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Abstract— An attractive hybrid method of mitigating the effects of
error propagation that may be imposed by the relay node (RN) on the
destination node (DN) is proposed. We selected the most appropriate relay
location for achieving a specific target Bit Error Ratio (BER) at the relay
and signalled the RN-BER to the DN. The knowledge of this BER was
then exploited by the decoder at the destination. Our simulation results
show that when the BER at the RN is low, we do not have to activate
the RN-BER aided decoder at the DN. However, when the RN-BER is
high, significant system performance improvements may be achieved by
activating the proposed RN-BER based decoding technique atthe DN.
For example, a power-reduction of up to about 19dB was recorded at a
DN BER of 10

−4.

I. I NTRODUCTION

Cooperative communications [1] is capable of supporting the users
either at an improved integrity or throughput in wireless networks
with the advent of user cooperation. The simplest two-hop cooper-
ative communications scheme consists of three terminals, namely a
source node (SN), a relay node (RN) and a destination node (DN) [2].
In a simple cooperative regime the SN transmits informationto
both the RN and the DN during the first cooperative transmission
period. Then the RN retransmits the information during the second
cooperative transmission period. In a slightly more sophisticated
cooperative diversity regime two users may cooperate by exchanging
their roles as SN and RN [3]. The source-to-relay (SR) link and
source-to-destination (SD) link typically fade independently and the
destination beneficially combines the two links’ signals for achieving
diversity. Numerous relaying protocols may be employed in coopera-
tive communications, such as the Amplify-and-Forward [4],[5] (AF),
Demodulate-and-Forward [6] (DemF), Decode-and-Forward [5] (DF),
the Adaptive Relaying Protocol of [7] (ARP) and Soft Information
Relaying [8] (SIR). However, in practice decoding errors may be
imposed by the RN’s erroneous decisions propagated to the DN,
which may potentially inflict avalanche-like error propagation.

The potential error propagation limits the attainable end-to-end per-
formance. Hence, various methods have been proposed for mitigating
the effects of error propagation imposed by the RN [9], [10].In
this paper, two methods are studied. Thefirst method considered
was proposed in [11], [12], where the decoding error probability
encountered at the RN is taken into account during the decoding
process at the destination. Hence we refer to it as ’Correcting the
Relay’s Decoding Errors at the Destination’ (CRDED). However, the
location of RNs and the corresponding transmit power was fixed
in [11], [12]. Thesecond method considered is based on the scheme
advocated in [13]–[15], where joint signal design and coding was
invoked both at the SN and the RN. We term this method as the joint
SN-RN-DN design. The system selected the most appropriate relay
based on the transmit power level required for guaranteeingreliable
relaying. Although the joint SN-RN-DN design technique of [13]–
[15] efficiently mitigated the RN-induced error propagation, when the
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power received at the RN was too low, the effect of error propagation
still remained a persistent problem.

The apparent trade-off between the above-mentioned CRDED
method of [11], [12] and the joint SN-RN-DN design of [13]–
[15] has motivated our research to beneficially amalgamate these
meritorious mechanisms for sake of mitigating the error propagation
imposed by the RN. We considered transmission over quasi-static
Rayleigh fading channels, where the channel’s envelope remains
approximately constant during a transmission frame, but fades be-
tween the different frames. In this contribution, we will employ
Bit-Interleaved Coded Modulation combined with IterativeDecoding
(BICM-ID) [16], [17]. Set-Partitioning (SP) based signal labelling
is employed by the BICM-ID scheme for increasing the Euclidean
distance of the constellation points and for exploiting thefull ad-
vantage of bit interleaving with the aid of soft-decision feedback
based iterative decoding. Furthermore, the DF protocol is employed
in the proposed scheme. Although using a strong channel codeis
capable of mitigating the error propagation for transmission over
idealized uncorrelated Rayleigh fading channels in a DF scheme, the
error propagation is hard to mitigate for transmission overslowly-
fading quasi-static Rayleigh fading channels owing to the lack of
time diversity during a transmission frame.

Again, we amalgamate the CRDED technique of [11], [12] and
the joint SN-RN-DN design of [13]–[15]. In the context of thelatter
technique we either select a RN near the desired location, orallocate
the most appropriate transmit power to the RN in order to attain the
target received SNR at the DN, as in [13]–[15]. Hence this enhanced
technique is referred to here as ’RN Selection or Power Allocation’
(RNSPA). Naturally, a beneficial amalgam of these techniques is
expected to have a better end-to-end performance than the above-
mentioned two methods in isolation.

The outline of the paper is as follows. The system model is
described in Section II, while our results and discussions are detailed
in Section III. Our conclusions are presented in Section IV.

II. SYSTEM MODEL AND ANALYSIS

node

Source Destination

node

node

Relay

Gsd

Gsr Grd

dsd = dsr + drd

xr

xs

dsr drd

Fig. 1. The schematic of a two-hop relay-aided system
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Fig. 1 shows the basic schematic of a two-hop relay-aided system,
which is used in our design. During the first cooperative transmission
period the SN transmits a frame of coded symbolsxs to both the
RN and DN. Then the RN decodes the information and transmits a
frame of coded symbolsxr to the DN during the second cooperative
transmission period. More specifically, during the first transmission
period, thekth symbol received at DN may be written as:

ysd,k =
√

Gsdhsd,kxs,k + nsd,k, (1)

wherek ∈ {1, ...,N} and N is the number of symbols transmitted
from the SN, whilehsd,k denotes the quasi-static Rayleigh fading
coefficient between the SN and the DN. Moreover,nsd,k represents
the AWGN having a variance ofN0/2 per dimension. Similarly, the
kth symbol received at the RN may be expressed as:

ysr,k =
√

Gsrhsr,kxs,k + nsr,k, (2)

wherehsr,k denotes the quasi-static Rayleigh fading coefficient of the
link between the SN and the RN, whilensr,k represents the AWGN
having a variance ofN0/2 per dimension. It is assumed that the
number of symbols transmitted from the SN is the same as that from
the RN. Thekth symbol received during the second transmission
period may, therefore, be formulated as:

yrd,k =
√

Grdhrd,kxr,k + nrd,k, (3)

where hrd,k represents the quasi-static Rayleigh fading coefficient
of the RN to DN link, while,nrd,k represents the AWGN having
a variance ofN0/2 per dimension. The reduced-distance-related
pathloss reduction (RDRPLR) of the SR link related to the SD link
can be expressed as [18], [13]:

Gsr =

„

dsd

dsr

«n

. (4)

Here, the pathloss exponent equals ton = 2, because a free-
space Line-of-Slight (LOS) pathloss model is assumed. Similarly,
the RDRPLR of the relay-to-destination (RD) link related tothe SD
link may be formulated as:

Grd =

„

dsd

drd

«

2

. (5)

Naturally, the RDRPLR of the SD link related to itself is unity,
yielding, Gsd = 1, wheredsr represents the distance between the
SN and RN, whiledrd is that of the RD link anddsd is that of the
SD link. Moreover, for the sake of simplicity we assumed without
loss of generality that the SN, the RN and the DN are positioned
along a straight line. Therefore, we have:

dsd = dsr + drd. (6)

Again, below we beneficially combine the CRDED [11], [12] and
the RNSPA [13]–[15] techniques. The proposed algorithm andits
analysis will be presented in the following subsections.

A. Correcting the Relay’s Decoding Errors at the Destination

Practically, the RN may have decoding errors and if so, then
the erroneous packets are transmitted from the RN to DN, which
inevitably degrades the achievable end-to-end performance [11]. We
denote the BER of the BICM coded bits at the RN as RN-BER. More
specifically, the RN-BER is given by the BER of the BICM decoded
bits at the RN, which can be estimated form the soft-metrics of the
BICM decoder. Fig. 2 shows the schematic of the entire system,
where the interleaver and de-interleaver are represented by π and
π−1, respectively. The estimated RN-BER has to be signalled to

the DN, where it is employed for mitigating the effects of error
propagation.

In this model, the RN’s location is fixed. Letqi
k denote the RN-

BER of theith bit of thekth symbol, where we havei ∈ {1, ..., m}
and m represents the number of coded bits per BICM symbol. For
simplicity, we assume that the RN-BER is perfectly known at the DN,
which may be accurately estimated based on the decoder’s soft output.
It was shown in [11] that only a modest performance degradation is
imposed, when a realistically estimated BER value is reliedupon.
Here, we introduced the sequence∆ci

k, which hosts a logical one to
indicate the position of the decoding errors, where the probability of
the decoding errors∆ci

k can be expressed as:

P (∆ci
k) =



1 − qi
k , if ∆ci

k = 0
qi

k , if ∆ci
k = 1.

(7)

During the BICM-ID decoding iterations at the DN the
extrinsic a pOsteriori probability P (ci

k; O) of the original coded
bits (ci

k) and the error-indicator sequence∆ci
k [19] are interleaved

independently, and then they are fed back to the input of the demapper
as the probability of thea priori information, where againO refers to
the extrinsic a pOsteriori information. Considering the RN-BER
and thea posteriori probability P (ci

k; O) of the BICM decoder’s
output bits [19], the joint probabilityP (ĉi

k; O) may be calculated as:

P (ĉi
k; O)=

8

>

>

<

>

>

:

(1 − qi
k)P (ci

k = 0; O) + qi
kP (ci

k = 1; O)
, if ĉi

k = 0
(1 − qi

k)P (ci
k = 1; O) + qi

kP (ci
k = 0; O)

, if ĉi
k = 1,

(8)

which may be used to generate the Log-Likelihood Ratio (LLR)[19]
of ci

k. ConsideringP (ci
k = 1; O) as an example, we have [11], [19]:

P (ci
k = 1; O) = P (ci

k = 1)
8

<

:

(1 − qi
k)

X

ĉi
k
=1

exp

„

−|yrd −
√

Grdhrdxr|2
N0

« m
Y

j 6=i

P (ĉi
k; O)

+ qi
k

X

ĉi
k
=0

exp

„

−|yrd −
√

Grdhrdxr|2
N0

« m
Y

j 6=i

P (ĉi
k; O)

9

=

;

,

where j ∈ {1, ..., m}, j 6= i. It is worth mentioning that the
conventional BICM-ID decoder may be employed for the SD link
without any modification, since this link is free from any RN-induced
decoding errors. Although error propagation may be encountered at
the DN, it is mitigated with the aid of the RN-BER estimator shown in
Fig. 2, which can help the DN to correct the decoding errors produced
at the RN with the aid of the side information that is generated from
the information received from the SN via the direct link.

Having considered the CRDED method, let us now briefly focus
our attention on the RNSPA technique.

B. RN Selection or Power Allocation

When transmitting over quasi-static Rayleigh fading channels, the
constant fading coefficient and the power of the AWGN determines
the received Signal to Noise power Ratio (SNR) for each transmission
frame. The estimated SNR can be used for choosing the optimum
RN location. According to [15], the average SNR at the RN may be
expressed as:

SNRr,sr =
E{Gsr}E{|hsr |2}E{|xs,k|2}

N0

, (9)
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Fig. 2. The block diagram of the RN-BER-aided system

where xs,k is the kth symbol transmitted from the SN. For the
sake of simplifying our analysis, we define the ’equivalent SNR’1

characterizing the SN to RN link as:

SNRt,sr =
E{|xs,k|2}

N0

, (10)

where we haveE{|xs,k|2} = 1. Hence, we arrive at:

SNRr,sr = SNRt,srGsr|hsr|2 (11)

γr,sr = γt,sr + 10log
10

(Gsr|hsr|2)[dB], (12)

where we have γr,sr = 10log
10

(SNRr,sr) and γt,sr =
10log

10
(SNRt,sr). Furthermore, we assume having the same trans-

mit power at the SN and at the RN, which corresponds to equal-
power-sharing between them. Hence, we have:

γr,rd − 10log
10

(Grd|hrd|2) = γr,sr − 10log
10

(Gsr|hsr|2) (13)

Grd|hrd|2
Gsr|hsr|2

= 10
γr,rd−γr,sr

10 . (14)

Based on Eqs. (4), (5) and (6), the relationship betweenGsr and
Grd may be expressed as:

Grd =

„

1

1 − 1/
√

Gsr

«2

. (15)

If γr,sr is fixed toγr,sr min, the following relationship may be derived
from Eqs. (14) and (15):

Gsr = |hsr|−210
(γr,sr min−γt,sr)

10 . (16)

Then, based on Eq. (15),Grd can be obtained.

C. Analysis of both methods for perfect relaying

In this sub-section, the performance of the CRDED and RNSPA
methods is presented for the idealized perfect relaying scenario,
where we have RN-BER = 0. Fig. 3 shows the BER performance
of the perfect relaying scenario. The dotted lines represent the
performance of the CRDED method in the following three scenarios:
1) the RN is half-way between the SN and DN, 2) the RN is closer
to the SN and 3) the RN is closer to the DN. As seen in Fig. 3,
if the RN is located close to the SN,Grd is relatively low, hence

1We note that this definition does not represent a physically tangible or
measurable quantity, since it relates the transmit power ofthe SN to the
AWGN power encountered at the RN. Nonetheless, this convenient definition
simplifies our discussions.

the DN receives the data at a relatively low SNR, thus we have a
poorer performance. By contrast, if the RN is closer to the DN, the
situation is reversed. At a BER of10−4, there is an almost 5dB
SNR difference between these two scenarios. As seen in Fig. 3, the
performance curves of the RNSPA method are represented by the
solid lines. Note that the BER curves of the RNSPA method decay
faster than those of the CRDED method. The corresponding Frame
Error Ratio (FER) performance is presented in Fig. 4.
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Fig. 3. BER versus SNR performance for perfect relay aided BICM-ID for
transmission over quasi-static Rayleigh channels both forthe CRDED and for
the RNSPA method. The system’s schematic is portrayed in Fig. 2 and the
simulation parameters are summarised in Table I.

III. S IMULATION RESULTS

The performance of the proposed systems is characterized in
this section using the simulation parameters of Table I. Firstly, the
performance of the CRDED method recorded for RN-BER aided
BICM-ID is characterized in Fig. 5, which illustrates the BER
performance of the CRDED system for a fixed RN location. When
the RN is half-way between the SN and the DN, there is an almost
7dB difference between the BER performance curve of the CRDED
scheme exploiting the estimate of RN-BER and that operatingwithout
exploiting the knowledge of the RN-BER. Furthermore, encountering
different RN locations results in a different performance.More
specifically, the longer the SR link, the more substantiallythe BER
performance of the CRDED technique improves, since the effects
of the avalanche-like RN-induced error propagation becomemore
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Fig. 4. FER versus SNR performance for perfect relay aided BICM-ID for
transmission over quasi-static Rayleigh channels both forthe CRDED and for
the RNSPA method. The system’s schematic is portrayed in Fig. 2 and the
simulation parameters are summarised in Table I.

Coded BICM-ID
Modulation
Modulation QPSK
Code R=1

2 Convolutional
Code Mem-
ory length

3

Number of 8
iterations
Decoder Approximate Log-MAP [19]
Symbols per
frame

1,200

Number of
frames

10,000

Channel Quasi-static Rayleigh channel
Gsr = Grd Gsr = Grd/3 Gsr = 3Grd

Pathloss Gsr =

4

Grd =

4

Gsr =

1.78
Grd =

16

Gsr =

16

Grd =

1.78
(6.02dB) (6.02dB) (2.50dB) (12.04dB) (12.04dB) (2.50dB)

Threshold 0.89 dB 5.35 dB 8.09 dB
Corresponding
AWGN BER

RN-BER =10
−1 RN-BER =10

−3 RN-BER =10
−6

TABLE I
SYSTEM PARAMETERS.

catastrophic in the absence of the RN-BER knowledge, i.e. inthe
absence of the CRDED technique. For instance, the performance of
the RN-BER aided scenario was improved by approximately 19dB
in the case ofGsr = Grd/3. By contrast, we have a modest 2dB
improvement with the aid of the CRDED scheme forGsr = 3Grd.
Therefore, the employment of the CRDED technique becomes more
crucial, when the RN is closer to the DN. The corresponding FER
performance shown in Fig. 6 exhibits similar trends.

Let us now consider the performance of our proposed method
in comparison to the RNSPA technique. Observe from Fig. 3 and
Fig. 4 that when the SNR increases in the idealized perfect relaying
scenario, the RNSPA method has a better performance than the
CRDED since the latter is expected to have no benefits in the absence
of errors. Hence the philosophy of our hybrid method is that we
activate the RNSPA and CRDED modes of operation, depending on
whether the SR channel’s SNR exceeds a threshold value, above
which the RNSPA technique is activated. This is because in the
presence of a sufficiently high SR SNR the RN-BER becomes low
and hence we no longer have to exploit this RN-BER knowledge.
Table I shows the threshold valueγr,sr min expressed indB, which is
used for selecting a RN at a desired location or using the appropriate
transmit power at the RN. This threshold directly corresponds to a
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is worth noting that the differences in comparison to Fig. 3 are 1) the RN-BER
instead of perfect relaying, 2) only the CRDED method is used.
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specific RN-BER under the assumption of a quasi-static Rayleigh
channel, which corresponds to an AWGN channel having a fading-
dependent SNR. More specifically, the optimum relay location or
the transmit power required at the RN can be chosen based on the
optimum RDRPLR, which can be generated from the knowledge of
the transmit power at the SN and that of the received power at the
RN. The simulation results provided below will justify, whyour
proposed system is superior to both the CRDED and the RNSPA
method. Fig. 7 and Fig. 8 illustrate the BER and FER performance
of the proposed hybrid system, respectively. Observe in Fig. 7 that
regardless, whether the RN-BER-knowledge is exploited or not, the
achievable performance remains similar in the case of a low decoding
error probability encountered at the RN. However, when the decoding
error probability is high at the RN, the exploitation of the RN-BER
becomes more crucial for the sake of limiting the RN-inducederror
propagation. For instance, as seen in Fig. 7, our proposed method
achieves an approximately 12dB power reduction over the RNSPA
method, when using a RN-BER threshold of10−1 for activating the
CRDED technique. More specifically, an SNR of almost 21dB is
required for achieving a target BER of10−4 by the RNSPA, which
becomes about 9dB for our proposed technique, as indicated by the
dotted-starred and by the continuous-triangle lines, respectively.

It is worth noting that the FER seen in Fig. 8 is poor, when the
RN-BER threshold used for activating the CRDED technique isset
to 10−1. In contrast to Fig. 4 and Fig. 6, the FER performance of
the CRDED scheme approaches that of the perfect relaying situation,
while the FER performance remains inferior in comparison tothat of
our proposed scheme. Since the CRDED method implicitly relies on
having a fixed RN location, which is associated with a time-invariant
RN-BER, its performance is expected to degrade in the presence of
high RN velocity or low RN-BER signalling rates. It can also be
observed in Fig. 8 that if the RN-BER is in excess of10−1, then the
FER also becomes too high to be effectively reduced by the proposed
system.

IV. CONCLUSIONS

A hybrid technique of mitigating the effects of RN-induced error
propagation was proposed, which takes into consideration both the
RN location and the RN-BER for mitigating the error propagation.
The results have demonstrated that this technique is particularly
beneficial, when the BER at the RN is high, since transmit power
reductions up to 19dB were attained at a BER of10−4. In our future

work, cooperative spatial multiplexing schemes will be considered,
but we note that the proposed techniques are applicable to a broad
class of DF-aided cooperative schemes.
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