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Abstract— This paper presents a low complexity iteratively de-
tected space-time transmission architecture based on Generalized
Layered Space-Time (GLST) codes and IRregular Convolutional
Codes (IRCCs). The GLST combines the benefits of the Vertical
Bell-labs LAyered Space-Time (V-BLAST) scheme and Space-
Time Coding (STC). The GLST is serially concatenated with
a Unity-Rate Code (URC) and an IRCC which are used to
facilitate near-capacity operation with the aid of an EXtrinsic
Information Transfer (EXIT) chart based design. Reduced-
complexity iterative Successive Interference Cancellation (SIC) is
employed in the GLST decoder, instead of the significantly more
complex Maximum Likelihood (ML) detection. For the sake of
approaching the maximum achievable rate, iterative decoding is
invoked to achieve decoding convergence by exchanging extrinsic
information across the three serial component decoders. Finally,
it is shown that the SIC-based iteratively detected IRCC-URC-
GLST system is capable of providing a trade-off between the
affordable computational complexity and the system throughput.

I. I NTRODUCTION

Recent information theoretic studies have shown that the
capacity of a Multiple-Input Multiple-Output (MIMO) sys-
tem [1]–[4] is significantly higher than that of a Single-
Input Single-Output (SISO) system. MIMO techniques are
also capable of achieving both multiplexing gain and diversity
gain. In [5], Wolnianskyet al. proposed the popular multi-
layer MIMO structure, referred to as the Vertical Bell-labs
LAyered Space-Time (V-BLAST) scheme, which is capable
of increasing the throughput without any increase in the
transmitted power or the system’s bandwidth. However, it was
primarily designed for exploiting the transmit multiplexing
gain, although it is worth that upon increasing the number
of antennas, typically the achievable transmit diversity gain
also increases at the cost of an increased receiver complexity.

In contrast to spatial multiplexing techniques, Alamouti [6]
discovered a transmit diversity scheme, referred to as a
Space-Time Block Code (STBC), where the prime concern is
achieving diversity gain. The attractive benefits of Alamouti’s
design motivated Tarokhet al. [7] to generalize Alamouti’s
scheme to an arbitrary number of transmit antennas. Another
transmit diversity scheme, referred to as Space-Time Trellis
Coding (STTC) was invented by Tarokhet al. in [8], which is
capable of achieving both spatial diversity gain and coding
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gain or time diversity gain. However, these conventional
STBC and STTC schemes achieve at most the same data
rate as an uncoded single-antenna system. Hence, a MIMO
scheme attaining both multiplexing gain and diversity gainis
attractive. Various hybrid BLAST and STTC schemes have
been proposed in [9], [10]. The Generalized Layered Space-
Time (GLST) code [10] is constructed as a composite of
the V-BLAST scheme and Space-Time Coding (STC), which
strikes a trade-off between transmission efficiency and error
probability. In [10], iterative Successive Interference Cancel-
lation (SIC) was proposed to achieve full receive diversity,
which made it possible to achieve the same diversity order as
classic Maximum Likelihood (ML) detection at a fraction of
its complexity.

For the sake of decoding convergence to an infinitesimally
low bit error ratio (BER), the GLST scheme is serially con-
catenated with outer codes for iteratively exchanging mutual
information between the constituent decoders. The decoding
convergence of iteratively decoded schemes can be analysed
using EXtrinsic Information Transfer (EXIT) charts [11], [12].
Tüchler and Hagenauer [12], [13] proposed the employment of
IRregular Convolutional Codes (IRCCs) in serial concatenated
schemes, which are constituted by a family of convolutional
codes having different rates, in order to design a near-capacity
system. They were specifically designed with the aid of EXIT
charts to improve the convergence behaviour of iterativelyde-
coded systems. As a further advance, it was shown in [14], [15]
that a recursive Unity-Rate Code (URC) should be employed
as an intermediate code in order to improve the attainable
decoding convergence.The novel contribution of this treatise is
that we use EXIT charts to design an iteratively decoded near-
capacity three-stage IRCC-URC-GLST scheme. Specifically,
the computational complexity of this concatenated system is
substantially reduced at the cost of a modest reduction in the
maximum achievable rate compared to ML detection, owing
to the employment of the low-complexity but suboptimum SIC
in the GLST decoder.

The rest of this paper is organised as follows. In Section II,
a brief description of the serially concatenated and iteratively
decoded scheme is presented. Section III specifies the encod-
ing and decoding processes designed for the GLST system.
The EXIT chart aided iterative decoder design is detailed in
Section IV, while our simulation results and discussions are
provided in Section V. Finally, we conclude in Section VI.
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II. SYSTEM OVERVIEW
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Fig. 1. Schematic of the proposed IRCC-URC-GLST scheme.

The schematic of the proposed serially concatenated system
is illustrated in Fig. 1. At the transmitter side, IRCCs [12], [13]
are employed for encoding specifically optimized fractionsof
the input stream, where each fraction’s code rate was designed
for achieving a near-capacity performance with the aid of
EXIT charts [11]. Again, a recursive URC was amalgamated
with the above-mentioned GLST in Fig. 1 as the inner code for
assisting the non-recursive GLST scheme in achieving decod-
ing convergence to an infinitesimally low BER at near-capacity
Signal-to-Noise Ratios (SNRs). The GLST encoder partitions
the long bit stream emanating from the intermediate URC
encoder into several substreams and each substream is space-
time encoded separately, as will be detailed in Section III.Two
different high-length bit interleavers are introduced between
the three component encoders so that the input bits of the
URC and GLST encoders can be rendered independent of each
other, which guarantees that the assumptions facilitatingthe
application of EXIT charts are complied with [11].

At the receiver side, according to Fig. 1, an iterative decod-
ing procedure is operated, which employs threeA Posteriori
Probability (APP)-based decoders. The received signals are
first decoded by the APP-based GLST decoder in order to
produce thea priori Log-Likelihood Ratio (LLR) values
L2,a(c2) of the coded bitsc2. The URC decoder processes the
information forwarded by the GLST decoder in conjunction
with the a priori LLR values L2,a(u2) of the information
bits u2 in order to generate thea posteriori LLR values
L2,p(u2) and L2,p(c2) of the information bitsu2 and the
coded bitsc2, respectively. In the scenario when iterations
are needed within the amalgamated “URC-GLST” decoder
so as to achieve a near-capacity performance, thea priori
LLRs L2,a(c2) are subtracted from thea posterioriLLR values
L2,p(c2) and then they are fed back to the GLST decoder
as thea priori information L2,a(u3) through the interleaver
π2. Similarly, the a priori LLR values of the URC decoder
are subtracted from thea posterioriLLR values produced by
the Maximum Aposteriori Probability (MAP) algorithm [16],
for the sake of generating the extrinsic LLR valuesL2,e(u2).
Next, the soft bitsL1,a(c1) are passed to the IRCC decoder
in order to compute thea posteriori LLR values L1,p(c1)
of the IRCC encoded bitsc1. During the last iteration, only
the LLR valuesL1,p(u1) of the original information bitsu1

are required, which are passed to the hard-decision decoder
in order to estimate the source bits. As seen in Fig. 1, the

extrinsic informationL1,e(c1) is generated by subtracting the
a priori information from thea posteriori information, which
is fed back to the URC decoder as thea priori information
L2,a(u2) through the interleaverπ1.

III. G ENERALIZED LAYERED SPACE-TIME CODE
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Fig. 2. GLST schematic using the temporal interleaverπj and spatial
interleaverΠ.

The GLST scheme of Fig. 2 and Fig. 3 is specified as fol-
lows. At the transmitter side of Fig. 2, the antennas are divided
into several groups and each group utilizes an STC encoder. At
the receiver side of Fig. 3, we avoid the potentially excessive
complexity of jointly detecting all groups, which may be
achieved in the spirit of the V-BLAST detection algorithm [5],
[17] using the reduced-complexity SIC based detection scheme
of [10], where the space-time code of each individual group
was processed successively, as detailed later in Section III-B.
We also present a significantly complex iterative ML detection
scheme in Fig. 4 for comparison. Therefore, it is clearly seen
that the GLST scheme can be viewed as a beneficial amalgam
of a V-BLAST and a STC scheme. With the advent of the
STC employed, we will show that this GLST architecture is
capable of achieving a higher spatial diversity compared to
the conventional V-BLAST scheme. As an added benefit, the
overall transmission system’s throughput is significantlyhigher
than that of the STC scheme owing to the BLAST-like layered
architecture.

A. Encoding

Consider now a point-to-point wireless communication link
equipped withNt transmit andNr receive antennas, where
the signal to be transmitted over thejth antenna at time
instant t is denoted bycj

t . In this contribution, we consider
transmissions over a temporally uncorrelated flat Rayleigh
fading channel. Therefore, the signal received by each antenna
is constituted by the superposition of independently Rayleigh
faded transmitted signals. The signal received by theith
antenna at time instantt is given by

ri
t =

Nt∑

j=1

hi,jc
j
t + vi

t, (1)

wherehi,j is the complex-valued channel coefficient between
thejth transmit and theith receive antenna, which is modeled
by the samples of independent complex Gaussian random
variables having a zero mean and a variance of 0.5 per
dimension. Furthermore,vi

t is the Additive White Gaussian
Noise (AWGN) encountered by theith antenna at time instantt
and modeled by the samples of independent complex Gaussian
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random variables having a zero mean and a variance ofN0/2
per dimension.

The GLST encoding process is illustrated in Fig. 2. We
assume that a block ofB information bits is input to a serial-
to-parallel (S/P) converter, which partitions this bit stream
into q groups, which we refer to as layers having lengths of
B1, B2, . . . , Bq, where we haveB1 + B2+, . . . , +Bq = B
bits in total. Then, each group ofBj bits, for 1 ≤ j ≤ q, is
separately encoded in Fig. 2 by a component encoderSTCj

associated withN j
t number of transmit antennas, where we

haveN1

t + N2

t +, . . . , +N q
t = Nt. The resultant (N j

t × T )-
elementcodewordmatrix Cj of STCj will be transmitted by
theN j

t transmit antennas of Fig. 2 duringT symbol intervals.
We refer to thetth columncj,t of Cj as thesymbol vector
generated by groupj at time instantt. Following space-time
encoding, the symbol vectors of each group are passed through
an independent vector-based temporal interleaverπj followed
by the common spatial interleaverΠ of Fig. 2. The vector-
based temporal interleaversπj represented by the dashed
block of Fig. 2 are used for thecodewordsgenerated by the
different groups, for the sake of eliminating the effects of
bursty error propagation among different groups during the
decoding iterations [10]. Furthermore, the spatial interleaver
Π of Fig. 2 may be considered to be a mapping of the space-
time encoded symbol vectors to a certain group of transmit
antennas, which provides additional spatial diversity. Wecan
express the received baseband data in matrix form as:

r t = H1,tc1,t + H2,tc2,t + · · · + Hq,tcq,t + vt, (2)

whereHj,t denotes the(Nr ×N j
t )-element subchannel matrix

of groupj at time instantt.

B. Iterative SIC Detection

Again, for the sake of maintaining an affordable computa-
tional complexity, a reduced-complexity SIC based detection
scheme was proposed in [10] instead of ML detection. For
the sake of low complexity, the signals are detected layer-by-
layer instead of an ML-style joint-detection and hence this
BLAST-like structure fails to achieve full receive diversity,
because the earlier a layer is detected, the lower its diversity

order. In order to maximize the attainable receive diversity
gain, the SIC-based iterative decoding scheme of [10] was
invoked, which is depicted in Fig. 3.

In the same spirit as proposed in the V-BLAST scheme [18],
the decoding order of the SIC-based scheme has a significant
effect on the performance of the GLST system. Similarly
to the classic decoding scheme using the optimum decoding
method developed in [5], in our group-based optimum ordered
decoding scheme, the higher the post-detection SNR of a
specific layer, the earlier the layer is chosen to be detected.
Without loss of generality, the decoding order in Fig. 3 is
assumed to be{1

′

, 2
′

, . . . , q
′

}. We can see that the first
iteration is constituted by a STC-group-based SIC operation,
i.e. by cancelling the effects of the other(q − 1) number
of STC-coded layers, also ensuring that temporal interleaving
and temporal deinterleaving is carried out according to Fig. 2.
At the first decoding layer1

′

, the received signal is firstly
passed through an interference nulling (IN) module which
suppresses all the interfering signals of the other layers using
zero-forcing (ZF) and space-time decoded afterwards accord-
ingly. The re-modulated signal multiplied by the corresponding
channelH

1
′ is then cancelled from the original received signal

by the interference cancellation (IC) module. The resultant
composite signal of the remaining(q−1) STC-protected layers
is then forwarded to the next iteration. This procedure is
continued until allq

′

layers are decoded.
In the subsequent iterations, since all groups have been

decoded already, the interference nulling is no longer needed,
but the interference cancellation is still performed for all STC-
protected layers. Each iteration consists ofq layers, and each
STC-protected layer is processed successively in the same
order as in the first iteration. After a number of iterations,
full receive diversity of orderNr may be achieved for all
layers. Compared to the ML detection, this iterative decoding
scheme is capable of approaching the same order of receive
diversity, despite imposing only a fraction of the computational
complexity of ML-style joint detection.

C. Iterative ML Detection

The iterative ML detection procedure of the GLST scheme
is shown in Fig. 4. Firstly, theNt transmittedM-ary symbols
are jointly detected as a combined[Nt × log2 M ]-bit symbol
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by an ML demapper. Afterwards, the probability vector of
each [Nt × log2 M ]-bit symbol is converted toq number
of probability vectors corresponding to theq number of
[N j

t × log2 M ]-bit symbol. The resultant probability vectors
are then fed to the component STTC decoders. Iterative gains
can be attained, since the EXIT curve of the ML demapper
is a slanted line although this is not explicitly shown here
owing to space-economy. However, it is not guaranteed that
the DCMC capacity, as detailed later in Section III-D, can be
achieved with iterative ML detection, because the maximum
achievable rate of the iterative ML-based scheme is subjectto
the characteristics of the EXIT charts of various space-time
trellis codes.

D. Capacity and Maximum Achievable Rate

In the context of discrete-amplitude QAM [19] and
PSK [19] modulation, we encounter a Discrete-input
Continuous-output Memoryless Channel (DCMC) [19]. In
order to design a near-capacity coding scheme, we derive the
bandwidth efficiencyη of various SIC-based GLST schemes
for transmission over the DCMC based on the properties of
EXIT charts [20]. In this contribution, we consider the scenario
whenNt = 4 transmit andNr = 4 receive antennas are used,
whereN1

t = N2

t = 2. For simplicity, the component STCs
utilized for all groups are assumed to be identical. Specifically,
we use the 4-state based STTC-4 [8, Fig. 4] and 16-state
based STTC-16 [8, Fig. 5] as the component STCs of GLST
schemes, respectively.

It was argued in [13], [20] that the maximum achievable
bandwidth efficiency of the system is equal to the area under
the EXIT curve of the inner code, provided that the channel’s
input is independently and uniformly distributed as well as
assuming that the inner code rate is 1 and the MAP decoding
algorithm is used. Although these properties were formally
proven for the family of Binary Erasure Channels (BECs) [20],
they have also been observed to hold for AWGN, Rayleigh and
multipath communication channels [13], [20]. Assuming that
the area under the EXIT curve of the inner decoder, i.e. the
GLST decoder, is represented byAE , the maximum achievable
rate curves of various SIC and ML based GLST schemes are
shown in Fig. 5 together with the DCMC capacity curves of the
multiplexing-based MIMO scheme, which employed a ML de-
tector. The capacity curve of the unrestricted Continuous-input
Continuous-output Memoryless Channel (CCMC) [4], [19] is
also depicted in Fig. 5 for comparison. As shown in Fig. 5,
the DCMC capacity of the multiplexing-based MIMO scheme
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Fig. 5. The capacity and maximum achievable rate of various SIC and ML
based GLST schemes, when communicating over uncorrelated flat Rayleigh
fading channels employingNt = 4 transmit antennas andNr = 4 receive
antennas.

employing 4QAM (DCMC4×4-4QAM) is higher than that of
all the GLST schemes and may be regarded as the tight upper
capacity bound of the (4×4)-element 4QAM MIMO systems,
while the multiplexing-based MIMO scheme using BPSK
(DCMC4×4-BPSK) exhibits a much lower DCMC capacity.
For a specific GLST scheme, the maximum achievable rate
improves significantly, when invoking three SIC operations
instead of a single one, while any further improvements remain
marginal after three SICs, since full receive diversity was
approached. As no iterations can be operated between the SIC-
based demodulator and the STTC decoder when using SIC-
based detection, some information loss occurs which cannot
be recovered. For comparison, the maximum achievable rate
of the ML based detection scheme is also given in Fig. 5. The
number of iterations between the ML demapper and GLST
component space-time decoders was kept to three, which is the
same as the number of SIC iterations. Hence, both schemes
invoke the same number of space-time decoder operations but
the ML demapper exhibits a higher complexity compared to
the interference cancellation operation. As shown in Fig. 5,
the ML-based scheme provides a higher maximum achievable
rate than that of the SIC-based scheme.

IV. SYSTEM DESIGN AND EXIT CHART ANALYSIS

The main objective of employing EXIT charts [11] is to
analyse the convergence behaviour of iterative decoders by
examining the evolution of the input/output mutual informa-
tion exchange between the inner and outer decoders during the
consecutive iterations. As mentioned in Section III-D, thearea
under the EXIT curve of the inner decoder is approximately
equal to the channel capacity, when the channel’s input is
independently and uniformly distributed. Similarly, the area
under the EXIT curve of the outer code is approximately equal
to (1-R), whereR is the outer code rate. Furthermore, our
experimental results show that an intermediate URC changes
only the shape but not the area under the EXIT curve of
the inner code. A narrow but marginally open EXIT-tunnel
in an EXIT chart indicates the possibility of achieving a near-
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capacity performance. Therefore, we invoke IRCCs for the
sake of appropriately shaping the EXIT curves by minimizing
the area in the EXIT-tunnel using the procedure of [12], [13].

An IRCC constituted by a set ofP = 17 subcodes was
constructed in [13] from a systematic, rate-1/2, memory-4
mother code defined by the generator polynomial(1, g1/g0),
where g0 = 1 + D + D4 is the feedback polynomial and
g1 = 1 + D2 + D3 + D4 is the feedforward one. Higher code
rates may be obtained by puncturing, while lower rates are
created by adding more generators and by puncturing under
the constraint of maximizing the achievable free distance.
In the proposed system the two additional generators are
g2 = 1 + D + D2 + D4 and g3 = 1 + D + D3 + D4. The
resultantP = 17 subcodes have coding rate spanning from
0.1, 0.15, 0.2, . . . , to 0.9.

The EXIT function of an IRCC can be obtained by super-
imposing those of its subcodes. More specifically, the EXIT
function of the target IRCC is the weighted superposition of
the EXIT functions of its subcodes [13]. Hence, a careful
selection of the weighting coefficients could produce an outer
code EXIT curve that matches closely the EXIT curve of the
inner code. When the area between the two EXIT curves is
minimized, decoding convergence to an infinitesimally low
BER would be achieved at the lowest possible SNR.

In this paper, we consider an average coding rate ofR = 0.5
for the IRCC outer code. Hence the effective throughput is
2×R log2 4 = 2 bit/s/Hz when 4QAM modulation is employed
by the above-mentioned GLST schemes. The channel capacity
and maximum achievable rate computed according to the
properties of EXIT charts [13], [20] at a throughput ofη = 2
bit/s/Hz are depicted in Fig. 5. The exchange of extrinsic infor-
mation in the schematic of Fig. 1 is visualised by plotting the
EXIT characteristics of the inner amalgamated “URC-GLST”
decoder and the outer IRCC decoder in Fig. 6 and 7. Note that
for both the GLST(STTC-4) and GLST(STTC-16) schemes,
where the EXIT curve of the SIC-based GLST decoder is a
slanted line, extrinsic information exchange using decoding
iterations between the URC decoder and the GLST decoder
is needed in order to achieve a near-capacity performance.
When there is no iteration between the URC decoder and the
GLST decoder, the EXIT curve for the URC decoder depends
on the first IE value of the GLST decoder. Hence, both
the GLST(STTC-4)-URC and GLST(STTC-16)-URC schemes
require a higherEb/N0 value in order to maintain an area
of AE = 0.5, as shown in Fig. 6 and 7, respectively. In
other words, information loss will occur if there is no iteration
between the URC decoder and the GLST decoder.

V. SIMULATION RESULTS AND DISCUSSIONS

As we can see from Fig. 6 and 7, the Monte-Carlo sim-
ulation based decoding trajectory of the GLST-URC-IRCC
schemes using SIC detection within the GLST decoder have
a mismatch with their EXIT curves. This is due to the
correlated non-zero error propagation between different layers
in the process of SIC operation. We found that the higher the
correlation of the STTC coded bits, the higher the mismatch.
As the number of trellis states increases from 4 to 16,
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Fig. 7. The EXIT chart curves for the GLST(STTC-16)-URC, IRCC and
the IRCC subcodes, when communicating over uncorrelated flat Rayleigh
fading channels usingNt = 4 andNr = 4. The notation GLST(STTC-16)3

indicates 3 SIC iterations in GLST decoder, and the subscript of URC denotes
the number of iterations between the GLST(STTC-16) and URC decoders.

the correlation of the STTC-16 coded bits becomes higher,
because the code imposes more correlation. As a result,
the STTC-16 scheme will yield a higher correlation than
that of the STTC-4 scheme, when there is error propagation
between different layers due to the imperfect SIC operation.
Hence, the decoding trajectory of the GLST(STTC-16)-URC-
IRCC scheme has a higher mismatch in its EXIT curve. For
comparison, the decoding trajectory of the GLST(STTC-16)-
URC-IRCC scheme employing ML detection is also presented
in Fig. 8. Again, we use 3 iterations between the ML demapper
and GLST component decoders so that the number of STTC
decoder operations invoked is the same as that of the scheme
employing 3 SIC iterations. Since there is no error propagation
in the ML-based scheme, the decoding trajectory of the ML-
based scheme matches its EXIT curve well. However, the error
propagation was avoided in the ML-based scheme at a price
of a higher complexity.
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Fig. 8. The EXIT chart curves for the ML-GLST(STTC-16)-URC,
IRCC and the IRCC subcodes, when communicating over uncorrelated flat
Rayleigh fading channels usingNt = 4 and Nr = 4. The notation
(ML-GLST(STTC-16))3 indicates 3 iterations between ML demapper and
GLST component decoders, and the subscript of URC denotes the number
of iterations between the ML-GLST(STTC-16) and URC decoders.
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Fig. 9. The BER performance comparison of the GLST-URC-IRCCand of
the stand-alone GLST schemes with iterative SIC-based GLSTdecoder.

Despite the mismatch in the EXIT charts, we were still
able to design near-capacity SIC schemes. Fig. 9 presents the
BER performance of the GLST-URC-IRCC scheme employing
various space-time trellis codes with SIC detection. It is clearly
shown that the GLST(STTC-4)-URC-IRCC scheme is capable
of performing within 0.4-0.5dB of the corresponding maxi-
mum achievable rate obtained from the EXIT charts. On the
other hand, the GLST(STTC-16)-URC-IRCC scheme, where
a high mismatch of the decoding trajectory to its EXIT curve
occurs, performs closer to the DCMC4×4-4QAM capacity.

VI. CONCLUSIONS

In this contribution, we have proposed a low-complexity
SIC-based iteratively decoded GLST-URC-IRCC scheme de-
signed with the aid of EXIT chart analysis. We quantified
the maximum achievable rates of the GLST schemes using
various STTCs. According to the simulation results, we found
that the iterative GLST(STTC)-URC-IRCC scheme using SIC
detection strikes an attractive trade-off between the complexity
imposed and the effective throughput achieved.
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