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Abstract—Bypassing the potentially excessive-complexity and
yet inaccurate channel estimation, differentially encoded modu-
lation in conjunction with low-complexity non-coherent detection
constitutes a viable candidate for future multiple-antenna aided
systems, where estimating all the links may become unrealis-
tic, especially in high-speed environments. Upon exploiting the
correlation between the phase distortions experienced by the
consecutively transmitted symbols and/or based on mutually
and iteratively utilizing the increasingly improved bit reliabil-
ity information among the associated multiple symbols in the
context of differentially modulated systems using channel code
aided iterative receivers, the joint processing on consecutively
received multiple symbols improves the system’s performance.
For example, an increased robustness against rapid channel
fluctuation, improved flexibility in the system’s performance-
complexity compromise as well as a reduced performance loss
is achieved in comparison to its coherent detection aided coun-
terpart. In order to stimulate further research on differentially
modulated systems and on the associated multiple-symbol signal
processing based advanced receiver design, a comprehensive
review on their related concepts and fundamental principles is
carried out in this treatise, followed by a number of potential
challenges encountered in their practical implementations in
future high-spectral-efficiency wireless transmissions, such as
their applications in high-order differentially modulated systems
and in differential interference suppression of spatial-division
multiplexing/multiple access scenarios.

Index Terms—Multiple-symbol detection, non-coherent detec-
tion, cooperative communications, sphere detection.

I. INTRODUCTION

THE MAIN driving force behind the advances in wireless
communications over hostile, band-limited radio chan-

nels is the promise of mobile multimedia communication
with seamless global mobility and ubiquitous accessibility. A
typical system of this kind is the mobile Internet, where infor-
mation exchanges are supported among people and/or devices,
regardless of their geographic positions, using different media
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within the same radio link, such as video, graphics, speech,
text or other data. This implies that a mobile multimedia
communication system has to adapt itself to the very different
requirements of the individual services in terms of data rates,
quality of service (QoS), maximum delay, etc. Therefore,
against the backcloth of the explosive expansion of the Internet
and the continued dramatic increase in demand for high-data-
rate high-mobile-velocity multimedia services, it is increas-
ingly important to find both energy- and bandwidth-efficient
solutions for next-generation wireless communication, which
is capable of coping with the associated severely frequency-
and time-selective wireless channels.

In the context of traditional single-carrier wireless com-
munication systems using coherent detection techniques, the
above-mentioned propagation conditions encountered by high-
data-rate and high-velocity applications are directly translated
to significant increases in the equalization complexity as well
as in channel estimation overheads. Although technological
advances in integrated circuits and radio-frequency electronics
facilitate the employment of ever more sophisticated signal
processing and coding algorithms, a key consideration for
the development of next-generation wireless communication
systems is the support of small, low-cost user equipment (UE)
with long battery life, both in stand-by and during activity.
Thanks to its low-complexity discrete Fourier transform (DFT)
based implementation, the orthogonal frequency-division mul-
tiplexing (OFDM) technique [1] and its variants1 have become
the predominant wideband transmission techniques. Their
main benefit is that they facilitate low-complexity single-tap
multiplicative equalization at the receiver.

As an important further invention, the innovative concept of
Spatial Multiplexing (SM) invoked for increasing the through-
put of wireless systems using multiple transmit and receive
antennas (MIMO) was patented in 1994 [2]. This concept was
inspired by carefully evaluating the signal separation experi-
ments carried out by Paulraj and Kailath [2]. In the late 90s,
as the integrated circuits and radio-frequency electronics have
advanced in parallel to the increasing tele-traffic demands,

1For example, orthogonal frequency-division multiple access (OFDMA),
wideband code-division multiple access (WCDMA) and single-carrier
frequency-division multiple access (SC-FDMA) are broadband transmission
techniques developed based on the fundamental OFDM principle.
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the research of MIMO systems was further fuelled by the
pioneering work of Foschini [3, 4] and Telatar [5]. The fun-
damental philosophy was centered around efficient space-time
signal processing [6–10]. As a substantial benefit, the family
of MIMO techniques exhibits a capacity, which is linearly
dependent on the minimum of the number of transmit and
receive antennas [3, 11, 12]. Hence their throughput increases
linearly with the number of MIMO elements and the transmit
power. On the other hand, the benefits of MIMO systems
may also be exploited for mitigating the detrimental effects
of multipath propagation with the aid of their transmit/recieve
diversity gain, which is an explicit benefit of receiving mul-
tiple independently faded transmit signal replicas [6, 7, 10].
Following years of intensive research, MIMO techniques have
found their way into the wireless standards and hence they
constitute one of the most significant technical inventions in
contemporary wireless communications [13, 14]. More explic-
itly, they have reached commercial maturity and hence they
are employed in wireless products and networks, such as
broadband wireless access systems, wireless local networks
(WLAN), third generation networks and in the most recent
3GPP LTE/LTE-Advanced networks.

However, it is typically impractical for the pocket-sized
mobile device to employ multiple antennas due to its size and
cost constraints as well as owing to the associated hardware
impairments2. In addition, owing to the limited separation of
the antenna elements, the transmitted signal rarely experiences
independent fading, which in turn erodes the achievable diver-
sity gain. The diversity gain may be further compromised by
the deleterious effects of the large-scale shadow fading [15],
since all the MIMO channels tend to fade together rather than
independently, imposing further signal correlation amongst
the antennas in each other’s vicinity. Apart from the above
obstacles in the way of achieving multiple-antenna-aided di-
versity gains, wireless cellular networks aim for improving
the coverage, capacity or the quality of end-user experience
(QoE) in inadequately covered areas, such as for example
indoor environments and rural areas. The dense deployment
of fully-fledged base stations (BSs) constitutes a high-quality
solution, albeit this may impose a high infrastructure cost and
thus may become economically unavailable, especially in low-
traffic-density sparsely populated rural areas.

Hence, to meet the above challenging requirements of
next-generation wireless networks, the family of relay-aided
cooperative transmission technique [16–20] appears to be one
of the most promising solutions. In a nutshell, in multi-user
wireless systems, single-antenna-assisted mobile stations (MS)
may cooperatively share their antennas in order to achieve
the so-called cooperative diversity as well as a path-loss-
reduction based power gain by forming a virtual antenna
array (VAA) [21, 22] in both uplink (UL) and downlink (DL)
transmissions. The concept of user cooperation has been first
proposed in [19, 20] for a two-user cooperative CDMA system,
where orthogonal codes are employed by the active users
in order to avoid the multiple access interference. Naturally,
the extra tele-traffic between a source MS and a cooperat-

2For example, the associated mixed-signal coupling and cross-talk that may
become critical in integrated high performance wireless systems, where the
digital circuitry is tightly co-located with the analog RF electronics.

ing MS serving as a relay station (RS) requires additional
radio resources to be allocated - any of the well-established
multiple access schemes can be employed by the users to
guarantee their orthogonal interference-free transmission, such
as time-division multiple access (TDMA), frequency-division
multiple access (FDMA) or code-division multiple access
(CDMA) [17].

According to the operations carried out at the RS, the
relaying protocols may be classified into three categories,
namely amplify-and-forward (AF), decode-and-forward (DF)
and compress-and-forward (CF) relaying. In the AF scheme,
which is also referred to as the analog-repeater-based arrange-
ment [18], the RS simply amplifies and forwards the source
node’s ‘overheard’ signal to the intended destination, thus
potentially increasing the system’s overall noise level, since
the signal and noise are amplified together. As to the DF
scheme, the RS fully decodes the signal received from the
source and provides the destination with a re-encoded signal.
Hence, the problem of error propagation may arise, when
the RS forwards the erroneously recovered signal, which may
deteriorate the detection at the destination and hence the over-
all system performance. Recently, the CF-based cooperative
scheme also received increasing research attention [23, 24],
where the RS forwards a quantized or compressed version of
the signal received from the source.

A. Notations Used in this Treatise

Before continuing our discourse, let us first detail the
notations that we will shortly encounter in later sections. We
generally use boldface variables to denote matrices as well as
vectors. Furthermore, vm is the mth element of the vector v,
while Mi,j denotes the element located in the ith row and
jth column of the matrix M. Similarly, we use Mi:j,m:n to
represent a (j−i+1)×(n−m+1)-dimension submatrix of the
matrix M spanning the region extended from the ith to the jth
row and from the mth to the nth column. A block matrix M
is defined by vertically concatenating a number of matrices.
Moreover, Md = diag{m} represents that the diagonal matrix
Md is constructed by aligning the elements of the vector m
along its diagonal. Likewise, we can define the block-wise
diagonalization operation as: Md = diag{M}, where the
vertically concatenated element submatrices of block matrix
M is aligned along the diagonal of the block diagonal Md.
Conventially, det(S) and S−1 are the determinant and inverse
of a square matrix S, respectively. For any general matrix M,
MH represents the conjugate transpose. Finally, E{·} means
expectation.

B. Motivation Behind Differentially Encoded Wireless Com-
munications

It is noteworthy that the substantial benefits promised by the
above-mentioned multiple-antenna-based non-cooperative and
cooperative MIMO systems may only be realized under the
assumption of sufficiently accurate channel estimation, which
however is likely to become a significantly more challeng-
ing issue than in the conventional single-input single-output
(SISO) scenario. To be specific, the estimation of MIMO
channels imposes an exponentially increased complexity with
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the number of antennas. This will become more explicit, if
we consider the simple example of an (8×8)-element MIMO
system, where the estimation of a total of 64 propagation
links between one pair of transceiver is required! Moreover, as
mentioned previously, since future wireless communications
will have to support a high grade of mobility3 [25, 26], the rel-
ative frequency of estimating the channel has to be increased
proportionately to the channel’s fluctuation rate characterized
by the Doppler frequency. Since the knowledge of channel
state information (CSI) is typically obtained using a channel
sounding sequence in practice4, a substantially increased pilot-
overhead is also expected, leading to a potentially significant
reduction in both bandwidth and power efficiency.

Furthermore, performance degradations may occur when
the receiver has imperfect CSI, as illustrated by the BER
curve of a (2 × 1)-element G2-aided MIMO system [6] in
Fig. 1, where we assume that the channel estimation errors
obey the Gaussian distribution and the degree of the CSI
estimation errors is governed by the ratio ω (dB) with respect
to the received signal power. Hence, the perfect CSI scenario
corresponds to ω = −∞. To be specific, given a target BER of
10−5, a performance loss of 5 dB may be encountered, even
when the channel estimation errors are as low as ω = −24
dB. Furthermore, when this second-order transmit diversity
achieved by the G2 scheme is attained with the aid of
a VAA in the context of a single-relay-aided cooperative
system, the achievable BER performance may become even
more sensitive to the imperfect channel knowledge, as also
evidenced in Fig. 1. Observe in Fig. 1 that even when the
channel estimation errors are as low as −26 dB, the BER
curve of the single-relay-aided AF system tends to exhibit
an error floor above 10−5. Thus the second-order transmit
diversity originally achieved in the presence of perfect channel
knowledge vanishes. This is because the cooperative system
requires the CSI knowledge of both the source-to-relay and
relay-to-destination links in comparison to the classic single-
phase direct transmission regime of non-cooperative MIMO
systems [28, 29]. By contrast, it is particularly challenging
for the destination to accurately estimate the source-relay
channel using pilot signal forwarding in the context of AF-
based cooperative systems, since the pilots may be further
contaminated by relay-induced noise amplification. Based on
our above discussions, obtaining sufficiently accurate CSI for
MIMO systems, particularly for the family of cooperative
systems, may potentially impose both an excessive complexity
and a high pilot overhead, especially when the number of
antennas/cooperating users is high and/or when the channel
conditions fluctuate relatively rapidly in high-velocity mobile
environments.

Therefore, differentially encoded signaling combined with
low-complexity non-coherent detection [30] and thus bypass-
ing the complex yet potentially inaccurate channel estimation

3The major candidates for the next generation of broadband wireless access
systems, such as 3GPP-LTE and IEEE 802.16m, are expected to deliver a data
rate of at least 100 Mbps for high-velocity mobile users (up to 350 km/h).

4Channel estimation can be realized by inserting so-called pilot symbols
with known modulation into the transmitted signal. Based on these pilot
symbols the receiver can measure the channel transfer factors (CTF) for each
subcarrier in an OFDM system using interpolation techniques [27]. In this
case, each subcarrier can be demodulated coherently.
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Figure 1. Performance sensitivity to imperfect channel knowledge of the
single-relay amplify-and-forward TDMA cooperative system in conjunction
with coherent detection.

process at the receiver becomes an attractive design alternative,
whose applications in MIMO systems has attracted consid-
erable attention in the last decade, especially in cooperative
communications [31–39].

C. Focus and Outline of the Paper

In view of the benefits of by-passing the potentially
excessive-complexity and yet inaccurate channel estimation,
the family of differential modulation schemes combined with
non-coherent detection is advocated in this treatise as a viable
candidate to be employed in the context of multiple-antenna-
assisted systems, particularly for VAA-based cooperative sys-
tems. Nonetheless, as we will reveal in our forthcoming
introduction of the conventional differential detection (CDD)
scheme in Section II, CDD has its own limitations. For
example, it is sensitive to rapid channel fluctuations owing
to the radically faded reference symbols, which leads to a
potential error-floor. Furthermore, typically exhibits a 3-dB
performance loss in comparison to its coherent detection aided
counterpart, which is due to the fact that in the presence of
any channel-induced errors the next symbol also becomes
erroneous owing to using an erroneous reference symbol.
Hence substantial further research is required for designing
advanced, improved-performance non-coherent receivers for
mitigating the above-mentioned limitations of differentially
encoded systems. Thanks to the recursive differential encoding
procedure, joint processing of multiple successively received
symbols constitutes a promising solution for significantly
enhancing the performance of the conventional single-symbol
signal processing based non-coherent receiver. The underlying
philosophy behind the multiple-symbol joint signal processing
is to exploit the correlation between the phase distortions
experienced by the consecutively transmitted symbols and/or
to mutually and iteratively exploit the increasingly improved
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Figure 2. The schematics of 2p-DPSK modulator.

bit reliability information of the associated multiple symbols
in the context of a channel code aided iterative receiver.

Against this backdrop, our goal is to stimulate further
research on differentially encoded wireless systems. Hence
we identify and address a number of fundamental challenges
encountered in their maximum-a-posteriori (MAP) multiple-
symbol joint signal processing based advanced receiver design.
We will consider a variety of application scenarios and further
develop the sphere detection (SD) mechanism for the sake
of achieving a substantial complexity reduction, as detailed
below:

• Differential amplitude and phase shift keying (DAPSK)
[40, 41] - also known as Star Quadrature Amplitude
Modulation (Star-QAM) - constitutes an attractive de-
sign alternative for high-data-rate differentially encoded
transmissions. The decision-feedback differential detec-
tion (DF-DD) principle has been successfully applied to
DAPSK systems in [42] as a low-complexity solution.
This is complexity reduction is achieved at a modest,
but non-negligible performance loss in comparison to the
optimum maximum-likelihood multiple-symbol differen-
tial detection (ML-MSDD) owing to the potential feed-
back error propagation. Thus, designing a low-complexity
near-optimum differential detector is beneficial.

• An efficient implementation of the MSDD specifically
designed for the high-data-rate differential unitary space-
time modulation (DUSTM) using the non-constant-
modulus QAM constellation - rather than the conven-
tional constant-modulus PSK constellation - constitutes
another challenging problem to solve.

• For the sake of further improving the spectral effi-
ciency, spatial-domain co-channel interference suppres-
sion scheme has been proposed for multiple-antenna-
assisted differentially encoded wireless systems by taking
advantage of the recursive nature of the differential
encoding mechanism. In order to enhance the system’s
robustness against hostile wireless channels, the multiple-
symbol joint processing regime may be further developed
to amalgamate both interference filtering and signal de-
tection, which is a challenging, but worthwhile issue to
tackle.

To this end, we commence by reviewing the fundamental
principle of the conventional differential encoding and de-
coding process in Section II. Then, following the construc-
tion of the generalized multiple-symbol system models for
both co-located and distributed/cooperative MIMO systems
in Section III-A, the principle of the maximum-likelihood-
based MSDD (ML-MSDD) and that of its SD-based version,
namely the MSDSD, is reviewed in Section III-B. Subse-
quently, the challenging design of MSDSD for non-constant-
modulus modulation assisted bandwidth-efficient orthogonal
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Figure 3. The schematics of 2p-DPSK demodulator.

SISO and MIMO systems is discussed in Sections IV-A and
IV-B, respectively. Then, we move on to another promising
mechanism capable of achieving a high bandwidth-efficiency
for nonorthogonal transmission relying on spatial-domain
interference mitigation and its multiple-symbol filtering as
well as detector design in Section V. Finally, our concluding
remarks are provided in Section VI.

II. DIFFERENTIAL ENCODING AND DECODING

A. Fundamental Principles

Let us now consider the classic differential phase shift
keying (DPSK) scheme for the single-transmit-antenna sce-
nario, as portrayed in Fig. 2. In order to avoid channel
estimation at the receiver, the transmitter differentially encodes
its PSK-modulated information symbols v[n] ∈ Mc =
{ej2πm/2p ;m = 0, 1, · · · , 2p − 1} as s[n] = s[n − 1]v[n],
where v[n] contains the p-bit information [bn1 , b

n
2 , · · · , bnp ].

Essentially, the information is encoded as the phase differ-
ence between consecutively transmitted symbols, as shown
in Fig. 2. At the receiver the corresponding conventional
differential detector (CDD) [30], as depicted in Fig 3, may
extract the data by simply calculating the phase difference
between successive time samples without any CSI knowledge,
under the assumption of slow channel-fluctuation. When the
extra spatial dimension becomes available, which is an explicit
benefit of having multiple antennas at both the transmitter
and the receiver, the information can be differentially encoded
using the previous symbols as reference in both the spatial and
temporal dimensions, instead of using only the classic differ-
entially encoded time-domain modulation scheme of Fig. 2.
This leads to the differential space-time modulation (DSTM)
aided transmission philosophy of S[n] = S[n − 1]V[n] [43,
44]. This philosophy is shown in Fig. 4, where S[n] and V[n]
are typically unitary matrices representing the differentially
encoded space-time signal and the space-time information
signal, respectively. Readers who are interested in more details
on DSTM are referred to the citations seen in Tables I and II,
as well as to the references therein. Naturally, in the light of the
distributed space-time coding principles, the differential space-
time coding regime can also be implemented in a distributed
manner for user-cooperation aided systems [45–48].

B. Inherent 3 dB Performance Loss

Since the CDD recovers the information by directly calcu-
lating the phase difference of the two consecutively received
symbols, it is intuitive that in the CDD-aided system, any
received symbol that has been heavily noise-contaminated is
likely to cause errors in recovering a pair of the consecutively
differentially encoded information symbols. In other words,
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time slots using a differentially encoded space-time matrix S[n].

Table I
MAJOR CONTRIBUTIONS ADDRESSING THE DESIGN OF DUSTM FOR

NON-COOPERATIVE MIMO SYSTEMS.

Author(s) Contribution
[49] Tarokh et. al. 2000 Proposed the differential version of Ala-

mouti’s scheme [6].
[43] Hochwald et. al. 2000 Introduced the family of differential unitary
[44] Hughes 2000 space-time modulation (DUSTM).

Proposed to design DUSTM using the
[50] Shokrollahi et. al. 2001 theory of fixed-point free groups and

their representations.
[51] Hassibi et. al. 2002 Designed DUSTM based on the Cayley

transform.
[52] Zheng and Tse 2003 Derived the capacity of non-coherent

MIMO channels.
[53] Nam et. al. 2004 Extended the work of [49] to four an-

tennas.
[54] Zhu et. al. 2005 Designed DUSTM using the quasi-

orthogonal philosophy.
[55] Oggier 2007 Proposed to design DUSTM based on

cyclic algebra [56].

Table II
MAJOR CONTRIBUTIONS ADDRESSING THE DESIGN OF DUSTM FOR

DISTRIBUTED MIMO SYSTEMS.

Author(s) Contribution
[57] Wang et. al. 2006 Proposed DSTBC for AF relaying

and its power allocation scheme.
[58] Yiu et. al. 2006 Proposed DSTBC using a unique node

signature vector for DF relaying.
[59] Jing and Hamid 2008 Proposed distributed DSTBC for any

relay numbers via circulant matrices.
[60] Rajan et. al. 2008 Designed distributed DSTBC using

the extended Clifford algebras.
[61] Oggier et. al. 2009 Design distributed DSTM based on

Cayley codes for any relay numbers.
[62] Gao et. al. 2011 Design DSTM for multi-source cooper-

ration based on network coding.
[63] Huo et. al. 2012 Designed distributed DSTM for two-way

relay using analog network coding.

the differentially modulated transmission detected by the CDD
scheme circumvents the channel estimation at the expense of
doubling the equivalent noise power, which in turn leads to a 3
dB performance loss in comparison to its coherent-detection-
aided counterpart assuming perfect CSI knowledge, as indi-
cated by the gap between the BER curves associated with the
single-relay AF and differential AF (DAF) TDMA cooperative
systems in Fig. 1. However, this coarse comparison between
the coherent and non-coherent detection based systems seems
to be unfair, since the perfect channel estimation is simply
assumed for the coherent detection assisted system without
taking the indispensable pilot overhead into account. For
instance, if the avoidance of periodic transmission of pilot
symbols can be exchanged for the adoption of a lower coding
rate channel coding in the non-coherent system, the above-

mentioned performance loss is in all fairness actually lower
than what it seems to be, let alone the detrimental impact
of an imperfect CSI knowledge on the coherent detection
based system. Please refer to [64] for more comprehensive
comparative studies between the relevant non-coherent and
pilot-based coherent schemes. In order to mitigate the as-
sociated performance loss, the ML-MSDD scheme exploits
the correlation between the phase distortions experienced
by the consecutively transmitted symbols, as detailed in the
forthcoming Section III.

C. Effects of Channel Fluctuations on Differential Decoding

According to the differential encoding mechanism illus-
trated in Fig. 2, the nth information symbol v[n], which is
encoded as the phase difference between the corresponding
consecutively transmitted symbols s[n − 1] and s[n], may
not be recovered by the CDD process, if the two succes-
sively transmitted symbols experience quite different phase
distortions caused by the rapid fluctuations of the fading
coefficient in high-velocity mobile environments, even in the
absence of noise. Similar high-Doppler-induced impairments
may also occur in pilot-assisted coherent detection based
transmissions. More explicitly, owing to the channel-induced
noise-contamination of pilots, it is insufficient to sample the
channel’s frequency-domain transfer function at its Nyquist-
frequency. Hence typically an over-sampling is used, thus
imposing an increased pilot overhead. As a simple exam-
ple, which quantitatively shows the detrimental effects of
the channel’s fluctuation on the performance of CDD, we
consider here a DQPSK modulated uncoded OFDM system
employing a sufficiently long cyclic prefix length. Hence we
assume that no inter-OFDM-symbol interference is imposed.
We assume furthermore that differential encoding is carried
out along the time direction, i.e. between the same subcarriers
of consecutive OFDM symbols5. Since a temporally Rayleigh-
distributed fading is assumed for each subcarrier employed by
the OFDM system, where the fading coefficients are correlated
as a function of the time, the temporal autocorrelation function
of the frequency domain channel transfer function (FD-CTF)
h may be expressed as:

ϕhh[κ] � E{h[n+ κ]h∗[n]} = J0(2πfdκ), (1)

where J0(·) denotes the zero-order Bessel function of the first
kind and fd is the normalized Doppler frequency. Figure 5(a)

5Similar results may be obtained if the differential encoding is conducted
along the frequency direction, i.e. among adjacent subcarriers of a given
OFDM symbol. The channel fluctuation rate in the frequency direction is
a function of the maximum delay spread.



694 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 2, SECOND QUARTER 2014

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ

|ψ
t [κ

]|

 

 

f
d
=0.001

f
d
=0.01

f
d
=0.03

(a) Magnitude of temporal correlation function of Rayleigh fading channels

0 5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
f
d
=0.03

f
d
=0.01

f
d
=0.001

DQPSK

(b) Effects of dopper frequency on performance of CDD

Figure 5. Impact of mobility on the performance of CDD.

depicts the magnitude of temporal correlation function for
various normalized Doppler frequencies fd, while Figure 5(b)
plots the corresponding BER curves of the DQPSK modulated
CDD-aided OFDM system. It is observed that the BER curve
tends to create an error floor, when fd becomes high, which
is caused by the high grade of relative mobility between the
transmitter and the receiver.

III. MULTIPLE-SYMBOL DIFFERENTIAL DETECTION FOR
GENERALIZED MIMO SYSTEMS

A. Generalized Multiple-Symbol Reception Models

1) Co-Located MIMO System: In the context of the MIMO-
OFDM system, non-dispersive fading is encountered by each

sub-carrier, provided that the number of sub-carriers is suffi-
ciently high. Since the differential encoding is assumed to be
conducted along the time-domain for each frequency domain
(FD) sub-carrier throughout this treatise unless otherwise
stated, the multiple-symbol signal processing mechanisms
discussed in the ensuing sections may be carried out on a
per-sub-carrier basis at the receiver, which are thus equally
applicable to the single-carrier narrowband modems. Hence,
let us consider the following per-sub-carrier-based FD system
model constructed for multiuser OFDM systems supporting U
differential-modulation-based Nt-antenna-aided uplink (UL)
MSs with the aid of Nr receiver antennas at the BS [1]. We
assume that orthogonal interference-free transmission amongst
the U MSs is guaranteed by means of the conventional
multiple access schemes, such as for example TDMA, thus the
single-symbol transmission model constructed for the uth MS
and corresponding to the nth space-time signal’s transmission
can be formulated as6:

Y[n] = S[n]H[n] +W[n], (2)

where Y[n] ∈ CNt×Nr , S[n] ∈ CNt×Nt and W[n] ∈ CNt×Nr

denote the FD received and transmitted space-time signal
matrices as well as the AWGN matrix having a distribution
of CN (0, 2σ2

wNrINt), respectively. Each Nt-antenna-aided
MS first generates the space-time information signal V[n],
which is then differentially encoded as S[n] = V[n]S[n− 1],
where the rows and columns of S[n] denote the time and
space dimensions, respectively. Furthermore, the FD-CTF
matrix H[n] is a (Nt × Nr)-dimensional i.i.d. zero-mean
unit-variance complex Gaussian matrix, which is assumed to
remain unchanged within the nth space-time signal duration,
i.e. Nt time slots. Thanks to the differential encoding process
at the MS, the knowledge of the FD-CTF matrix H[n] is
not required for recovering the transmitted information V[n]
at either the MS or the BS of the MIMO-OFDM system
considered. For instance, the CDD decision rule V̂[n] =
argminV̌[n]{||Y[n]−V̌[n]Y[n−1]||2} may be invoked, which
is capable of achieving a reasonably good performance in a
slow-fading channel where we have H[n− 1] ≈ H[n].

On the basis of the single-symbol system model of (2)
we now construct the per-sub-carrier-based multiple-symbol
MIMO-OFDM system model as:

Y[kN ] = Sd[kN ]H[kN ] +W[kN ], (3)

where the block matrix index kN denotes the kth block
matrix constituted of Nwind component matrices. For example,
the kth received space-time signal block matrix Y[kN ] of
(3) contains Nwind consecutively received space-time signal
matrices. Hence we have Y[kN ] = [Y[(Nwind − 1)(k −
1)]T · · · Y[(Nwind−1)k]T ]T . Similarly, both the kth FD-CTF
block matrix H[kN ] as well as the AWGN’s kth block matrix
W[kN ] are defined by vertically stacking the Nwind matrices
H[n] and W[n] (n = (Nwind− 1)(k− 1), · · · , (Nwind− 1)k)
of (2), respectively. Moreover, the kth diagonal block matrix
of the transmitted signal Sd[kN ] of each MS is constructed
as Sd[kN ] = diag{S[kN ]} = diag{[S[(Nwind − 1)(k −

6Both the user and sub-carrier indices are omitted here for notational
simplicity.
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Figure 6. Channel allocation scheme for the cooperative cluster formed by
U MSs in a celluar UL system.

1)]T · · · S[(Nwind − 1)k]T]T}, which corresponds to the
length-(Nwind−1) space-time information signal block matrix
V[kN ] = [V[(Nwind − 1)(k − 1) + 1]T · · · V[(Nwind −
1)k]T ]T .

It is worth emphasizing that both the single-symbol and
multiple-symbol MIMO-OFDM system models of (2) and (3)
subsume the single-antenna-based SISO-OFDM system as a
special case by setting Nt = Nr = 1.

2) Distributed MIMO System: Due to pratical cost and size
constraints, the employment of multiple transmit antennas by
each MS is typically infeasible. Fortunately, the cooperative
sharing of antennas amongst MSs in multi-user scenarios
constitutes a promising solution in order to achieve both
cooperative diversity as well as a path-loss-reduction based
power gain, as discussed in Section I. The often-used two-hop
relay-aided systems will be considered in this section, which
may be readily extended to more sophisticated cooperative
systems. Moreover, only the AF and DF relaying stratages
will be considered in this treatise, since they have become
the most popular ones, thanks to their simplicity and intuitive
designs.

As an example of the channel allocation depicted in Fig. 6
for the two-hop-relaying-based cooperative cluster formed by
U MSs in a cellular UL system, the signal transmission
involves two transmission phases owing to the half-duplex
communications of practical transceivers, namely the broad-
cast phase and the relay phase. These are also often referred
to as phase I and II. For the sake of simplicity, both TDMA
as well as FDMA are considered, as illustrated in Fig. 6, in
order to guarantee orthogonal, i.e. non-interfering transmission
amongst cooperating MSs. Furthermore, since the channel
allocation employed among cooperative users may be deemed
to be symmetric, as indicated in Fig. 6, we now focus our
attention on the information transmission of a specific MS
(e.g. T1) in the cellular UL scenario of Fig. 7. The MS T1

may be assisted by Mr = (U − 1) RSs activated from the
set of available cooperating MS candidate pool. Consequently,
upon using the TDMA scheme of Fig. 6, the Mr = (U − 1)
activated RSs of Fig. 7 successively process and forward the
signal broadcast from the source MS to the BS.

For the differential DF (DDF) system, under the assumption
of accurate signal recovery at each RS7, an entire single-

7It was recently demonstrated in [21, 65] that the fixed DF system dispens-
ing with any error-aware mechanisms at the RS, such as for example, the
cyclic redundancy check [66], offers no diversity gain over its conventional
direct-transmission-based counterpart. Hence, the selective DF scheme [21,
65] is assumed here with the aid of error detection codes and/or intelligent
RS selection schemes, where only the RSs that correctly recover the source’s
signal may be activated in the the relay phase.

BS

source destination

relay

T3

T1

T2

hsrU−1

hr1d

hr2d

hrU−1d

hsd

hsr1

hsr2

TU

Figure 7. Schematic of a U -MS cooperative celluar UL system.

symbol-based cooperative transmission cycle of a specific
source MS may be mathematically described in a form
identical to (2) in co-located MIMO transmissions, albeit
we have a different interpretation for each term therein. To
be specific, when we employ (2) for describing the DDF
system, we redefine Y[n] ∈ CUNt×Nr , S[n] ∈ CUNt×UNt

and W[n] ∈ CUNt×Nr as the U -user-cooperation-based FD
received and transmitted space-time signal matrices as well as
the AWGN matrix having a distribution of CN (0, 2σ2

wNrINt),
respectively. More specifically, since the classic TDMA-based
mechanism is used during each cooperation cycle for a
specific MS, S[n] is a diagonal block matrix with its top-
left submatrix S[n]1:Nt,1:Nt denoting the space-time signal
transmitted by the source MS and the diagonal submatrix
S[n]mNt:(m+1)Nt,mNt:(m+1)Nt

(1 ≤ m ≤ U − 1) being the
space-time signal radiated by the mth RS. Accordingly, both
the user-cooperation-based channel matrix H[n] ∈ CUNt×Nr

and the AWGN matrix W[n] of (2) encapsulate the corre-
sponding FD-CTF and additive noise between each cooperat-
ing MS and the BS, respectively, as illustrated in the single-
antenna-based example (i.e. Nt = Nr = 1 as depicted in
Fig. 7) of Table III. Note that a total power P is assumed to
be shared by the collaborating MSs for transmitting a symbol.
Thus, by assuming that Mr cooperating MSs are activated,
we can express the associated power contraint as: P =
Ps +

∑Mr

m=1 Prm , where Ps and Prm (m = 1, 2, · · · , Mr)
are the transmit power employed by the source MS and the
mth RS, respectively.

Similarly, in the context of the differential AF (DAF)
cooperative system, the entire cooperative transmission cycle
of a specific source MS may also be formulated in a form
identical to (2). However, in contrast to the case of the DDF
cooperative system, where the broadcast phase is actually
excluded from (2) by invoking the perfect relaying assumption,
the construction of (2) for the DAF cooperative system truly
encapsulates a complete cycle of the cooperative transmission,
including both the broadcast phase and the relaying phase.
Specifically, the broadcast space-time signal matrix S[n] is a
diagonal block matrix with its top-left submatrix S[n]1:Nt,1:Nt

denoting the space-time signal transmitted from the source
MS to the BS via the direct transmission path. The remain-
ing diagonal sub-matrices S[n]mNt:(m+1)Nt,mNt:(m+1)Nt

=
S[n]1:Nt,1:Nt (1 ≤ m ≤ U − 1) represent the space-time
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Table III
STRUCTURE OF H[n] AND W[n] OF (2) FOR BOTH THE DAF AND DDF SYSTEMS (Nt = Nr = 1 SEE FIG. 7)

H[n] = W[n] =

DDF System
[√

Pshsd[n],
√

Pr1hr1d[n], · · · ,
√

PrU−1hrU−1d[n]

]T [
wsd[n], wr1d[n], · · · , wrU−1d

]T

DAF System
[√

Pshsd[n],
√
PsfAMr1

hsr1 [n]hr1d[n],

[
wsd[n], fAMr1

wsr1 [n]hr1d[n] +wr1d[n], · · · ,

· · · ,
√
PsfAMrU−1

hsrU−1 [n]hrU−1d[n]

]T
fAMrU−1

wsrU−1 [n]hrU−1d[n] + wrU−1d[n]

]T

signal transmitted from the source MS to the BS with the aid
of the mth RS, which successively passes through the source-
relay (SR) and relay-destination (RD) links. Again, for the
sake of simplicity, in Table III we highlight the structure of
the user-cooperation-based channel matrix H[n] and AWGN
matrix W[n] in the context of the single-antenna-based (i.e.
Nt = Nr = 1 as depicted in Fig. 7) DAF system. Note that
fAMrm

is the power amplification factor employed by the
mth RS in order to ensure that the average transmit power
of the mth RS becomes Prm , which is given in [67] as
fAMrm

=
√

Prm

Psσ2
srm

+N0
, with σ2

srm and N0 = 2σ2
w being

the variance of the channel’s envelope between the source as
well as the mth RS and the noise variance8, respectively.

Therefore, based on the above discourse, we know that both
the DAF and DDF cooperative systems may be mathemati-
cally described using the single-symbol system model in the
form of (2). Furthermore, by employing the same approach
of constructing the multiple-symbol system model from its
single-symbol counterpart, as used for the co-located MIMO
system in Section III-A1, it is now plausible that the multiple-
symbol system models constructed for both the DAF and DDF
cooperative systems obey the form of (3). In a nutshell, both
the co-located and distributed MIMO systems considered may
be formulated by the same mathematical model, which is
advantageous for our non-coherent receiver design.

B. Multiple-Symbol Differential Detection

1) Principle of MSDD: It is worth emphasizing that all
the elements in H[n] and W[n] exhibit a standard Gaussian
distribution for all the systems discussed above, except for the
DAF-based coopeartive system, where the relay-link-related
components in H[n] and W[n] are products of two com-
plex Gaussian variables, as we may observe from Table III.
However, the detailed simulation-based investigations of [68]
suggest that the resultant noise processes are near-Gaussian
distributed. As a result, the PDF of the received signal vector
Y[kN ] in (3) recorded for the DAF cooperative system is
also near-Gaussian, especially for relatively low SNRs, where
the effects of the AWGN become more dominant. Hence,
under the simplifying assumption that the equivalent fad-
ing and noise are zero-mean complex Gaussian processes,
the PDF of the non-coherent receiver’s output Y[kN ] in
(3) conditioned on the transmitted signal Sd[kN ] may be
approximately expressed as follows for all the co-located

8The same noise variance is assumed at each receiver within the cooperative
system throughout this treatise.

and distributed MIMO scenarios considered9: p(Y|Sd) ≈
exp(−Tr{YHΨ−1Y})/(det(πΨ))Nr , where the conditional
autocorrelation matrix is given by: Ψ = E{YYH|Sd} =

SdE{HHH}SdH + E{WWH}. The decision metric of
the maximum-likelihood multiple-symbol differential detector
(ML-MSDD) designed for the differentially encoded coopera-
tive system may be expressed with the aid of Bayes’ theorem
as V̂

d

ML = argmin
V̌

d∈M(Nwind−1)
c

Tr{YH(Ψ)−1Y} [69],
where Mc is the set of legitimate constellation points for
V[n]. Note that the choice of the first space-time signal of the
current transmitted signal block contained in Sd serves as the
reference signal, which does not affect the resultant ML solu-
tion. Therefore, the entire search space becomes M(Nwind−1)

c

instead of MNwind
c . Consequently, the correlation between the

phase distortions experienced by the consecutively transmitted
symbols can be exploited by invoking the ML-MSDD decision
metric, which is actually contained in the channel’s covariance
matrix Σh = E{HHH}. In practice, the channel’s correlation
matrix may be modelled by the well-known Jakes-model with
the aid of the estimated Doppler frequency, namely relying
on (1). According to [70], the predictability of the channel is
characterized by the rank Q of the channel’s covariance matrix
Σh. For example, the block-fading channel, where the fading
envelope remains constant over the entire fading block (i.e.
kN space-time signal durations), is associated with the most
predictable fading envelope, when the channel’s covariance
matrix has a rank of Q = 1. By contrast, the fading process has
a finite differential entropy and becomes less predictable, when
we have Q = kN · rows(H[n]). Let us now consider the two-
user-cooperation-based DAF UL system as a simple example
for demonstrating the performance improvement achieved by
the MSDD in a high-speed mobility environment, where two
single-antenna-aided MSs cooperatively share their antennas
to form a VAA. As observed in Fig. 8, upon using the
CDD of Fig. 3 at the BS, the performance gain achieved
by the DAF system over the traditional point-to-point direct
transmission system erodes significantly, when the channel’s
fluctuation rate is high (e.g. associated with fd = 0.03 in
this case). Remarkably, the curve of Fig. 8 marked by circles
suggests that the time-selective-fading-induced error floor may
be substantially mitigated for the DAF system with the aid
of MSDD by setting a sufficiently high window-length of
Nwind = 6. Naturally, when using the classic ML MSDD,
the associated complexity becomes equivalent to 26 = 64
objective function evaluations.

9In the interest of ease of presentation, the block index kN is omitted here
without loss of accuracy.
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2) Complexity Reduction for MSDD: On the other hand,
finding the ML-MSDD solution Sd

ML is known to be NP-hard.
Hence, a pontentially excessive computational complexity may
be imposed, which is exponentially increased with both the
constellation size Mc as well as the observation window
size Nwind employed by the MSDD. Considering again the
above DAF-based cooperative system for example, under the
assumption of an observation window size of Nwind = 10 and
that of DQPSK (Mc = 4), 220 = 1.048576× 106 legitimate
user-cooperation based space-time constellation points have
to be evaluated, thus precluding the practical implementation
of the ML-MSDD at the BS of our differentially encoded
non-coherent cooperative system. As a remedy, the classic
sphere decoding (SD) algorithm may be invoked, which was
originally derived by Pohst and Finke [71] for efficiently
calculating a vector of short length in a lattice. The SD was
then further developed for coherent-detection-based commu-
nication systems [72] by Viterbo and Boutros. As a result,
the coherent ML performance is approached at a moderate
complexity, which is polynomially, rather than exponentially
dependent on the number of unknowns. Inspired by above
contributions, the SD algorithm was first introduced by Lampe
et al. in [73] for mitigating the complexity of the ML-MSDD
[74, 75] in the context of a differentially modulated SISO
system, leading to the multiple-symbol differential sphere
detection (MSDSD) concept. More recently, the employment
of MSDSD is further extended to the family of co-located
and distributed MIMO systems by Pauli and Lampe in [69] as
well as by Wang and Hanzo in [68], respectively. Basically,
the transplantation of the SD mechanism into the MSDD
relies on the fact that Sd of (3) formed in the context of
both the co-located and distributed MIMO systems considered
is unitary, owing to the employment of conventional DPSK
schemes or unitary space-time codes. After a few mathemat-
ical manipulations, which are omitted here in the interest of

simplicity, the original ML-MSDD decision metric may be
reformulated as V̂

d

ML = argmin
V̌

d∈M(Nwind−1)
c

||UŠ||2 < R,

where V̌
d
= diag{V̌} and U is an upper-triangular block

matrix, which can be obtained as U � (F⊗INr)(diag{Y})H,
with F also being an upper-triangular matrix generated using
the well-known Cholesky factorization [76] of the matrix
(Σh + 2σ2

wINwind
)−1. Consequently, thanks to the upper-

triangular structure of the matrix U, a layered tree search may
be carried out within a hyper-spheric search space, which is
centered at the origin and confined by the SNR-dependent
search radius R.

The MSDSD mechanism can be interpreted as a geometric
problem, which is illustrated in Fig. 9. For the sake of simple
visualization, we consider here a traditional point-to-point
transmission system, which employs the DBPSK scheme at the
transmitter and jointly detects (Nwind − 1 = 3) consecutively
transmitted information symbols with the aid of the MSDSD
scheme at the receiver upon observing the (Nwind = 4) suc-
cessively received symbols. Thus, the corresponding multiple-
symbol-based transmit domain constellation and the pertain-
ing 3D search space in the receive domain is depicted in
Fig. 9(a) and Fig. 9(b), respectively, in order to demonstrate
how the SD mechanism works in the context of MSDD. At
the receiver, the shape of the multiple-symbol-based cubic
constellation of Fig. 9(a) is assumed to be distorted, due to
the routinely encountered multipath induced phase rotation
and magnitude attenuation. Instead of carrying out a full
search in the receive domain over the entire candidate set
of (23 = 8) trial point, as the ML-MSDD would in order
to find the optimum ML solution, the MSDSD initializes the
search radius depending on the estimated SNR, which confines
the search area to the outer-most sphere centered at the
origin. As seen from Fig. 9(b), the search area is significantly
reduced in comparison to that of the ML-MSDD scheme. It is
indeed intuitive that only the trial lattice points residing in the
immediate neighbourhood of the origin are worth examining.
All the points in the search space confined by the radius are
deemed to be tentative candidates for the three consecutively
transmitted information symbols. Now the core operation of
the MSDSD algorithm is activated. Specifically, a new radius
is calculated by measuring the distance between a candidate
randomly chosen within the spheric search space and the
origin, which should be no higher than the original radius.
Then another arbitrary multiple-symbol-based point is chosen
from the newly obtained search space as the trial transmitted
symbol. Again, the search radius is updated with the value of
the distance between the newly obtained trial point and the
origin. These operations are repeated, until the MSDSD finds
that specific legitimate constellation point, which is nearest
to the origin. At the end of the search, we assume that
the last trial point that was found corresponds to the ML
solution. In the example shown in Fig. 9(b), the MSDSD
reaches the optimum ML solution after two radius updates.
Hence, only three trial points are examined in terms of their
Euclidean distance with respect to the origin. Therefore, the
excessive-complexity full search carried out by the ML-MSDD
is avoided by incorporating the SD mechanism into the MSDD
scheme.
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Figure 9. Geometrical interpretation of SD mechanism.

Another way of illustrating the SD algorithm’s philosophy
is constituted by the search tree example provided for the
scenario of a DBPSK modulated system in conjunction with
Nwind = 5 characterized in Fig. 10. As shown in Fig. 10,
the depth-first SD commences its search procedure using an
initial search radius of R = 5 from the top level (n = 4).
For each tree node, the number within the bracket denotes the
corresponding accumulated partial Euclidean distance (PED)
of that node from the origin, while the number outside the
bracket indicates the order in which the node is visited. The
broken line represents a binary zero, whereas the continuous

1 (0.17)

2 (6.45) 3 (0.20)

4 (3.4)

5 (4.2) 6 (4.8) 8 (1.8)

7 (1.2)

9 (3.3) 14 (0.23) 15 (1.0)

13 (0.22) 16 (1.9)

12 (0.21)11 (2.1)

10 (0.18)

0 (0) R = 5

n = 1

n = 4

n = 2

"1"
"0"

n = 3

Figure 10. Illustration of the depth-first SD algorithm with the aid of the
classic tree searching: The figure in ( ) indicates the partial Euclidean distance
of a specific node for the trial point in the modulated constellation; while the
number outside represents the order in which the points are visited. Finally, the
ML solution of 1100 is found by choosing the tree leaf having the minimum
Euclidean distance of 0.23 and backtracking to the level n = 4.

line denotes a binary one. As we can see in Fig. 10, the
search is carried out from the left to the right, but in both
downward and upward directions along the tree. Specifically,
there are two scenarios that may be encountered during the
tree search portrayed in Fig. 10. Firstly, the search may reach
a leaf node at the bottom, i.e. level (n = 1). The other possible
scenario is that the detector cannot find any point inside the
hyperspherical space for the nth element V[n], or equivalently,
the accumulated PEDs of all the candidates for V[n] are higher
than the current search radius R.

For example, in the first case, once the search reaches a
leaf node, as seen at its fifth step, where the detector reaches
a tree leaf having an Euclidean distance of 4.2 in Fig. 10,
which is smaller than the current search radius of R = 5, then
the detector starts the search process again with the reduced
radius R = 4.2. In the second case, the detector must have
made at least one erroneous tentative point selection for the
previous (Nwind−n− 1) lattice coordinates. In this scenario,
the detector returns to the (n+1)th search tree level and selects
another tentative point for V[n+1] within the hyperspherical
space confined by the search radius. Following this, it proceeds
downwards along the tree again to try and find a legitimate
decision for V[n]. If all the available tentative points for V[n+
1] fail to lead to a legitimate decison, the search back-tracks
to V[n+2] with the same objective, and so on. For example,
at the ninth step seen in Fig. 10, the detector is unable to find
a legitimate point within the new smaller hyper-sphere having
the radius of 1.8, which was obtained at the previous step,
hence the search back-tracks to level n = 4, since no more
available candidates can be found within the corresponding
search area for V[2], and V[3]. In the end, after visiting a
total of 15 tree nodes and leaves in Fig. 10, the SD chooses
the specific tree leaf having a minimum Euclidean distance of
0.23 and back-tracks to the level n = 4 to generate the final
ML solution of V̂ML.

The interested reader is referred to [77–80] and the refer-
ences therein for a more comprehensive treatment of the SD
algorithms. Although our attention is focused on the MSDSD
in this treatise, it is worth noting that a range mechanisms
other than that of the SD scheme can also be employed for
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achieving a beneficial complexity reduction for the MSDD,
such as those discussed in [81, 82].

The complexity quantified by the number of candidate
block-symbol points Š enumerated during the tree search
carried out by the MSDSD versus the SNR is plotted in
Fig. 11 in the scenario of a DQPSK single-relay-aided DAF
cooperative system. It is observed that the complexity imposed
by the MSDSD is a function of the observation window size
Nwind, of the receive SNR as well as of the normalized
Doppler frequency fd. Specifically, as observed in Fig. 11,
the complexity of MSDSD increases dramatically, once the
original observation window size of Nwind = 6 is set to
Nwind = 9. On the other hand, the complexity imposed by
the MSDSD decreases only moderately, as the SNR increases
and finally levels out in the high-SNR range. This is not
unexpected, since under the assumption of having a reduced
noise contamination, it is more likely that the ML solution
point Ŝ

d

ML is located near the search center of the SD used for
finding the ML-MSDD solution. As a result, the SD’s search
process may converge much more rapidly, imposing a reduced
complexity. Furthermore, we can also observe from Fig. 11
that the Doppler frequency has a non-negligible effect on the
complexity imposed by the MSDSD. Basically, for a constant
value of Nwind, a reduced grade of channel predictability
associated with an increased Doppler frequency may lead to
an increased complexity imposed by the MSDSD scheme.

IV. DESIGN OF MSDSD FOR
HIGH-SPECTRUM-EFFICIENCY DIFFERENTIAL SIGNALING

USING NON-CONSTANT-MODULUS CONSTELLATIONS

Differential amplitude and phase shift keying (DAPSK) [40,
41, 83] using non-constant-modulus constellations was first
proposed for digital terrestrial video broadcasting (DTVB)
in [84, 85] in the context of a single-tranmsit-antenna-assisted

systems employed in SISO or SIMO scenarios. Since broad-
cast receivers can be switched on at any moment in an
asyncrhoneous manner, a high pilot-overhead would be nec-
essary for a coherently detected system to facilitate near-
isntantaneous reception. Furthermore, the coherent receivers
are also prone to the carrier recovery system’s false locking
onto the wrong quadrant of the modulated signal constellation,
as detailed in [83]. Again, the non-coherently detected DAPSK
solutions dispensed with a high pilot-overhead and elimi-
nated the above-mentioned synchronization problems with
the aid of so-called rotationally invarian constellations, while
transmitting an increased number of bits/symbol [40, 41, 83].
These schemes, which have recently received an increasing
attention from the communication community owing to their
low decoding complexity and low peak power, will be dis-
cussed in Section IV-A, where we design a low-complexity
near-optimum MSDD receiver for bandwidth-efficient single-
transmit-antenna-assisted systems.

On the other hand, when considering the employment of
non-constant-modulus constellation for DUSTM-based MIMO
systems in pursuit of high spectrum efficiency, DUSTM using
APSK and QAM constellations, which have an increased
minimum Euclidean distance over the PSK constellation, were
proposed in [86] and [87], respectively. However, in constrast
to the single-transmit-antenna differential system, the DUSTM
mechanism allows an easy employment of the sqaure QAM
constellation, which will be considered instead of APSK in
Section IV-B2 regarding the low-complexity near-optimum
MSDD design for high-spectrum-efficiency MIMO systems.
This is because that square QAM has a larger Euclidean
distance between the constellation symbols than the APSK,
thus implying a superior noise performance [88].

A. Design of MSDSD for SISO Systems Using DAPSK

In order to eliminate the typical emergence of an error-
floor at high Doppler-frequencies, the application of the full-
search-based ML-MSDD discussed in Section III-B1 has been
extended to uncoded DAPSK-modulated system in [75] as
well as to channel-coded DAPSK reception basded on the
MAP criterion in [89]. However, since the constellation size
of DAPSK is typically no smaller than 16 in bandwidth-
efficient communications, the ML-MSDD employing even
a moderate observation window size of Nwind may exhibit
an excessive complexity. In order to reduce the potentially
excessive complexity, the DF-DD scheme of [42] has been
developed for the DAPSK system, which, however, may suffer
from a moderate but non-negligible performance loss owing
to its inherent vulnerability to feedback error propagation.
As another promising complexity reduction technique, the SD
mechansim has also been proposed for MSDD of conventional
DPSK, as reviewed in Section III-B2, leading to the MSDSD
scheme. Unfortunately, the non-constant-modulus constella-
tion DAPSK precludes the direct application of the MSDSD
scheme of [90]. Therefore, the conception of an efficient
MSDD for DAPSK systems invoking the SD mechanism
has been a challenging open problem. Hence the solution of
this problem may constitute a promising candidate for low-
complexity near-optimum MSDD implementations.
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Figure 12. Overall system model of bit-interleaved coded 16-DAPSK over Rayleigh-fading channel.

Table IV
AMPLITUDE MAPPING FOR 16- AND 64-DAPSK

16-DAPSK (q = 1) 64-DAPSK (q = 2)
bnγ,1 bnγ,1, b

n
γ,2

0 1 00 01 11 10
a[n] γ[n] a[n] γ[n]

1 α 1 α α2 α3

a[n− 1]
1 1 α

a[n− 1]

1 1 α α2 α3

α α α2 α3 1

α α 1
α2 α2 α3 1 α
α3 α3 1 α α2

1) Differential Amplitude and Phase Shift Keying: Here we
consider a bit-interleaved coded differential modulation SISO
design example of Fig. 12 employing the iterative detection
(ID) mechanism. At the transmitter a block of L information
bits u is first encoded by the channel encoder in order to
generate the coded bits c, which are then interleaved by
the interleaver π. The resultant permuted bits b are then
fed through the DAPSK modulator. The 2p-DAPSK employs
multiple concentric rings by combining the 2q-DASK and
2(p−q)-DPSK modulation schemes. As illustrated in Fig. 12,
the first q bits, bn

γ = [bnγ,1, · · · , bnγ,q], of the nth p-bit encoded
APSK symbol d[n] = γ[n]v[n] are mapped to one of the
legitimate radii R = {αiA | iA = 0, · · · , 2q − 1} in order
to generate the component ASK symbol γ[n]. Meanwhile,
the remaining (p − q) bits, bn

θ = [bnθ,1, · · · , bnθ,p−q], are
mapped to the component PSK symbol v[n] = ejθ[n] ∈ V =

{ej2πiP/2(p−q) |iP = 0, · · · , 2(p−q) − 1}. Then, the differential
amplitude and phase modulation processes are carried out in
parallel, as observed in Fig. 12. More particularly, during the
amplitude differential modulation the current amplitude state
a[n] is chosen from the constellation diagram depending on
the previous amplitude state a[n− 1], taking into account the
ASK symbol γ[n] according to Table IV. Finally, the DAPSK
symbol x[n] may be generated as the product of the DASK and
DPSK symbols according to x[n] = a[n]s[n]. As an example,
the signal constellation set Mc of 16-DAPSK (p = 1, q = 4)
is depicted in Fig. 13.

2) MAP-Based MSDD for DAPSK: In the light of the
generalized multiple-symbol system model of (3), we may
straightforwardly obtain the multiple-symbol system model
for the DAPSK modulated system of Fig. 12 as Y[kN ] =
Xd[kN ]H[kN ] +W[kN ] = Ad[kN ]Sd[kN ]H[kN ] +W[kN ],
where Xd[kN ], Ad[kN ] and Sd[kN ] are all diagonal matrices
containing the kth block of Nwind consecutively transmitted
DAPSK symbols, ASK symbols as well as PSK symbols along
their diagonal, respectively.

1 α

I

Q

Figure 13. Signal constellation of 16-DAPSK (α denotes the ring ratio).

Based on the above multiple-symbol system model, the
MSDD discussed in Sction III-B1 may be directly ap-
plied to the single-transmit-antenna-assisted DAPSK system.
However, we have to bear in mind that since the con-
ditional PDF p(Y[kN ]|Xd[kN ]) is dependent on the am-
plitude of the non-constant-modulus reference symbol xref

(i.e. on the first upper-left element of the diagonal matrix
Xd[kN ]), the metric employed in the MSDD, namely, the
conditional PDF p(Y[kN ]|b[kN ]) = p(Y[kN ]|Γ[kN ],Θ[kN ])
should be caculated by averaging p(Y[kN ]|Xd[kN ]) over
all possible values of xref as p(Y[kN ]|Γ[kN ],Θ[kN ]) =
Exref

{p(Y[kN ]|Xd[kN ])}, where Γ[kN ] = [γ[k(Nwind −
1)], · · · , γ[(k + 1)(Nwind − 1) − 1]]T and Θ[kN ] =
[θ[k(Nwind− 1)], · · · , θ[(k+1)(Nwind− 1)− 1]]T correspond
to the kN th block of consecutively transmitted (Nwind − 1)
pieces of the amplitude-ratio and phase-rotation information,
respectively. The soft bit information expressed in terms of a
posteriori LLRs may then be calculated with the aid of Bayes’
theorem at the output of the MAP-MSDD as (again, the block
index kN is omitted for notation simplicity):

LD(bni |Y) = ln

∑
b∈Bn,i,+1

p(Y|Γ,Θ)Pr(b)∑
b∈Bn,i,−1

p(Y|Γ,Θ)Pr(b)
, (4)

where Bn,i,±1 represents the set of 2(pN−1) legitimate trans-
mitted bit vectors b associated with the ith bit of the nth
p-bit-coded symbol being bni = ±1 (i ∈ {0, · · · , p− 1}).

According to (4), the asymptotic complexity of the MAP-
MSDD of a 2p-DAPSK scheme using 2q concentric rings is
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O(p · 2(pN)). Therefore, employing the ML - search carried
out by the MAP-MSDD might impose a potentially excessive
computational complexity and hence may preclude its practical
implementation, especially for high-order modulation schemes
and/or for high observation window sizes.

3) The Design of Iterative Amplitude/Phase MSDSD: Since
the transmitted signal matrix Xd is no longer unitary in the
DAPSK modulated system, we are unable to transform the
maximization problem of the ML-MSDD decision metric into
an efficient SD-aided layered tree search, as it was observed in
Section III-B2 for the DPSK modulated scenario. As another
approach of reducing the complexity, the idea of decoupling
the joint amplitude and phase detection was conceived in [91]
for MSDD invoked for DAPSK modulated transmission over
Rayleigh channels. Regretfully, this sub-optimum scheme only
achieved a complexity reduction at the cost of a significant
performance loss.

In order to recover from this potentially substantial perfor-
mance degradation, below a novel IAP-MSDSD mechanism
is proposed for channel coded DAPSK modulated systems.
As illustrated in Fig. 14, Nwind consecutively received sym-
bols are collected and fed through the decoupled serially
concatenated multiple-symbol differential amplitude detector
(MSDAD) and multiple-symbol differential phase detector
(MSDPD) of Fig. 14. We note that the soft-decision-based
detection of the amplitude- and phase-modulation-related bits
is conducted independently and their generated soft ampli-
tude and phase information may be iteratively exchanged
between each other. The decoupling of the amplitude and
phase detection renders the SD mechanism applicable to the
computationally demanding MSDPD process of acquiring the
phase estimate Ŝ

d
, which uses the amplitude estimates of the

consecutively transmitted symbols provided by the MSDAD
as a priori information. The step-by-step operation of IAP-
MSDSD is briefly summarized as follows:

Step 1: The IAP-MSDD process commences by obtaining
the phase information Θ̂ based on the output of the phase
detector as Θ̂ = [φ0, · · · , φ(N−1)]

T by toggling the phase
information feedback switch to the ‘1’ location of Fig. 14,
in order to provide the initial phase estimates Θ̂ for the first
round of MSDAD detection.
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Figure 15. EXIT chart of the IAP-MSDSD employed in the 16-DAPSK
system.

Step 2: In the presence of the estimated transmit-domain
phase information Θ̂, the a posteriori amplitude-modulation-
related bit LLRs are computed by the MSDAD as:

LD(bnγ,i|Y, Θ̂) = ln

∑
bγ∈B

γ
n,i,+1

p(Y|Γ, Θ̂)Pr(bγ)∑
bγ∈B

γ
n,i,−1

p(Y|Γ, Θ̂)Pr(bγ)
, (5)

where B
γ
n,i,±1 represents the set of 2[q(N−1)−1] legitimate

amplitude-modulation-related bit vectors bγ associated with
bnγ,i = ±1 (i ∈ {1, · · · , q}).

Step 3: Subsequently, the amplitudes Â
d

of the con-
secutively transmitted symbols may be estimated based on
the a posteriori amplitude-modulation-related bit LLRs, i.e.
LD(bγ |y, Θ̂) of (5), which are then delivered to the serially
concantenated MSDPD.

Step 4: Thanks to the amplitude estimate matrix Â
d
,

the a posteriori phase-modulation-related bit LLRs may be
computed by the MSDPD of Fig. 14, where the efficient SD
mechanism can be incorporated in a similar manner as seen
in Section III-B2.

Step 5: From the second iteration of the MSDAD process
onwards, the phase information feedback switch of Figure 14
is toggled to the ‘2’ position in order to exploit the phase-
modulation-related bit LLRs delivered by the MSDPD. Then,
go back to Step 2, if further iterative A/P detection is required.

Step 6: Output both the amplitude- and phase-modulation-
related bit LLRs LD(bA) and LD(bP).

4) Application Example - 16DAPSK SISO System: Let us
now invoke the semi-analytical EXtrinsic Information Transfer
(EXIT) charts of [92] for investigating the performance versus
complexity of the IAP-MSDSD scheme conceived for the
single-antenna-aided 16-DAPSK-modulated SISO system of
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Figure 16. Maximum achievable throughput of the 16-DAPSK system.

Fig. 12 experiencing a normalized Doppler frequency of fd =
0.01. According to the area properties of the EXIT chart [92],
the upwards-shifted EXIT curve of the IAP-MSDSD in Fig. 15
suggests that a significantly higher maximum transmission rate
may be achieved in comparison to the CDD assisted system us-
ing Nwind = 2. This throughput gain was achieved by jointly
detecting Nwind > 2 data symbols using the IAP-MSDSD, as
also visualized in the 3D plot of Fig. 16, where the maximum
achievable throughput of the IAP-MSDSD-aided 16-DAPSK
modulated system is portrayed versus both the SNR and the
ring-ratio α. Additionally, a compromise between the achiev-
able performance and the complexity imposed may be struck
by employing the low-complexity conventional differential
amplitude detection (CDAD) or conventional differential phase
detection (CDPD) philosophy in the corresponding amplitude
or the phase detection process, as indicated by the associated
downwards-shifted dotted and dot-dashed EXIT curves of
Fig. 15. Moreover, as implied by the almost invisible gap
between the EXIT curve of the IAP-MSDSD and that of
the traditional MSDD seen in Fig. 15, both the MSDAD and
MSDPD of the IAP-MSDSD of Fig. 14 has to be activated
only once, in order to approach the performance of the
traditional MSDD. Thus, remarkably, the complexity imposed
by the IAP-MSDSD becomes about five orders of magnitude
lower than that of the traditional MSDSD for the 16-DAPSK
modulation-aided system across a wide range of SNRs, as seen
in Fig. 17, where the complexity quantified in terms of the
number of transmitted symbol vector candidate enumerations
during the differential detection is portrayed versus both the
SNR and the ring-ratio α. Furthermore, the simulation results
seen in Figs. 16 and 17 suggest that setting the ring-ratio
employed by the 16-DAPSK to α ≈ 2.0 constitutes an
appropriate choice for maximizing the achievable throughput
[93], while minimizing the complexity imposed.
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B. Design of MSDSD for MIMO Systems Using QAM-DUSTM

1) DUSTM Using QAM Constellations: In contrast to the
traditional space-time block coding (STBC) framework, the
DUSTM structure portrayed in Fig. 4 introduces a differential
encoding unit, in order to forgo the burden of channel estima-
tion. However, the differential encoding structure imposes a
unitary constraint on the resultant space-time coded matrices,
otherwise the matrix product S[n] = V[n]V[n − 1] · · ·V[1]
may become zero, infinity or possibly both in different spa-
tial and temporal directions, as the differential space-time
encoding proceeds. In other words, the challenge of designing
DUSTM can be described as that of designing a family
of STBCs, where all the space-time matrices are unitary.
A straighforward way of designing DUSTM is based on
Alamouti codes [6], where the challenge of constructing a
set of unitary space-time matrices V[n] for the schematic of
Fig. 4 is tackled by simply employing, for example, the well-
known G2 matrices with their elements drawn from a 2p-PSK
constant-modulus constellation.

Let us now briefly review how the PSK constellation can
be replaced by its non-constant-modulus square QAM coun-
terpart, while still preventing the peak power of the transmitted
signals generated by the DUSTM encoding process from
becoming infinity or zero. The reader’s familiarity with the
Alamouti STBC is assumed here. Then we consider a co-
located MIMO system equipped with two transmit antennas
as our design example. Thus the G2-based DUSTM encoding
process may be formulated as S[n] = 1

ηn−1
S[n − 1]V[n] =

1
ηn−1

S[n−1]G2(v1[n], v2[n]), where the function G2(·) takes
two input symbols drawn from the 2p-QAM constellation
for generating the associated (2 × 2)-dimensional space-time
matrix. The first transmitted space-time signal is also a G2

matrix, which serves as the reference symbol. Furthermore, it
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is the power normalization factor ηn−1 =
√
||S[n− 1]||2/2 =√

|v1[n− 1]|2 + |v2[n− 1]|2 that is introduced for confining
the peak power of the transmitted signals after differential
encoding within a certain limit.

In order to recover the QAM symbols (v1[n], x2[n]) us-
ing the CDD, which performs ML detection based on low-
complexity linear processing, both the transmit power normal-
ization factor ηn and the fading channel’s power envelope has
to be known by the receiver. The factor ηn may be directly
obtained from the previous decisions, but the fading channel’s
power envelope has to be estimated, for example, by evaluating
the auto-correlation of the received signal. Naturally, the accu-
racy of this estimation highly depends on both the estimation
window duration as well as on the Doppler frequency. Since
the implementation of the related ML detection is a well-
known standard process, we refer the interested reader to [87]
for more details and continue our discourse focusing on how
to efficiently carried out multiple-symbol-based detection for
the DUSTM system using QAM constellations for the sake of
enhancing its robustness against rapid channel fluctuation.

2) The Design of MSDSD for QAM-Based DUSTM: By
constructing the multiple-symbol system model of (3) detailed
in Section III-A1 for the QAM-based-DUSTM system, the
ML-MSDD discussed in Section III-B1 can be directly ap-
plied. However, a problem precludes the direct application
of the SD regime for reducing the ML-MSDD’s excessive
complexity experienced in the context of QAM-based DSTUM
MIMO systems, which was also encountered in the DAPSK-
aided SISO scenario. This specific problem is that the matrix
Sd of (3) encapsulating the consecutively transmitted space-
time signals is no longer unitary. Furthermore, another chal-
lenging problem faced by the SD algorithm when aiming for
complexity reduction is the estimation of the power normaliza-
tion factor ηn. Therefore, we will highlight three major actions
enabling an efficient implementation of the ML-MSDD relying
on the SD mechanism in our following discourse:

Action 1 - Generation of Equivalent Unitary Signal Ma-
trix and Its Associated Channel Matrix: In the light of
our multiple-symbol system model of (3) let us consider
the first transmission block as an example, where we may
have S̃

d
= diag{ 1√

2η1
S[1] · · · 1√

2ηNwind

S[Nwind]} and H̃ =

[
√
2η1H[1]T · · ·

√
2ηNwind

H[Nwind]
T]T. The so-called equiv-

alent unitary signal matrix S̃
d

is specifically constructed in
order to satisfy the above-mentioned unitary-matrix based
prerequisite of incorporating the SD mechanism.

Action 2 - Estimation of the Power Normalization Factor:
Since the first transmitted symbol of each detection block
constitutes a priori knowledge, as we mentioned above, we
re-order the layered signal detection process by rearranging
each matrix of (3) upside down. Then, we now have H̃ =
[
√
2ηNwind

H[Nwind]
T · · ·

√
2η1H[1]T]T for example. In the

sequel, thanks to the layered tree search mechanism of the
SD scheme, we can now embark on a joint detection of the
transmitted symbol Sn and its associated normalization factor
ηn =

√
||Sn||2/2, since the previous transmission matrix

estimates {Ŝj}n−1
j=1 as well as their associated transmit power

normalization factor estimates {η̂j}n−1
j=1 have already been

temporarily obtained from the previous tree search phases.

Action 3: - Construction of Partial Upper-Triangular Ma-
trix: Unfortuntely, the upper-triangular matrix Ũ used in the
layered tree search of the SD scheme, which is obtained based
on the channel’s covariance matrix Σ̃h = E{H̃H̃

H} may
not be acquired, until all the decisions concerning the power
normalization factors {η̂j}Nwind

j=1 have been attained. However,

we found that a so-called partial upper-triangular matrix ˜̃U of
(nNtNr) × (nNt) elements may be generated based on the
(nNt)× (nNt)-element partial channel covariance matrix ˜̃Σh,
which corresponds to the partial equivalent channel matrix
˜̃H obtained by removing the first (Nwind − n) rows of the
complete channel matrix H̃. Furthermore, we observed that the
partial upper-triangular matrix ˜̃U constitutes a matrix which is
identical to the lower-right submatrix of the complete upper-
triangular matrix Ũ used by the conventional SD algorithm,
as illustrated in Fig. 18. This is equivalent to saying that the
candidate search for the (n + 1)st transmitted symbol may
be carried out based on the partial upper-triangular matrix
˜̃U, which is associated with the estimates of {η̂j}nj=1 that
become available after the layered tree search for the previous
n consecutively transmitted symbols. More explicitly, this is
achieved without acquiring all the decisions of the power
normalization factors {η̂j}Nwind

j=1 . Consequently, as the tree
search of the SD continues, the dimension of the partial
upper-triangular matrix ˜̃U increases, and finally becomes the
complete matrix Ũ, when the layered tree search is completed.

3) Application Example - G2-DUSTM-16QAM System: In
this section, we examine the performance of the proposed
MSDSD scheme in the context of the two-transmit-antenna-
aided G2-DUSTM-16QAM system. Its BER performance
is portrayed in Fig. 19(a). It can be seen that the error
floor of the CDD imposed by rapidly fading channels is
successfully mitigated by the proposed MSDSD. We note
that the MSDSD associated with Nwind = 2 is equivalent
to the CDD. Furthermore, as the MSDSD window duration
Nwind increases, the performance of the noncoherent receiver
approaches that of the idealized coherent scheme relying on
perfect CSI estimation apart from the irreducible 3 dB gap, as
evidenced by Fig. 19(a).

Fig. 19(b) presents our complexity comparison between
the MSDD and the MSDSD, which is simply quantified as
the number of 16-QAM constellation points visited by the
MSDD/MSDSD per detected DUSTM information matrix.
As seen in Fig. 19(b), the ML MSDD imposes a constant
but potentially excessive complexity, even if the observation
window size of Nwind = 3 is only slightly higher than
the Nwind = 2 value employed by the CDD. On the other
hand, the complexity imposed by the proposed MSDSD is
a function of both the observation window size Nwind and
the received SNR. As the SNR increases, the MSDSD’s
complexity decreases steadily and finally becomes comparable
to that of the MSDSD in conjunction with Nwind = 2.

V. DIFFERENTIAL INTERFERENCE SUPPRESSION BASED
ON JOINT MULTIPLE-SYMBOL FILTERING AND DETECTION

Apart from the high-order modulation schemes discussed in
the previous sections, a more promising solution to achieve
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a significantly improved bandwidth-efficiency is the non-
orthogonal transmission based on the exploitation of the
spatial dimension. Explicitly, we may employ spatial division
multiple access (SDMA) [1], where the user-specific CIRs
are estimated and invoked for differentiating the parallel UL
streams transmitted by the different users. Regretfully, it was
revealed in [94] that the SDMA system’s performance is
highly sensitive to the channel estimation errors, which may
only be mitigated at the cost of an excessive computational
complexity and/or high pilot overheads in many practical
time-varying fading scenarios. Fortunately, however, it is
possible to circumvent the channel estimation. This may be
achieved by estimating and cancelling the multiple-access
interference with the aid of an appropriately designed adaptive
receiver. For example, the adaptive minimum mean square
error (MMSE) scheme [95] using the least mean square (LMS)
or the recusive least squares (RLS) algorithm and the more
recently proposed maximum signal-to-interference-plus-noise
ratio (MSINR) based differential interference suppression
(DIS) scheme [96] may be invoked. For the LMS scheme the
interference suppression filter has to be adapted in an agile
manner, in order to minimize the MSE between the transmitted

signal and the filter’s output signal, while for the MSINR
solution the filter coefficients are adjusted to maximize the
SINR at its output. It has been demonstrated in [96] the
MSINR solution is also capable of mitigating the effects of
carrier phase variations.

A. Multiple-Symbol SDMA-OFDM System Model

In the context of nonorthogonal transmissions, the signals
transmitted from multiple MSs are superimposed on each
other at the receive antennas, thus the per-sub-carrier-based
multiple-symbol SDMA-OFDM system is formulated on the
basis of its orthogonal-transmission counterpart of (3) as:

Y[kN ] =

U∑
u=1

Sd
u[kN ]Hu[kN ]︸ ︷︷ ︸

Yu[kN ]

+W[kN ], (6)

where the subscript u is introduced here to differentiate the
terms associated with each MS while the sub-carrier index is
again omitted here for notational simplicity. The dimension
of each term in (6) is in line with that of the corresponding
term of (3). Due to pratical cost- and size- constraints, the
employment of a single transmit antenna is assumed for each
MS without loss of generality, i.e. we have Nt = 1. In
order to circumvent the channel estimation, the uth single-
antenna-aided MS differentially encodes its information sym-
bols Vu[n] ∈ Mc = {ej2πm/M ;m = 0, 1, · · · ,M − 1},
each of which contains (log2 M )-bit information, as Su[n] =
Vu[n]Su[n− 1], resulting in the so-called differential SDMA
(DSDMA) system.

B. Adaptive Multiple-Symbol Differential Interference Sup-
pression

It is observed from (6) that non-coherent differential de-
tection techniques cannot be directly applied at the BS to
recover the information pertaining to a specific MS without
suppressing the interference imposed by all the other MSs.
Therefore, we will use the MSINR approach of [96] for inter-
ference suppression in the DSDMA-OFDM system. However,
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rather than computing the uth MS’s linear vector filter fu[n]
of a specific sub-carrier for each OFDM symbol duration
n, we propose updating fu[kN ] only once for Nwind OFDM
symbol durations based on the most recently received Nwind

signal matrices hosted by Y[kN ] of (6). The resultant new
multiple-symbol MSINR (MS-MSINR) criterion reduces the
filter-update overhead and additionally facilitates the imple-
mentation of the powerful MSDSD in the ensuing stage, hence
achieving significant performance improvements.

1) Multiple-Symbol MSINR Criterion: Our goal is to find
the specific filter fv[kN ] capable of maximizing the filter’s
output SINR, which may be mathematically expressed as:

fv[kN ] = max
fv [kN ]

fHv [kN ]R[kN ]fv[kN ]

fHv [kN ]Ri
v[kN ]fv[kN ]

, (7)

where R[kN ] � E{YH[kN ]Y[kN ]} is the correlation matrix
of the multiple-symbol-based received signal Y[kN ] of (6)
and Ri

v[kN ] � E{(Y[kN ] − Yv[kN ])H(Y[kN ] − Yv[kN ])}
is the multiple-symbol-based interference-plus-noise corre-
lation matrix. Using the method of Lagrange multipliers,
we may solve (7) by maximizing fHv [kN ]R[kN ]fv[kN ] un-
der the constraint that the interference-plus-noise component
fHv [kN ]Ri

v[kN ]fv[kN ] is fixed, leading to a so-called general-
ized eigenvalue problem [97]:

R[kN ]fv[kN ] = λRi
v[kN ]fv[kN ], (8)

where λ represents the real-valued Lagrange multiplier.
2) MS-MSINR-Based Differential Interference Suppression:

Thanks to the differential encoding mechanism, despite dis-
pensing with channel estimation in the DSDMA-OFDM sys-
tem, the interference-plus-noise correlation matrix Ri

v[kN ]
may be calculated by exploiting the differentially encoded
transmission principles. To be specific, under the assumption
of a relatively slow fading channel, the multiple-symbol-
based interference-plus-noise correlation matrix Ri

v[kN ] may
be approximately evaluated as Ri

v[kN ] ≈ E{EH
v [kN ]Ev[kN ]},

where the multiple-symbol-based interference-plus-noise sig-
nal matrix Ev[kN ] is defined as Ev[kN ] �

√
1
2 (Y[kN ] −

Ṽ
d

v[kN ]Y[k−1
N ]) with the block index k−n

N representing the
kth block shifted backwards by n OFDM symbol durations
and the (NtNwind×NtNwind)-element diagonal block matrix
Ṽ

d

v[kN ] = diag{Ṽv[kN ]} = diag{[Vv[(Nwind − 1)(k −
1)]T , Vv[kN ]T ]T } is the multiple-symbol-based transmitted
information symbol matrix of the vth MS. The diagonal
block matrix Ṽ

d

v [kN ] is known to the receiver during the
training session or may be estimated by using the previous
decisions [98].

3) Adaptive Implementation of MS-DIS: In practice, rather
than carrying out the high-complexity singular-value decom-
position to solve the generalized eigenvalue problem of (8),
we apply a multiple-symbol-version of the adaptive Newton
algorithm of [99] for recursively updating the differential
interference suppression (DIS) filter fv[kN ]. This modified
adaptive Newton algorithm, which was shown in [99] to have

a fast convergence and an excellent tracking capability10 is
omitted here owing to the lack of space - the interested reader
is referred to [98, 99]. It is worth noting that in constrast
to the conventional single-symbol based adaptive algorithm,
the filter fv[kN ] is updated at the beginning of each Nwind-
OFDM-symbol block and it is used unaltered throughout the
Nwind-OFDM-symbol block to suppress the multiple-access
interference imposed by the other MSs. This block-based
filtering regime facilitates the implementation of the MSDSD
scheme as a benefit of imposing no further distortion on
the phase difference between the consecutively transmitted
symbols in addition to that caused by the time-varying fading
channel.

C. MS-DSDMA Transceiver Design

We now consider a channel-code aided turbo DIS receiver
for the DSDMA-OFDM system supporting U MSs, which is
depicted in Fig. 20. Specifically, the BS receiver of Fig. 20 is
constituted by three modules, namely the DIS filter bank, the
MSDSD and the channel decoder, where the extrinsic infor-
mation may be exchanged amongst the three concantenated
components in a number of consecutive iterations. As shown
in Fig. 20, A(·) represents the a priori information expressed
in terms of the LLRs, while E(·) denotes the corresponding
extrinsic information, whereas the labels u and c represent
the uncoded and coded bits, respectively, corresponding to the
specific module indicated by the subscript. Bearing in mind
the goal of striking an attractive compromise between the
attainable system performance and the complexity, our design
guidelines may be summarized as follows:

a) Channel-Code-Aided Turbo DIS: At the early stage
of the iterative detection process, Ṽv[kN ] which is used for
evaluating Ri

v[kN ] should be obtained based on the output of
the MSDSD by toggling the decision-directed mode switch to
the ‘a’ location of Fig. 20, in order to ensure that the system
is operating in its decision-directed mode. However, as soon
as the a priori information delivered by the channel decoder
becomes more reliable during the iterative detection process,
namely when we have IE(c1) > IE(u2), it is preferred to
switch to the “channel-code-aided” decision-directed mode by
toggling the switch to the ‘b’ location in Fig. 20, so that
Ṽv[kN ] is calculated from the a priori information provided
by the channel decoder.

b) Soft-Symbol-Decision-Direct DIS: Based on the idea
of retaining the valuable soft-information contained in the a
posteriori LLRs, which would be simply discarded by the
action of subjecting the LLRs to hard decisions, soft-symbol-
decision-directed (SSDD) DIS is advocated. In this context
the soft- rather than hard-decision symbol is calculated based
on the a priori LLRs delivered either by the MSDSD or by
the channel decoder for Ṽv[kN ].

c) Adaptive-Window-Duration Based MSDSD: Instead
of using a fixed observation window size of Nwind during the
entire iterative detection process, the observation window size

10Our investigations, which are omitted here owing to the lack of space,
indicate that the MSINR-based DIS scheme exhibits a lower sensitivity to the
quality of the feedback decision than that of its conventional RLS-LMMSE-
based counterpart, resulting in a superior tracking capability.
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Figure 20. Multiple-symbol DSDMA-OFDM transceiver architecture.

Table V
SUMMARY OF SYSTEM PARAMETERS

Modulation DQPSK in Time Domain
Users Supported 2
Normalized Doppler Freq. 0.001
System DSDMA-OFDM Uplink
Sub-Carriers 1024
Rx at BS 2
Channel Code Half-Rate RSC(2,1,3) (5/7)
TDL Channel Model Typical Urban 6-Tap Channel Model
Channel Delay Profile [0 2 6 16 24 50]

employed by the MSDSD was initially set to Nwind = 2 for
the sake of a low complexity. However, this window-size will
be slightly increased, as soon as the iterative decoding process
exchanging extrinsic information between the combined “DIS-
MSDSD” decoder and the channel decoder converges. The
proposed AWD-aided MSDSD scheme is characterized with
the aid of the EXIT chart seen in Fig. 21(a) in the context of a
(2× 2)-element DQPSK modulated DSDMA-OFDM system,
where we may also observe the transition of the decision-
directed mode from the MSDSD-based mode to the channel-
code-based mode at the second iteration, as we discussed
above. Indeed, the complexity imposed by the MSDSD is
significantly reduced by the AWD scheme, as observed in
Fig. 21(b), where the complexity imposed by the MSDSD
in terms of the number of the PED evaluations per bit is
plotted versus the SNR for the systems operating both with
and without the AWD scheme.

d) Apriori-LLR-Threshold Aided MSDSD: Bearing in
mind that the sign of the resultant LLRs indicates whether
the current bit is more likely to be +1 or −1, whereas the
magnitude reflects how reliable the decision concerning the
current bit is, the search space of the MSDSD may be sig-
nificantly reduced by invoking an ALT controlled technique.
To be specific, when calculating the a posteriori LLR LD(bi)
for the ith bit component bi of the bit vector b, the vector
candidates b associated with bj (j �= i, j ∈ J ) having
values opposite to those indicated by the sign of their a priori
LLRs may be excluded from the search space, as long as
their a priori LLRs exhibit magnitudes higher than the preset
threshold TALT. As seen in Fig. 21(b), the integration of ALT
schemes (TALT = 10) further reduce the complexity of the
MSDSD significantly without sacrificing the performance.

D. Simulation Results and Discussions
In Fig. 22 the BER performance of the proposed turbo

MS-DIS-aided DSDMA system of Fig. 20 is plotted in
comparison to those of its LMMSE-based and MSINR-based
single-symbol-DIS-aided counterparts, in the specific context
where two single-antenna-aided users are assumed to transmit
simutaneously to the two-antenna-aided BS. The simulation
parameters are summarized in Table V. It is observed in
Fig. 22 that for Nwind = 1 the coded RLS-based-LMMSE
DSDMA-OFDM system is slightly inferior to its MSINR-
based counterpart in terms of its BER performance within
the SNR range of interest. Furthermore, when the MS-DIS
scheme operates in conjunction with Nwind = 7, the MSINR-
based system using the ALT- and AWD-aided MSDSD is
capable of achieving an SNR gain of 5 dB over its LMMSE-
based counterpart at the BER target of 10−4 in the channel-
coded scenario associated with fd = 0.001. Finally, observe
in Fig. 22 that the error-floor induced by a more severely
time-selective channel may be significantly mitigated by the
proposed MSINR-based MS-DIS scheme in conjunction with
the ALT- and AWD-aided MSDSD. More specifically, an SNR
gain of about 7 dB can be achieved by the proposed turbo
MS-DIS-aided three-stage receiver employing Nwind = 7 in
comparison to the conventional MSINR-based DIS-assisted
system using Nwind = 1 in the time-varying fading channel
associated with fd = 0.005.

VI. CONCLUSIONS AND FUTURE RESEARCH

A. Summary and Conclusions
Multiple-symbol joint signal processing techniques, which

are capable of exploiting the fading channel’s memory, were
advocated in this treatise as an appealing, practically im-
plementable candidate for differentially modulated systems
dispensing with the potentially excessive-complexity and yet
inaccurate channel estimation. The benefits of the multiple-
symbol joint signal processing include the enhancement of
the system’s robustness against rapid channel fluctuation,
striking a flexible performance-complexity compromise by
appropriately adapting the observation window size Nwind as
well as the provision of enhanced iterative gains achieved
for channel-code-aided iterative receivers. As a prominent
scheme in the family of multiple-symbol signal processing
techniques conceived for differential signalling systems, the
ML MSDD and its SD-based reduced-complexity counterpart,
namely MSDSD, were briefly reviewed based on our gener-
alized MIMO-OFDM multiple-symbol transmission model of
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Section III, which subsumes the SISO system as a special case.
However, our discussions of multiple-symbol signal process-
ing was not restricted to the family of differentially modulated
systems relying on conventional constant-modulus constel-
lations. Instead, communication systems using nonconstant-
modulus constellation based signaling mechanisms, such as
the DAPSK and the DUSTM-QAM schemes were consid-
ered, in the interest of more efficiently exploiting the scarce
spectral resources for accommodating the ever-increasing traf-
fic demands. Although the exhaustive-search-based MSDD
mechanism is directly applicable to the above high-order
differential modulation schemes, they exhibit a potentially
excessive complexity, which is increased exponentially both
with the modulation constellation size and with the multiple-
symbol processing block size. The bottleneck of efficiently
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Figure 22. BER performance of the MS-DSMA OFDM system using the
ALT- and AWD-aided MSDSD.

implementing the MSDD for the DAPSK and DUSTM-
QAM schemes lies in the fact that the employment of the
nonconstant-modulus constellation destroys the unitary nature
of the transmitted multiple-symbol signal matrix. Therefore
we transplanted the SD regime into the MSDD. Hence, an
iterative A/P detection framework for MSDD-aided DAPSK
system was proposed in Section IV-A, which was shown to be
capable of achieving a low-complexity near-ML performance.
On the other hand, upon the construction of an equivalent
multiple-symbol transmission model for the DUSTM-QAM
system, we proposed in Section IV-B2 to incorporate the
joint detection of the power normalization factor and of the
transmitted space-time information symbol into the layered
tree search conducted by our newly devised partial SD process,
which exploits the properties of the corresponding partial
channel matrix, hence resulting in a low-complexity MSDD
implementation. In the final part of our treatise, namely in
Section V, an in-depth discussion was dedicated to the so-
called differential SDMA system, where the multiple access
interference was removed by our adaptive differential interfer-
ence suppression scheme.

B. Design Guideline

• MIMOs circumvent the capacity/power limitation of clas-
sic single-antenna-aided systems, since they may be able
to increase the achievable throughpot linearly, rather than
logarithmically with the transmit power.

• However, the MIMO-capacity degrades in the presence
of correlated shadow-fading. Hence the single-antenna-
based mobiles, which are sufficiently far apart may form
a VAA to circumvent this limitation with the aid of
cooperation.

• Another challenge in the design of MIMOs is their chan-
nel camplex estimation, since they require the estimation
of (NTx × NRx) links, which is extremely demanding
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both in terms of its computational requirements as well as
in terms of its potentially excessive pilot overhead. This
is particularly so for high Doppler frequencies. These
two factors may lead to a performance erosion, which
may be mitigated with the aid of low-complexity non-
coherent detection aided MIMOs dispensing with channel
estimation.

• Indeed, coherent-detection aided VAAs would be even
more challanging to design than their classic MIMO
counterparts relying on co-located elements, since it
is somewhat unrealistic to expect the low-complexity,
light-weight MSs to estimate each other’s channels, let
alone the associated data-security aspects of potential
eavesdropping...

• However, the widely recognized impediment of low-
complexity non-coherent detection is its typical 3dB per-
formance loss and the potential BER-floor experienced
in case of high Doppler frequencies.

• Meanwhile, the need for more flexible compromise be-
tween performance and complexity as well as enhanced
iteration gain in the context of channel-code-aided iter-
ative receiver has become increasingly urgent for future
wireless communications dispensing with channel esti-
mation.

• The joint multiple-symbol based signal processing, such
as the MSDD detection technique features prominently
on the list of the recent technical advances with a chance
of resolving above-mentioned problems at a reasonably
low complexity with the aid of sphere decoding mecha-
nism.

• Unfortunately, the direct application of MSDSD for
future high-spectrum-efficiency transmissions employing
the DAPSK or DUSTM-QAM schemes is prevented by
the nonconstant-modulus modulation constellation struc-
ture, since it undermines the unitarity of the multiple-
symbol transmitted signal matrix.

• Hence, the multiple-symbol based detection may be de-
coupled for the amplitude and phase of the transmitted
DAPSK symbols and an iterative information exchange
mechanism may be devised between them for retrieving
the performance loss potentially caused by the decoiu-
pling of the A/P detection process.

• As for DUSTM-QAM systems, incorporating a joint
detection of the power normalization factor and of the
transmitted space-time information symbol into the lay-
ered tree search process may be invoked for the sake
of a low-complexity implementation, which exploits the
properties of the corresponding partial channel matrix.

• On the other hand, the signal separation capability at
the receiver of differentially modulated SDMA systems
dispensing with channel estimation requires further en-
hancements in high-Doppler scenarios.

• To this end, inspired by the block-based least-squares al-
gorithm of [95] designed for standard MMSE adaptation,
the so-called multiple-symbol DIS scheme based on the
MSINR criterion is devised, which is also capable of
reducing the filter adaptation overheads and - even more
importantly - for facilitating the implementation of the
powerful MSDSD.

• In order to further exploit the differential coding gains
in the context of our adaptive MS-DIS scheme, a new
channel-code-aided three-stage turbo DIS receiver was
then proposed, which allowed a beneficial information
exchange amongst the concatenated adaptive MS-DIS
filter bank, the MSDSD and the channel decoder.

• Finally, a new adaptive-window-duration based MSDSD
scheme was conceived, which was further aided by the
proposed ALT technique for the sake of achieving sig-
nificant complexity reductions in the turbo DIS receiver.

C. Future Research

Nonetheless, there are numerous interesting problems as-
sociated with the design of differentially modulated wireless
communication systems as well as with their multiple-symbol
signal processing mechanism, which need further investigation
in the future:

1) Achieving further complexity reductions for the MS-
DSD os conventional differentially detected systems may be
a challenging but worthwhile issue to tackle. Amongst a
range of interesting ideas proposed recently, the so-called
forward/backward-MSDSD (FB-MSDSD) [100] has the po-
tential of reducing the complexity by dividing the original de-
tection interval into forward and backward oriented processes.

2) Recently, the MSDD has been proposed for the double-
differential modulation aided system of [101] in order to
achieve an enhanced robustness against the frequency variation
which distorts the transmitted signal through attenuating its
amplitude and introducing a time-varying phase shift to the in-
formation symbols. However, a more efficient implementation
of the MSDD taking the characteristic of double differential
modulation into account may require a further specialized
design.

3) The multiuser/multistream interference management is
one of the most critical and challenging problems that requires
further enhancements in order to design higher-efficiency
non-orthogonal differentially modulated cooperative systems,
since the channel estimation for all cooperating links beomes
significantly more difficult than in their point-to-point direct
transmission based counterparts. A possible way forward is to
design a joint receiver and cooperative protocol, for example,
as proposed in [102].

4) Additionally, scheduling and adaptive rate control is
another issue associated with the family of differentially mod-
ulated systems based on multiple-symbol signal processing
that has to be studied for the sake of achieving a high
throughput, while maintaining a reasonably low complexity.
To this end, we may seek further solutions dispensing with
CSI, while using EXIT-chart-based design techniques [103].
The adaptive window duration based scheme discussed in this
treatise may also be taken into account in the design of link
adaptation.

5) Finally, The synchronization issues of cooperative sys-
tems require substantial further attention.

APPENDIX

Acronyms See Table VI.)
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Table VI
ACRONYMS

AF Amplify-and-Forward MI Mutual Information
ALT Apriori-LLR Threshold MIMO Multiple-Input Multiple-Output
AWD Adaptive Window Duration ML Maximum Likelihood
BS Base Station MMSE Minimum Mean Square Error
CDAD Conventional Differential Amplitude Detection MS Mobile Station
CDD Conventional Differential Detection MSDAD Multiple-Symbol Differential Amplitude Detector
CDMA Code-Division Multiple-Access MSDD Multiple-Symbol Differential Detection
CDPD Conventional Differential Phase Detection MSDPD Multiple-Symbol Differential Phase Detector
CF Compress-and-Forward MSDSD Multiple-Symbol Differential Sphere Detection
CIR channel impulse response MS-DSDMA Multiple-Symbol Differential SDMA
CSI Channel State Information MSINR Maximum Signal-to-Interference-plus-Noise Ratio
CTF Channel Transfer Factor OFDM Orthogonal Frequency-Division Multiplexing
DAF Differential Amplify-and-Forward OFDMA Orthogonal Frequency-Division Multiple Access
DAPSK Differential Amplitude and Phase Shift Keying QoE Quality of End-User Experience
DDF Differential Decode-and-Forward QoS Quality of Service
DF Decode-and-Forward RLS Recursive Least Squares
DFT Discrete Fourier Transform RS Relay Station
DIS Differential Interference Suppression SC-FDMA Single-Carrier Frequency-Division Multiple Access
DL Downlink SD Sphere Detection
DOSTBC Differential Orthogonal STBC SDMA Spatial-Dvision Multiple Access
DPSK Differential Phase Shift Keying SISO Single-Input Single-Output
DUSTM Differential Unitary Space-Time Modulation SSDD Soft-Symbol Decision Direct
EXIT EXtrinsic Information Transfer Star-QAM Star Quadrature Amplitude Modulation
FD-CTF Frequency Domain Channel Transfer Factor TD Time Domain
FDM Frequency Divison Multiplexing TDMA Time-Division Multiple Access
IAP-MSDD Iterative Amplitude/Phase Multiple-Symbol Differential Detector UE User Equipment
IAP-MSDSD Iterative Amplitude/Phase Multiple-Symbol Differential Sphere Detector UL Uplink
ID Iterative Detection VAA Virtual Antenna Array
LMS Least Mean Square WCDMA Wideband Code-Division Multiple Access
MAP Maximum-a-Posteriori

REFERENCES

[1] L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and
MC-CDMA for Broadband Multi-User Communications, WLANs and
Broadcasting. John Wiley and IEEE Press, 2003.

[2] A. J. Paulraj and T. Kailath, “Increasing capacity in wireless broad-
cast systems using distributed transmission/directional reception,” US
Patent 5 345 599, 1994.

[3] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in fading environments when using multiple antennas,” Bell
Labs Technical Journal, vol. 2, pp. 41–59, 1996.

[4] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless
Personal Communications, vol. 6, pp. 311–335, Mar. 1998.

[5] N. Chiurtu, B. Rimoldi, and E. Telatar, “On the capacity of multi-
antenna Gaussian channels,” in Proc. IEEE International Symposium
on Information Theory, (Washington, DC), p. 53, June 2001.

[6] S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1451–
1458, Oct. 1998.

[7] B. Hochwald, T. L. Marzetta, and C. B. Papadias, “A transmitter
diversity scheme for wideband CDMA systems based on space-time
spreading,” IEEE J. Sel. Areas Commun., vol. 19, pp. 48–60, Jan. 2001.

[8] W. F. Su, Z. Safar, and K. J. R. Liu, “Space-time signal design for time-
correlated Rayleigh fading channels,” IEEE International Conference
on Communications 2003., vol. 5, pp. 3175–3179, May 2003.

[9] W. Su and X. G. Xia, “On space-time block codes from complex or-
thogonal designs,” Wireless Personal Communications, vol. 25, pp. 1–
26, April 2003.

[10] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45,
pp. 1456–1467, July 1999.

[11] G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky,
“Detection algorithm and initial laboratory results using V-BLAST
space-time communication architecture,” Electronics Letters, vol. 35,
pp. 14–16, Jan. 1999.

[12] H. Lee, B. Lee, and I. Lee, “Iterative detection and decoding with an
improved v-BLAST for MIMO-OFDM systems,” IEEE J. Sel. Areas
Commun., vol. 24, pp. 504–513, Mar. 2006.

[13] D. Gesbert, M. Shafi, D. shan Shiu, P. J. Smith, and A. Naguib, “From
theory to practice: an overview of MIMO space-time coded wireless
systems,” IEEE J. Sel. Areas Commun., vol. 21, pp. 281–302, Apr.
2003.

[14] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A.
Hoeher, “Multiple-antenna techniques for wireless communications - a
comprehensive literature survey,” IEEE Commun. Surveys & Tutorials,
vol. 11, pp. 87–105, second quater 2009.

[15] T. S. Rappaport, Wireless Communications Principles and Practise.
Pearson Education Asia Limited and Publishing House of Electronics
Industry, second ed., 2002.

[16] T. Cover and A. E. Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Inf. Theory, vol. 25, pp. 572–584, Sept. 1979.

[17] R. Pabst, “Relay-based deployment concepts for wireless and mobile
broadband radio,” IEEE Commun. Mag., vol. 42, pp. 80–89, Sept. 2004.

[18] D. Soldani and S. Dixit, “Wireless relays for broadband access,” IEEE
Commun. Mag., vol. 46, pp. 58–66, Mar. 2008.

[19] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity.
part I: System description,” IEEE Trans. Commun., vol. 51, pp. 1927–
1938, Nov. 2003.

[20] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity.
part II: Implementation aspects and performance analysis,” IEEE Trans.
Commun., vol. 51, pp. 1939–1948, Nov. 2003.

[21] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, pp. 3062–3080, Dec. 2004.

[22] K. G. Seddik, A. K. Sadek, W. Su, and K. J. R. Liu, “Outage analysis
and optimal power allocation for multinode relay networks,” IEEE
Signal Process. Lett., vol. 14, pp. 377–380, June 2007.

[23] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and
capacity theorems for relay networks,” IEEE Trans. Wireless Commun.,
vol. 51, pp. 3037–3063, Sept. 2005.

[24] S. Simoens, O. Muoz-Medina, J. Vidal, and A. D. Coso, “Compress-
and-forward cooperative mimo relaying with full channel state infor-
mation,” IEEE Trans. Wireless Commun., vol. 58, pp. 781–791, Feb.
2010.

[25] K. Etemad, “Overview of mobile WiMAX technology and evolution,”
IEEE Commun. Mag., vol. 46, pp. 31–40, Oct. 2008.

[26] K. Etemad, “Multisite filed trial for LTE and advanced concepts,” IEEE
Commun. Mag., vol. 47, no. 2, pp. 92–98, 2009.

[27] P. Hoher, “TCM on frequency-selective land-mobile fading channels,”
5th International Workshop Digital Communications, B. V. M. Luise
and E. Biglieri, Eds. Pisa, Italy: Elsevier, pp. 8–12, 1991.

[28] Y. Wu and M. Patzold, “Performance analysis of cooperative communi-
cation systems with imperfect channel estimation,” IEEE International
Conference on Communications (ICC’09), June 2009.

[29] S. Han, S. Ahn, E. Oh, and D. Hong, “Effect of channel-estimation



710 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 2, SECOND QUARTER 2014

error on ber performance in cooperative transmission,” IEEE Trans.
Veh. Technol., vol. 58, pp. 2083–2088, May 2009.

[30] J. G. Proakis, Digital Communications. 4th edition, New York, NY:
Mc-Graw-Hill, 2000.

[31] T. Himsoon, W. P. Siriwongpairat, W. Su, and K. J. R. Liu, “Differential
modulations for multinode cooperative communications,” IEEE Trans.
Signal Process., vol. 56, pp. 2941–2956, July 2008.

[32] T. Himsoon, W. P. Siriwongpairat, W. Su, and K. J. R. Liu, “Differential
modulation with threshold-based decision combining for cooperative
communications,” IEEE Trans. Signal Process., vol. 55, pp. 3905–
3923, July 2007.

[33] W. Su, F. Chen, D. A. Pados, and J. D. Matyjas, “The outage probability
and optimum power assignment for differential amplify-and-forward
relaying,” IEEE International Conference on Communications, pp. 1–
5, May 2010.

[34] Q. Zhao and H. Li, “Performance of differential modulation with
wireless relays in Rayleigh fading channels,” IEEE Commun. Lett.,
vol. 9, pp. 343–345, Apr. 2005.

[35] Q. Zhao and H. Li, “Differential modulation for cooperative wireless
systems,” IEEE Trans. Signal Process., vol. 55, pp. 2273–2283, May
2007.

[36] T. Cui, F. Gao, and C. Tellambura, “Differential modulation for two-
way wireless communications: a perspective of differential network
coding at the physical layer,” IEEE Trans. Commun., vol. 57, pp. 2977–
2987, Oct. 2009.

[37] L. Hanzo, Y. Akhtman, L. Wang, and M. Jiang, MIMO-OFDM for LTE,
WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative
Turbo-Transceivers. John Wiley and IEEE Press, 2010.

[38] L. Wang and L. Hanzo, “Dispensing with channel estimation: Dif-
ferentially modulated cooperative wireless communications,” in IEEE
Commun. Surveys & Tutorials, vol. 14, pp. 836 – 857, 2012.

[39] L. Wang, L. Kong, S. X. Ng, and L. Hanzo, “Code-rate-optimized
differentially modulated near-capacity cooperation,” in IEEE Trans.
Commun., vol. 59, pp. 2185 – 2195, Aug. 2011.

[40] W. T. Webb, L. Hanzo, and R. Steele, “Bandwidth efficient QAM
schemes for Rayleigh fading channels,” IEE Proceedings I, Communi-
cations, Speech and Vision, vol. 138, pp. 169–175, June 1991.

[41] H. Rohling and V. Engels, “Differential amplitude phase shift keying
(DAPSK) - a new modulation method for DTVB,” Proc. International
Broadcasting Convention, pp. 102–108, 1995.

[42] F. Adachi and M. Sawahashi, “Decision feedback differential detection
of differentially encoded 16APSK signals,” IEEE Trans. Commun.,
vol. 44, pp. 416–418, Apr. 1996.

[43] B. M. Hochwald and W. Sweldens, “Differential unitary space-time
modulation,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052,
2000.

[44] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inf.
Theory, vol. 46, pp. 2567–2578.

[45] G. Wang, Y. Zhang, and M. Amin, “Differential distributed space-time
modulation for cooperative networks,” IEEE Trans. Wireless Commun.,
vol. 5, pp. 3097–3108, Nov. 2006.

[46] Y. Jing and H. Jafarkhani, “Distributed differential space-time coding
for wireless relay networks,” IEEE Trans. Commun., vol. 56, pp. 1092–
1100, July 2008.

[47] F. Oggier and E. Lequeu, “Differential distributed cayley space-time
codes,” IEEE Trans. Wireless Commun., vol. 8, pp. 3808–3814, July
2009.

[48] S. Yiu, R. Schober, and L. Lampe, “Differential distributed space-
time block coding,” IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, pp. 53–56, 2005.

[49] V. Tarokh and H. Jafarkhani, “A differential detection scheme for
transmit diversity,” IEEE J. Sel. Areas Commun., vol. 18, no. 7,
pp. 1169–1174, 2000.

[50] A. Shokrollahi, B. Hassibi, B. M. Hochwald, and W. Sweldens,
“Representation theory for high-rate multiple-antenna code design,”
IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2335–2367, 2001.

[51] B. Hassibi and B. M. Hochwald, “Cayley differential unitary space-
time codes,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1485–1503,
2002.

[52] L. Z. Zheng and D. N. C. Tse, “Communication on the grassmann
manifold: a geometric approach to the noncoherent multiple-antenna
channel,” IEEE Trans. Inf. Theory, vol. 48, pp. 359–383, Feb. 2002.

[53] S. H. Nam, C. S. Hwang, J. Chung, and V. Tarokh, “Differential space
time block codes using QAM for four transmit antennas,” in IEEE
International Conference on Communications, vol. 2, pp. 952–956,
June 2004.

[54] Y. Zhu and H. Jafarkhani, “Differential modulation based on quasi-
orthogonal codes,” IEEE Trans. Wireless Commun., vol. 4, no. 6,
pp. 3005–3017, 2005.

[55] F. Oggier, “Cyclic algebras for noncoherent differential space-time
coding,” IEEE Trans. Inf. Theory, vol. 53, pp. 3053–3065, September
2007.

[56] I. Stewart, Galois Theory. London, UK: Chapman and Hall, 1989.
[57] G. Wang, , Y. Zhang, and M. Amin, “Differential distributed space-time

modulation for cooperative networks,” IEEE Trans. Wireless Commun.,
vol. 5, pp. 3097 – 3108, Nov. 2006.

[58] S. Yiu, R. Schober, and L. Lampe, “Distributed space-time block
coding,” IEEE Trans. Commun., vol. 54, pp. 1195 – 1206, 2006.

[59] Y. Jing and H. Jafarkhani, “Distributed differential space-time coding
for wireless relay networks,” IEEE Trans. Commun., vol. 56, pp. 1092
– 1100, 2008.

[60] G. S. Rajan and B. S. Rajan, “Algebraic distributed differential space-
time codes with low decoding complexity,” IEEE Trans. Wireless
Commun., vol. 7, pp. 3962 – 3971, Oct. 2008.

[61] F. Oggier and E. Lequeu, “Differential distributed cayley space-time
codes,” IEEE Trans. Wireless Commun., vol. 8, pp. 3808 – 3814, 2009.

[62] Z. Gao and H. Q. L. K. J. R. Liu, “Differential space-time network
coding for multi-source cooperative communications,” IEEE Trans.
Commun., vol. 59, pp. 3146 – 3157, Nov. 2011.

[63] Q. Huo, L. Song, Y. Li, and B. Jiao, “A distributed differential space-
time coding scheme with analog network coding in two-way relay
networks,” IEEE Trans. Signal Process., vol. 60, pp. 4998 – 5004,
Sept. 2012.

[64] P. Dayal, M. Brehler, and M. K. Varanasi, “Leveraging coherent space-
time codes for noncoherent communication via training,” IEEE Trans.
Inf. Theory, vol. 50, pp. 2058–2080, Sept. 2004.

[65] G. Farhadi and N. Beaulieu, “Fixed relaying versus selective relaying
in multi-hop diversity transmission systems,” IEEE Trans. Commun.,
vol. 58, pp. 956–965, Mar. 2010.

[66] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,”
Proc. Institute of Radio Engineers, vol. 49, pp. 228–235, Jan. 1961.

[67] T. Himsoon, W. Su, and K. J. R. Liu, “Differential transmission
for amplify-and-forward cooperative communications,” IEEE Signal
Process. Lett., vol. 12, pp. 597–600, Sept. 2005.

[68] L. Wang and L. Hanzo, “The amplify-and-forward cooperative up-
link using multiple-symbol differential sphere-detection,” IEEE Signal
Proc. Lett., vol. 16, pp. 913–916, Oct. 2009.

[69] V. Pauli and L. Lampe, “Multiple-symbol differential sphere decoding
for unitary space-time modulation,” IEEE Global Telecommunications
Conference, vol. 3, p. 6, Nov. 2005.

[70] Y. Liang and V. V. Veeravalli, “Capacity of noncoherent time-selective
rayleigh-fading channels,” IEEE Trans. Inf. Theory, vol. 50, pp. 3095–
3110, Dec. 2004.

[71] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,” Mathematics
of Computation, vol. 44, pp. 463–471, April 1985.

[72] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Trans. Inf. Theory, vol. 45, pp. 1639–1642, July 1999.

[73] L. Lampe, R. Schober, V. Pauli, and C. Windpassinger, “Multiple-
symbol differential sphere decoding,” IEEE Trans. Commun., vol. 12,
pp. 1981–1985, Dec. 2005.

[74] D. Divsalar and M. K. Simon, “Multiple-symbol differential detection
of MPSK,” IEEE Trans. Commun., vol. 38, pp. 300–308, Mar. 1990.

[75] D. Divsalar and M. K. Simon, “Maximum-likelihood differential
detection of uncoded and trellis-coded amplitude phase modulation
over awgn and fading channels–metrics and performance,” IEEE Trans.
Commun., vol. 42, pp. 76–89, Jan. 1994.

[76] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985.

[77] M. O. Damen, K. Abed-Meraim, and J. C. Belfiore, “Generalised
sphere decoder for asymmetrical space-time communication architec-
ture,” Electronics Letters, vol. 36, pp. 166–167, Jan. 2000.

[78] T. Cui and C. Tellambura, “An efficient generalized sphere decoder for
rank-deficient MIMO systems,” IEEE Commun. Lett., vol. 9, pp. 423–
425, May 2005.

[79] J. Jalden and B. Ottersten, “On the complexity of sphere decoding
in digital communications,” IEEE Trans. Signal Process., vol. 53,
pp. 1474–1484, 2005.

[80] J. Akhtman and L. Hanzo, “An optimized-hierarchy-aided maximum
likelihood detector for MIMO-OFDM,” IEEE 63rd Vehicular Technol-
ogy Conference, VTC 2006-Spring, vol. 3, pp. 1526–1530, 2006.

[81] I. Motedayen-Aval, A. Krishnamoorthy, and A. Anastasopoulos, “Op-
timal joint detection/estimation in fading channels with polynomial
complexity,” IEEE Trans. Inf. Theory, vol. 53, pp. 209–223, 2007.



WANG et al.: MULTIPLE-SYMBOL JOINT SIGNAL PROCESSING FOR DIFFERENTIALLY ENCODED SINGLE- AND MULTI-CARRIER COMMUNICATIONS 711

[82] V. Pauli, L. Lampe, R. Schober, and K. Fukuda, “Multiple-symbol
differential detection based on combinatorial geometry,” IEEE Trans.
Commun., vol. 56, pp. 1596–1600, 2008.

[83] L. Hanzo, S. X. Ng, W. Webb, and T. Keller, Quadrature Amplitude
Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised
and Space-Time Coded OFDM, CDMA and MC-CDMA Systems.
Wiley-Blackwell, 2004.

[84] V. Engels and H. Rohling, “Multilevel differential modulation tech-
niques (64-dapsk) for multicarrier transmission systems,” European
Trans. Telecommunications, vol. 6, pp. 633–640, Nov. 1995.

[85] H. Rohling and V. Engels, “Differential amplitude phase shift keying
(DAPSK) a new modulation method for DVBT,” International Broad-
casting Convention, pp. 102–108, Sept. 1995.

[86] A. Song, G. Wang, W. Su, and X. G. Xia, “Unitary space-time codes
from Alamouti’s scheme with APSK signals,” IEEE Trans. Wireless
Commun., vol. 3, pp. 2374–2384, Nov. 2004.

[87] C. S. Hwang, S. H. Nam, J. Chung, and V. Tarokh, “Differential space
time block codes using nonconstant modulus constellations,” IEEE
Trans. Signal Process., vol. 51, no. 11, pp. 2955–2964, 2003.

[88] F. Adachi and M. Sawahashi, “Performance analysis of various 16
level modulation schemes under Rayleigh fading,” Electronics Letters,
vol. 28, pp. 1579–1581, Aug. 1992.

[89] M. Machida, S. Handa, and S. Oshita, “Multiple-symbol differential
detection of APSK based on MAP criterion,” IEEE Global Telecom-
munications Conference, vol. 5, pp. 2740–2744, Nov. 1998.

[90] V. Pauli, L. Lampe, and R. Schober, ““Turbo DPSK” using soft
multiple-symbol differential sphere decoding,” IEEE Trans. Inf. The-
ory, vol. 52, no. 4, pp. 1385–1398, 2006.

[91] K. Ishibashi, H. Ochiai, and R. Kohno, “Low-complexity bit-
interleaved coded DAPSK for Rayleigh-fading channels,” IEEE J. Sel.
Areas Commun., vol. 23, pp. 1728–1738, Sept. 2005.

[92] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: model and erasure channel properties,” IEEE Trans.
Inf. Theory, vol. 50, pp. 2657–2673, Nov. 2004.

[93] L. Lampe and R. Fischer, “Comparison and optimization of differen-
tially encoded transmission on fading channels,” in Proc. 3rd Int. Symp.
Power-Line Communications (ISPLC), 1999.

[94] T. Weber, A. Sklavos, and M. Meurer, “Imperfect channel-state in-
formation in MIMO transmission,” IEEE Trans. Commun., vol. 54,
pp. 543–552, Mar. 2006.

[95] H. V. Poor and G. W. Wornell, Wireless Communications: Signal
Processing Perspectives. Prentice Hall PTR, 1998.

[96] S. K. Cheung and R. Schober, “Differential spatial multiplexing,” IEEE
Trans. Wireless Commun., vol. 5, pp. 2127–2135, Aug. 2006.

[97] H.-J. Su and E. Geraniotis, “Maximum signal-to-noise ratio array
processing for space-time coded systems,” IEEE Trans. Commun.,
vol. 50, pp. 1419–1422, Sept. 2002.

[98] L. Wang and L. Hanzo, “Differential interference suppression for
SDMA-OFDM based on joint multiple-symbol filtering and detection,”
IEEE Trans. Veh. Technol., vol. 60, pp. 4656–4662, Nov. 2011.

[99] J. Yang, F. Yang, H.-S. Xi, W. Guo, and Y. Sheng, “Robust adaptive
modified newton algorithm for generalized eigendecomposition and its
application,” EURASIP J. Advances in Signal Processing, vol. 2007,
pp. 1–10, June 2007.

[100] C.-C. Lo and S.-L. Su, “Combining of forward and backward multiple-
symbol differential sphere decoding for turbo coded system,” IEEE
Vehicular Technology Conference (VTC’10-Spring), May 2010.

[101] A. M. Rabiei and N. C. Beaulieu, “Frequency offset invariant multiple
symbol differential detection of mpsk,” IEEE Trans. Commun., vol. 59,
pp. 652 – 657, Mar. 2011.

[102] L. Li, L. Wang, and L. Hanzo, “Differential interference suppression
aided three-stage concatenated successive relaying,” IEEE Trans. Com-
mun., vol. 60, pp. 2146 – 2155, Aug. 2012.

[103] S. Ibi, T. Matsumoto, R. Thoma, S. Sampei, and N. Morinaga, “Exit
chart-aided adaptive coding for multilevel bicm with turbo equalization
in frequency-selective mimo channels,” IEEE Trans. Veh. Technol.,
vol. 56, pp. 3757–3769, Nov. 2007.

Li Wang (S’09-M’10) was born in Chengdu, China,
in 1982. He received his BEng degree in Information
Engineering from Chengdu University of Technol-
ogy (CDUT), Chengdu, China, in 2005 and his
MSc degree with distinction in Radio Frequency
Communication Systems from the University of
Southampton, UK, in 2006. Between October 2006
and January 2010 he was pursuing his PhD degree in
the Communications Group, School of Electronics
and Computer Science, University of Southamp-
ton, and meanwhile he participated in the Delivery

Efficiency Core Research Programme of the Virtual Centre of Excellence
in Mobile and Personal Communications (Mobile VCE). Upon completion
of his PhD in January 2010 he conducted research as a Senior Research
Fellow in the School of Electronics and Computer Science at the University
of Southampton. During this period he was involved in Project #7 of the
Indian-UK Advanced Technology Centre (IU-ATC): advanced air interface
technique for MIMO-OFDM and cooperative communications. In March 2012
he joined the R&D center of Huawei Technologies in Stockholm, Sweden,
working as Senior Engineer of Baseband Algorithm Architecture. He has
published over 30 research papers in IEEE/IET journals and conferences,
and he also co-authored one John Wiley/IEEE Press book. He has broad
research interests in the field of wireless communications, including PHY
layer modeling, link adaptation, cross-layer system design, multi-carrier
transmission, MIMO techniques, CoMP, channel coding, multi-user detection,
non-coherent transmission techniques, advanced iterative receiver design and
adaptive filter.

Li Li received the B.Eng. degree in information
engineering from the University of Electronic Sci-
ence and Technology of China (UESTC), Chengdu,
China, in 2006 and the M.Sc. degree with distinc-
tion in wireless communications from the Univer-
sity of Southampton, Southampton, U.K., in 2009.
He is currently working towards the Ph.D. degree
with the Research Group of Communications, Sig-
nal Processing and Control, School of Electronics
and Computer Science, University of Southampton,
Southampton, U.K., and participating in the Euro-

pean Union Concerto project. His research interests include channel coding,
iterative detection, non-coherent transmission technologies, cooperative com-
munications, interference suppression techniques and network coding.

Chao Xu (S’09) received the B.Eng. degree from
Beijing University of Posts and Telecommunica-
tions, Beijing, China, and the B.Sc.(Eng) (first-class
honors) from Queen Mary, University of London,
London, UK, in 2008, both in Telecommunications
Enginneering with Management and both through
a Sino-UK joint degree program. He received the
M.Sc. degree (with distinction) in radio frequency
communication systems from the University of
Southampton, Southampton, UK, in 2009. He is
currently working towards the PhD degree with

the Research Group of Commmunications, Signal Processing and Control,
School of Electronics and Computer Science, University of Southampton. His
research interests include reduced-complexity multiple-input-multiple-output
design, noncoherent spacetime modulation detection, extrinsic-information-
transfer-chart-aided turbo detection, and cooperative communications.

Mr. Xu was awarded the 2009 Best M.Sc. Student in Broadband and Mobile
Communication Networks by the IEEE Communications Society (United
Kingdom and Republic of Ireland Chapter), and the 2013 Chinese Government
Award for Outstanding Self-Financed Students Abroad.



712 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 2, SECOND QUARTER 2014

Dandan Liang (S’09) received her B.Eng. degree
(First class) in electronic science and technology
from the PLA Information Engineering University,
Zhengzhou, China, in 2008. She received her M.Sc.
degree (First class) in radio frequency communi-
cation systems and Ph.D. degree in wireless com-
munications from the University of Southampton,
UK, in 2009 and 2013, respectively. Her research
interests include adaptive coded modulation, coded
modulation, non/coherent modulation detection, it-
erative detection, networking coding, cooperative

communications as well as wireless-optical fiber communications.

Soon Xin Ng (S’99-M’03-SM’08) received the
B.Eng. degree (First class) in electronics engineering
and the Ph.D. degree in wireless communications
from the University of Southampton, Southampton,
U.K., in 1999 and 2002, respectively. From 2003 to
2006, he was a postdoctoral research fellow working
on collaborative European research projects known
as SCOUT, NEWCOM and PHOENIX. Since Au-
gust 2006, he has been a member of academic
staff in the School of Electronics and Computer
Science, University of Southampton. He is involved

in the OPTIMIX and CONCERTO European projects as well as the IU-ATC
and UC4G projects. He is currently a senior lecturer at the University of
Southampton.

His research interests include adaptive coded modulation, coded modula-
tion, channel coding, space-time coding, joint source and channel coding,
iterative detection, OFDM, MIMO, cooperative communications, distributed
coding, quantum error correction codes and joint wireless-and-optical-fiber
communications. He has published over 160 papers and co-authored two John
Wiley/IEEE Press books in this field. He is a Senior Member of the IEEE,
a Chartered Engineer and a Fellow of the Higher Education Academy in the
UK.

Lajos Hanzo FREng, FIEEE, FIET, Fellow of
EURASIP, DSc received his degree in electronics
in 1976 and his doctorate in 1983. In 2009 he was
awarded the honorary doctorate “Doctor Honoris
Causa” by the Technical University of Budapest.
During his 35-year career in telecommunications he
has held various research and academic posts in
Hungary, Germany and the UK. Since 1986 he has
been with the School of Electronics and Computer
Science, University of Southampton, UK, where
he holds the chair in telecommunications. He has

successfully supervised 80 PhD students, co-authored 20 John Wiley/IEEE
Press books on mobile radio communications totalling in excess of 10 000
pages, published 1300 research entries at IEEE Xplore, acted both as TPC
and General Chair of IEEE conferences, presented keynote lectures and has
been awarded a number of distinctions. Currently he is directing a 100-strong
academic research team, working on a range of research projects in the field of
wireless multimedia communications sponsored by industry, the Engineering
and Physical Sciences Research Council (EPSRC) UK, the European IST
Programme and the Mobile Virtual Centre of Excellence (VCE), UK. He is
an enthusiastic supporter of industrial and academic liaison and he offers a
range of industrial courses. He is also a Governor of the IEEE VTS. During
2008 - 2012 he was the Editor-in-Chief of the IEEE Press and a Chaired
Professor also at Tsinghua University, Beijing. His research is funded by
the European Research Council’s Senior Research Fellow Grant. For further
information on research in progress and associated publications please refer
to http://www-mobile.ecs.soton.ac.uk.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


