
1

Performance Analysis of Iteratively Decoded
Variable-Length Space-Time Coded Modulation

S. X. Ng1, W. Liu1, J. Wang1, M. Tao2, L.-L. Yang1 and L. Hanzo1
1School of ECS, University of Southampton, SO17 1BJ, United Kingdom.

Email: {sxn,wl03r,jw02r,lly,lh}@ecs.soton.ac.uk, http://www-mobile.ecs.soton.ac.uk
2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576.

Email: mxtao@nus.edu.sg

Abstract— It is demonstrated that iteratively Decoded Variable
Length Space Time Coded Modulation (VL-STCM-ID) schemes
are capable of simultaneously providing both coding gain as
well as multiplexing and diversity gain. The VL-STCM-ID
arrangement is a jointly designed iteratively decoded scheme
combining source coding, channel coding, modulation as well as
spatial diversity/multiplexing. In this contribution, we analyse the
iterative decoding convergence of the VL-STCM-ID scheme using
symbol-based three-dimensional EXIT charts. The performance
of the VL-STCM-ID scheme is shown to be about 14.6 dB better
than that of the Fixed Length STCM (FL-STCM) benchmarker
at a source symbol error ratio of 10

−4, when communicating
over uncorrelated Rayleigh fading channels. The performance of
the VL-STCM-ID scheme when communicating over correlated
Rayleigh fading channels using imperfect channel state informa-
tion is also studied.

I. I NTRODUCTION

Shannon’s separation theorem stated that source coding and
channel coding is best carried out in isolation [1]. However,
this theorem was formulated in the context of potentially
infinite-delay, lossless entropy-coding and infinite blocklength
channel coding. In practice, real-time wireless audio/video
communications systems do not meet these ideal hypotheses.
Specifically, the source encoded symbols often remain corre-
lated, despite the lossy source encoder’s efforts to removeall
redundancy. Furthermore, they exhibit unequal error sensitiv-
ity. In these circumstances, it is often more efficient to use
jointly designed source and channel encoders.

Space-time coding schemes, which employ multiple trans-
mitters and receivers, are among the most efficient techniques
designed for providing high data rates, which are capable of
exploiting the high channel capacity potential of Multiple-
Input Multiple-Output (MIMO) channels [2]. More explicitly,
Bell-lab’s LAyered Space Time architecture (BLAST) [3] was
designed for providing full-spatial-multiplexing gain, while
Space Time Trellis Codes (STTC) [4] were designed for
providing full-spatial-diversity gain.

A jointly designed source coding and Space Time Coded
Modulation (STCM) scheme has been proposed in [5], [6].
This scheme employs novel two dimensional (2D) Variable
Length Codes (VLCs) and is capable of exploiting both spatial
and temporal domain diversity. More specifically, the number
of activated transmit antennas equals the number of non-
zero-energy symbols of the corresponding VLC codeword in
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the spatial domain, where each VLC codeword is transmitted
during a single symbol period. Hence, the transmission frame
length is determined by a fixed number of source symbols and
therefore the proposed Variable Length STCM (VL-STCM)
scheme does not incur synchronisation problems and does not
require the transmission of side information. Additionally, the
associated source correlation is converted into an increased
minimum product distance [5], which leads to an increased
coding gain.

For the sake of attaining additional iteration gains, the VL-
STCM scheme was further developed in [7] by introducing
parallel non-binary Unity-Rate Codes (URCs) between the
variable-length space-time encoder and the modulator. The
Iteratively Decoded (ID) VL-STCM (VL-STCM-ID) scheme
achieves a significant coding/iteration gain over both the non-
iterative VL-STCM scheme and the Fixed Length STCM (FL-
STCM) benchmarker [7]. The decoding convergence of the
VL-STCM-ID scheme will be analysed and its performance
using imperfect channel state information will be studied in
this contribution.

II. VL-STCM OVERVIEW

Consider for example a source havingNs = 8 possible
discrete values and let thelth value be represented by a
symbol sl = l for l ∈ {1, 2, . . . , Ns}. We assume that the
source symbols emitted are independent of each other and
have unequal probabilities of occurrence given by

P (sl+1) = 0.6P (sl) = 0.6lP (s1) , (1)

and
∑Ns

l=1 P (sl) = 1. Note that a source is correlated
when its entropy rateH(s) is smaller thanlog2(Ns) [8].
For the independent source considered, the source entropy
rate equals the source entropyH(s), which is given by:
H(s) = H(s) = −

∑8
l=1 log2(P (sl)) · P (sl) = 2.302 bit.

SinceH(s) < log2(Ns), the source considered is a correlated
source, where the higher the source correlation the smallerthe
source entropy rate. Let us now consider a 2D VLC which
encodes theseNs = 8 possible source symbols usingNt = 3
transmit antennas and BPSK modulation. The codebook can
be formulated as a matrix:

VV LC =





x 1 x 0 x 0 1 1
x x 0 x 1 1 0 1
0 x x 1 1 x 1 0



 , (2)

where each column corresponds to a specific VLC codeword
conveying a particular source symbol. More specifically, each
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Fig. 1. The signal mapper of the VL-STCM.

Mapper

Mapper

Mapper

Mapper

ModulatorVL−STC Encoder

Encoder

2D VLC S1

S2

s[t]

Sp−q

S3

Sp

p =
∑Nt

j=1(j − 1) ; q = Nt − 2

vNt
[t]

v3[t]

v2[t]

v1[t] c1[t]

c2[t]

c3[t]

cNt
[t]

x1[t]

x2[t]

x3[t]

xNt
[t]

Fig. 2. Block diagram of the VL-STCM transmitter.

entry denoted as 0 and 1 represents the BPSK symbols to be
transmitted, while ‘x’ corresponds to ‘no transmission’. ‘No
transmission’ implies that the corresponding transmit antenna
sends no signal. Let thelth source symbolsl be encoded
using thelth column of theVV LC matrix seen in Equation 2.
Hence, the source symbols1 is encoded into anNt-element
codeword using the first column ofVV LC in Equation 2,
namely[x x 0]T , where the first and second transmit antennas
are in the ‘no transmission’ mode, while the third antenna
transmits an ‘active’ symbol represented by the binary value
‘0’. Let L(sl) be the number of ‘active’ symbols in the VLC
codeword assigned to source symbolsl, then we may define
the average codeword length of the 2D VLC as:

Lave =

Ns
∑

l=1

P (sl)L(sl) , (3)

where we haveLave = 1.233 bit/VLC codeword for this
system according to Equations 1 and 2. The corresponding
BPSK signal mapper is characterised in Figure 1, where the
‘no transmission’ symbol is actually represented by the origin
of the Euclidean space, i.e. we havef(x) = 0, wheref(.) is
the mapping function. Since the ‘no transmission’ symbol is
a zero energy symbol, the amount of energy saving can be
computed from:

A2 =
Nt

Lave

, (4)

where we haveA2 = 3/1.233 = 2.433, which is equivalent
to 20 log(A) = 3.86 dB. Hence, more transmitted energy
is saved, when there are more ‘no transmission’ symbols
in a VLC codeword. As a result, one can assign the more
frequently occurring source symbols to the VLC codewords
having more ‘no transmission’ components, in order to save
transmit energy. The energy saved is then reallocated to the
‘active’ symbols for the sake of increasing their minimum
Euclidean distance, as shown in Figure 1.

The 2D VLC matrix seen in Equation 2 was designed
in [7], where Nt = 3 transmit antennas were employed for
transmitting theNt-element 2D VLC codewords denoted as
v = [v1 . . . vNt

]T in Figure 2. It was shown in [7] that it
attains a transmitter-diversity order quantified by the minimum
Hamming distance of2, a coding gain quantified by the
minimum product distance of5.92 and a spatial multiplexing
gain quantified bylog2(Ns/M) = 2, whereM = 2 is the
number of modulation levels of the original BPSK modulation
andNs = 8 is the number of source symbols. The throughput
of the scheme is given byη = log2(Ns) = 3 bit/s/Hz and the
Signal to Noise Ratio (SNR) per bit is given byEb/N0 = γ/η,
whereγ is the SNR per receive antenna.

The block diagram of the VL-STCM transmitter is illus-
trated in Figure 2, which can be represented by two funda-
mental blocks, namely the Variable Length Space Time Code
(VL-STC) encoder and the modulator. As seen in Figure 2, a
VLC codewordv[t] = [v1[t] v2[t] . . . vNt

[t]]T is assigned to
each of the source symbolss[t] generated by the source at time
instantt, where we haves[t] ∈ {1, . . . , Ns} andNs denotes
the number of possible source symbols. Each of the VLC code-
wordsv[t] seen in Figure 2 corresponds to one of the matrix
columns in in Equation 2. As portrayed in Figure 2, the VLC
codewordv[t] is transmitted diagonally across the space-time
grid with the aid of shift registers denoted asSk in Figure 2,
where we havek ∈ {1, 2, . . . ,

∑Nt

j=1(j − 1)}. As we can see
from Figure 2, the codewordv[t] = [v1[t] v2[t] . . . vNt

[t]]T is
transmitted usingNt transmit antennas, where themth element
of each VLC codeword, for1 ≤ m ≤ Nt, is delayed by
(m−1) shift register cells, before it is transmitted through the
mth transmit antenna. Hence, theNt number of components
of each VLC codeword are transmitted on a diagonal of the
space-time codeword matrix [5], [7].

III. VL-STCM-ID O VERVIEW
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Fig. 3. The VL-STCM-ID transmitter employingNt = 3 transmit and
Nr = 2 receive antennas, whereπs denotes symbol interleaver.

In order to invoke iterative detection and hence attain
iteration gains as a benefit of the more meritoriously spread
extrinsic information, a symbol-based random interleaver and
a non-binary URC were introduced for each of theNt = 3
transmit antennas [7]. TheNt = 3 parallel symbol-based
interleavers were generated independently. As we can see from
Figure 3, the sequence corresponding to all themth elements
in the space-time codeword{cm[t]}, m ∈ {1, 2, 3}, is further
interleaved and encoded by a non-binary URC, before being
fed to the mapper and transmitted as{xm[t]}. The non-binary
URC employs a modulo-̄M adder, where again,̄M = 3 is the
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number of distinct symbols in the VLC space-time codeword
and we havecm[t] ∈ {0, 1, x}. Note that we represent the ‘x’
symbol using the number ‘2’ during the modulo-M̄ addition.
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L2.1
e (u) L2.1

a (c)
L0.1

a (c)
L3.1

e (c)

...
...

(2.Nt)
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Fig. 4. The VL-STCM-ID receiver for anNr × Nt MIMO system. The
notation (̃.) and (̂.) indicates theextrinsic/a priori probability and the
hard decision estimate of(.), respectively. The notationLi.m

(a,e)
(c, u) denotes

the log-domain symbol probability of the VL-STC codewordc or the URC
codeword u for the mth transmitter. The subscriptsa and e denote the
a priori andextrinsic nature of the probabilities while the superscripti.m
identifies that the probabilities belong to theith stage decoder for themth
transmitter. Note thati = 0 means that the probabilities were calculated from
the source symbol distribution.

At the receiver, the symbol-based log-domain MAP algo-
rithm [9] is used by both the VL-STC decoder and the URC
decoder. The block diagram of the VL-STCM-ID receiver
is depicted in Figure 4, where we denote the log-domain
symbol probability of the VL-STC codewordcm and the
URC codewordum for the mth transmitter asLi.m

(a,e)(c) and
Li.m

(a,e)(u), respectively. Furthermore, the subscriptsa and e
denote thea priori andextrinsic nature of the probabilities,
while the superscripti.m suggests that the probabilities belong
to theith decoder stage of themth transmitter. Note thati = 0
implies that the probabilities were calculated from the source
symbol distribution. The extrinsic probability of the URC
codeword of transmit antennam, namelyPe(um[t]), can be
computed during each symbol period in the ‘Soft Demapper’
block of Figure 4. By dropping the time-related square bracket,
we can computePe(um) as:

Pe(um = b) =
∑

x∈χ(m,b)



P (y|x)

all j
∏

∀j 6=m

Pa(uj)



 , (5)

m ∈ {1, 2, . . . , Nt}, b ∈ {0, 1, x}

where the subsetχ(m, b) contains all the phasor combinations
for the transmitted signal vectorx = [x1 x2 . . . xNt

]T

with xm = f(um = b), while P (y|x) is the conditional
Probability Density Function (PDF) of the received signal.
When communicating over Rayleigh fading MIMO channels,
we have:

P (y|x) =

(

1

2πσ2
n

)Nr

exp

(

−||y − Hx||2

2σ2
n

)

, (6)

whereσ2
n = N0/2 is the noise variance,y is theNr-element

complex received signal vector andH is the (Nr × Nt)-
dimensional complex channel matrix during the time instant
t. Furthermore, thea priori probability of um in Equation 5
is computed from theextrinsic log-domain probability of the
mth URC MAP decoder asPa(um) = exp(L2.m

e (u)), while

the log-domaina priori probability of um for the mth URC
MAP decoder is given byL1.m

e (u) = ln(Pe(um)).
It is possible to attain somea priori probability for the

Nt-element VL-STC codewords,c, (which also constitute
the URC’s input words), given the source symbol occurrence
probability specified in Equation 1. Explicitly, the probability
of the mth URC’s input wordcm can be expressed as:

P (cm = d) =
∑

l∈µ(m,d)

P (sl) , (7)

m ∈ {1, 2, . . . , Nt}, d ∈ {0, 1, x} ,

where the subsetµ(m, d) contains the specific indices of those
columns in the VLC matrix, where themth row element in
that column equalsd. Hence, we haveL0.m

a (c) = ln(P (cm))
as an additionala priori probability for symbolcm during
each iteration between the URC MAP decoder and the VL-
STC MAP decoder, as shown in Figure 4. Note thatP (cm)
is directly computed from the source symbol occurrence
probability P (sl), hence we do not useP (sl) again as the
a priori probability of the VL-STC input word in the VL-STC
MAP decoder, in order to avoid reusing the same information.

A full iteration consists of a soft demapper operation,Nt =
3 URC MAP decoder operations and a VL-STC MAP decoder
operation. For the non-iteratively decoded VL-STCM/FL-
STCM, the soft demapper computes thea priori information
of c[t] = [c1[t] c2[t] c3[t]]

T and feeds it to the VL-STC/FL-
STCM MAP decoder. Note that the MAP decoder of VL-
STCM/FL-STCM also benefits from thea priori probability
of its input words[t]. Hence, as the source becomes correlated,
the VL-STCM-ID, VL-STCM and FL-STCM schemes will
benefit from thea priori probability of the source symbols.
However, FL-STCM attains no energy savings.

IV. CONVERGENCEANALYSIS

Extrinsic Information Transfer (EXIT) charts designed for
binary receivers [10] have been widely used for analysing
the convergence behaviour of iterative decoding aided con-
catenated coding schemes. In this paper, we will employ the
technique proposed in [11] for computing thenon-binary EXIT
functions. However, the convergence analysis of the proposed
three-stage VL-STCM-ID scheme requires the employment of
novel three Dimensional (3D) non-binary EXIT charts, which
evolved from the binary 3D EXIT charts used in [12] for
analysing multiple concatenated codes.

To elaborate a little further, EXIT charts visualise the input
and output characteristics of the constituent MAP decodersin
terms of the mutual information transfer between the input
sequence and thea priori information at the input, as well
as between the input sequence and theextrinsic information
at the output of the constituent decoder. Hence, there are two
steps in generating an EXIT chart. Firstly, we have to model
thea priori probabilities of the input sequence and then feed
them to the decoder. Secondly, we have to compute the mutual
information of theextrinsic probabilities at the output of the
decoder. Let us now model thea priori probabilities of the
VL-STC codeword,c = [c1 c2 . . . cNt

]T , wherecm, m ∈
{1, 2, . . . , Nt}, is also the input symbol of themth URC.
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Let us denote the input symbol of themth URC as c,
where the subscriptm is omitted for simplicity. Assume that
the symbolc is transmitted over an AWGN channel using
the M = 3-phasor mapper shown in Figure 1. The received
signal is given byy = x + n, wheren is the AWGN noise
having a zero mean and a variance ofσ̄2

n. Furthermore, we
havex = f(c), wheref(.) is the mapper function portrayed in
Figure 1. Sincef(.) is a memoryless function, the probability
of occurrence forx is the same as that ofc. Hence, we have
P (x) = P (c), which is expressed in Equation 7. At a given
set of occurence probabilities forx, the mutual information
betweenx andy can be formulated as:

I(x; y) =

M
∑

i=1

∫

y

P (xi, y) log2

(

P (xi, y)

P (xi)P (y)

)

dy,

= H(x) − H(x|y), (8)

whereH(x) is the entropy ofx, given by:

H(x) = −

M
∑

i=1

P (xi) log2(P (xi)) , (9)

andH(x|y) is the conditional entropy ofx giveny, which can
be expressed as:

H(x|y) =

M
∑

i=1

P (xi)E



log2





M
∑

j=1

P (xj)

P (xi)
exp(Ψi,j)







 . (10)

In Equation 10, we haveexp(Ψi,j) = P (y|xj)/P (y|xi) and
P (y|x) is the conditional Gaussian PDF, while the exponent
Ψi,j is given by:

Ψi,j =
−|xi − xj + n|2 + |n|2

2σ̄2
n

. (11)

The expectation termE[.] in Equation 10 is taken over the
AWGN n. Hence, a curve can be generated forI(x; y) versus
σ̄2

n, where the expectation term in Equation 10 is evaluated
using Monte Carlo simulation. We can simplify Equation 8 to
a form, whereI(x; y) is expressed as a function ofσ̄2

n. Let
us denote this function asJ(.) and we haveI(x; y) = J(σ̄2

n).
Note thatI(x; y) is monotonically decreasing with respect to
σ̄2

n.
Let us now denote thea priori information ofc asIA(c) =

I(x; y). At a given IA value we can find the corresponding
noise variance with the aid of the inverse functionσ̄2

n =
J−1(IA(c)) using the I(x; y) versus σ̄2

n curve. Then we
can generate a noise samplen′ having a variance of̄σ2

n.
Consequently, we can producey′ = x + n′, where again
x = f(c) represents the mapper function portrayed in Figure 1
andc is the actual input symbol of themth URC. Finally, we
can generate thea priori symbol probabilities forPa(c) using
the conditional Gaussian PDF:

Pa(c) =
1

2πσ̄2
n

exp

(

−|y′ − f(c)|2

2σ̄2
n

)

, (12)

for c ∈ {0, 1, x}. Then we feed these symbol probabilities to
the corresponding MAP decoder. Note that the above method
can be used for any symbol-interleaved serially concatenated
coding schemes, where the symbol probabilities are directly

created for a givenIA value. The mutual information for the
Nt-element VL-STC codewordc = [c1 c2 . . . cNt

]T is the
sum of the mutual information valid for its symbol components
cm, expressed asIA(c) =

∑Nt

m=1 IA(cm), whereIA(cm) is
the mutual information of themth symbol component of the
VL-STC codeword or themth URC’s input symbol, given by
Equation 8. Note that the maximum value ofIA(cm) equals
the entropy ofcm given by Equation 9.

Next, we compute the mutual information of theextrinsic
symbol probabilitiesIE(cm) at the output of the VL-STC or
URC decoder for the symbolcm using the method proposed in
[11]. Finally, the mutual information of theextrinsic symbol
probabilities for the VL-STC codeword can be computed
from IE(c) =

∑Nt

m=1 IE(cm). We also compute the mutual
information for the URC codewordu based on the same
procedure.

   0
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Fig. 5. The 3D EXIT charts for the VL-STCM-ID scheme havingNt = 3
and Nr = 2, when using an uncorrelated source. The iterative trajectory is
computed atEb/N0 = 4 dB. The maximum value of an axis denotes the
entropy of the corresponding symbol.

The 3D EXIT charts and the actual iterative decoding
trajectories for the VL-STCM-ID scheme havingNt = 3 and
Nr = 2 are shown in Figure 5 for an uncorrelated source.
Let us denote the three axes of the 3D EXIT charts using the
letters x, y and z, whileIA(*) and IE(*) denote thea priori
and extrinsic information for (*), respectively, where (*) is
either the VL-STC MAP decoder (VL-STC) or the URC MAP
decoder (URC) or, alternatively, the soft demapper (Demod).
As we can see from Figure 4, each of the URC MAP decoders
takes (provides) thea priori (extrinsic) probabilities of its
input word c and output word (or codeword)u as the input
(output). Hence, the mutual information of the input word
and output word of the URC decoder will be represented by
Ii
(A,E)(URC) andIo

(A,E)(URC), respectively. Each of theNt

symbol interleavers shown in Figures 3 has a length of 10000
symbols.

According to [12], the convergence between the soft demap-
per and the URC decoders can be represented by a curve drawn
on the surface of the slanted EXIT plane in Figure 5, which
is computed from the URC decoders’ input wordextrinsic
probabilities. Furthermore, the intersection of the EXIT planes
seen in Figure 5 represents the points of convergence between
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The maximum value of an axis denotes the entropy of the corresponding
symbol.

the URC decoder and the VL-STC decoder. Hence, by project-
ing these two convergence curves onto z=0 in Figure 5 gives
us the equivalent 2D EXIT chart seen in Figure 6. Therefore,
the 3D EXIT charts generated for multiple concatenated codes
can be projected onto an equivalent 2D EXIT chart [12].

More specifically, we can observe an open tunnel between
the EXIT curves of the VL-STC and URC schemes in the 2D
EXIT charts of Figure 6 atEb/N0 = 4 dB, which indicates
that decoding convergence can be achieved. Note that the
EXIT curve generated for the soft demapper is also depicted
in Figure 6 atEb/N0 = 4 dB. This curve is almost flat and it
intersects with the VL-STC EXIT curve, before the maximum
value of 4.68 bits is reached. Hence, decoding convergence
cannot be achieved atEb/N0 = 4 dB when the URC was not
invoked between the soft demapper and the VL-STC.
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Fig. 7. The 3D EXIT charts for the VL-STCM-ID scheme havingNt = 3
and Nr = 2, when using the correlated source defined in Equation 1. The
iterative trajectory is computed atEb/N0 = 3 dB. The maximum value of
an axis denotes the entropy of the corresponding symbol.

Figure 7 shows the 3D EXIT charts and the corresponding
convergence curve of the soft demapper and the URC decoder
as well as the actual iterative decoding trajectory for the VL-
STCM-ID scheme havingNt = 3 and Nr = 2 when using

the correlated source defined in Equation 1. As the source
becomes correlated, the entropy of the codewordcm for m ∈
{1, 2, 3} reduces. Hence, the maximum values for the x and y
axes in Figure 7 are smaller than those in Figure 5. However,
the open spatial segment of the 3D space between the two
EXIT planes becomes wider, since the decoders exploit the
additionala priori probabilities given by Equation 7, when
the source is correlated. The convergence curve of the soft
demapper and the URC decoder is projected as a dashed line
ontoIE(Demod)=0 in Figure 7. Similarly, the projection of the
intersection line between the VL-STC and URC EXIT planes
is represented by the curve lying on the vertical EXIT plane at
IE(Demod)=0. As can be seen from Figure 7 atIE(Demod)=0,
an open tunnel exists between the two projection curves at
Eb/N0 = 3 dB. Hence, the iterative decoder converged at
Eb/N0 = 3 dB, i.e. at a 1 dB lower value, when employing
the correlated source instead of the uncorrelated source.

According to the MIMO channel capacity formula derived
for the Discrete-Input Continuous-Output Memoryless Chan-
nel (DCMC) in [13], the DCMC capacity for theNr = 2 and
Nt = 3 MIMO scheme employing the signal mapper seen
in Figure 1 isEb/N0 = 1.25 dB at a bandwidth efficiency
of 3 bit/s/Hz. Hence, the performance of the VL-STCM-ID
schemes in Figures 5 and 7 is about 2.75 dB and 1.75 dB
away from the MIMO channel capacity.

V. SIMULATION RESULTS

The Fixed Length (FL) STCM (FL-STCM) scheme used
in [7] employed the following FL Codebook (FLC) matrix:

VFLC =





0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1



 . (13)

The FL-STCM transmitter obeys the schematic of Figure 2,
except that it employs theVFLC of Equation 13. For the FL-
STCM, the minimum Hamming distance and product distance
are 1 and 4, respectively. It attains the same multiplexing gain
as that of the VL-STCM or VL-STCM-ID arrangements. Note
that it is possible to create an iterative FL-STCM-ID scheme
by replacing the VL-STC encoder in Figure 3 with the FL-
STC encoder. However, the EXIT curve of the FL-STC scheme
of Equation 13 was found to be too flat for attaining any
iteration gain due to its unity minimum Hamming distance.
Let us now evaluate the performance of the VL-STCM, VL-
STCM-ID and FL-STCM schemes in terms of their source
Symbol Error Ratio (SER) versus theEb/N0 ratio. Again we
haveEb/N0 = γ/η, whereγ is the SNR per receive antenna
and η = log2(Ns) = 3 bit/s/Hz is the effective information
throughput. Throughout our simulations, we use three transmit
antennas and two receive antennas. The interleaver length is
set to 10000 symbols.

Figure 8 depicts the SER versusEb/N0 performance of
the VL-STCM, VL-STCM-ID and FL-STCM schemes when
communicating over uncorrelated Rayleigh fading channels.
As expected, the VL-STCM arrangement attains a higher
gain when the source is correlated compared to FL-STCM.
However, the FL-STCM benchmarker also benefits from the
probability-relateda priori information of the source symbols,
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Fig. 8. SER versusEb/N0 performance of the VL-STCM, VL-STCM-
ID and FL-STCM schemes, when communicating over uncorrelated Rayleigh
fading channels using BPSK,Nt = 3 andNr = 2.

as the source becomes correlated. On the other hand, the
coding gain attained as a benefit of transmitting correlated
source symbols increases, as the number of iterations invoked
by the VL-STCM-ID scheme increases. The performance
of VL-STCM-ID at SER= 10−4 after the 8th iteration is
approximately 6.5 (15) dB and 7.5 (14.6) dB better than
that of the VL-STCM (FL-STCM) scheme, when employing
correlated and uncorrelated sources, respectively.
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Fig. 9. SER versusEb/N0 performance of the VL-STCM, VL-STCM-
ID and FL-STCM schemes, when communicating over correlatedRayleigh
fading channels at a normalised Doppler frequency of10−4, using Wiener
filter based channel estimation, BPSK,Nt = 3 andNr = 2.

Figure 9 shows the SER versusEb/N0 performance of the
VL-STCM-ID scheme, when communicating over correlated
Rayleigh fading channels at a normalised Doppler frequency
of 10−4 and using Wiener filter based channel estimation [14].
The source is correlated, as formulated in Equation 1. As we
can see from Figure 9, when the Channel State Information
(CSI) becomes more accurate as a benefit of using a shorter
pilot symbol spacing, the performance of the VL-STCM-ID
approaches that of the ideal case with perfect CSI. When using
a pilot spacing of 200 symbols, there are10000/200 = 50 sub-
frames within the 10000-symbol frame. Note thatNt frames
are transmitted in parallel fromNt transmit antennas in order
to convey a space-time coded frame in the MIMO system.

In order to detect the channel coefficients from each transmit
antenna,Nt number of orthogonal pilot sequences are inserted
at the end of theNt sub-frames transmitted in parallel. We
need a minimum ofNt pilot symbols for each of the pilot
sequences in order to constructNt orthogonal pilot sequences.
Hence, when using a pilot spacing of 200 symbols,Nt = 3
pilot symbols are inserted for every 200 VL-STCM-ID coded
symbols, which corresponds to a transmission overhead of
3/200 = 1.5% and requires inserting(10000×Nt/200) = 150
pilot symbols into the transmission frame of10000 + 150 =
10150 symbols.

VI. CONCLUSIONS

The convergence properties of the VL-STCM-ID scheme
were analysed using EXIT charts. A significant iteration gain
was achieved by the VL-STCM-ID scheme, which hence
outperformed both the non-iterative VL-STCM scheme as well
as the FL-STCM benchmarker with the aid ofNt number of
unity-rate recursive precoders. The near capacity performance
of VL-STCM-ID scheme is retained, when employing a real-
istic Wiener filter based channel estimator, rather than using
perfect channel estimation.
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