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Abstract: Quantum teleportation allows an unknown arbitrary quantum state to be transmitted between two separate locations.
To achieve this, the system requires both classical and quantum channels, for communicating two classical bits and an
entangled quantum bit from the transmitter to the receiver. It is commonly assumed that both channels are error-free, however,
under realistic conditions, this is unlikely to be the case. This study proposed and investigated a secure and reliable quantum
teleportation scheme when both classical and quantum channels exhibit errors. It was found that the security and reliability of
the teleportation could be improved when powerful turbo codes are employed.

1 Introduction
Quantum teleportation (QT) is a communication protocol that
transmits the information using an arbitrary and unknown quantum
bit (qubit) without the physical transmission of that specific qubit
[1]. The single qubit state can be represented by
ψ⟩ = α 0⟩ + β 1⟩, where α, β ∈ ℂ and α 2 + β 2 = 1. This qubit
can be teleported from the transmitter to the receiver by using the
transmission of classical information and with the aid of an
additional entangled pair of qubits. Without the transmission of the
qubit ψ⟩ itself, the teleportation protocol reconstructs a replica of
the original qubit at the receiver using the classical information
communicated over the classical channel as well as one of the pre-
shared entangled qubit that was communicated over the quantum
channel. Hence, a QT system has a dual classical-quantum channel.
More explicitly, information about the qubit ψ⟩ is extracted at the
transmitter by a Bell measurement and the outcome is then
communicated to the receiver over the classical channel. This
information determines the appropriate application of single-qubit
gates on the pre-shared qubit for reproducing the original state ψ⟩
of the teleported qubit at the receiver. Note that before the
measurement, the quantum channel was used for sharing one of the
entangled qubits from the transmitter to receiver.

However, the teleportation protocol is only effective provided
that there is a low level of noise in the implementation hardware
and both the classical and quantum transmissions are error-free.
Hence, quantum error correction must be incorporated for
protecting the transmission of the pre-shared entangled qubit.
Similarly, classical error correction is also needed for reliable
transmission of the measurement results from the transmitter to the
receiver. It is also necessary to ensure the security of the
transmission, especially in the quantum channel.

Error in either the classical or quantum channel (or both) can
reduce the fidelity of the final teleported qubit. It is often assumed
that channel error can be negligible in the teleportation protocol.
However, this assumption must be removed when the teleportation

scheme is implemented practically. On the one hand, teleportation
has been widely considered for applications in secured
communication, quantum networking, and quantum repeaters, as
well as some conceptual applications in quantum information
theory [2]. Further advances in quantum communications are
available at [3–7]. However, practical investigation of error
correction aided practical teleportation scheme is still lacking.

Against this backdrop, this study investigates a practical
teleportation scheme, where both the classical and quantum
channels exhibit errors. The effect of channel errors is investigated
with the aid of both classical turbo codes (TCs) [8] and quantum
TCs (QTCs) [9]. Then, secure QT protocols are explored by
authenticating entangled qubit pairs via a trusted third-party and
with the aid of quantum-secure-direct-communication (QSDC)
[10] scheme.

The novel contributions of this study are as follows:

i. A practical teleportation scheme is investigated, where both the
classical and quantum channels exhibit errors.

ii. Reliable teleportation with the aid of TC and QTC.
iii. Secure teleportation based on QSDC.

The rest of this paper is organised as follows. The protocol of QT
over ideal channels is described in Section 2, while the
teleportation over imperfect channels is investigated in Sections 3
and 4. A secure teleportation scheme is proposed and investigated
in Section 5, while our conclusions are offered in Section 6.

2 Teleportation over perfect channels
In this section, the QT protocol [1] is described based on error-free
classical and quantum channels. The aim of teleportation is to send
the information of an arbitrary unknown qubit ψ⟩ = α 0⟩ + β 1⟩
from the transmitter to the receiver without the transmission of the
qubit itself. The circuit that can achieve teleportation is shown in
Fig. 1. 

As seen in Fig. 1, the protocol begins with three qubits. First of
all, qubit 1 is the qubit for teleportation, which is in an arbitrary
unknown state ψ⟩. Secondly, qubits 2 and 3, which are in the zero
state, will be entangled and they will be shared between the
transmitter and the receiver. This initial state can be described as
follows:

ψ⟩ ⊗ 0⟩ ⊗ 0⟩ = (α 0⟩ + β 1⟩) ⊗ 0⟩ ⊗ 0⟩
= α 000⟩ + β 100⟩ . (1)

Fig. 1  QT protocol [1]
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Note that the Hadamard gate (denoted H) is a quantum gate that
has the following transformation on the computational basis states
( 0⟩, 1⟩) [11]

0⟩ ⟶H 0⟩ + 1⟩
2 1⟩ ⟶H 0⟩ − 1⟩

2 . (2)

Applying a Hadamard gate to the second qubit in (1) would give
(see (3)) . Then, a controlled-NOT (CNOT) gate is applied between
qubit 2 and qubit 3. If a control qubit (qubit 2) is in the 1⟩ state the
CNOT gate applies a NOT gate to the target qubit (qubit 3), as
exemplified below

10⟩ ⟶CNOT 11⟩ 00⟩ ⟶CNOT 00⟩

01⟩ ⟶CNOT 01⟩ 11⟩ ⟶CNOT 10⟩ .
(4)

Hence, the application of the CNOT gate to qubits 2 and 3 in (3)
would give

1
2(α 000⟩ + α 010⟩ + β 100⟩ + β 110⟩) ⟶CNOT

1
2(α 000⟩ + α 011⟩ + β 100⟩ + β 111⟩)

= (α 0⟩ + β 1⟩) ⊗ 1
2( 00⟩ + 11⟩)

(5)

At this point, qubits 2 and 3 are entangled in the state
(1/ 2)( 00⟩ + 11⟩), known as the Einstein–Podolsky–Rosen
(EPR) pair [12]. At this point, qubit 3 of the entangled EPR pair
can be transmitted to the receiver over an error-free quantum
channel, while qubit 2 will be retained at the transmitter.

Next, a bell state measurement [13] will be applied to qubits 1
and 2, where qubit 1 is the unknown qubit for teleportation. To
make a bell-state measurement, the CNOT and Hadamard gates are
applied between qubits 1 and 2, as seen in Fig. 1, before the
measurement [11]. The CNOT gate evolves (5) as follows:

1
2(α 000⟩ + α 011⟩ + β 100⟩ + β 111⟩) ⟶CNOT

1
2(α 000⟩ + α 011⟩ + β 110⟩ + β 101⟩),

(6)

while a Hadamard gate on qubit 1 would further transform (6) to

1
2(α 000⟩ + α 011⟩ + β 110⟩ + β 101⟩)

⟶H 1
2

α 000⟩ + α 100⟩
2 + α 011⟩ + α 111⟩

2

+ β 010⟩ − β 110⟩
2 + β 001⟩ − β 101⟩

2 .

(7)

After collecting the terms with the same values in the first and
second qubits in (7), we obtain

1
2[(α 000⟩ + β 001⟩) + (α 011⟩ + β 010⟩)

+(α 100⟩ − β 101⟩) + (α 111⟩ − β 110⟩)]

= 00⟩α 0⟩ + β 1⟩
2 + 01⟩α 1⟩ + β 0⟩

2

10⟩α 0⟩ − β 1⟩
2 + 11⟩α 1⟩ − β 0⟩

2 ,

(8)

which gives the system before the measurement at the transmitter.
The measurements of qubits 1 and 2 could be in any of the
following combinations: 00⟩, 01⟩, 10⟩, 11⟩. These
measurements can then be communicated over a classical channel
to the receiver as seen in Fig. 1. Note that after the measurement,
qubit 1 has been destroyed.

If the measurement bits are given by 1, 0, then the state of the
pre-shared qubit 3 has been changed to (1/2)(α 0⟩ − β 1⟩). It is
possible to transform qubit 3 to the state of qubit 1 (before
measurement) based on the lookup table of Table 1, where X and Z
refers to the bit and phase-flip gates defined by the X and Z Pauli
operators [11]. More specifically, when the measurement results
are 1, 0, the receiver should apply the Z gate to qubit 3. This will
transform qubit 3 to the original state of qubit 1 as follows:

α 0⟩ − β 1⟩ ⟶Z α 0⟩ + β 1⟩ = ψ⟩ . (9)

The corresponding lookup table mapping all possible measurement
results to quantum gate operations is given in Table 1.

3 Teleportation over imperfect classical channel
In this simulation an unknown arbitrary qubit ψ⟩ is teleported
based on a perfect quantum channel but an imperfect classical
Rayleigh fading channel. As described in the previous section, the
classical bits determine the activation of the X and Z gates at the
receiver. The correctly applied combination of gates is essential to
accurately resurrect the state of qubit 1 ψ⟩ at the receiver.

The classical bits m~ 1 and m~ 2 of Fig. 2 can take four
combinations, namely 00, 01, 10, and 11. However, only when both
m1 and m2 are transmitted perfectly can the X and Z gates be
enabled or disabled properly at the receiver. For example, if qubit 1
is in the state α 0⟩ + β 1⟩ the measurement result for transmission
would be 00. In this case, the identity gate I gate is applied at the
receiver (see Table 1) to obtain the final state ψ⟩. However, if the
corrupted classical bit sequence 01 is received instead, then an X
gate is mistakenly applied as follows:

α 000⟩ + β 100⟩ ⟶H α 000⟩ + α 010⟩
2 + β 000⟩ + β 010⟩

2

= 1
2(α 000⟩ + α 010⟩ + β 100⟩ + β 110⟩) .

(3)

Table 1 Gate operation applied to qubit 3 according to the
measurement results
State Measurement Qubit 3 state Gate correction
00⟩ 0, 0 α 0⟩ + β 1⟩ I
01⟩ 0, 1 α 1⟩ + β 0⟩ X
10⟩ 1, 0 α 0⟩ − β 1⟩ Z
11⟩ 1, 1 α 1⟩ − β 0⟩ XZ

 

Fig. 2  Reproduction of Fig. 1 with imperfect classical and quantum
channel

 

2 IET Quantum Commun.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



α 0⟩ + β 1⟩ ⟶X α 1⟩ + β 0⟩ ≠ ψ⟩, (10)

which produces a quantum bit-flip error in the reconstructed qubit
1. Therefore, an error in the classical channel can induce a quantum
error on the teleported qubit 1.

Note that a single error on either m1 or m2 as well as
simultaneous error, on both m1, m2, will result in only a single
quantum error on the teleported qubit. For example, if the
erroneous bit combination m~ 1 = 0, m~ 2 = 1 is applied at the receiver
to the qubit in the previous example, then

α 0⟩ + β 1⟩ ⟶XZ α 1⟩ − β 0⟩ ≠ ψ⟩, (11)

however, this will be counted as only a single qubit error.

3.1 Bit-error-ratio (BER)

If N classical bits are transmitted and Nϵ is the number of
erroneously received classical bits then the BER is given by

BER = Nϵ/N . (12)

Likewise, the quantum-BER (QBER) is given by

QBER = N∫
q/Nq, (13)

where Nq is the total number of teleported qubits and Nϵ
q is the total

number of erroneously teleported qubits.
More specifically, the teleportation of Nq number of qubit 1 (as

shown in (1)) requires the transmission of N = 2Nq classical bits
for conveying the two measurement results from the transmitter to
the receiver. If there are Nϵ classical bit errors, the worst case
would be when only one error occur in each of the two
measurement results, giving rise to Nε

q = Nε qubit errors. Hence,
the corresponding QBER upper bound would be given by
QBER = Nε

q/Nq = Nε/(0.5N) = 2BER.

3.2 Classical turbo-coded teleportation

Recall that for each recovered teleported qubit, two classical bits
(m1, m2) must be accurately received. Fig. 3 shows the QBER/BER
versus signal-to-noise ratio (SNR) performance when
communicating over Rayleigh fading channel using uncoded
modulation schemes. The SNR is defined as SNR = hrPt/N0, where
hr is the Rayleigh fading channel coefficient, Pt is the transmit
power, and N0 is the variance of the additive White Gaussian noise.
The effect on QBER is consistent with the relationship explained
previously, which is given by

QBER ≤ 2BER . (14)

TCs [8] are popular classical channel coding schemes for
mitigating the effect of channel fading and channel noise. TCs
were first proposed in [8] and they showed a remarkable error
correction performance under certain conditions, with only 0.7 dB
disparity [14] compared to the Shannon limit, which was regarded
as impossible before the invention of TCs. TCs take advantage of
parallel-code concatenation at the encoder, having an interleaver
between the two-component codes. At the decoding side, an
iterative decoder based on two soft-input-soft-output decoders is
invoked for exchanging soft extrinsic information between the two
component decoders.

Fig. 4 shows that the QBER of the teleportation protocol can be
improved by introducing TC in the classical transmission. 
Furthermore, an increased number of decoding iterations would
allow the soft information from each decoder to be exchanged
more effectively, leading to a more accurate bit recovery. However,
to achieve a BER level of 10−5 the performance of the four-
iteration- and eight-iteration-based schemes are relatively close. As

a good trade-off between performance and complexity, the four-
iteration-based TC scheme is chosen for our study.

4 Teleportation over imperfect quantum and
classical channels
4.1 Quantum depolarising channel

We have shown that errors in the classical channel lead to quantum
errors in the teleported qubits and that this can be improved by
classical turbo coding. In this section, we consider errors in both
the classical and quantum channels. Depolarising error probability
Pe

q is the probability having a quantum error in the quantum
channel over which qubit 3 is transmitted, as shown in Fig. 2. The
quantum depolarising channel [15] is characterised by three
possible error events, namely the quantum bit-flip error, the phase
flip error, and the combination of the two (the simultaneous
occurrence of both bit and phase flip errors). Explicitly, a bit-flip
error is equivalent to the transformation using a NOT gate (or Pauli
X gate) and is similar to a classical bit-flip. For example, a bit-flip
error has the effect that 0⟩ ↔ 1⟩ on the computational basis states.
On the other hand, a phase-flip error is equivalent to the
transformation using the Z gate, where 1⟩ ↔ − 1⟩ while
0⟩ ↔ 0⟩ is left unchanged. Additionally, the bit-and-phase flip
error is equivalent to the transformation using both X and Z gates,
e.g. 0⟩ → − 1⟩. The probability each of these error events
occurring is assumed to be equivalent in the standard quantum
depolarising channel, i.e. each occurs with a probability of Pe

q/3.
Fig. 2 shows that the pre-shared qubit 3 (denoted as ψtx⟩) may

arrive corrupted at the receiver (denoted as ψrx⟩) due to the

Fig. 3  QBER/BER versus SNR performance when communicating over
Rayleigh fading channel using uncoded binary phase-shift keying (BPSK),
4-quadrature amplitude modulation (4-QAM), 8-PSK, 16-QAM, and 64-
QAM schemes

 

Fig. 4  QBER/BER versus SNR performance when communicating over
Rayleigh fading channel using uncoded BPSK and TC-4-QAM having 1, 2,
and 8 decoding iterations
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quantum depolarising channel. Let us consider this scenario in
more details, assuming that ψtx⟩ = α 1⟩ + β 0⟩ has a quantum bit-
flip (X) error occurs during the transmission, then

α 1⟩ + β 0⟩ ⟶X α 0⟩ + β 1⟩ . (15)

This would lead to an error to the transported qubit 1 (denoted ψ⟩).
Let us now further describe the quantum channel error

probability as Pe
q. For example, Pe

q = 10−1 is equivalent to 1
corrupted qubit in ten pre-shared corrupted qubit 3 at the receiver,
i.e. ψrx⟩ ≠ ψtx⟩. Let us define the total number of transmitted pre-
shared qubits as Nq and the total number of corrupted transmitted
qubits as Nε

q. Then the QBER at the quantum channel is given by

Pe
q = Nϵ

q/Nq . (16)

4.2 Classical turbo-coded teleportation over imperfect
quantum channel

As described in Section 3.1, the QBER is approximately twice the
BER, when the quantum channel is error-free. With the addition of
the imperfect quantum channel, the upper bound of the QBER is
now given by

QBER ≤ 2BER + Pe
q . (17)

This is an upper bound since there are certain scenarios where the
classical and quantum channel errors cancel each other. Fig. 5

shows various Pe
q values and the corresponding BER varying from

0.5 to 10−6. The QBER follows the trend of (14), when Pe
q is small,

as expected. For example, when the quantum channel error
probability is given by Pe

q = 10−4, we have QBER ≤ 2BER for
BER > 10−4. In this case, the classical channel error dominates the
QBER in the region of BER > 10−4. However, when Pe

q > BER,
the QBER converges to the Pe

q value in the form of an error floor.
This is because the quantum error is now dominating the QBER,
according to (17).

Fig. 6 shows the QBER versus SNR performance of the turbo
coded 8-phase-shift keying (8-PSK)-assisted scheme when
communicating over the Rayleigh fading channel. Since the BER
of the classical channel reduces as SNR increases, we notice that
the QBER has an error floor at Pe

q a high SNR region, as expected.

5 Quantum turbo-coded secure teleportation
As seen previously in Fig. 1, teleportation requires an entangled
qubit pair (qubits 2 and 3), which are prepared at the transmitter
and then one of them (qubit 3) is communicated to the receiver
over the quantum channel. This section describes an alternative
method whereby an EPR pair is distributed via an authentic third
party, where each qubit in the entangled pair is communicated to
the transmitter and receiver, separately. This way the teleportation
protocol is applied at the transmitter without any knowledge of the
location of the receiver. This adds a layer of security to the
generation of the entangled qubits and the transmission of the EPR
pairs. The only drawback of this approach is that a quantum
memory is required to store the EPR pair before its distribution.
However, this arrangement is more secure compared to that in
Fig. 1.

When the entangled qubits are shared securely then the QT can
be considered absolutely secure. This is because the measurement
results are only beneficial to the eavesdropper when the transmitted
qubit 3 is in the eavesdropper's possession. The addition of an
authentic third-party means that QT can be used as a one-time-pad
scheme and therefore can be employed for secure quantum
communications [16]. Explicitly, an entangled qubit pair can be
considered as a key for each teleportation. Once the security of the
key is certified, then the transmission process can be deemed to
have unconditional security [17].

However, provided that the EPR pairs are transmitted from an
authenticated third party there exist a risk that the qubits can be
exploited by an eavesdropper. The security of the EPR pair that is
distributed via the quantum channel can be examined based on the
characteristics of quantum entanglement. On the one hand, any
measurements of either of the qubits in an entangled pair disturb
the entanglement state, which ultimately results in an equivalent
pure state. If the eavesdropper intercepts the transmission of the
EPR pairs, it could, therefore, be discovered immediately. On the
other hand, if the eavesdropper first intercepts the transmission of
either qubit and re-sends it after some manipulations, the whole
structure of the original entanglement is altered. Nevertheless, this
attack can be detected if the transmitted and received qubit in the
EPR pair are measured and the outcomes are compared [18].

For example, consider the transmission of the EPR pair
AB00⟩ = (1/ 2)( 00⟩ + 11⟩), where qubit A is kept at the

transmitter and qubit B is transmitted to the receiver. If the
eavesdropper prepares the same EPR pair, namely
CD00⟩ = (1/ 2)( 00⟩ + 11⟩), and then captures the qubit B⟩, then
the system can be described by [19]

AB00⟩ CD00⟩ = 1
2 AC00⟩ BD00⟩

+ AC01⟩ BD01⟩ AC10⟩ BD10⟩ + AC11⟩ BD11⟩ ,
(18)

where

Fig. 5  QBER versus BER curves of the turbo coded 8-PSK-assisted
scheme when communicating over the Rayleigh fading channel. The qubit
depolarising probability considered are Pe

q = (10−1, 10−2, 10−3, 10−4, 10−5, 0)
 

Fig. 6  QBER versus SNR performance of the turbo-coded 8-PSK-assisted
scheme when communicating over the Rayleigh fading channel. The qubit
depolarising probability considered are Pe

q = (10−1, 10−2, 10−3, 10−4, 10−5, 0)
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i j01⟩ = 1
2( 01⟩ + 10⟩)

i j10⟩ = 1
2( 01⟩ − 10⟩)

i j11⟩ = 1
2( 00⟩ − 11⟩) .

(19)

Equation (18) shows that if the eavesdropper measures BD00⟩ then
the other qubits are in the state AC00⟩. Therefore the original
entangled state AB00⟩ is no longer valid and the qubits A⟩ and B⟩
are no longer entangled. When the qubits are no longer entangled,
its measurement outcomes can no longer determine the
measurement result of the other qubit. In other words, the QBER
will be very high when the eavesdropper is the presence and this
phenomenon can be used for secure quantum transmissions as
explain in Section 5.1.

5.1 Secure and reliable teleportation

In this section, a secure and reliable QT based on the QTC of [9]
and the QSDC of [10] is investigated. Provided that the security of
pre-shared entangled qubit pairs has been ensured, the teleportation
process would be unconditionally secure and therefore the protocol
only concentrates on the security of the quantum channel.
Furthermore, the QTC-decoded entangled pairs are more reliable
compared to the uncoded scheme. Our proposed secure and reliable
teleportation protocol, as seen in Fig. 7, can be explained below: 

i. Prepare n pairs of EPR qubits: Half of these qubits are to be
communicated from the transmitter and to the receiver via a
quantum depolarising channel [If a third party is used to
prepare these EPR qubit pairs, then half of the EPR pairs will
be communicated to the transmitter and the other half to the
receiver [16].] To do this, each of the n EPR pairs is prepared
in the state ψtx, rx

00 ⟩ = (1/ 2)( 00⟩ + 11⟩).
ii. Prepare m dummy EPR pairs: These qubits are to be inserted

to the original EPR qubit pairs at secret locations. The dummy
EPR pairs are in the state ψtx, rx

01 ⟩ = (1/ 2)( 01⟩ + 10⟩). This
protocol becomes more precise for a larger value of m as the
dummy EPR pairs are used to detect the eavesdropper.

iii. Encode with QTC: There are now (n + m) EPR pairs, which
are encoded with a 1/2-rate QTC to produce 2(n + m) qubit
pairs in total.

iv. Decode with QTC: The corresponding QTC decoding process
is implemented at the receiver [QTC decoding at the
transmitter is also needed, if the EPR pairs are prepared by a
third party [16].] and is based on the error syndromes [20, 21].
If the syndrome indicates that a qubit is erroneously bit flipped,
an X gate correction is applied at the receiver. Then after QTC
decoding, (n + m) qubits are restored at the receiver.

v. Measure m dummy qubits: The measurement of the decoded
dummy qubits can be used to determine the severity of
eavesdropping that may have occurred. The location of the
dummy qubits is communicated to the receiver. These qubits
are measured at the receiver and the results are sent back to the
transmitter. If there is no eavesdropper in the quantum channel,
then the results obtained at the receiver should be opposite to
that at the transmitter (since the dummy qubits are in state
(1/ 2)( 01⟩ + 10⟩), when the quantum channel is error-free.

vi. Evaluate the secure error ratio: The quantum communication
is deemed secure if the QBER of the dummy qubits is below a
certain chosen security threshold (this threshold will be
explained in Section 5.2). When the QBER of the dummy
qubits is below the threshold, then the n pairs of pre-shared
EPR qubits (qubits 2 and 3 of Fig. 1) are considered secure.
Then the decoded EPR pairs can be used for teleportation.
However, if the QBER of the dummy bits is higher than the
threshold, then this indicates that the transmission has been
intercepted and the whole transmission process should be
discarded and the protocol should restart from step 1.

vii
.

Teleportation of information qubits: When the EPR pairs are
secure and reliable, then the teleportation of information qubits
(qubit 1 in Fig. 1) based on classical measurement bits, as
described in Section 2 can proceed correspondingly.

Note that dummy entangled qubit pairs are used in QSDC, while
random entangled qubit pairs are also needed for the Bell
inequality testing in the device-independent quantum key
distribution. Hence, it is a good future research to compare the
performance of these systems, in terms of the efficiency in using
these entangled qubit pairs.

5.2 Secure error ratio threshold with QTC

Step 6 in the previous section requires a secure error ratio threshold
to compare with the error ratio of the dummy qubits in order to
establish if an eavesdropper was present during the qubit
transmission. This must be determined carefully with the aid of the
QTC. The secure error ratio can be specified from Fig. 8, where the
x-axis Pe

q corresponds to the depolarising error probability in the
quantum channel, while the y-axis shows the corresponding error
ratio (denoted as Pe

q(QTC)) after applying the QTC. 
Suppose that the channel depolarising probability without

eavesdropping is given by Pe
q = 0.31. It is reasonable to assume

that eavesdropper would introduce at least further 10% of error to
the channel depolarising probability. This would make the overall
channel-plus-eavesdropper depolarising probability to be
Pe

q > 0.41. As we can see from Fig. 8 that after the application of
the QTC of [21], say, with an interleaver length of 6000 qubits the
corresponding QBERs are Pe

q(QTC) = 7 × 10−6 for Pe
q = 0.31 and

Pe
q(QTC) > 0.4 for Pe

q < 0.41. Hence, without QTC, the 10%
additional error introduced by the eavesdropper may be hard to
detect when the quantum channel has a high depolarising error
probability. However, with the aid of QTC, the QBER difference
between the cases for having no eavesdropper
(Pe

q(QTC) = 7 × 10−6) and with eavesdropper (Pe
q(QTC) > 0.4) is

Fig. 7  QTC aided QSDC
 

Fig. 8  Channel depolarising error probability Pe
q (uncoded) versus QTC-

decoded error probability Pe
q(QTC). The QTC of [21] was considered
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significantly larger. In other words, the employment of QTC would
make the detection of the eavesdropper easier. The reliability of the
pre-shared qubits is also significantly improved from Pe

q = 0.31 to
Pe

q(QTC) = 7 × 10−6, when the eavesdropper is not presence.
Interested readers are referred to [21] for details of QTC.

5.3 Reliable QT

Based on the discussions so far, it is clear that both classical TC
and QTC can be used to improve the reliability of the teleportation
scheme. More explicitly, when QTC is employed, the over QBER
of teleported qubits (qubit 1 of Fig. 1) given in (17) can be
rewritten as

QBER = 2BER + Pe
q(QTC) , (20)

where Pe
q(QTC) is the QBER of the QTC-aided transmission of the

pre-shared qubits over the quantum channel. If the BER is
controlled to a relatively low level using the classical TC, then the
QBER error floor can be reached with lower SNR in the classical
channel as seen in Fig. 5.

As seen in Fig. 5, in order to attain QBER < 10−4 the
corresponding BER must also be BER < 10−4. Fig. 6 shows that
this condition can be met with an SNR >8 dB. In addition, with the
implementation of QTC, Pe

q(QTC) = 10−4 is achieved when the
depolarising probability is Pe

q = 0.327 with the application of a
6000 interleaver, as shown in Table 2. A larger depolarising
probability of Pe

q = 0.334 can be tolerated if the interleaver length
is doubled to 12,000. Hence, the stronger the encoding scheme, the
more reliable and secure the teleportation system become.

6 Conclusion
We have investigated the performance of a TC and QTC aided QT
scheme when communicating over a Rayleigh fading channel and
an imperfect quantum channel. The upper bound of the quantum
error ratio was derived, which depends on the quality of both
classical and quantum channels.

A QTC-aided secure transmission of pre-shared entangled
qubits based on the QSDC protocol was investigated. More
explicitly, the employment of QTC was found to be very useful for

detecting eavesdroppers when the quantum channel is imperfect, as
explained in Section 5.2.

More quantitatively, the proposed secure and reliable QT
scheme can achieve QBER = 10−4 when the quantum channel
depolarising probability is as high as Pe

q = 0.327, if a QTC having
an interleaver length of 6000 qubits is invoked for the transmission
of the pre-shared qubits, while a classical TC is invoked to protect
the classical transmission of the measurement results, as shown in
Table 2.
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Table 2 Tolerated quantum channel depolarising probability
(Pe

q) as a function of the turbo interleaver length and the
target QTC-decoded QBER (Pe

q(QTC)). This is based on
Fig. 8
Pe

q(QTC) Intlv. 3000 Intlv. 6000 Intlv. 12,000

10−2 0.331 0.336 0.339

10−3 0.326 0.332 0.336

10−4 0.321 0.327 0.334

10−5 0.281 0.321 0.331
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