumed to be an all-zero vector.
It is important to note here that polar codes are intrinsically
rate compatible, since the coding rate can be varied by merely
changing the number of frozen bits, while using the same
encoder GN . The frozen bits’ locations F can be selected
using a sequence that reads the locations. The best locations
for one coding rate are typically a subset of the best locations
for any lower coding rate.

The polar encoding process, which was generalized in
Fig. 11 for an arbitrary encoder GN , may be represented as:

xN1 = uN1 GN . (20)

For Arikan’s polar code, GN is the nth Kronecker product of
the (2 × 2) kernel matrix, which characterizes the encoding
transformation G2 of Fig. 5a. More specifically, Arikan’s
kernel G2 may be represented in matrix form as follows:

G2 =

(
1 0
1 1

)
, (21)

while the N -bit encoder GN is defined recursively as:

GN = G⊗n2 =

(
GN/2 0
GN/2 GN/2

)
. (22)
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Hence, Arikan’s polar code has a recursive structure invoking
n = log2N layers of polarization and each layer of po-
larization uses N/2 XOR gates, as previously illustrated in
Fig. 8. Hence, the encoding operation of Eq. (22) imposes
a complexity of O(N log2N). We may also notice from
Eq. (22) that polar codes assume a non-systematic structure.
Later, systematic polar codes were derived in [55]–[58], which
outperformed the classic non-systematic polar codes in terms
of the BER, while retaining the same BLock Error Ratio
(BLER) and encoding, decoding complexity. We restrict our
discussions to the classic non-systematic polar codes in this
paper.

The 8-bit polar encoder may be formulated as follows:

G8 = G⊗32 =




G2 0 0 0
G2 G2 0 0
G2 0 G2 0
G2 G2 G2 G2




=




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1




. (23)

Let us consider an 8-bit polar code having k = 4, F =
{1, 2, 3, 5}, uF = (0 0 0 0) and an information bit sequence
uFc = (1 0 0 1). Then the encoded output can be computed
as follows:

x81 = ( 0 0 0 u4 0 u6 u7 u8 ) ·G8

= ( 0 0 0 1 0 0 0 1 ) ·G8

= ( 0 0 0 0 1 1 1 1 ) . (24)

Please note that Fc denotes the complementary set of F , which
specifies the location of information bits. The codeword of
Eq. (24) may also be directly worked out from the encoding
circuit, as exemplified in Fig. 13.

The encoding process of Eq. (20) may be reformulated as:

xN1 = uFcGN (Fc) + uFGN (F), (25)

where GN (F) is a submatrix of GN containing only the rows
with indices in F . When uF is set to an all-zero bit sequence,
Eq. (25) reduces to:

xN1 = uFcGN (Fc), (26)

where GN (Fc) is a (k × N ) generator matrix. Hence, polar
codes are equivalent to linear block codes having the generator
matrix GN (Fc). The encoder of polar codes brings with it the
additional benefit of scalability, both in terms of the codeword
length as well as the coding rate. More specifically, the feature
of length scalability comes from the recursive nature of GN ,
while the rate can be modified by only changing the number
of frozen bits. It may also be noticed in Eq. (25) that when
the frozen bits are not set to an all-zero sequence, then the
resulting code is a coset of the linear block code having the
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1

1

1
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Fig. 13: Example of the polar encoding process: An N = 8 po-
lar code having k = 4, F = {1, 2, 3, 5} and uF = (0 0 0 0) is
used to encode the information bit sequence uFc = (1 0 0 1).
The resulting codeword is x81 = (0 0 0 0 1 1 1 1), as also
shown in Eq. (24).

generator matrix GN (Fc) and the coset is determined by the
vector uFGN (F).

Polar codes are closely related to the family of RM
codes [59]–[61], since both rely on the encoder GN of
Eq. (22). Explicitly, given a pair of integers 0 ≤ r ≤ n,
there exists an RM code of codeword length N = 2n and
information word length k =

∑r
i=0

(
n
i

)
, whose generator

matrix GRM is a submatrix of GN . This property is analogous
to that of polar codes. However, while the generator matrix
GN (Fc) of a polar code corresponds to the most reliable rows
of GN , the generator matrix GRM of an RM code consists of
rows of GN having Hamming weights ≥ 2m−r. Equivalently,
we may say that we freeze the least reliable channels in
polar codes, while we freeze the the lowest Hamming weight
channels in RM codes. Consequently, polar codes approach the
capacity, while the RM codes exhibit a high minimum distance.
It is interesting to point out that the reliability-based selection
of frozen bit-channels over a BEC coincides with the lowest
Hamming weight channels for n = 3 and n = 4. Hence, the
polar code of Eq. (24) is equivalent to the (8, 4, 4) RM code.
However, the benefits of polar codes begin to emerge as n
increases [59].

IV. POLAR DECODERS

Since the inception of polar codes, intensive research efforts
have been invested in improving the polar decoding algo-
rithms from the algorithmic perspective as well as from the
perspective of hardware implementations. Major contributions
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Algorithmic Developments Hardware Implementations

Belief Propagation (BP) and Successive Cancellation (SC) decoder [17], [62] 2009−
BP decoding improved by exploiting overcomplete factor graphs [63] −

Trellis-based Maximum Likelihood (ML) decoder for short polar codes [64] −
Linear programming based polar decoder for BEC [65] 2010−

−
Log Likelihood Ratio (LLR)-based SC decoder [66], [67] 2011− Hardware implementations relying on improved scheduling for (LLR)-based SC

decoder [66], [67]
Simplified Successive Cancellation (SSC) decoder [68] −
Successive Cancellation List (SCL) decoder [69]–[71] −

Successive Cancellation Stack (SCS) decoder [72] 2012− Pre-computed look-ahead scheduling for reducing the latency of SC decoder [73]
Cyclic Redundancy Check (CRC)-aided SCL (CA-SCL) and SCS (CA-SCS)

decoders [70], [74] −
Adaptive CA-SCL decoder [75] −

Multistage polar decoder [76] −
ML sphere decoder for short polar codes [77] −

Successive Cancellation Hybrid (SCH) decoder [78] 2013− Semi-parallel architecture for SC decoder [79]
Maximum Likelihood Simplified Successive Cancellation (ML-SSC) decoder [80] − Scalable semi-parallel implementation of SC decoder [81], [82]

Soft CANcellation (SCAN) decoder [83], [84] − Field Programmable Gate Array (FPGA) implementation of BP decoder [85]
− Two-phase SC decoder architecture having a lower complexity and memory

utilization, and a higher throughput [86]
− Overlapped SC decoder architecture [87]

ML-SSC improved [88] 2014− Flexible and high throughput architecture of improved ML-SSC decoder [88]
Modified BP [89], [90] − Hardware implementation of SCL decoder [91]

Early terminated BP decoder [92]: − Efficient partial-sum network architecture for semi-parallel SC decoder [93]
Low-latency CA-SCL decoder [94] − Architecture of SSC decoder [95]

Symbol-based SC and SCL decoders [96], [97] − Architecture of 2-bit SC decoder [98]
SC flip decoder [99] −

Error exponent of SCL investigated [100] 2015−
LLR-based SCL decoder [101] − Hardware architecture of LLR-based SCL decoder [101]

− Architecture of a low-latency multi-bit SCL decoder [102]
− Metric sorter architecture for SCL decoder [103]
− Low-latency SCL decoder relying on double thresholding based list pruning [104],

[105]
Reduced-complexity early terminated BP decoder [106] 2016− Hardware Architecture of low-latency CA-SCL decoder [107] relying on [94]

The reduced latency ideas of [88] extended to the SCL decoder [108] − Implementation of adaptive throughput-area efficient SCL decoder invoking ap-
proximate ML decoding components [109]

Tree pruning for low-latency SCL decoding [110] − Sphere decoding based architecture of SCL decoder [111]
Reduced-complexity SCL decoder [112] − Improved metric sorter architecture for SCL decoder [113]

Simplified Successive Cancellation List (SSCL) decoder avoiding redundant
calculations [114] − Hardware implementation of CA-SCL based on distributed sorting [115]

Parity-check-aided polar decoding [116] −
Reduced latency SSCL decoder [117] 2017− Hardware implementation of SSCL decoder [117]

Unsorted SCL decoder [118] − Hardware implementation of low-latency BP decoder [119]
Syndrome-based SC decoder [120] − Two-step metric sorter architecture for parallel SCL decoder [121]

Soft SCL decoder for systematic codes [122], [123] − Memory efficient architectures for SC and SCL decoders [124]
Reduced-latency SSC flip decoder [125] 2018−

BP list decoder [126] − Hardware architecture of multi-bit double thresholding SCL decoder relying on
pre-computed look-ahead scheduling [127]

TABLE I: Major contributions to the polar decoding paradigm.

in this context are chronologically summarized in Table I. In
this section, we will review the achievements of Table I with
an emphasis on the major decoding algorithms identified in
Fig. 14.

A. Successive Cancellation Decoders

Arikan’s seminal paper [17] proposed a Likelihood Ratio
(LR) based Successive Cancellation (SC) polar decoder, which
was later modified by Leroux et al. [66], [67] to carry out
operations in the logarithmic domain; hence reducing the
associated computational complexity. Recall from Fig. 12 that
the compound channel WN may be split into N polarized
bit-channels such that the ith bit-channel Wi takes the input

Polar
Decoders

Successive

Cancellation
(SC)

Simplified SC

(SSC) (SSL)

SC List SC Stack

(SCS)

Soft Cancellation

(SCAN)

Belief

Propagation

(BP)

Section IV

(A) (B) (C) (D)

(E)
(F)

Fig. 14: Polar decoding algorithms.



1553-877X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2019.2937923, IEEE
Communications Surveys & Tutorials

11

Level 1 Level 2 Level 3

(4) 0

(18) 0

(20) 0

(24) 0

(26) 1

(2) +0.72

(2) +0.09

(9) +0.96 (8) −3.13

(11) −4.09 (8) −0.96

(17) −2.02 (16) +4.28

(19) +2.26 (16) −2.02

(23) +0.73 (22) −9.81

(25) −10.5 (22) −0.73

(0) +2.41

(0) −0.87

(0) +3.56

(0) +0.09

(0) −3.12

(0) +1.15

(0) −0.72

(0) −2.66

(1) −0.72

(1) −0.09

(15) −5.53

(15) +2.02

(15) −4.28

(15) −2.75

L(y1)

L(y2)

L(y3)

L(y7)

u2

u3

u5

û4
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Fig. 15: Example of the SC decoding process: An N = 8
polar code having k = 4, F = {1, 2, 3, 5} and uF = (0 0 0 0)
is used to decode the received encoded LLRs L(yi) into the
k = 4 recovered information bits ûFc = (1 0 0 1). The LLRs
obtained using the f and g functions of Eq. (27) and Eq. (30)
are shown above each connection in blue and green, respec-
tively. The bits obtained using the partial sum computations of
Eq. (31) and Eq. (32) are shown below each connection in red.
The accompanying numbers in parenthesis identify the step of
the SC decoding process where the corresponding LLR or bit
becomes available.

ui and yields the output (yN1 , u
i−1
i ). The associated channel

transition probabilities are denoted by Pi(yN1 , u
i−1
1 |ui), which

may be estimated using an SC decoder. To elaborate, the
channel combining process of Fig. 11 couples together the
input bits uNi . So, an SC decoder reverses this process at
the receiver by removing the contribution, or more precisely
interference, of the bits ui−11 from the received coded bits yN1 ,
hence revealing the value of the ith bit ui.

An SC decoder operates on the same circuit as that of the
encoder, as exemplified in Fig. 15 for the polar encoder of
Fig. 13. However, while an encoder always processes the bits
from left to right, an SC decoder operates from right to left
as well as from left to right. To elaborate, an SC decoder
performs computations pertaining to the XORs in the circuit
according to a sequence that is dictated by the availability
of data on the left and right hand side of the XOR, which
introduces data dependencies in the decoding process. Hence,
the functionality of each XOR in the decoding circuit varies,
when performing operations on LLRs at different steps in the

Li,j+1

Li+2j−1,j+1

Li,j

(a) Function f
(
Li,j+1, Li+2j−1,j+1

)
: LLRs propagate from right-to-

left.

Li,j+1

Li+2j−1,j+1Li+2j−1,j

b̂i,j

(b) Function g(Li,j+1, Li+2j−1,j+1, b̂i,j): switch from propagating
bits to propagating LLRs.

b̂i,j+1

b̂i+2j−1,j+1 = b̂i+2j−1,jb̂i+2j−1,j

b̂i,j

(c) Partial sum calculation XOR (û1, û2): bits propagate from left-to-
right.

Fig. 16: The three computations that can be performed for an
XOR in the polar decoder. Li,j is the LLR pertaining to the
bit bi,j , while b̂i,j is the estimation of bit bi,j .

SC decoding process5. There are three types of computations
that can be performed by a particular XOR in the decoding
circuit, depending on the availability of LLRs provided on
the connections on its right-hand side, as well as upon the
availability of bits provided on the connections on its left-hand
side. Let us exemplify this by considering the 2-bit elementary
kernel of Fig. 15, which operates on the ith and (i+ 2j−1)th
bits, where j ∈ [1, n] denotes the level index.

The first occasion when an XOR can contribute to the
SC decoding process is when an LLR has been provided by
each of the connections on its right-hand side, as shown in
Fig. 16a. Since the XOR connects the ith and (i + 2j−1)th
bits, we refer to the first and second of these two LLRs as
Li,j+1 and Li+2j−1,j+1, respectively. More specifically, Li,j+1

and Li+2j−1,j+1 provide soft-information pertaining to the
bits bi,j+1 and bi+2j−1,j+1, respectively. These LLRs may be
generated either by the soft demodulator (for j = n) or by
the other XORs in the circuit (for j < n). Based on the input

5The LLR L(b) pertaining to the bit b is defined as:

L(b) = log

(
P (b = 0)

P (b = 1)

)
,

where P (.) denotes the probability of occurrence.
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Li,j+1 and Li+2j−1,j+1, the XOR of Fig. 16a computes the
LLR Li,j for the first of the two connections on its left-hand
side, as follows:

Li,j = f
(
Li,j+1, Li+2j−1,j+1

)

= Li,j+1 � Li+2j−1,j+1, (27)

where the box-plus operator is defined as [128]:

L(b1)� L(b2)

= L(b1 ⊕ b2)

= ln
1 + eL(b1)eL(b2)

eL(b1) + eL(b2)

= 2 tanh−1(tanh(L(b1)/2) tanh(L(b2)/2)) (28)
= sign(L(b1))sign(L(b2))min(|L(b1)|, |L(b2)|)
+ log

(
1 + e−|L(b1)+L(b2)|

)
− log

(
1 + e−|L(b1)−L(b2)|

)

≈ sign(L(b1))sign(L(b2))min(|L(b1)|, |L(b2)|). (29)

Here, L(b1) and L(b2) are the LLRs pertaining to the bits b1
and b2, respectively. The sign(·) of Eq. (29) returns −1 if its
argument is negative and +1 if its argument if positive. Here,
Eq. (29) is referred to as the min-sum approximation.

Later in the SC decoding process, the estimated bit b̂i,j
is provided on the first of the connections on the left-hand
side of the XOR, as shown in Fig. 16b. Together with the
LLRs Li,j+1 and Li+2j−1,j+1 that were previously provided
using the connections on the right-hand side, this enables the
XOR to compute the LLR Li+2j−1,j for the second of the two
connections on its left-hand side, according to the g function
as follows:

Li+2j−1,j = g(Li,j+1, Li+2j−1,j+1, b̂i,j)

= (−1)b̂i,jLi,j+1 + Li+2j−1,j+1. (30)

We may observe in Eq. (30) that the g function is analogous to
the decoding operation of a repetition node, since the two LLR
values are summed together. This is because the information
pertaining to the bit bi+2j−1,j is contained in Li+2j−1,j+1 as
well as in Li,j+1. Furthermore, the sign of Li,j+1 is flipped
when b̂i,j = 1, since we have bi+2j−1,j = bi,j+1 ⊕ bi,j .

Later still, the bit b̂i+2j−1,j will be provided on the second
of the connections on the left-hand side of the XOR, as shown
in Fig. 16c. Together with the bit b̂i,j that was previously
provided using the first of the connections on the left-hand
side, this enables the partial sum computation of bits b̂i,j+1

and b̂i+2j−1,j+1 for the first and second connections on the
right-hand side of the XOR, where

b̂i,j+1 = XOR(b̂i,j , b̂i+2j−1,j), (31)

b̂i+2j−1,j+1 = b̂i+2j−1,j . (32)

As may be appreciated from the discussions above, the
f function of Eq. (27) may be used to propagate LLRs
from right-to-left within the SC decoder, while the partial
sum computations of Eq. (31) and Eq. (32) may be used to
propagate bits from left-to-right and the g function of Eq. (30)

may be used to switch from propagating bits from left-to-
right to propagating LLRs from right-to-left. The SC decoding
process begins by processing LLRs from right to left. However,
in order that LLRs can be propagated from right to left, it is
necessary to provide LLRs on the connections on the right-
hand edge of the circuit, i.e. right-hand connections at level
3 of Fig. 15. In the example of Fig. 15, this is performed at
the start of the SC decoding process by providing successive
LLRs from a soft demodulator on successive connections on
the right-hand edge of the circuit. We may also call them
channel LLRs, since they provide soft information pertaining
to the channel outputs. The SC decoding process then begins
by using the f function of Eq. (27) to propagate LLRs from the
right hand edge of the decoding circuit to the top connection
on the left-hand edge, allowing the first bit to be recovered
(steps (0) to (4) in Fig. 15). Explicitly, if the first bit is an
information bit, then a hard-decision is made based on the
resulting LLR L1,1. By contrast, if the first bit is a frozen bit,
then it is set equivalent to the known frozen bit. Then the g
function of Eq. (30) is used to compute the LLR pertaining
to the second bit, hence revealing its value (steps (5) and (6)
in Fig. 15). Following this, each successive bit from top to
bottom is recovered by using the partial sum computations
of Eq. (31) and Eq. (32) to propagate bits from left to right,
then using the g function of Eq. (30) for a particular XOR to
switch from bit propagation to LLR propagation, before using
the f function to propagate LLRs to the next connection on
the left-hand edge of the circuit, allowing the corresponding
bit to be recovered. It is pertinent to mention here that if bit on
the left-hand edge is a frozen bit, then the associated the LLR
is ignored and the value of the bit is set to the known value
of the frozen bit. The complexity of this decoding process is
on the order of O(N log2N), since there are n = log2N
levels and each level invokes N/2 XOR gates. Furthermore, a
straightforward implementation of the SC decoder also has a
chip-area proportional to O(N log2N), which was reduced to
O(N) in [70] by exploiting the recursive nature of polar codes
in conjunction with ‘lazy-copy’ algorithmic techniques.

The SC decoding process of Fig. 15 may also be visualized
over a decoding tree, as shown in Fig. 17. The decoding tree of
Fig. 17 consists of n = 3 levels and each level is composed of
2n−i parent nodes and 2n−i+1 child nodes; hence resulting in
23 = 8 leaf nodes at level 1, which correspond to the bits u. To
elaborate, the number of child nodes at each level corresponds
to the number of distinct polarized channels created at that
level. Recall from Section II that we get two types of polarized
channels W− and W+ at level 3, which are further polarized
into W−−, W−+, W+− and W++ at level 2 and then into
eight types at level 1. This results in 2n−i+1 types of polarized
channels at each level. Furthermore, the decoding tree at level
3 starts with a length N parent node, whose length reduces
by half at every child node, hence adopting a recursive divide-
and-conquer approach.

Let us now elaborate on the flow of LLRs and bits through
the decoding tree of Fig. 17, where each node acts as a local
decoder executing the XOR operations of Fig. 16. The SC
decoding process begins with the parent node at Level 3, which
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Fig. 17: SC decoding tree for the SC decoding circuit of
Fig. 15. Rate-0 and Rate-1 nodes are shown in white and
black color, respectively. The LLRs obtained using the f and
g functions of Eq. (27) and Eq. (30) are shown in blue and
green, respectively, while the bits obtained using the partial
sum computations of Eq. (31) and Eq. (32) are shown in red.
The accompanying numbers in parenthesis identify the step of
the SC decoding process where the corresponding LLR or bit
becomes available.

has the channel LLRs from the soft demodulator. This parent
node generates LLRs for the top child node using the function
f of Fig. 16a. It then waits until it receives the hard-decoded
bits from the top child node and transfers the parental control
to the top child node, which now acts as the next parent node.
This process continues in a recursive manner until we reach
the leaf nodes at level 1. At this point, hard decision is made
pertaining to the uncoded bits u and sent to the parent node at
level 1. On receiving the hard-decoded bits, the parent node at
level 1 calculates the LLRs for the bottom child node using the
g function of Fig. 16b and waits for the hard-decoded bits from
the bottom child node. On receiving the bits, the parent node
at level 1 executes the XOR operation of Fig. 16c and sends
the resulting bits to its parent node at Level 2. The process
continues recursively until all the uncoded bits u have been
recovered.

SC decoders are favored for having a low decoding complex-
ity. However, this is achieved at the cost of a high decoding
latency, since there are several data dependencies associated

with the SC decoding process. Explicitly, the f operations
have to wait for the LLRs to be made available on their right-
hand connections, while the g operations have to wait for
the availability of the estimated bit values on their left-hand
connections, in addition to the availability of the LLRs on their
right-hand connections. Similarly, it is necessary to provide
bits on the left-hand in order to facilitate the propagation of bits
from left to right. Hence, owing to these data dependencies,
the information bits on the left-hand edge of the circuit are
serially recovered from top to bottom. This in turn makes the
hardware implementation of SC decoders challenging. More
specifically, the data dependencies allow different numbers of
operations to be completed in parallel at different times, as
illustrated in the example of Fig. 15. In order to minimise the
number of steps required to complete the decoding process,
a large amount of hardware may be used so that a single
processing step is sufficient to complete the largest number
of parallel operations that are supported by the decoder data
dependencies. However, the data dependencies will prevent
much of this hardware from being used throughout the rest
of the decoding process, which may motivate the use of a
smaller amount of hardware and a greater number of steps.
However, either way, the ratio of hardware resource usage to
the latency required to complete the decoding process may be
unfavorable, unless sophisticated alternative techniques can be
developed and utilised. In this context, Leroux et al. [66], [67]
proposed hardware architectures for SC decoders, which rely
on improved scheduling for enhancing resource sharing and
memory management. In [73], pre-computed look-ahead tech-
niques were invoked for reducing the latency of SC decoding
process, while semi-parallel implementations of SC decoders
were presented in [79], [81], [82]. A two-phase SC decoder
architecture was conceived in [86], which exhibits lower com-
plexity, memory utilization and latency, while an overlapped
SC decoder architecture was presented in [87] for the sake of
reducing the latency. Furthermore, Fan et al. [93] developed
an efficient partial-sum network architecture for semi-parallel
SC decoders. In the spirit of further reducing the latency,
Yuan et al. [98] proposed a 2-bit decoding architecture for
SC decoders, which concurrently processes two bits during the
last stage of the SC decoding process. Look-ahead techniques
were also invoked in [98] and recently in [129], while memory-
efficient hardware implementations were presented in [124],
[130].

The main characteristics of an SC polar decoder are sum-
marized in Table II.

B. Simplified Successive Cancellation Decoders

The SC decoding process of Section IV-A consists of
some redundant calculations, which may be discarded without
compromising the BER or BLER performance. Based on this
notion, a Simplified Successive Cancellation (SSC) decoder
was conceived in [68]. As compared to the classic SC decoder,
the SSC decoder provides significant reduction in the compu-
tational complexity as well as the latency, while maintaining
the same BER or BLER performance. Quantitatively, it was
demonstrated in [68] that the SSC decoder reduces the number
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Complexity • Time complexity = O(N log2N)
• Space complexity = O(N)

Advantages • Low decoding complexity
• Asymptotically capacity achieving

Disadvantages • Sub-optimal finite-length performance
• Serial processing, resulting in high latency (or low throughput)
• Fully-parallel implementation not feasible

TABLE II: Main characteristics of an SC polar decoder.

of computationally intensive box-plus operators of Eq. (28) by
around 20% to 50%, while the decoding latency is reduced by
around 75% to 95%.

The SSC decoder exploits the tree structure of Fig. 17 for
discarding redundant computations. Explicitly, the nodes of
Fig. 17 may be classified into three types, as follows:

1) Rate-0 nodes, whose descendants are all frozen bits
(white nodes in Fig. 17);

2) Rate-1 nodes, whose descendants are all information
bits (black nodes in Fig. 17);

3) Rate-R nodes, whose descendants are a mix of frozen
bits and information bits (gray nodes in Fig. 17).

Recall that the value of frozen bits may be directly used at
the decoder rather than estimating it based on the computed
LLRs. Consequently, the SSC decoder de-activates the f and
g operations at Rate-0 nodes of Fig. 17 without affecting the
decoder’s performance. Explicitly, u1 and u2 are initialized to
the known value of frozen bits, i.e. 0, in the SSC decoder, and
steps (3) to (6) are not required. Similarly, the SSC decoder
further reduces the complexity at the Rate-1 nodes by making
a hard-decision based on the input LLRs and passing the
hard-decoded bits to the child nodes, rather than computing
the f and g functions. In the context of Fig. 17, an SSC
decoder makes hard-decision based on the LLRs computed
in step (22) revealing û8, discards steps (23) to (26), and
estimates û7 based on the hard-decision values of step (22).
Since all nodes connected to the Rate-1 nodes are information
bits, this simplification does not affect the performance of the
decoder. Improved versions of the SSC decoder were proposed
in [80], [88] for the sake of further reducing the associated
latencies, while the hardware architectures of SSC decoder
were presented in [88], [95].

The main characteristics of an SSC polar decoder are
summarized in Table III.

C. Successive Cancellation List (SCL) Decoders

The SC decoder provably achieves the capacity of a B-DMC,
when the codeword length is infinitely long. However, it
does not exhibit good performance at finite codeword lengths,
because the channels are not sufficiently polarized. More
specifically, in the SC decoding process, the value of each

Complexity Depends on the underlying polar code

Advantages • Lower complexity and latency than SC
• Asymptotically capacity achieving

Disadvantages • Sub-optimal finite-length performance
• Serial processing, resulting in high latency (or low throughput)
• Fully-parallel implementation not feasible

TABLE III: Main characteristics of an SSC polar decoder.

recovered information bit ûi depends on all the previous recov-
ered information bits ûi−11 . Consequently, if a bit is incorrectly
decoded, it will often catastrophically propagate the errors to
all subsequent bits. The selection of an incorrect value for
an information bit may be detected with consideration of the
subsequent frozen bits, since the decoder knows that these bits
should have values of 0. More specifically, if the corresponding
LLR has a sign that would imply a value of 1 for a frozen bit,
then this suggests that an error may have been made during the
decoding of one of the preceding information bits. However,
in the SC decoding process, there is no opportunity to consider
alternative values for the preceding information bits. Once a
value has been selected for an information bit, the SC decoding
process moves on and the decision is final.

Inspired by the recursive list decoding of RM codes [131],
Tal and Vardy proposed an LR-based SCL decoder [69],
[70], whose LLR-based counterpart was presented in [101].
In contrast to an SC decoder, an SCL decoder considers a list
of alternative values for the information bits, hence improving
the finite-length performance of polar codes. More explicitly,
as the decoding process progresses, an SCL decoder considers
both options for the value of each successive information bit,
rather than making a hard-decision based on the associated
LLR value. This is achieved by maintaining a list of candi-
date information bits, where the list is built up as the SCL
decoding proceeds. At the start of the process, the list is
empty. Whenever the decoding process reaches a frozen bit,
a bit value of 0 is appended to the list. However, whenever
the decoding process reaches an information bit, two replicas
of the list are created. Here, the bit value of 0 is appended
to the first replica, while the bit value of 1 is appended
to the second replica. Hence, the number of lists, or more
specifically the number of candidate decoding paths, doubles
whenever an information bit is encountered. This continues
until the number of decoding paths reaches a limit L, which
is known as the list size and is typically chosen as a power
of two. From this point onwards, each time the number of
decoding paths is doubled when considering an information
bit, the worst L amongst the 2L candidate paths are identified
and pruned from the list. In this way, the size of the list is
maintained at L until the SCL decoding process completes. A
straightforward implementation of the SCL algorithm incurs a
complexity polynomial in the codeword length N . However,
Tal and Vardy [70] exploited the recursive nature of polar codes
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(a) An SCL (L = 2) decoding circuit. For the first candidate path, the
LLRs obtained using the f and g functions of Eq. (27) and Eq. (30)
are shown above each connection in blue and green, respectively, while
the bits obtained using the partial sum computations of Eq. (31) and
Eq. (32) are shown below each connection in red. All the LLRs and
bits pertaining to the second candidate path are shown in brown.
The accompanying numbers in parenthesis identify the step of the
SC decoding process where the corresponding LLR or bit becomes
available.
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(b) SCL decoding over a binary tree. Frozen and information nodes
are marked in red and black, respectively, the two candidate paths are
shown in green and brown, and the pruned paths are marked with a red
cross. The values next to the branches are the associated path metrics
computed using Eq. (34). Please note that the green path is the same as
the SC decoding path.

Fig. 18: Example of an SCL decoding process (L = 2): An N = 8 polar code having k = 4, F = {1, 2, 3, 5} and uF = (0 0 0 0)
is used to decode the received encoded LLRs L(yi) into the k = 4 recovered information bits ûFc = (1 0 0 1).

together with ‘lazy-copy’ algorithmic techniques to reduce the
time complexity to O(LN log2N) and the space complexity
to O(LN), both of which are L times the complexities of the
classic SC decoder.

The SCL decoding process may be viewed as a path search
in a binary tree of depth N , as illustrated in Fig. 18b for
the decoding circuit of Fig. 18a. The input bits ui may be
successively recovered as we move down the binary tree.
Explicitly, the nodes of the binary tree (except for the leaf
nodes) of Fig. 18b correspond to the input ui, while the
branches represent the possible values 0 and 1 of the bit ui.
Consequently, all the information nodes (marked in black in
Fig. 18) have two branches, while the frozen nodes (marked
in red in Fig. 18) have a single branch, since their values are
known to the decoder. The lth branch at depth i ∈ [1, N ]
is identified with a path metric φl,i, which is calculated as

follows:

φl,i = φl,i−1 + ln(1 + e−(1−2ûl,i)L(ul,i)) (33)

≈
{
φl,i−1 if ûl,i = 1

2 (1− sign(L(ul,i)))
φl,i−1 + |L(ul,i)| otherwise ,

(34)

where φl,i−1 is the parent path’s metric at depth (i− 1), ûl,i
is the value of ui associated with the lth branch and L(ul,i)
denotes the corresponding LLR Li,1 obtained on the left-hand
edge of the polar decoding circuit of Fig. 18a. These LLRs
are obtained throughout the SCL decoding process by using
separate replicas of the partial sum computations of Eq. (31)
and Eq. (32) to propagate the bits of each candidate path
from left to right. Similarly, separate replicas of the f and
g computations of Eq. (27) and Eq. (30) are used to propagate
corresponding replicas of the LLRs, as shown in Fig. 18a in
brown color for the second candidate path. Here, Eq. (34) is
referred to as the min-sum approximation. Intuitively, Eq. (34)
implies that if the value of bit ûl,i corresponding to the branch
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Fig. 19: The achievable BLER performance of the SCL
decoder for variable list sizes. A (1024, 512) polar code
relying on the 5G frozen bit sequence was used in conjunction
with QPSK transmission over an AWGN channel. Min-sum
approximation of Eq. (29) was invoked for calculating box-
plus operations.

at depth i complies with the LLR L(ul,i), then the path
metric is left unchanged, otherwise it is penalized by |L(ul,i)|.
Furthermore, Eq. (34) accumulates across all bit positions
i ∈ [1, N ]. So, it must be calculated for all L candidate paths
whenever a frozen bit value of 0 is appended, as well as for
all 2L candidates when both possible values of an information
bit are considered. In the latter case, the 2L metrics are sorted
and the L candidates having the highest values are identified
as being the worst and are pruned from the list, as shown in
Fig. 18b for L = 2. Following the completion of the SCL
decoding process, the candidate path having the lowest metric
may be selected as the most likely decoding path. It is pertinent
to mention here that an SCL decoder having L = 1 is the same
as an SC decoder and it becomes equivalent to a Maximum
Likelihood (ML) decoder, when L = 2k, implying a search
through all possible 2k codewords.

Fig. 19 records the BLER performance of the SCL decoder
for variable list sizes L. We may observe in Fig. 19 that
the BLER performance improves upon increasing the value
of L, providing significant improvement over the SC decoder
(L = 1). However, the performance improves with diminishing
returns at higher values of L. More precisely, the performance
improvement is only marginal for L > 8. Hence, a list size
of 8 is deemed sufficient, while a list size of 32 brings the
performance arbitrary close to that of the ML decoder, as
demonstrated in [70].

Despite the improved performance of the SCL decoder,
polar codes failed to outperform the state-of-the-art LDPC
and turbo codes [70], which may be attributed to their poor

minimum distance. More specifically, the authors of [74] ob-
served that when the SCL decoder failed to output the correct
information sequence, the correct information sequence was
usually present in its list of candidate paths, but with a smaller
path metric. This motivated the development of the Cyclic
Redundancy Check-Aided SCL (CA-SCL) decoder [70], [74],
while an adaptive CA-SCL decoding scheme was developed
in [75]. The Cyclic Redundancy Check (CRC)-aided approach
concatenates a CRC to the polar code as an outer code, so
that a portion of the information bits is utilized for carrying
the CRC bits. More specifically, (k − r) information bits
are first encoded using a CRC code, which appends an r-
bit CRC to the (k − r) information bits. This CRC code can
simply be a small random systematic linear block code. The
resulting CRC encoded bits are then passed to the inner polar
code. At the CA-SCL decoder, all candidate paths that do
not satisfy the CRC are pruned during the last stage of the
classic SCL decoding process, before the candidate having the
lowest metric is selected as the most likely decoding path. The
CA-SCL decoder improved the performance of polar codes
to be on par with the state-of-the-art turbo and LDPC codes,
while retaining the complexity of the classic SCL decoder.
However, this is achieved at the cost of a small loss in the
coding rate, since the coding rate of the resultant concatenated
code is (k − r)/N . The notion of CRC-aided concatenation
was generalized to parity check codes in [116].

In pursuit of approaching the perfromance of the SCL
decoder with the SC decoder’s space requirements, bit-flip
decoding strategy was adopted in [99]. The proposed SC flip
decoder of [99] enhances the performance of the classic SC
decoder by exploiting CRC in conjunction with the bit-flipping
algorithm. More specifically, the SC flip decoder commences
the decoding process by running a single iteration of the classic
SC decoder for estimating the codeword û, as exemplified
in Fig. 15. If the CRC passes with the estimated codeword
û, the decoding process is terminated. Otherwise, upto T
additional SC decoding iterations are invoked, sequentially
flipping the estimated value of one of the T least reliable
bits in each iteration. The process is repeated until the CRC
passes or the maximum number of attempts T is reached.
While the SC flip decoder preserves the space requirements
of the classic SC decoder as well as improves the decoding
performance, it fails to outperform the SCL decoder, since
the bit-flip algorithm is only capable of correcting a single
additional error. Furthermore, the computational complexity is
substantially high at low SNRs and approaches that of the SC
decoder at high SNRs. Improvements to the SC flip decoder
were proposed in [132]–[134], while the use of the bit-flip
algorithm was extended to the SSC and the SCL decoders
in [125], [135] and [136].

Similarly to the classic SC decoder, the SCL decoding
scheme also suffers from a high latency due to the data
dependencies associated with the decoding process. In this
context, various low-latency SCL decoding schemes have been
presented in [94], [104], [105], [108], [110], [111], [117].
Furthermore, the complexity of an SCL decoder is L times
higher than that of a classic SC decoder, since it processes L
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Complexity • Time complexity = O(LN log2N)
• Space complexity = O(LN)

Advantages • Capable of achieving the ML performance
• Performance of CA-SCL is on par with turbo and LDPC codes

Disadvantages • Serial processing, resulting in high latency (or low throughput)
• Fully-parallel implementation not feasible
• Higher complexity than SC
• Higher latency than SC due to the ‘metric sorting’ operation

TABLE IV: Main characteristics of an SCL polar decoder.

candidate paths. For the sake of reducing the complexity of
SCL decoders, reduced-complexity techniques were explored
in [112], [114]. Another key challenge in the SCL decoding
process is imposed by metric sorting, which is required to
identify the worst L candidate paths among the merged list
of 2L paths for pruning. Simultaneously comparing all the
2L path metrics requires large amount of hardware resources,
while successively comparing the paths increases the latency.
Hence, a suitable compromise must be reached between the
required hardware resources and the imposed latency. Hard-
ware implementations of the SCL decoder have been discussed
in [91], [94], [101]–[103], [109], [113], [115], [117], [121],
[124], [127], while an unsorted SCL decoder was conceived
in [118].

The main characteristics of an SCL polar decoder are
summarized in Table IV.

D. Successive Cancellation Stack (SCS) Decoders

The SC decoding may be viewed as a greedy search over the
binary tree of Fig. 18b, since it only considers the path with the
lowest metric, hence making a bit-by-bit decision. By contrast,
the SCL decoding adopts a breadth-first approach, doubling the
number of paths for each information bit and selecting the best
L paths for further processing. The breadth-first approach of
SCL provides attractive performance benefits at the cost of an
increased computational complexity, because L paths have to
be processed in contrast to the single decoding path of SC.
For the sake of achieving a reasonable compromise between
the performance and computational complexity, Successive
Cancellation Stack (SCS) decoding was proposed in [72] ,
inspired by the stack decoding of convolutional codes [137]
and RM codes [138].

Similarly to SCL decoding, SCS decoding also operates over
the binary tree of Fig. 18b. However, while an SCL decoder
records the L best candidate paths (having the lowest path
metric) of the same length, an SCS decoder records the D
best candidate paths of variable lengths in an ordered stack.
Furthermore, in contrast to the SCL decoding, which processes
all the L candidate paths in parallel, SCS decoding only
processes the path at the top of the stack at a time, hence
reducing the computational complexity. Let us elaborate on

this by revisiting the decoding example of Fig. 18 with the
SSC algorithm.

Analogous to SCL decoding, the SCS decoding algorithm
begins from the root node at depth i = 1 of the binary
tree of Fig. 18b, computing the path metric φl,1 according
to Eq. (34) for all branches at depth 1. The resulting path,
which is identified by the estimated information bit û1 and
the path metric φl,1, is stored in a stack, as shown in the
first column of Table V. The stack is sorted in the order of
increasing path metrics. However, since we only have a single
path at time instant t = 1 in our example, sorting is not
required. Thereafter, the algorithm moves along the binary tree
of Fig. 18b by recursively invoking the following operations:

• Pulling: The top path from the stack, having the lowest
path metric, is pulled out for further processing.

• Extension: The pulled path, having the estimated infor-
mation bits ûi1 and the path metric φl,i, is extended along
the binary tree of Fig. 18b to include the next bit. If the
next bit is a frozen bit, we get a single extended path
by appending a 0 to the original path ûi1. By contrast, if
the next bit is an information bit, we get two extended
paths ûi+1

1 : one is obtained by appending a 0 to ûi1,
while the other is obtained by appending a 1 to ûi1. Path
metrics are calculated for the extended paths according
to Eq. (34).

• Deletion: A stack can store at most D paths. Conse-
quently, if (D−1) paths are already stored in the stack,
the path at the bottom of the stack is deleted in order to
make space for the two extended paths. This step may
be omitted, if there is a single extended path.

• Pushing: The extended paths ûi+1
1 are pushed in the

stack along with their path metrics φl,i+1. Please note
that, consistent with the notation of Section IV-C, l
denotes the lth branch in the binary tree of Fig. 18b.

• Sorting: The stack is sorted in order of increasing path
metrics, so that the most reliable path having the lowest
path metric appears at the top.

The aforementioned five operations are repeated until the top
path of the stack reaches the leaf node of the binary tree of
Fig. 18b. The resulting stack outputs are recorded in Table V
for a stack size of D = 4.

The time and space complexities of an SCS decoder are
O(DN log2N) and O(DN), respectively. However, the actual
complexity of an SCS decoder depends on the channel SNR.
More specifically, at high SNRs, when the received information
is less noisy, the SCS decoder converges faster, approaching
the complexity of the classic SC decoder. By contrast, at low
SNRs, the complexity of an SCS decoder approaches that of an
SCL decoder having L = D. Nonetheless, SCS decoders are
shown to have a lower complexity than the SCL decoder at the
desired BLER of 10−3 [72], but this is achieved at the cost of
high space complexity. More specifically, a significantly high
value of D is required to match the performance of the SCL
decoder of a given list size L. For example, a depth size of
D = 100 was used in [72] for the SCS decoder to match the
performance of an SCL decoder having L = 20. In pursuit of
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

û1 φ1,1 = 0.0 û2
1 φ1,2 = 0.0 û3

1 φ1,3 = 0.0 û4
1 φ2,4 = 0.0 û5

1 φ2,5 = 2.02 û6
1 φ3,6 = 2.02 û7

1 φ5,7 = 2.02 û8
1 φ10,8 = 2.02

û4
1 φ1,4 = 4.09 û4

1 φ1,4 = 4.09 û4
1 φ1,4 = 4.09 û7

1 φ6,7 = 2.75 û7
1 φ6,7 = 2.75

û6
1 φ4,6 = 4.28 û4

1 φ1,4 = 4.09 û4
1 φ1,4 = 4.09

û6
1 φ4,6 = 4.28 û8

1 φ9,8 = 12.52

TABLE V: An example of the SCS decoding process (D = 4) corresponding to the SCL decoding example of Fig. 18. Each
column records the stack outputs at time instant t. The deleted path is highlighted in red, while the final optimal path is marked
in green.

Complexity • Time complexity = O(DN log2N)
• Space complexity = O(DN)

Advantages • Capable of achieving the ML performance when D = 2k

• Performance of CA-SCS is on par with turbo and LDPC codes
• Lower complexity than SCL at moderate and high SNRs

Disadvantages • Serial processing, resulting in high latency (or low throughput)
• Fully-parallel implementation not feasible
• High time complexity at low SNRs
• High space complexity
• Higher latency than SC due to the ‘metric sorting’ operation

TABLE VI: Main characteristics of an SCS polar decoder.

combining the benefits of the SCL and SCS decoding schemes,
a hybrid scheme called Successive Cancellation Hybrid (SCH)
was proposed in [78]. The notion of CRC-aided decoding is
also readily applicable to SCS decoding, resulting in the Cyclic
Redundancy Check-Aided SCS (CA-SCS) decoder [74]. Fur-
thermore, an efficient software implementation of the SCS
decoder, relying on the LLRs, was presented in [139], which
imposes a reduced time and space complexity. The decoding
performance of the LLR-based SCS decoder of [139] was
further improved in [140]. In particular, the improved SCS
decoder of [140] incurs a substantially lower time complexity,
while maintaining the same space complexity.

The main characteristics of an SCS polar decoder are
summarized in Table VI.

E. Belief Propagation

All the above polar decoding schemes are derived from
the classic SC decoder of Section IV-A, and suffer from
the issue of serial processing, which imposes a high latency.
Furthermore, all these coding schemes yield a hard decision
output. Hence, these decoders are not suitable for iterative joint
detection and decoding schemes, which require soft-in soft-out
decoders. Fortunately, polar codes may also be represented
using a factor graph, which permits soft-in soft-out Belief
Propagation (BP) decoding [17]. Furthermore, the BP decoding
algorithm is more amenable to parallel implementation.

Fig. 20 shows the factor graph representation of the polar
circuit of Fig. 15. We may notice that Fig. 20 is obtained from
Fig. 15 by replacing each 2-bit elementary kernel’s circuit by
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Fig. 20: Factor graph of an N = 8 polar code having k = 4 and
F = {1, 2, 3, 5}. Variable nodes and check nodes are denoted
by circle and square, respectively. The frozen variable nodes
on the left-hand edge of the factor graph are drawn in red.

+

=

Ri,j

Li,j

Ri+2j−1,j
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(i+ 2j−1, j)
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Fig. 21: Factor graph of the 2-bit elementary kernel of Fig. 20
at the jth level.

its factor graph, which is shown in Fig. 21. The resulting
factor graph consists of n = log2N levels and N × (n + 1)
variable nodes. Furthermore, each variable node is identified
by the index (i, j) where i and j denote the bit index and level
index, respectively.
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The BP algorithm iteratively exchanges messages over the
factor graph of Fig. 20 until the maximum number of decoding
iterations Imax is reached. Explicitly, as shown in Fig. 21, two
types of messages flow through the factor graph: the right-
to-left (left) LLRs Li,j flowing towards the left of the factor
graph and the left-to-right (right) LLRs Ri,j flowing towards
the right of the factor graph. These messages are computed
during the BP algorithm as follows:

• Initialization: The left LLRs Lti,n+1, pertaining to the
variable nodes on the right-hand end of the factor graph,
are set to be equivalent to the channel LLRs for all
decoding iterations t ∈ [1, Imax]. Furthermore, all right
LLRs R0

i,j are initialized to zero for the first decoding
iteration, except for the LLRs pertaining to the frozen
nodes on the left-hand edge of the factor graph (j = 1),
which are set to infinity.

• Right-to-left message exchange: The BP algorithm
processes the left LLRs Lti,j from right to left, starting
from the level j = 3. Explicitly, the left messages are
computed as follows:

Lti,j = f(Lti,j+1, L
t
i+2j−1,j+1 +Rt−1i+2j−1,j) (35)

Lti+2j−1,j = Lti+2j−1,j+1 + f(Lti,j+1, R
t−1
i,j ), (36)

where f(.) is given by Eq. (27), for all nodes at the jth
level and the tth decoding iteration. The operation of
Eq. (35) and Eq. (36) is encapsulated in Fig. 22a and
Fig. 22b, respectively. We may notice that Eq. (35) re-
duces to the XOR operation of Fig. 16a, when Rt−1i+2j−1,j
is set to zero, i.e. when we don’t have any a-priori
information about the bits bi+2j−1,j . Similarly, Eq. (36)
becomes equivalent to the g operation of Fig. 16b, when
Rt−1i,j of Eq. (36) is replaced by its hard-decision value
of plus or minus infinity corresponding to the recovered
bit b̂i,j .

• Left-to-right message exchange: Following the right-
to-left message exchange, the BP algorithm computes
the right LLRs Rti,j from left-to-right of the factor graph
as follows:

Rti,j+1 = f(Rti,j , L
t
i+2j−1,j+1 +Rti+2j−1,j) (37)

Rti+2j−1,j+1 = Rti+2j−1,j + f(Rti,j , L
t
i,j+1), (38)

for all nodes at the jth level and the tth decoding
iteration, starting from j = 1. The operation of Eq. (37)
and Eq. (38) is encapsulated in Fig. 22c and Fig. 22d,
respectively, which is analogous to the partial sum
calculation of Fig. 16a. To elaborate, the partial sum
calculation of Fig. 16a operates on the hard-decision
values, while Eq. (37) and Eq. (38) carry out the same
operation on the corresponding LLRs. It is also pertinent
to mention here that the values of Rti,1 = R0

i,1 for all
decoding iterations, since they are not updated as the
iterations proceed.

• Iterative message exchange: One pass of the afore-
mentioned ‘right-to-left’ and ‘left-to-right’ message ex-
change procedures constitute one round of BP decoding

+

=
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i,j Lt

i,j+1
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+
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Fig. 22: Computation of LLRs at the jth level of the factor
graph during the tth iteration of BP algorithm: (a) The function
f(Lti,j+1, L

t
i+2j−1,j+1 + Rt−1i+2j−1,j) for calculating the left

message Lti,j . (b) The function Lti+2j−1,j+1+f(L
t
i,j+1, R

t−1
i,j )

for calculating the left message Lti+2j−1,j . (c) The function
f(Rti,j , L

t
i+2j−1,j+1+R

t
i+2j−1,j) for calculating the right mes-

sage Rti,j+1. (d) The function Rti+2j−1,j + f(Rti,j , L
t
i,j+1) for

calculating the right message Rti+2j−1,j+1.

iteration. These procedures are repeatedly invoked dur-
ing each decoding iteration until the maximum number
of iterations is reached.

• Hard-decision: Finally, the information bits are esti-
mated based on the hard-decision values of the LLRs
LI

max

i,1 at the left-hand edge of the factor graph, as follows:

ûi =





0 if LI
max

i,1 > 0

1 otherwise,
(39)

for i ∈ Fc.
The performance of the BP decoder is comparable to that

of the classic SC decoder. However, it imposes a higher
computational complexity due to the large number of it-
erations required for achieving the convergence and higher
memory requirements. The time complexity of the BP al-
gorithm is O(ImaxN log2N), while the space complexity is
O(N log2N). Efforts were made in [90], [92] to reduce
the computational complexity, while the hardware implemen-
tations of the BP decoder were presented in [85], [119].
Furthermore, improvements were proposed in [63], [89], [141]
for the sake of enhancing the performance of the BP decoding
algorithm. More specifically, a different decoding schedule
for BP was investigated in [63], which first completes the
right-to-left message exchange over the polar decoding circuit
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Complexity • Time complexity = O(ImaxN log2N)
• Space complexity = O(N log2N)

Advantages • Soft output, hence compatible with iterative detection
• Fully-parallel implementation

Disadvantages • Sub-optimal performance (better than SC)
• High complexity
• High memory requirements

TABLE VII: Main characteristics of a BP polar decoder.

and then proceeds with the left-to-right message exchange.
An alternative technique was also investigated in [63], called
the overcomplete representation (also called permuted factor-
graph), which permutes the different levels of the polar factor
graph of Fig. 20 for achieving decoding convergence. In [89],
the reliability of BP messages was improved by incorporating
the knowledge of frozen bits, while a CRC was invoked in
[141] together with the overcomplete representation of [63]
for achieving decoding convergence. Despite these efforts, the
BP algorithm did not outperform the SCL or SCS decoders.
Recently, a BP list decoding algorithm was conceived in [126],
which combines the benefits of the classic BP and SCL
decoders. Explicitly, the BP list decoder benefits from the good
error correction capabilities of the SCL decoder and the soft-
in soft-out nature of the classic BP algorithm. Furthermore,
it also lends itself to parallel implementation, hence there is
a possibility of achieving a lower latency. However, the BP
list decoder imposes a high computational complexity and
its compatibility with CRC-aided polar codes needs to be
investigated.

The main characteristics of a BP polar decoder are summa-
rized in Table VII.

F. Soft Cancellation (SCAN)

The SC decoder of Section IV-A is a soft-in hard-out
decoder, since hard-decisions are made pertaining to the bits
bi,j during the decoding process. In the spirit of extracting soft
output from the SC decoder, a Soft CANcellation (SCAN)
decoder was proposed [83], [84], which is in essence a
combination of the SC decoder of Section IV-A and the BP
decoder of Section IV-E. Recall that the left-to-right message
exchange procedure of BP is a soft-valued version of the f
and g operations of an SC decoder. Similarly, the right-to-left
message exchange of BP is a soft-valued counterpart of the
partial sum calculation of SC. Hence, we may conclude that all
operations of BP are soft-valued versions of the operations of
SC, but they follow a different processing schedule. A SCAN
decoder combines the attributes of SC and BP decoding algo-
rithms by using the BP operations of Fig. 22 in combination
with the SC processing schedule. This in turn facilitates faster
convergence of the resulting decoding algorithm, hence drasti-
cally reducing the computational complexity. Quantitatively, it

Complexity • Time complexity = O(ImaxN log2N)
• Space complexity = O(N log2N)

Advantages • Soft output, hence compatible with iterative detection
• Much lower complexity than BP
• Much lower memory requirements than BP

Disadvantages • Sub-optimal performance (better than SC)
• Serial processing, resulting in high latency
• Fully-parallel implementation not feasible

TABLE VIII: Main characteristics of a SCAN polar decoder.

-2 -1 0 1 2 3 4

E
b
/N

0
 [dB]

10
-3

10
-2

10
-1

10
0

B
L

E
R

SC

BP  I
max

=30

SCAN I
max

=5

SCL  L=8

CA-SCL L=8, r=11

SCS D=128

Fig. 23: Comparison of the achievable BLER performance
of the polar decoders. A (1024, 512) polar code relying on
the 5G NR frozen bit sequence was used in conjunction
with QPSK transmission over an AWGN channel. Min-sum
approximation of Eq. (29) was invoked for calculating the box-
plus operations in all decoders, except in the BP decoder, for
which the exact computation of Eq. (28) was used.

was demonstrated in [84] that the computational complexity of
the SCAN decoder is only 4% of the complexity of the classic
BP decoder. Another notable contribution in the context of
soft-in soft-out polar decoders is the soft counterpart of the
SCL decoder [122], [123], which yields soft information for
the iterative decoding of concatenated codes. Explicitly, similar
to the classic SCL decoder, the soft SCL decoder maintains a
list of L candidate decoding paths. Hence, it outperforms the
the BP as well as the SCAN decoders. However, the soft SCL
decoder is only applicable to systematic polar codes.

The main characteristics of a SCAN polar decoder are
summarized in Table VIII.
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Fig. 24: Rationale for developing the polar decoders of Sec-
tions IV-A to IV-F.

Decoder Complexity Space Req. Performance Fully-parallel
SC low low sub-optimal No

SSC very low low sub-optimal No
SCL medium low ML No

CA-SCL medium low outperform ML No
SCS low-medium high ML No
BP high high sub-optimal Yes

SCAN medium medium sub-optimal No

TABLE IX: Comparison of the polar decoders discussed in
Sections IV-A to IV-F.

G. Comparison of Polar Decoders

In Fig. 23, we have compared the BLER performance of
the various polar decoders. We have used a 1/2-rate polar
code having a codeword length of 1024 and having the
frozen bit sequence specified for the 5G NR [142]. For the
sake of ensuring a fair comparison, the r CRC bits of the
CA-SCL scheme have been taken from the parity bits of the
constituent polar code, rather than from the information bits.
More explicitly, the constituent polar code used in the CA-SCL
scheme has a coding rate of (k + r)/N = 523/1024; hence,
the coding rate of the resultant CRC-aided concatenated polar
code is k/N = 1/2. Furthermore, we have invoked QPSK
modulation and AWGN channel for transmission, in order to
allow for comparison with the work that was completed during
the development of the 5G NR standard. We may observe in
Fig. 23 that the SC decoder exhibits the worst performance,
while the CA-SCL decoder has the best performance and that
of the BP, SCAN, SCL and SCS lies in between. Furthermore,
the performance of SCS with a stack size of D = 128 is the
same as that of SCL with a list-size of L = 8. As discussed in
Sections IV-A to IV-F, the performance improvement comes
at the cost of complexity. In Fig. 24, we have summarized the
rationale for developing the various polar decoders, while their
main characteristics are compared in Table IX.

V. POLAR CODE CONSTRUCTION: DESIGN PRINCIPLES,
GUIDELINES & EXAMPLES

Recall from Fig. 9 and Fig. 10 that polar codes do not
completely polarize at finite block lengths. Hence, a reliability
metric is required to identify the least reliable bit-channels for
transmitting frozen bits. This selection of frozen bit-channels
is a very important step in the design of polar codes, because
it directly dictates the resultant BLER. Explicitly, the BLER
of a polar code is upper bounded by the sum of the BERs
of the individual good bit-channels. So, if a bad channel is
inadvertently not frozen, it will deteriorate the performance
of the resultant polar code. Unfortunately, the set of frozen
bit-channels is channel specific and is hence not universal.
This makes the design of polar codes challenging, since it
has to be optimized for the channel under consideration (or
equivalently for a specific channel noise level). However, it
must be acknowledged that the capacity changes with changing
channel conditions. So, the required optimization is a natural
consequence of any changes in the channel conditions.

Hence the design objective of polar code construction is as
follows:

Design Objective: For a given codeword length (N ) and
channel characteristics, for example SNR of an AWGN chan-
nel, determine the (N − k) least reliable bit-channels (or
equivalently the k most reliable bit-channels) - the so-called
bad channels.

The polar code design process relies on the selection of a
suitable metric for quantifying the reliability of the induced bit-
channels and an accurate reliability estimation method, which
we will discuss in Sections V-A and V-B, respectively. Once
the reliability of each bit-channel is quantified, the (N−k) least
reliable bit-channels may be selected as the frozen channels.
Alternatively, a threshold may be defined for rate compatible
codes, so that all bit-channels having a reliability below the
threshold are frozen. The overall polar code design process is
summarized in Fig. 25.

A. Reliability Metrics

The reliability of bit-channels can be quantified in terms
of the mutual information I(Wi), or more specifically the
capacity, of the induced bit-channels Wi. A set of frozen bit-
channels F ⊂ {1, 2, . . . , N} can then be selected based on the
mutual information for ensuring that we have:

I(Wi) ≤ I(Wj) ∀i ∈ F , j ∈ Fc. (40)

Alternatively, as proposed in Arikan’s seminal paper [17],
reliability can also be calculated using the Bhattacharyya pa-
rameter, since Bhattacharyya parameter gives an upper bound
on the ML decision error and is hence a more accurate
representative of the BLER. The Bhattacharyya parameter is
defined as follows:

Z(Wi) =
∑

yN1 ,u
i−1
1

√
Pi
(
yN1 , u

i−1
1 |ui = 0

)
Pi
(
yN1 , u

i−1
1 |ui = 1

)
.

(41)
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Fig. 25: Polar code design process.

A higher value of the Bhattacharyya parameter indicates a
lower reliability, i.e. Z(Wi)→ 1, I(Wi)→ 0, and vice versa.
Hence, a set of frozen bit-channels F ⊂ {1, 2, . . . , N} can be
selected based on the Bhattacharyya parameter for ensuring
that we have:

Z(Wi) ≥ Z(Wj) ∀i ∈ F , j ∈ Fc. (42)

Reliability can also be directly calculated in terms of the BER
of the induced bit-channels. All these three metrics, i.e. the
mutual information, the Bhattacharyya parameter and the BER,
are interchangeably used in the literature as reliability metrics
for the selection of frozen bit-channels.

B. Reliability Estimation Methods

The reliability metrics of Section V-A rely on the accurate
computation of the transition probabilities Pi(yN1 , u

i−1
1 |xi) of

the induced bit-channels. Explicitly, as illustrated in Fig. 12,
the ith induced bit-channel maps the input ui ∈ X onto the out-
put (yN1 , u

i−1
1 ) ∈ YN×X i−1, where X and Y denote the input

and output alphabets of the channel W . Hence, the cardinality
of the output alphabet of the induced channel is |YN |×|X i−1|,
which grows exponentially with the codeword length N . This
in turn implies that the complexity of computing the exact
channel transition probabilities grows exponentially with the
codeword length N . This is also evident from Eq. (41), since
the summation in Eq. (41) is carried out over all possible
values of yN1 as well as ui−11 . Therefore, frozen bit-channel

selection is deemed intractable. However, due to the recursive
nature of polar codes, the Bhattacharyya parameter as well
as the mutual information may be efficiently computed for
BECs. The recursive mutual information calculations were
shown in Eq. (16), while the Bhattacharyya parameter may
be recursively calculated as follows:

Z
(
WN

2i−1
)
= 2Z

(
W

N/2
i

)
− Z

(
W

N/2
i

)2

Z
(
WN

2i

)
= Z

(
W

N/2
i

)2
, (43)

with Z(W1) = ε, for the worse and better channels, re-
spectively, where ε is the erasure probability of BEC. This
algorithm incurs a complexity cost of O(N log2N).

Since it is hard to track the exact mutual information, the
Bhattacharyya parameter or the BER for channels other than
BECs, various approximation methods have been proposed
over the years. In [17], Monte-Carlo simulations were invoked
for estimating the bit-channel reliabilities. More specifically,
recall from Section IV-A that the SC decoder yields the chan-
nel transitions probabilities Pi(yN1 , u

i−1
1 |xi). Consequently, the

Monte-Carlo based method operates by generating random
information and noise sequences for the given channel char-
acteristics, and then estimating the Bhattacharyya parame-
ter or the mutual information using the output probabilities
Pi(y

N
1 , u

i−1
1 |xi) of the SC decoder, assuming that the decoder

knows the bits ui−11 . Equivalently, the BER of the induced
channels can be estimated based on the output of the SC
decoder. This process incurs a complexity of O(MN log2N)
for M rounds of Monte-Carlo simulations. However, the
complexity of the individual SC operations can be reduced for
symmetric channels by assuming an all-zero input. Explicitly,
since the SC decoder is assumed to know correctly the bits
ui−11 for the purpose of channel reliability estimation, the g
operation of Eq. (30) reduces to:

Li+2j−1,j = Li,j+1 + Li+2j−1,j+1. (44)

when the input is an all-zero sequence. This in turn implies
that we do not need to carry out the partial sum operations
of Eq. (31). Hence, the f and g operations of the SC decoder
can be computed in parallel, which significantly speeds up the
process. Nonetheless, this approach becomes computationally
intensive for long codeword, in particular at high SNRs,
because M must be large enough to get reliable estimates.

Polar codes for arbitrary binary-input channels can also be
heuristically designed by considering a BEC of equivalent
capacity [59] or Bhattacharyya parameter [143], while Density
Evolution (DE) was invoked in [144], [145] to calculate the
bit-channel reliabilities with a linear complexity of O(N).
The polar codes of [144], [145], which were customized for
BSC and AWGN channel, outperformed the designs of [59].
However, the DE-based construction method of [144], [145]
invokes convolution operations, whose exact implementation
imposes exponentially increasing memory requirements. Al-
ternatively, the memory requirements can be reduced by ap-
proximating the convolutional operations using quantization
(also called binning). But this in turn leads to quantization



1553-877X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2019.2937923, IEEE
Communications Surveys & Tutorials

23

errors. Hence, a suitable compromise has to be reached be-
tween the implementation complexity and the accuracy. Tal
and Vardy addressed this issue in [146] by introducing two
channel approximations, called the degraded and the upgraded
quantizations, which provide a lower and upper bound, re-
spectively, on the error probability of the underlying channel.
Both these approximation methods reduce the cardinality of the
channel output based on the parameter µ, so that the channel
outputs become tractable. The complexity of the resulting
method is O(Nµ2 log2 µ), where the typical value of µ is 256.
These ideas were further investigated in [147] by exploiting
alternate methods for approximating a degraded channel, and
generalized to non-binary channels in [148].

Inspired by the low-complexity Gaussian Approximation
(GA)-based DE of LDPC codes, Trifonov [76] used GA-DE
for designing polar codes for AWGN channels. GA-DE tracks
the mean value of the LLRs over the polar decoding circuit,
assuming that the LLRs at all the nodes conform to a Gaussian
distribution. More explicitly, given that an all-zero codeword is
transmitted over an AWGN channel, the channel LLRs L(y)
exhibit a Gaussian distribution with a mean of 2/σ2 and a
variance of 4/σ2, where σ2 denotes the noise variance per
dimension. The mean of the LLRs of the polar decoding circuit
can then be approximated as follows:

E
[
LN2i−1

]
= φ−1

(
1−

(
1− φ

(
E
[
L
N/2
i

]))2)

E
[
LN2i
]
= 2 E

[
L
N/2
i

]
, (45)

for the worse and better channels, respectively. In Eq. (45), E
denotes the expectation (or equivalently mean) operation and
the function φ is defined as follows:

φ(x) =





1− 1
4πx

∫∞
−∞ tanh u

2 e
− (u−x)2

4x du if x > 0

1 if x = 0,
(46)

which may be approximated as [149], [150]:

φ(x) ≈





e−αx
2+bx for 0 ≤ x < c

e−αx
γ+β for c ≤ x < 10√

π
xe
− x4
(
1− 10

7x

)
for 10 ≤ x,

(47)

where a = −0.0564, b = 0.48560, c = 0.867861, α =
−0.4527, β = 0.0218 and γ = 0.86. Furthermore, the inverse
function φ−1 of Eq. (45) can be estimated using numerical
analysis techniques, for example the bisection method or the
Newton-Raphson method. The mean LLRs of Eq. (45) may
then be used for approximating the BER of the corresponding
bit-channels using:

BERi ≈ Q
(√

E
[
LNi
])

. (48)

Alternatively, the mean LLRs may be used for calculating the
mutual information or the Bhattacharyya parameter.

The aforementioned polar code construction methods rely
on the SC decoder. Vangala et al. [143] compared these con-
struction methods and demonstrated that all perform equally

Design Parameters Codeword Length (N )
Information word Length (k)
Channel characteristics

Reliability Metric Mutual Information
Bhattacharyya Parameter
Bit Error Rate

Estimation Method Monte-Carlo [17]
BEC-approximation [59], [143]
Density Evolution [144], [145]
Degraded/Upgraded Quantization [146]
Gaussian Approximation Density Evolution [76]
Decoder-specific methods [151]–[155]

TABLE X: Frozen bit-channel selection procedure for polar
codes.

well provided that the design SNR is carefully chosen.
Qin et al. [151] proposed an improved reliability estimation
method tailored for the BP decoder, which tracks the evolution
LLRs during the BP decoding process. However, only a
marginal improvement of upto 0.5 dB was reported. In [152],
the polar code was heuristically optimized for the SCL de-
coder. Inspired by these decoder-specific polar code designs,
reinforcement learning techniques and genetic algorithms were
invoked in [153] and [154], [155] to customize the code design
for the given polar decoder.

We have summarized the discussions of this section in
Table X.

C. Design Examples

In this section, we will compare the different reliability
estimation methods of Fig. 25 by designing a 1/2-rate polar
code having a codeword length of N = 1024 for an AWGN
channel. In particular, we compare the BEC-approximation
of [59], [143], the GA-DE of [76] and the Monte Carlo based
method [17]. Furthermore, we chose the Bhattacharyya param-
eter for quantifying reliability using the BEC-approximation
method, while the BER was used for the other two methods.
Fig. 26a records the resulting intensity maps for the three
methods at Eb/N0 = 0 dB. Explicitly, a value of 0 in
the intensity map of Fig. 26a corresponds to the maximum
reliability, while a value of 1 denotes the lowest reliability.
We may notice that there are only slight variations in the three
intensity maps, with the GA-DE and Monte Carlo methods
being very similar. We next classify the 512 least reliable
bit-channels as frozen bit-channels and plot the frozen bit-
channel patterns in Fig. 26b, where the frozen bit-channels
are colored in black, while the information bit-channels are in
white. Again, the frozen bit-channel patterns are similar for
the three methods.

In Fig. 27, we compare the achievable BLER performance
of the (1024, 512) polar codes constructed using the BEC-
approximation based Bhattacharyya parameter, GA-DE based
BER and the Monte Carlo based BER at different design
SNRs per bit. In line with Fig. 26, the performance of the
polar codes constructed using the Monte Carlo and the GA-DE
methods is similar, with the latter being slightly better, while
that of the polar codes designed using the BEC-approximation
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(a) Reliability intensity. Please note that a value of 0 implies
high reliability, since the reliability metric is the Bhattacharyya
parameter for BEC-approximation and the BER for GA-DE
and Monte Carlo.
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(b) Frozen bit-channel patterns. The black regions denote the
frozen indices, while the white one is for information indices.

Fig. 26: Comparison of polar code construction methods at
Eb
N0

= 0 dB: BEC-approximation based Bhattacharyya param-
eter, GA-DE based BER and Monte Carlo based BER.

method is worse. Furthermore, Fig. 27 shows that the BLER
performance of the Monte Carlo and the GA-DE methods is
only sightly affected, when the design SNR per bit is increased
from 0 dB to 2 dB. It is obvious that if we choose a very low
or high value of the design SNR per bit, then the performance
will get worse, as demonstrated in [143]. Hence, the polar
code construction method is not very sensitive to reasonable
discrepancies between the design SNR and the operating SNR.
We have also benchmarked the designed polar codes against
the 3GPP 5G NR polar code in Fig. 27. It may be observed
that the performance of the Monte Carlo and the GA-DE based
polar codes approaches that of the 3GPP 5G NR when the
design Eb/N0 = 2 dB.
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Fig. 27: Comparison of the achievable BLER performance of
the (1024, 512) polar codes constructed using the various reli-
ability estimation methods of Section V-B at different design
SNRs per bit. The performance is benchmarked against the
3GPP 5G NR frozen bit-channel sequence. An SCL decoder
having L = 8 and QPSK transmission over an AWGN channel
was used.

VI. QUANTUM-TO-CLASSICAL ISOMORPHISM

In contrast to a classical bit, which can be either 0 or 1 at any
particular instant, a quantum bit (qubit)6 exists in superposition
of the orthogonal basis states |0〉 and |1〉. This superimposed
state of the qubit is generally described using the state vector
as follows:

|ψ〉 = α|0〉+ β|1〉, (49)

where |·〉 is called Ket or Dirac notation [157], and α and β
are complex coefficients conforming to:

|α|2 + |β|2 = 1. (50)

Furthermore, unlike a classical bit, which can be ‘observed’ (or
‘measured’) without disturbing its value, any observation of the
qubit perturbs its superimposed state of Eq. (49). To elaborate,
if a qubit is observed in the computational basis7, it may
collapse to the state |0〉 with a probability of |α|2 and the state
|1〉 with a probability of |β|2. The quantum superposition of
Eq. (49) makes quantum processing (or computation) systems
inherently parallel, while the observation property together
with the quantum no-cloning theorem8 makes quantum trans-
missions absolutely secure. However, these unusual quantum
characteristics, which have no counterpart in the classical

6Please refer to [156] for deeper insights into the duality of the classical
and the quantum regime.

7The pair of orthogonal basis states |0〉 and |1〉 is called the computational
basis.

8According to the quantum no-cloning theorem, arbitrary quantum states
cannot be cloned (or copied) [158].
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domain, make it challenging to design Quantum Error Correc-
tion Codes (QECCs). Nonetheless, there exists an underlying
isomorphism between the classical and quantum paradigms,
which can be exploited for designing efficient QECCs from
the known classical codes [156], [159], [160].

Environmental decoherence is a major source of noise in
quantum systems. It can be modeled using a depolarizing
channel, which is considered the ‘worst-case scenario’ [161].
Explicitly, a quantum depolarizing channel characterized by
the depolarizing probability p independently inflicts an error on
each qubit, such that a qubit may experience a bit-flip (Pauli-
X), a phase-flip (Pauli-Z) or a bit-and-phase-flip (Pauli-Y)
error with a probability of p/3 each9. Hence, in contrast to
the classical channels, which only inflict bit-flip errors, the
quantum depolarizing channel imposes both bit-flip as well as
phase-flip errors. An interesting point to notice here is that a
quantum depolarizing channel may also be viewed as a pair of
correlated BSCs inflicting bit-flips and phase-flips respectively.
Fortunately, classical polar codes are capable of concurrently
polarizing both the bit-flip as well as the phase-flip channels,
when the classical XOR gates are replaced by the quantum
Controlled NOT (CNOT) gates10; hence achieving the quantum
channel capacity, as demonstrated in [162], [163]. This is
because polar codes merely rely on CNOT gates for channel
polarization, which are capable of concurrently polarizing both
the bit-flip as well as the phase-flip channels, but in opposite
directions, as further discussed below.

QECCs exploit the computational basis for correcting bit-
flip errors, while the Hadamard basis11 is used for phase-
flip correction. The action of CNOT on the Hadamard basis
is analogous to that on the computational basis with the
role of control and target qubits swapped. Explicitly, let us
consider the two-qubit state |+−〉 in Hadamard basis, which
is equivalent to:

|+−〉 = 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉 − |1〉)

=
1

2
(|00〉 − |01〉+ |10〉 − |11〉) , (51)

in the computational basis. When a CNOT gate is applied to

9The I, X, Y and Z are single-qubit Pauli operators (or gates) defined as:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
.

10The CNOT gate is a two-qubit gate, having a control qubit and a target
qubit. When the control qubit is in state |1〉, the target qubit is flipped;
otherwise, the target qubit is left unchanged, as encapsulated below:

CNOT (|ψ0〉, |ψ1〉) = |ψ0〉 ⊗ |ψ0 ⊕ ψ1〉,

where |ψ0〉 is the control qubit, while |ψ1〉 is the target qubit. Hence, CNOT
gate is the quantum analogue of the classical XOR gate.

11The pair of orthogonal basis states |+〉 and |−〉 is called the Hadamard
basis, where the basis states |+〉 and |−〉 are defined as:

|+〉 4= 1√
2
(|0〉+ |1〉) , |−〉 4= 1√

2
(|0〉 − |1〉) .

H H

≡

Z

Fig. 28: A CNOT gate is equivalent to a Controlled-Z
(Cz) gate, with the control and target qubits swapped, when
Hadamard gates are invoked at the input and output. The circuit
to the left flips the top qubit in computational basis (|0〉 and
|1〉), when the bottom qubit is in the state |1〉, while the circuit
to the right flips the botton qubit in the Hadamard basis (|+〉
and |−〉), when the top qubit is in the state |−〉.

|u1 ⊕ u2〉

|u2〉

W1 = W−
B

W2 = W+
B

W

W

|u1〉

|u2〉

(a) Polarization in the computa-
tional basis, resulting in polarized
bit-flip channels.

W1 = W+
P

W2 = W−
P

|u1〉
H H

Z W

W

ZH|u1〉|u2〉

|u1〉

|u2〉

(b) Polarization in the Hadamard
basis, resulting in polarized phase-
flip channels.

Fig. 29: The 2-qubit kernel of a quantum polar code in the
computational and Hadamard bases.

the second qubit controlled by the first qubit, we get:

|+−〉 CNOT(1, 2)−−−−−−−−→
1

2
(|00〉 − |01〉+ |11〉 − |10〉) = | − −〉.

(52)

We may observe in Eq. (52) that the operation of CNOT(1, 2)
on the computational basis is equivalent to that of CNOT(2, 1)
on the Hadamard basis. More explicitly, the classic CNOT(i, j)
acting on the computational basis flips the jth qubit (target)
between |0〉 and |1〉, when the ith qubit (control) is in the state
|1〉. This operation is analogous to that of CNOT(j, i) acting on
the Hadamard basis, which flips the ith qubit (target) between
|+〉 and |−〉, when the jth qubit (control) is in the state |−〉.
More specifically, a CNOT gate may also be implemented
using a Controlled-Z (Cz) gate, with the control and target
qubits swapped, as shown in Fig. 28.

Let us now consider the 2-qubit kernel of polar code given in
Fig. 29a, which is the quantum-domain equivalent of Arikan’s
kernel of Fig. 5a. From the perspective of the computational
basis, the encoder of Fig. 29a combines the information of
the two channels in the computational basis, so that the
computational basis information of the |u2〉 is redundantly
added to that of |u1〉 (⊕ denotes modulo-2 addition in the
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computational basis). Consequently, the second qubit-channel
W2 becomes more robust against bit-flip errors at the cost
of deteriorating the robustness of the first qubit-channel W1.
In other words, W2 tends to polarize towards a better bit-
flip channel W+

B , while W1 tends to polarize towards a worse
bit-flip channel W−B . However, the total capacity of the two
channels is conserved.

Fig. 29b shows the polar encoder from the perspective of
the Hadamard basis; hence, the CNOT gate is replaced by the
equivalent circuit of Fig. 28, which invokes the Cz gate. More
explicitly, in Fig. 29b, the Hadamard basis information of the
first qubit |u1〉 is redundantly incorporated in the Hadamard
basis information of the second qubit. Consequently, the in-
formation carrying capacity of the first qubit-channel W1 is
enhanced in the phase basis, while that of the second qubit-
channel W2 degrades in the phase basis. Hence, the first
qubit-channel W1 tends to polarize towards a better phase-flip
channel, while the second qubit-channel W2 tends to polarize
towards a worse phase-flip channel, denoted by W+

P and W−P ,
respectively. Therefore, the elementary kernal of a polar code
is capable of polarizing both the bit-flip as well as phase-
flip channels, but the direction of polarization is opposite, as
illustrated in Fig. 29.

Based on the above discussions, a quantum polar code
induces four sets of channels, covering both the bit-flip as
well as the phase-flip errors. Explicitly, the polarized channels
may belong to one of the following four sets:

1) Good bit-and-phase channels (Fc): These induced
channels exhibit high information carrying capacity in
the computational basis (bit-flip) as well as in the
Hadamard basis (phase-flip). Consequently, these in-
duced channels are used for transmitting the uncoded
qubits.

2) Good bit-only channels (FP ): These channels have
high information carrying capacity in the computational
basis (bit-flip), but low capacity in the Hadamard basis
(phase-flip). Hence, these channels are frozen in the
Hadamard basis by transmitting the Hadamard basis
states |+〉 or |−〉, which are known to the receiver.

3) Good phase-only channels (FB): These channels have
low information carrying capacity in the computational
basis (bit-flip), but high capacity in the Hadamard basis
(phase-flip). Consequently, they are frozen in the com-
putational basis, hence transmitting the computational
basis states |0〉 or |1〉, which are known to the receiver.

4) Bad bit-and-phase channels (FBP ): These channels
have low information carrying capacity in both the com-
putational basis (bit-flip) as well as the Hadamard basis
(phase-flip). Consequently, these channels are frozen in
both the computational as well as the Hadamard bases.

This is achieved by exploiting pre-shared entangled12

qubits, which are referred to as ebits. Explicitly, ebits
are created in the Bell state |φ+〉, expressed as:

|φ+〉 = |00〉
TXRX + |11〉TXRX√

2
, (53)

so that the first qubit is retained at the transmitter
(TX ), while the associated entangled qubit is sent to the
receiver (RX ) before actual transmission commences,
for example during off-peak hours, when the chan-
nels are under-utilized. It is generally assumed that
the pre-sharing of ebits takes place over a noiseless
quantum channel. Hence, quantum polar codes intrin-
sically belong to the family of entanglement-assisted
QECCs [165], [166].

VII. QUANTUM POLAR CODES

Inspired by the provably capacity achieving nature of classi-
cal polar codes as well as their efficient encoding and decoding
structures, Wilde and Guha [167] were the first to demonstrate
the existence of the channel polarization phenomenon for
classical-quantum channels, which transmit classical informa-
tion over quantum channels. These ideas were later extended
to the transmission of quantum information in [162]. The
quantum polar codes of [162], [167] exploit the same encoder
as Arikan’s polar codes, except that the classical XOR gates
are replaced by the quantum CNOT gates. Consequently, the
quantum polar encoders of [162], [167] inherently benefit
from the low encoding complexity of Arikan’s classic polar
codes. Furthermore, a quantum counterpart of the classical
SC decoder, named Quantum Successive Cancellation Decoder
(QSCD), was conceived in [162], [167], which makes collec-
tive measurement on all channel uses. This is achieved by ex-
ploiting quantum hypothesis testing [168], [169] in conjunction
with Sen’s noncommutative union bound [170]. The QSCD
of [162], [167] failed to match the low decoding complexity
of the classical SC decoder. This issue was addressed by
Renes et al. in [171], where an efficient implementation of
a quantum polar decoder was given for quantum Pauli13

and erasure channels. Finally, Wilde and Renes combined
their efforts in [163], [172] to present an efficient QSCD for
arbitrary quantum channels. The quantum polar codes of [162],
[167], [171] rely on the sharing of noiseless ebits between the
transmitter and the receiver. In this context, the first unassisted
quantum polar codes, consisting of concatenated bit-flip (com-
putational basis) and phase-flip (Hadamard basis) correction

12‘Entanglement’, which Einstein termed as a ‘spooky action at a dis-
tance’ [164], is the mysterious, correlation-like property between two or more
qubits, which implies that the entangled qubits cannot be expressed as the
tensor product of the individual qubits. Furthermore, a strange relationship
exists between the two entangled qubits, which entails that measuring one
of them also reveals the value of the other, even if they are geographically
separated.

13A quantum Pauli channel independently inflicts an error on each qubit,
such that a qubit may experience a bit-flip (Pauli-X), a phase-flip (Pauli-Z)
and a bit-and-phase-flip (Pauli-Y) error with a probability of px, pz and py ,
respectively. A Quantum depolarizing channel is a special case of a Pauli
channel having px = pz = py = p/3.



1553-877X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2019.2937923, IEEE
Communications Surveys & Tutorials

27

polar transformations, were recently conceived in [173]. The
authors of [173] also presented efficient encoding and decoding
implementations for Pauli and erasure channels. In the midst
of these advancements, Ferris and Poulin [174] developed a
new family of QECCs based on tensor networks, called the
branching Multi-scale Entanglement Renormalization Ansatz
(MERA) codes, which is a generalization of quantum polar
codes. In contrast to the quantum polar codes of [162], [163],
[167], [171], [172], the tensor network based quantum polar
codes of [174] invoke syndrome-based classical decoding for
estimating channel errors encountered over the quantum Pauli
or erasure channels.

A. Quantum Polar Encoders

Recall from Section VI that a quantum depolarizing channel
is equivalent to two correlated classical BSCs. The correlation
between these two channels can be ignored in the spirit
of simplifying the design process, while compromising on
the achievable performance. Hence, a quantum depolarizing
channel having a depolarizing probability of p may be modeled
using two independent BSCs having a cross-over probability of
2p/3. This model is widely used for constructing Calderbank-
Shor-Steane (CSS)-type quantum codes [175]–[177], which are
designed to independently correct bit-flip and phase-flip errors.
Consequently, qubits frozen in the computational and in the
Hadamard basis can be independently determined by finding
qubit locations which yield the highest mutual information for
the bit-flip and phase-flip channels, respectively. Furthermore,
since the polarization of a quantum bit-flip channel is identical
to that of a classical channel, as illustrated in Fig. 29a,
qubits frozen in the computational basis can be selected by
running the classical frozen bit-channel selection procedure for
a BSC having a cross-over probability of 2p/3 (given that the
design depolarizing channel probability is p). By contrast, we
observed in Fig. 29, that the polarization of a quantum phase-
flip channel is the same as the classical channel polarization
(or equivalently quantum bit-flip channel polarization), but the
direction of polarization is opposite. This in turn implies that
the pattern of quantum phase-flip polarization can be obtained
by swapping the control and target qubits of the 2-bit kernel of
a classical polar code. The resulting 2-bit kernel for phase-flip
channel is given by:

G̃2 = GT2 =

(
1 1
0 1

)
, (54)

and the equivalent N -bit encoder G̃N is:

G̃N = (GT2 )
⊗n = GTN . (55)

Hence, the location of qubits frozen in the computational basis
may be determined by invoking the encoder GN , while the
same in the Hadamard basis may be selected by using the
encoder GTN .

Fig. 30 shows the encoders G and GT for selecting frozen
channel indices in the computational and in the Hadamard
basis, respectively, when the codeword length is 4. We may
observe that the ith bit of the encoder G is equivalent to the

Encoder G Encoder GT

Fig. 30: Encoders G and GT used for selecting frozen channel
indices for quantum bit-flip and phase-flip channels, respec-
tively.

(4− i+ 1)th bit of the encoder GT . This in turn implies that
the ith bit of the encoder G is equivalent to the (N − i+1)th
bit of the encoder GT , where 1 ≤ i ≤ N . Therefore, if we
freeze the ith qubit in the computational basis for the bit-flip
channel, then we also freeze the (N − i + 1)th qubit in the
Hadamard basis for the phase-flip channel.

Fig. 31 shows the mutual information intensity maps for the
bit-flip and the phase-flip channels at a depolarizing probability
of p = 0.06, when a polar code of length 64 is used. Explicitly,
the colormap in Fig. 31 represents the mutual information, and
the qubit indices are sorted based on the mutual information of
the bit-flip channel. As discussed in the context of Fig. 30, the
mutual information intensity map for the phase-flip channel is
the same as that of the bit-flip channel, but it is flipped from
right to left.

B. Quantum Polar Decoders

Fig. 32 shows the general schematic of a quantum communi-
cation system relying on a quantum polar code for protection
against environmental decoherence. Unlike the QSCD based
polar codes of [162], [163], [167], [171], [172], the system
of Fig. 32 invokes the syndrome-based classical decoding
approach of [174]. It is pertinent to mention here that quantum
polar codes with syndrome-based classical decoding may not
be capacity achieving for arbitrary quantum channels, which
require collective measurement over all channel uses. Nonethe-
less, we have adopted this approach because it is a more direct
application of the classical polar codes. Recall from Section VI
that a polar code polarizes the input quantum channels into
four sets, which may be denoted as:
• Fc: good bit-and-phase channels for transmitting arbi-

trary quantum information |ψ〉;
• FP : good bit-only channels for transmitting known

Hadamard basis states |z〉, where z ∈ {+,−};
• FB : good phase-only channels for transmitting known

computational basis states |x〉, where x ∈ {0, 1};
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Fig. 31: Mutual information intensity map for bit-flip and
phase-flip channels at a depolarizing probability of p = 0.06,
when a polar code of length 64 is used.

• FBP : bad bit-and-phase channels for transmitting ebits.

Consequently, an [N, k, c]14 polar code specified by the en-
coder V and the codespace C takes as input a k-qubit infor-
mation word (logical qubits) |ψ〉 and maps it onto an n-qubit
codeword (physical qubits) with the aid of (N −k− c) frozen
qubits initialized to the known computational and Hadamard
basis states and c ebits, whose one qubit is pre-shared with the
receiver. This may be mathematically expressed as:

C = {|ψ〉 = V
(
|ψ〉Fc ⊗ |x〉FB ⊗ |z〉FP ⊗ |φ〉+FBP

)
}. (56)

The resulting encoded qubits |ψ〉 are sent over a quantum
depolarizing channel, which may inflict bit-flip, phase-flip or
bit-and-phase-flip errors, each with a probability of p/3. The
received quantum information may be represented as:

|ψ̃〉 = P|ψ〉, (57)

where P denotes the n-qubit Pauli error inflicted by the
quantum depolarizing channel. At the receiver, the received
information of Eq. (57) is passed through the inverse encoder
V†, which yields:

V†|ψ̃〉 = V†P|ψ〉 = V†PV
(
|ψ〉Fc ⊗ |x〉FB ⊗ |z〉FP ⊗ |φ〉+FBP

)

= L|ψ〉Fc ⊗ Sx|x〉FB ⊗ Sz|z〉FP ⊗ Sy|φ〉+FBP
= |ψ̃〉Fc ⊗ |x̃〉FB ⊗ |z̃〉FP ⊗ |φ̃〉+FBP . (58)

where V†PV ≡ (L ⊗ Sx ⊗ Sz ⊗ Sy) and L denotes the
k-qubit error inflicted on the information word |ψ〉, while
Sx, Sz and Sy represent the errors imposed on the frozen
qubits, i.e. the computational, the Hadamard and the entangled
qubits, respectively. As mentioned earlier, we assume that only

14We consistently use round brackets (.) for classical codes, while the square
brackets [.] are used for quantum codes.

the first ebit of the Bell states experiences noise, while the
second ebit is pre-shared over a noiseless channel. Finally,
the corrupted computational and Hadamard basis states, i.e.
|x̂〉 and |ẑ〉, are measured in the computational and in the
Hadamard basis, respectively, for the sake of determining the
errors inflicted on these qubits. Explicitly, the former reveals
information about any bit-flips imposed on the frozen states
|x〉, while the latter provides information about phase-flips
inflicted on the frozen states |z〉. Let us denote the outcomes
as sx and sz , respectively, which are classical bits. Next, we
have to determine the error imposed on the ebits transmitted
over the quantum channel. Recall that ebits are frozen in
both the computational and the Hadamard bases, since the
corresponding channels are bad from the perspective of bit-
flips as well as phase-flips. Consequently, we have to find the
bit-and-phase-flip errors imposed on the ebits. This may be
achieved by using the Pauli operators gx = XX and gz = ZZ,
where the first Pauli operator acts on the ebit transmitted over
the quantum channel, while the second Pauli operator acts
on the pre-shared noiseless ebit. Since ebits were created in
the Bell states of Eq. (53), both Pauli operators gx and gz
constitute the stabilizers. Furthermore, a bit-flip error on the
first ebit will yield an eigenvalue of −1 for the stabilizer gz ,
while a phase-flip error will yield an eigenvalue of −1 for gx.
Hence, both bit-flip as well as phase-flip errors acting on the
first ebit can be determined, which may be denoted as sy . The
error patterns sx, sz and sy acting on the frozen qubits are
then fed to a syndrome-based polar decoder for the sake of
estimating the logical error L̂ experienced by the information
word |ψ〉. Finally, a recovery operation R is applied to |ψ̂〉
based on the estimated error pattern L̂, hence recovering the
transmitted information.

Let us now elaborate on the syndrome decoding block of
Fig. 32, which takes as input the errors experienced by the
frozen qubits and estimates the error L̂ imposed on the logical
qubits. The bit-flip and phase-flip errors constituting L̂ can be
estimated independently as shown in Fig. 33, assuming the
quantum depolarizing channel is approximated as two inde-
pendent BSCs. More specifically, the quantum polar decoder
of Fig. 33 consists of two independent classical syndrome-
based polar decoders used for estimating bit-flip and phase-flip
errors, denoted as L̂x and L̂z , respectively. The former decoder
exploits the classical polar encoder GN , while the latter relies
on the encoder GTN . It is pertinent to mention here that the
syndrome-based polar decoder already exists in the classical
regime in the context of distributed source coding [178], [179],
where it is used to find the source information. However,
when exploited from the perspective of channel coding, the
syndrome-based polar decoder finds the most likely error on
the information word. This is in contrast to the the conventional
polar decoder, referred to as the codeword-based polar decoder,
which aims to find the most likely information word. Such a
syndrome-based polar decoder is obtained from the codeword-
based polar decoder of Fig. 15 by setting the values of
the frozen bits according to the observed syndrome values,
rather than the actual values of the frozen bits. Similarly, the
channel LLRs are replaced by the channel error LLRs, i.e.
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(L̂z, L̂x) L̂ Estimated Error
(0, 0) I No Error
(0, 1) X Bit-flip Error
(1, 0) Z Phase-flip Error
(1, 1) Y Bit-and-phase-flip Error

TABLE XI: Binary to Pauli mapping for estimating the Pauli
error.

the probability of encountering channel error on the coded
sequence. In case of a depolarizing channel, or equivalently
a BSC channel, the channel error LLRs are set according to
the marginalized depolarizing probability 2p/3. The rest of
the decoding process is the same as that of the codeword-
based decoding. Finally, the estimated error patterns L̂x and
L̂z are mapped onto the corresponding Pauli operators using
the binary-to-Pauli mapping of Table XI, hence yielding the
Pauli error L̂.

VIII. CONCLUSIONS & FUTURE DIRECTIONS

To conclude, Arikan’s polarization phenomenon of Sec-
tion II has paved the way to provably approach the Shannon’s
capacity at low encoding and decoding complexity. In partic-
ular, polar codes have structured encoders and decoders, as

discussed in Section III and Section IV, respectively, hence
dispelling the notion that randomized coding structures are
more apt for approaching Shannon’s capacity. Furthermore,
polar codes intrinsically support rate-adaptation, since the
coding rate can be varied by only changing the number of
frozen bits, while retaining the same encoder and decoder.

The attractive features of polar codes have stimulated a wave
of interest in the research community as well as in the industry.
Consequently, within a decade of their inception, polar codes
have replaced their classic counterparts in the 5G NR for the
control channels of the eMBB use-case. However, the high
decoding latency of polar codes is a major concern restricting
the widespread application of polar codes, as discussed in Sec-
tion IV, where we have reviewed the major polar decoders with
slow-paced tutorial examples. More specifically, recall from
Table IX that the different polar decoding schemes, namely
the SC of Section IV-A, the SSC of Section IV-B, the SCL of
Section IV-C, the SCS of Section IV-D, the BP of Section IV-E
and the SCAN of Section IV-F, entail a compromise between
the imposed complexity, space requirements, performance and
the tendency for fully-parallel implementation.

Another concern related to polar codes is their channel-
specific nature, which necessitates the optimization of polar
codes for the channel under consideration. Explicitly, the
optimization of polar codes entails selecting the right indices
for the frozen bit-channels. In Section V, we detail the polar
code design principles with particular emphasis on the BEC-
approximation, Monte-Carlo and GA-DE methods for esti-
mating the reliabilities of the bit-channels. Furthermore, we
construct frozen bit-channel sequences for the AWGN channel
using these three methods and compare their performance. It is
demonstrated that the sequences constructed using the Monte-
Carlo and GA-DE are equally good, while those designed
using the BEC-approximation have inferior performance. We
surmise that, this is because a BEC does not accurately model
transmission over an AWGN channel. We further demonstrate
that, while the SNR is an important design parameter, limited
variations in the design SNR only slightly affect the BLER
performance.

Polar codes have also been warmly welcomed by the quan-
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tum coding community, since the notion of channel polariza-
tion readily extends to the quantum channels. Interestingly,
Arikan’s polar encoder is capable of concurrently polarizing
the bit-flip and phase-flip quantum channels, when the XOR
gates are replaced by quantum CNOT gates, as exemplified
in Section VI. However, the QSCD is not a direct extension
of the classical SC decoder. The relevant contributions in this
context are briefly summarized in Section VII. Nonetheless,
there exist quantum polar codes designed for quantum Pauli
channels, which are more directly linked to the classical polar
codes, since they invoke the classical syndrome based polar
decoders. The encoder and decoder of this class of quantum
polar codes are reviewed in Section VII-A and Section VII-B,
respectively.

As surveyed in this paper, intensive research efforts have
been invested in the polar coding paradigm over the last decade
for the sake of bringing it on par with its contemporaries,
namely the turbo and LDPC codes. Nonetheless, there is a
great potential to explore this coding paradigm further, since
it is still in its infancy. Some of the potential research directions
are discussed below:

1) Non-Arikan Polar Codes: As discussed in Sec-
tion II-B, efforts have been made to design multi-
dimensional as well as non-binary kernels for polar
codes. However, these kernels have not been able to
replace the Arikan’s kernel, owing to the associated
encoding and decoding complexities. This is still an
open research area. In particular, the non-binary kernels
are important from the perspective of source coding.

2) Low-Latency, Power-Resource-Efficient & Flexible
Polar Decoders: Polar decoder continues to be a major
concern; hence preventing the adoption of polar codes
for the data channel of 5G NR. These include a range
of open research problems both from the algorithmic
perspective as well as from the implementation. In
particular, the existing polar decoders incur a high
latency, which is a primary concern for URLLC appli-
cations. Recall from Table IX that only the BP decoder
supports fully-parallel implementation. However, this is
achieved at cost both in terms of the performance, and
its complexity as well as space requirement. substantial
efforts have been made to partially parallelize the other
polar decoders, for example in [79], [81], [82], [93],
[121], but their latency still remains higher than that
of the turbo and LDPC codes, which lend themselves
to a convenient fully-parallel implementation [180]–
[182]. Furthermore, there is a need to explore more
practical polar decoders as well as to develop further
the hardware implementations of the existing polar
decoders to bring them at par with the turbo and LDPC
codes, particularly from the perspective of latency (or
throughput), power efficiency, resource efficiency as
well as flexibility. From the algorithmic perspective,
soft-in soft-out polar decoding is also a promising
research avenue, since the existing soft SCL decoder
is only applicable to systematic polar codes, while the
performance of the SCAN decoder is not at par with

that of the SCL decoder. So, a more general soft SCL
decoder is required for concatenated frameworks, for
example concatenated coding schemes or joint detection
and decoding schemes, invoking iterative decoding.

3) Stochastic Polar Decoders: Stochastic LDPC and
turbo decoders are known to provide attractive benefits
both in terms of fault-tolerance (to timing errors) as
well as latency (or throughput) [183], [184]. However,
stochastic polar decoders have not attracted much at-
tention, apart from the contributions in [185]–[190].
Since the latency of polar decoders is already a prime
concern, in this context it is worth investigating the area
of stochastic polar decoders.

4) Universal Polar Codes: Perhaps another limitation
of polar codes is their channel-specific nature, which
necessitates code optimization for the required channel
characteristics. The impact of this is not very signifi-
cant in practical scenarios. Hence, despite the channel-
specific nature of polar codes, they have been adopted
for the control channels of the 5G NR. However, this
still remains a concern, especially from the theoretical
perspective. More specifically, polar codes with SC
decoding incur a capacity loss over compound chan-
nels15, as demonstrated in [191]. This capacity loss
is due to the sub-optimal SC decoding and may be
alleviated by invoking the optimal ML decoding, as
theoretically shown in [35]. Explicitly, it was demon-
strated in [35] that a polar code optimized for a BSC
is universal under ML decoding and hence is optimal
for any channel of equivalent capacity. Unfortunately,
ML decoding of polar codes is not feasible. For the
sake of overcoming this issue, universal polar codes
were conceived in [192], [193], which essentially retain
the low encoding and decoding complexity (per bit)
of classic polar codes. However, this universality is
achieved by increasing the length of polar codes, which
in turn imply a higher overall complexity and longer
latencies (or equivalently lower throughputs). This is a
promising research avenue and must be explored further
to find improved approaches for achieving universality
for binary and non-binary classical polar codes as well
as for quantum polar codes.
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code constructions based on LLR evolution,” IEEE Communications
Letters, vol. 21, no. 6, pp. 1221–1224, June 2017.
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