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A Network-Coding Aided Road-Map of Large-scale
Near-capacity Cooperative Communications
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Member;, IEEE and Lajos Hanzo', Fellow, IEEE

Abstract—In the paper, we present a road-map towards a Near-
capacity Large-scale Multi-user Cooperative-communications
(NLMC) system, where all the evolution paths converge to the
construction of the NLMC system. More specifically, we will
summarise all relevant schemes appearing on the road-map
in the unified frame-work of forward error correction (FEC).
Various Network Coding (NC) design paradigms are highlighted
for illustrating how the NLMC systems might be designed for
meeting diverse design criteria in the context of cooperative
and cognitive communications, where the channel capacity of
the NLMC systems is used for comparing the different design
paradigms.

I. INTRODUCTION AND OVERVIEW

The design of an attractive channel coding and modula-
tion scheme depends on a range of conflicting factors [1],
which are illustrated in Fig. 1. Different solutions accrue
when optimising different codec features. For example, in
many applications the most important codec parameter is
the achievable coding gain, which quantifies the amount of
bit-energy reduction attained by a codec at a certain target
of Bit Error Ratio (BER) or Frame Error Ratio (FER) [2].
Naturally, attaining a transmit power reduction is extremely
important in battery-powered devices [3]. This transmitted
power reduction is only achievable at the cost of an increase
implementational complexity, which itself typically, increases
the power consumption and hence erodes some of the power
gain [3]. Viewing this system optimisation problem from a
different perspective, it is feasible to transmit at a higher bit
rate in a given fixed bandwidth by increasing the number of
bits per modulated symbols [4]. However, when aiming for a
given BER or FER target, the channel coding (CC) rate has
to be reduced in order to increase the transmission integrity.
Naturally, this reduces the effective throughput of the system
and results in an increased overall system complexity [5].

From the perspective of CC, there are several excellent tuto-
rial papers reviewing the techniques supporting near-capacity
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Fig. 1: Factors affecting the design of channel coding and
modulation schemes [1].

single-link transmissions conceived for either a single user or
a few users [3], [4], [6]-[9], where time-space diversity is
created by encoding the entire frame of a single user or by
jointly decoding several encoded frames travelling via several
users. From the perspective of NC, the goal is to jointly encode
the information in the entire network. Given this ambitious
objective, the authors of [10] portrayed the history of NC, in-
cluding related theory. In [11], NC techniques were presented
from the perspective of the network architecture, where the
diversity order of different NC schemes was compared along
with the multiple access types used. NC was also surveyed in
the specific context of network tomography [12], where the
advantages of NC were detailed. In reference [13], benefits of
NC were highlighted in the context of cognitive radio networks
(CRN).

Against this background, we portray NC in the unified
framework of FEC, which was employed for diverse CC
schemes in [6]. Accordingly, the corresponding channel
capacity is used as a benchmarker for the various NC
paradigms. More specifically, we further expand the concept
of channel capacity and near-capacity channel coding schemes
detailed in [6], in order to cover NC in the context of both
cooperative and cognitive communications [14], [15].

In this paper, we briefly portray an anecdotal research
roadmap in Fig. 2, which shows the research-avenues lead-
ing to near-capacity multi-user cooperative systems. The
central route of our map is illustrated by ‘Phy-Cooperation
Avenue’, which later merged into ‘Cooperative Networking
Road’. In other words, the route emerged from physical-
layer communications, and then culminated in cooperative
networking, which is detailed in Fig. 4. This process is also
indicated in box 2 of Fig. 3.
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We set out on our walk through history with the ultimate
goal of designing high-throughput wireless communication
systems. When we embark on a historic tour along ‘MIMO
Avenue’, ‘Space-Time Coding Street’ connects ‘MIMO
Avenue’ with ‘Phy-Cooperation Boulevard’ heralding the
application of STC in cooperative communications. Sim-
ilarly, as ‘MIMO Avenue’ approaches ‘Next-Generation
Place’ in Fig. 2, ‘Virtual MIMO Street’ [16] and ‘Multi-
user Multi-cell Street’ [17]-[19] branch out from the
original MIMO techniques and merge with ‘Cooperative
Networking Road’, as detailed in Fig. 4.

More specifically, as a result of the further development
of MIMO-related techniques, single-user cooperative relay
aided systems were introduced upon combining the con-
cept of cooperative communications with that of virtual
MIMO systems [16]. For example, exploiting the concept
of space time coding [20] directly led to ‘Cooperative
Networking Road’ of Fig. 2, which again emerged from
‘Phy-Cooperation Boulevard’, as further detailed in Fig. 4.

As the cooperation techniques are expanded to multi-
ple cells, ‘Multi-user Multi-cell Street’ leads to facilitat-
ing spectrally-efficient, reliable data transmission between
spatially-distributed user nodes and multi-antenna desti-
nations via intermediate multi-antenna relay nodes [19].
Thus, ‘Multi-user Multi-cell Street’ [17] also merges into
‘Cooperative Networking Road’ of Fig. 2.

As we travel along ‘Coding Parkway’ of Fig. 2 and
focus our attention on the development of near-capacity
codes, since the early 1990s research interests have been
focused on Turbo Codes (TC), on Low Density Parity
Check (LDPC) codes and on polar codes [21].

Near-capacity performance can be achieved by employ-
ing TC [22], which introduces significant delay caused
by alternating forward/backward iterations of the classic
turbo decoding principle [6]. Fortunately, Maunder’s re-
cent parallel decoding approach can be used for reducing
the turbo decoding delay [23]. As a result, ‘Turbo Street’ in
Fig. 2 is used for reflecting the development of TC, which
emanated from ‘Coding Parkway’ and later broadened
further into ‘Phy-Cooperation Boulevard’.

LDPC codes [24] can also support near-capacity oper-
ation and a potentially reduced decoding delay. However,
both LDPC and TC tend to impose a high complexity and
to exhibit error floors. These disadvantages motivated the
design of polar codes [25]. Polar codes are also capable
of approaching the channel capacity, despite using low-
complexity methods for code construction, encoding and
decoding. Additionally, polar codes are less prone to error
floors [26]. In order to portray these developments in
the area of LDPC and Polar codes, we have changed the
‘Channel Coding Lane’ to ‘LDPC-Polar Lane’ in Fig. 2.

Then, in the context of cooperative communication [16],
Network Coding [27] is cable of exploiting all active
nodes in the network in order to provide diversity for
Cooperative Networking [28]. Various NCs schemes are
presented in Section I.B-2, which can be constructed based
on different channel coding schemes, as portrayed in Fig. 6,
where Maximum Distance Separable codes constitute a
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typical example considered in this paper.

Further research along ‘Coding Parkway’ seen in Fig. 2
has appeared in diverse emerging applications of coding in-
cluding network coding [27] and quantum communications
[29]-[32], just to name a few. As we continue our historic
stroll along ‘Coding Parkway’, we find compelling appli-
cations of coding in the emerging contexts of ‘Network
Coding Street’ and ‘Quantum Coding Street’ seen in Fig. 2.
In a nutshell, as we proceed along ‘Coding Parkway’, new
coding schemes continue to emerge for radically evolving
communication systems.

Anecdotally speaking, all the roads tend to converge to the
”Next-Generation Place” in Fig. 2, where “Quantum Com-
munications Avenue” may be expected to contribute to the
landscape of wireless communication systems. Accordingly,
TABLE I summarises the important milestones along the road
map portrayed in Fig. 2, which are discussed in the order seen
in Fig. 3.

As a result, the novel contributions of this paper can be
summarised as follows:

e We survey the different routes leading to a Near-
capacity Large-scale Multi-user Cooperative communica-
tions (NLMC) system by employing near-capacity turbo
codes, multi-dimensional modulation, co-located MIMO
techniques, distributed and virtual MIMO as well as
network coding.

o We focus our attention on the design of network coding
in order to construct attractive NLMC systems. More
specifically, we detail various techniques employed for
improving the diversity versus multiplexing trade-off of
large-scale cooperative communication systems invoking
network coding.

o We detail our adaptive mechanisms conceived for the top-
most network coding layer in order to demonstrate how
the multiplexing gain of network coding systems can be
further improved.

e In order to provide a complete portrayal of the NC
class focused in the paper, we present our approach on
the corresponding blind NC, where the network-decoder
requires no prior knowledge concerning the encoding
process invoked at intermediate nodes.

e We provide discussions and analyses on influential el-
ements of a general NLMC architecture relying on
the powerful techniques of multi-layer network coding
dispensing with side information network coding, and
adaptive network coding, full-diversity network coding,
near-capacity channel coding as well as cognitive com-
munications.

In the rest of this section, we first review MDM, which is in
a broad sense capable of providing more independently fading
dimensions by increasing the dimensionality of the signal
space. Typically, the attainable diversity gain may be increased
by making use of multiple antennas. Then, by focusing on
the diversity aspects, we feature cooperative communications
that constitute another solution conceived for enhancing the
diversity gain, where single-antenna aided relays cooperate for
constructing virtual MIMO antennas. In a nutshell, we harness
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Year

Author

Milestone

1948
1950
1955
1957
1959

1960
1966
1971
1972
1974
1977
1979
1993
1997
1996
1998

1999
2000
2002
2003
2004

2005

2006

2007
2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

Shannon [33]
Hamming [34]
Elias [35]
Prange [36]
Brennan [37]

Reed and Solomon [38]
Forney [39]

van der Meulen [40]
Bahl et al. [41]

Bahl et al. [42]

van der Meulen [43]
Cover and El Gamal [44]
Berrou et al. [45]
Tarokh et al. [46]
Foschini et al. [47]
Alamoti et al. [48]
Sendonaris et al. [49]

Tarokh et al. [50]-[52]
Ahlswede et al. [27]
Hanzo, Liew and Yeap [5]
Laneman and Wornell [16]
Laneman et al. [53]

Janani er al. [20]

Snessens et al. [54]
Hu and Li e al. [55]
Li et al. [56]

Hu et al. [57]

Yeung and Cai [58], [59]
Ho et al. [60]

Xiao et al. [61]

Wang et al. [62]

Hanzo et al. [63]

Ming and Skoglund [64]
Sadeghi et al. [65]
Rebelatto er al. [28]

Rebelatto et al. [66], [67]
Maric et al. [68]
Xiao et al. [69]

Nguyen et al. [70]
Li et al [71]
Rayel et al. [72]
Moritz et al. [73]

Chun et al. [74]

Chen et al. [75]

Liang et al. [76]

Bordon et al. [77]
Samadi-Khaftari et al. [78]

Sundararajan et al. [79]

Shannon’s capacity theorem was introduced.

Hamming codes were discovered.

Convolutional codes were introduced.

Cyclic codes were proclaimed.

Three diversity systems, namely selection combining, maximal ratio combining and equal gain combining,
were analysed.

Reed Solomon (RS) codes were defined over certain finite Galois fields.

Concatenated codes were introduced.

A simple relay channel constituted by a source, a destination and a relay was introduced.

The Maximum A-Posteriori (MAP) algorithm was invented.

The symbol based MAP algorithm was proposed.

The model of [40] was generalised and the transmission efficiency of relays was studied.

Capacity analysis of the full duplex relay channel was presented.

Turbo codes were discovered.

Space Time Trellis Code (STTC) was introduced.

Diagonal BLAST was conceived for achieving an MIMO multiplexing gain.

Space Time Block Code (STBC) was introduced.

The relay model was generalised to the system supporting multiple nodes, which are capable of transmitting
their own data as well as of serving as relays for others.

Alamouti’s scheme of [48] was generalised for supporting systems exploiting more than two transmit antennas.
Widely acknowledged concept of network coding was formally published.

Turbo algorithms were characterised.

Various cooperative diversity protocols were developed for exploiting spatial diversity in a cooperative scenario.
Performances of various cooperative diversity protocols, namely of Decode-and-Forward (DF),

of Amplify-and-Forward (AF) and of relay selection are compared in terms of their outage behaviours.

The diversity of coded cooperation was increased by borrowing ideas originated from STCs in conjunction with
the application of turbo codes to the proposed relay aided system.

A soft DF signalling strategy capable of outperforming the conventional DF and AF was proposed.
Slepian-Wolf cooperation exploiting distributed source coding in wireless cooperative communication was advocated.
Soft information relaying applied in a BPSK modulated system employing turbo coding was proposed.
Wyner-Ziv cooperation relying on the Slepian-Wolf cooperation of [55] in conjunction with a compress-and-forward
signalling strategy was proposed.

Existence of Maximum Distance Separable (MDS) network codes was shown.

Random Network Coding (RNC) was introduced for a non-coherent network model.

The concept of network coding was introduced in the context of cooperative communications.

The complex field network coding approach capable of mitigating the throughput loss in conventional cooperative
signalling schemes and of attaining full diversity gain was introduced.

Low-complexity cooperative MIMOs and distributed turbo codes designed for two users cooperating

for the sake of improving their attainable BER performance were presented.

A basic example of the applications of MDS network coding was introduced in multi-user relay networks.
Instantly Decodable Network Coding (IDNC) was introduced for controlling the decoding delay of RNC.
Generalized Distributed Network Coding (GDNC) designed based on RS codes was introduced for

cooperative communications.

Adaptive GDNC was introduced in the context of cooperative communications.

Multi-hop network coding based systems relying on an AF mechanism were studied.

MDS network codes were investigated in scenarios in the presence or absence of the direct source-base station links
and relying on orthogonal/non-orthogonal channels.

GDNC is further generalised for incorporating adaptive and full diversity aspects.

Adaptive GDNC is employed for aiding successive relaying in noncoherent cooperation.

GDNC is investigated in the context of Nakagami channel.

GDNC was employed for the uplink transmission, while energy transfer is

carried out in the downlink transmission

An adaptive random network coding scheme was proposed for spectrum sharing in cognitive radio networks.
GDNC was employed in the general context of energy harvesting.

Distributed GDNC scheme was proposed for Cooperative Cognitive Radio Networks.

The aspect of energy efficient power allocation was investigated for

network-coded cooperative cognitive radio network.

Coding constructions were conceived for both MDS field-based and

for MDS convolutional code in the context of acyclic networks.

Feedback-based techniques were proposed for controlling the decoding delay of IDNC Schemes.

TABLE I: Milestones related to the research road map presented in Fig. 2.
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Coding
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Fig. 2: Stylised Roadmap of Near-capacity Network Coding Aided Cooperative Multi-User Communications.

a general technique of combining the benefits of coding and
cooperative communications.

A. Multi-Dimensional Modulation

The idea of MDM was embedded into Shannon’s funda-
mental theorem itself, which relies on increasing the dimen-
sionality of the signal space in order to increase the bandwidth
efficiency [80]. Slepian [81] and Ottoson [82] proposed modu-
lation schemes based on equal-energy signals that were defined
as M points on a sphere in the N-dimensional Euclidean
space.

The motivation for employing MDM may be readily
highlighted by referring to the gain achieved with the aid
of the classic two-dimensional constellation over the one-
dimensional constellation. The implication of this is that

upon considering infinitely large constellations, the Signal-
to-Noise Ratio (SNR) loss of one-dimensional constella-
tions with respect to two-dimensional constellations is un-
bounded [83]. Unfortunately, the same reasoning does not
hold when this concept is extended from two-dimensional
constellations to higher-dimensional constellations. Hence,
only the transition from one-dimensional signalling to two-
dimensional signalling allows us to double the transmitted
information bit rate, provided those signalling schemes are
based on the use of an in-phase quadrature-phase carrier [81],
[84], [85]. By contrast, a BER performance improvement was
reported when evolving from two-dimensional-signalling to
four-dimensional-signalling [84], [86], which was not accom-
panied by a throughput improvement.

Additionally, the seminal paper by Saha and Birdsall [87]
suggested that the four-dimensional modulation referred to as
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Quadrature-Quadrature Phase-Shift Keying (Q?PSK) transmits
twice as many bits per second at a given bandwidth compared
to that of Quadrature Phase-Shift Keying (QPSK) without
any SNR penalty. The evolution from QPSK to Q*PSK was
presented in a way analogous to the transition from BPSK to
QPSK. However, the appealing benefits of Q?PSK eroded after
Visintin et al. investigated the minimum bandwidth required
for each of those modulations [86]. This research clearly
showed that the bandwidth efficiency of QPSK and Q?PSK
are, in fact, identical, and that there is no advantage in using
Q2PSK on Additive white Gaussian Noise (AWGN) channels.
Visintin also suggested that in order to reap a benefit from
using a four-dimensional basis, a channel coded scheme should
be used [86].

Following the idea of the coded multi-dimensional scheme,
the joint designs between MDM and coding, namely group
codes, trellis codes as well as convolutional and block codes
were proposed [80], [82], [85], [88], [89]. The MDM concept
was also applied to Bit-Interleaved Coded Modulation (BICM)
in the context of multi-antenna channels in the form of spatial
mapping (mapping across antennas) [90]-[94]. Later, MDM
was combined with Space Time Coding (STC) and BICM in
the form of coded modulation aided MIMO systems [92]-[95].
In such coded modulation systems, multidimensional bit-to-

symbol mapping is used between the channel-coded words
and multidimensional constellations.

As regards to channel capacity, advances in channel cod-
ing made it feasible to approach Shannon’s capacity limit
in systems equipped with a single antenna. However, these
capacity limits can be further extended with the aid of multiple
antennas in MIMO systems, which are capable of providing
a linearly increasing capacity as a function of the transmit
power, provided that the extra power is assigned to additional
antennas [96]. MIMO schemes can be briefly categorised as
diversity techniques, multiplexing schemes, multiple access
arrangements and beamforming techniques [63]. Typical form
of MDM aided diversity techniques are STTC [97], STBC [98]
and STBC-Sphere Packing (STBC-SP) [99].

1) Space Time Trellis Code: STTCs [51], [97], [100], [101]
were proposed by Tarokh et al., which incorporate jointly
designed channel coding, modulation, transmit diversity and
optional receiver diversity. The performance of the system
employing STTCs is determined upon matrices constructed
from pairs of distinct code sequences, while the corresponding
diversity gain and coding gain of the codes are determined
by the minimum rank and the minimum determinant [97],
respectively. The STTCs proposed in [97] strike the best trade-
off among the data rate, diversity gain and trellis complexity.
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It should be noted that the presence of multiple propagation
paths does not decrease the diversity order guaranteed by the
design criteria used for constructing the STTCs.

2) Space Time Block Code: STBC concept was conceived
by Alamouti in [98] as a simple two-branch transmit diversity
scheme. Using two transmit antennas and a single receive
antenna, the prevalent scheme provides the same diversity
order as maximal-ratio receiver combining with one transmit
antenna and two receive antennas, provided that the two
antennas experience independent fading. It was also shown
in [98] that the scheme can be readily generalised to two
transmit antennas and /N, receive antennas for providing a
diversity order of 2N,.

3) STBC-Sphere Packing: In line with the approach of
using channel coded scheme [86], Sphere Packing (SP) mod-
ulation was proposed by jointly designing with STBC in [99]
for two transmit antennas and for various number of receive
antennas. As a result, the scheme is capable of exploiting the
benefits of multi-dimensional modulation, where the signals
transmitted from two transmit antennas are chosen from L le-
gitimate space-time signals, which are designed over the four-
dimensional real-valued Euclidean space R*. In other words,
the L legitimate space-time signals are selected from the
four-dimensional real-valued Euclidean space by ensuring that
they have the highest possible minimum Euclidean distance
from all other (L — 1) legitimate signals [63]. The SP-STBC-
G2 scheme was also concatenated with other channel coding
schemes, namely with Low-Density Parity-Check (LDPC)
codes in [102] and with BICM in [103].

Having separately presented the family of transmit
diversity techniques including STTC, STBC and SP-STBC,
the BER/FER performances of these techniques show that
the STTC scheme tends to exhibits a superior BER/FER
performance in comparison to the other schemes, namely
to G2-STBC and SP-STBC, especially at sufficiently high
SNRs. This explains why the STTC scheme is favoured for
the further development of MIMO-based solutions, when the
BER/FER performance of the systems has a high priority.
[104], [105].

B. Cooperative Communications and Network Coding

1) Cooperative Communications: Classically, relays have
been used to extend the range of wireless communication
systems [44], [106]-[111]. However, in recent years, numer-
ous exciting new applications of relay aided communica-
tions have emerged [112]-[120]. The applications of coop-
erative and relay aided communications involve the Physical
Layer (PHY) [113], [118], [119], [121], [122], the Medium
Access Control (MAC) [112], [117], [123], the network layer
[120] as well as their cross-layer operation [114]-[116], [124],
as seen in Fig. 4. One of typical scenarios is to support com-
munications between the source and destination nodes with
the aid of cooperative protocols. Such a system is realized by
designing sophisticated medium access between the source and
relay nodes [125], [126], which is facilitated by appropriate
modulation and coding schemes [127], [128]. The system as a
whole can be optimized in a centralized or decentralised man-
ner [129], [130]. As a result, the diversity gain of the system
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can be substantially improved [131]. Moreover, in multi-user
systems, different users can also act as cooperating partners or
relays in order to share resources and assist each other in their
information transmission [132]. Another beneficial application
is the exchange of information between multiple users through
relay(s). In some cases, the total throughput of these systems
can be drastically increased by exploiting the knowledge of
one’s own transmitted signal [133].

As illustrated in Fig. 2, 3 and 4, cooperative networking
exploits the concept of physical-layer cooperation and of
cross-layer operation techniques relying on the PHY, MAC
and network layers, which has recently received significant
research attention [134]-[138]. As seen in Fig. 4, cooperative
networking may be classified into the following categories:

o Coding [136], [139]-[146] in the PHY layer;

o Power allocation [147]-[152] in the PHY layer;

o Energy transfer and harvesting [153]-[156] in the PHY
layer;

o Cooperative transmission [157]-[160] in the PHY layer;

o Full duplex and two-way relaying [161]-[164] in the
PHY layer;

o Relay-selection in the PHY and network layer [165]-
[170];

e Service-quality improvement [171]-[173] in cooperative
networks;

o Channel access [174]-[178] in the MAC layer;

o Routing [179]-[184] in cooperative networks;

o Scheduling [123], [185], [186] in the MAC layer;

o Topology control [187]-[189] in cooperative networks;

o Resource management [190]-[193] in cooperative net-
works;

o Cross-layer design [129], [130], [194], [195] in coopera-
tive networks.

Network coding appears in a number of categories within
the framework of cooperative networking, namely in coding
[139]-[141], power allocation [147], [150], energy harvesting
[153], [154], two-way relaying [154], [164], cooperative trans-
mission [157], channel access [177], [178], relay-selection
[166], [167] as well as in routing [180], [183], [184] cate-
gories, as portrayed in Fig. 4.

2) Network Coding: Network coding is capable of increas-
ing the throughput, while minimising the amount of energy
required per packet as well as the delay of packets travelling
through the network [196], [197]. This is achieved by allowing
intermediate nodes in a communication network to combine
multiple data packets received via the incoming links before
transmission to the destination [198]. Due to the beneficial
merit, the concept of the network coding has been applied in
various disciplines, as illustrated in Fig. 5.

In the area of communications, network codes may be
classified based on different perspectives, for example on the
basis of how the information streams are processed at the
relays [199], on the construction of network codes [200], on
the specific architecture of communication networks employ-
ing network coding [201], on the layer in communication
networks where the network coding operates [202], just to
name a few. As seen in Fig. 6, we may classify network
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codes into three main categories, namely the Linear Net-
work Codes (LNC) [200], [203]-[206], Non-linear Network
Codes (NLNC) [207], [208] and the family of so-called Hybrid
Network Codes (HNC) [209]-[211]".

It should be noted that the capacity of single-source mul-
ticast communications in a network can be approached by
solely using LNC [212], which has many attractive properties.
From a theoretical standpoint, linearity is a beneficial algebraic
property supported by exact mathematical foundations. From
an engineering standpoint, the simplicity of linear approaches
leads to relatively low complexity in the encoding and de-
coding processes, which makes LNC attractive in the area of
communication engineering [213]. It is worth noting that the
specific categories of the LNC characterised in Fig. 6 are not
strictly unrelated to one another.

3) Linear Network Codes: Let us focus our attention on
the LNC branch of the network coding taxonomy presented
in Fig. 6, where we pay particular attention to Maximum
Distance Separable (MDS) network codes and to Random
Network Codes (RNC). For the details on Generic Network
Codes (GNC), Static Network Codes (SNC) and Convolu-
tional Network Codes (CNC), interested readers might gain
insightful details in reference [203]. For the details on Product
Codes (PC) seen in Fig. 6, refer to [200], whereas the specifics
of Secure Network Codes (SNC) mentioned in Fig. 6 can be
found in [204]-[206].

Let us summarise the important milestones in the evolution
of MDS network codes and RNCs in TABLE II, where the
concept of network coding was introduced by Ahlswede et al.
in 1998 [214] and was later formally published in 2000 [27].

In 2006, the network coding concept was conceived as
a generalisation of classic error correction codes in [58],
[59], which also extended bounds employed in classic coding
theory, namely the Singleton bound, Hamming bound and
Gilbert-Vashamov bound, to the network coding field. Based
on the Singleton bound, the existence of Maximum Distance
Separable (MDS) network codes was proved. In the same
year, RNCs were proposed in [60]. The main benefits of RNC
are their decentralised operation and robustness to network
changes or link failures, which are considered in the scenario
of the non-coherent network model. It was noted that research
in network coding theory considered two different network
models, namely coherent and non-coherent networks. In the
coherent network, the transmitter and receivers are aware of
the network characteristics, while in the non-coherent net-
works the opposite is true. Naturally, the non-coherent network
model is more suitable for most practical applications [200].

In 2007, SC was introduced in [215] as a branch of RNC,
which was described in more detail in 2008 [216] as a network
code capable of correcting various combinations of errors and
erasures.

In 2008, the author of [217] proved that the concept of
minimum distance plays exactly the same role as it does in
classic coding theory in terms of characterising the capability
of correcting/detecting errors. This proof simplifies the design

'We use the term ‘hybrid network codes’ for the network codes that do
not entirely belong to either the linear network coding or non-linear network
coding classes
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of network codes. Hence, the structure of the MDS code family
established in classic coding theory may also be applied to
network coding.

Relying on the initial work in [64] published in 2009, the
application of the MDS network coding in multi-user relay
networks was fully characterised in 2011 [218].

In 2011-2012, relying on the initial results of [28] dis-
seminated in 2010, the authors of [67], [219] formally intro-
duced GDNC relying on employing the construction of Reed
Solomon (RS) codes, which belong to the family of MDS
codes.

In 2012-2013, the concept of GDNC systems was fur-
ther developed for incorporating near-capacity channel coding
schemes into the GDNC systems, in order to conceive a family
of multi-user, multi-layer, multi-mode cooperative systems?

During 2014-2017, the GDNC based system was further
investigated in the context of energy transfer [73], energy
harvesting [75] and cognitive radio networks [74], [77]. Fur-
thermore, beneficial coding constructions were conceived for
both MDS field-based and MDS convolutional coded acyclic
networks [78].

The rest of the paper is organised according to Fig. 3 as
follows. We first discuss the overall architecture of NLMC
systems in Section II before focusing on detailing two promi-
nent layers, namely Network Coding 1 in Section IIl and
Network Coding 2 in Section IV, respectively. The principles
and examples of the NLMC system design are presented in
Section V, before offering our design guidelines and conclu-
sions in Section VL.

II. GENERAL ARCHITECTURE OF THE NLMC SYSTEM

The general architecture of the NLMC system shown
in Fig. 7 can be structured into three coding layers, namely
CC, Network Coding 1 (NC1) and Network Coding 2 (NC2).
In the triple-layer coding architecture, H consecutive frames
of a user’s information are processed in NC2 by using either
the fixed mode or the rate adaptive mode, before feeding the
© number of resultant encoded frames to NCI1, as seen in
Fig. 7. Details of the encoding and decoding processes at the
NC2 layer are discussed in Section IV.

At the NCI layer, the NLMC system can be activated for
operating either in a centralised or in a distributed topol-
ogy. If the centralised topology is opted for, the M users
cooperatively transmit Mk, Information Frames (IFs) to the
same destination node (also known as Base Station (BS))
during a transmission session, where k1 is the number of IFs
transmitted by each of the M users during the transmission
session. Once the frames to be transmitted have been con-
structed according to the processes performed at NC1 and
NC2, each frame is encoded by the channel coding scheme,
as shown in Fig. 7. By contrast, the distributed topology
may be used for the scenario, where M users communicating
with a BS via N relay nodes, which apply network-coding

’It is observed by the authors of [212] that in the area of network coding
research, the gradual shift from more theoretical investigations to more
practical concerns has demonstrated that network coding research has reached
a level of maturity. As a result, recent research in network coding is more
focused on its practical challenges, implications and implementations [212].
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Year

Author

Milestone

1998

2000
2006

2007

2008

2009

2010

2011

2012

2013

2014
2015

2016
2017

Ahlswede et al. [214]

Ahlswede et al. [27]
Yeung and Cai [58], [59]

Ho et al. [60]
Koetter et al. [215], [216]

Xiao et al. [61]
Zhang [217]

Ming and Skoglund [64]
Rebelatto et al. [28]

Chao et al. [218]
Rebelatto et al. [66], [67]

Rebelatto et al. [219]
Maric et al. [68]
Xiao et al. [69]

Nguyen et al. [70]

Li etal [71]

Rayel et al. [72]

Moritz et al. [73]

Chun et al. [74]

Chen et al. [75]

Liang et al. [76]

Bordon et al. [77]
Samadi-Khaftari et al. [78]

Seminal work on the network coding field introducing the concept of processing information frames

at intermediate nodes rather than simply forwarding them.

Widely acknowledged concept of the network coding was formally published.

Existence of Maximum Distance Separable (MDS) network codes was proved for paving the way

applying classic code theory to network coding.

Random Network Coding (RNC) was introduced for non-coherent network model, which is more suitable

for most practical applications.

Subspace Codes (SC) was proposed as a branch of RNC family, which is capable of correcting

various combinations of errors and erasures.

The concept of network coding was introduced in the context of relay aided communications.

Concept of minimum distance in LNC was proved to be the same as that in classic coding theory,

when characterising the capability in correcting/detecting errors.

A basic example on the applications of MDS network coding in multi-user relay networks was introduced.
Generalized Distributed Network Coding (GDNC) was introduced, which is generalised from the basic model of [64]
by allowing each user to transmit multiple frames during broadcast and cooperative phases according to

a transfer matrix constructed from generating matrices of RS codes.

Applications of MDS network coding in multi-user relay networks was fully introduced along with analyses on
Diversity Multiplexing Trade-off (DMT).

Adaptive GDNC was introduced by allowing each user in the GDNC system to transmit fewer parity frames based on
the feedback from transmission during the broadcast phases

GDNC systems was formally introduced.

Multi-hop network coding based systems relying on an AF mechanism were studied.

MDS network codes were investigated in scenarios in the presenceor absence of the direct source-BS links

and relying on orthogonal/non-orthogonal channels.

GDNC was further generalised for incorporating adaptive and full diversity aspects.

Adaptive GDNC was employed for aiding successive relaying in noncoherent cooperation.

GDNC was investigated in the context of Nakagami channel

GDNC was employed for the uplink transmission, while energy transfer is carried out in the downlink transmission.
An adaptive random network coding scheme was proposed for spectrum sharing in cognitive radio networks.
GDNC was employed in the general context of energy harvesting

Distributed GDNC scheme was proposed for Cooperative Cognitive Radio Networks

Energy Efficient Power Allocation aspect was investigated for Network-Coded Cooperative Cognitive Radio Network.
Coding constructions were conceived for both MDS field-based and for

MDS convolutional code assisted acyclic networks.

TABLE II: Milestones in network coding (2000-2017) with regard to the development and applications of the Maximum
Distance Separable (MDS) based network coding.
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to the IFs received from the M users in order to generate
PFs for transmission to the BS. Moreover, the NC1 layer can
be configured for operating in various modes chosen from
two groups of appropriate modes, namely using the combined
modes and the single modes.

At the CC layer featured in Fig. 7, the NLMC system
can be programmed for functioning in different modulation
modes that are concatenated with diverse coding schemes.
Then, the most appropriate coded modulation scheme can
be activated for supporting the cognitive radio functionality,
while the diversity between transmission frames can be im-
proved by exploiting the most suitable sub-frame transmission
mechanism. More specifically, all the links in the system are
supported by near-capacity schemes that comprise a powerful
channel coding scheme and a modulator [6], [8], [70], [104],
[220]. The channel coding scheme is capable of providing
either a fixed coding rate [70] or an adaptive coding rate
[76] that can be amalgamated with either a single antenna
system [70], [220] or multiple antenna system [221]. The
modulator can be configured for a coherent regime [220] or
a non-coherent regime [70]. For further details of how the
near-capacity schemes are designed, consult [6]-[8]. For the
sake of brevity, refer the interested readers to the above-
mentioned references for further details relating to the near-
capacity channel coding design, while in this paper, we focus
our attention on characterising the NC1 and NC2 layers.

It should be noted that at the NC1, NC2 and CC layers,
there are a number of operational modes that may be
activated according to the specific system requirements.
The CC layer is used for providing time diversity within
a transmission frame, while the NC1 layer is capable of
gleaning spatial diversity from all )}/ users involved in a
transmission session. When the time diversity between the
different transmission sessions further improves the system
performance attained, the NC2 layer may be activated.
Accordingly, the modes of the layers are described in
the corresponding layers presented in Section III and
Section IV.

III. NETWORK CODING 1: MULTI-USER COOPERATIVE
COMMUNICATION

In the Dynamic Network Codes (DNCs) scheme proposed
by Xiao and Skoglund [64], each of the M users also acts as a
relay for the other users. In the scheme, each user broadcasts a
single IF of its own both to the BS and to the other users during
the first Time Slot (TS). Then, during the 2"¢ to the (M )" TS,
each user transmits (M — 1) Parity Frames (PFs) to the BS.
Each of these PFs consists of nonbinary linear combinations
of the IFs that it could successfully decode.

By contrast, GDNCs adopted as conventional mode (C'
mode) at NC1 layer were proposed in [28], [219] by interpret-
ing the scenario as being equivalent to that of operations of
linear block codes defined over GF(q) for erasure correction.
The authors of [28], [219] extended the original Dynamic
Network Coding (DNC) concept by allowing each user to
broadcast several (as opposed to a single) IFs of its own
during the Broadcast Phase (BP), as well as to transmit several

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2814636, IEEE Access

nonbinary linear combinations, which are also considered
as PFs, during the Cooperative Phase (CP). A transmission
session of GDNC comprises two phases, namely the BP and
the CP.

A. Network Coding 1: Conventional Mode employing Gener-
alised Dynamic-Network Codes

1) System Model: In the cooperative multiple-user system
employing GDNC having M users cooperatively communicat-
ing with a common BS, a transmission session of the system
is conducted in two groups of phases, the BPs and the CPs.
Let us detail an example of such the GDNC system that has
M = 2 users communicating with a BS [64]. In a transmission
session, each user transmits k; = 1 IF during the BP and
ko = 1 PF during the CP. The details of transmission phases
are illustrated in Fig. 8 and summarised as follows

Broadcast phases

(B1) Broadcast phase 1 : User 1 1, BS and User 2,
(B2) Broadcast phase 2 : User 2 2@, BS and User 1,

Cooperative phases

(D=1 1)+12(2)

BS,
2, BS

(C1) Cooperative phase 1 : User 1 o
(2)=I1(1)+212(

H
(C3) Cooperative phase 2 : User 2 2

If all the frames transmitted within the session are success-
fully decoded, the transmission session can be equivalently
represented by the matrix Gax4 [28], [219]

G2><4 =

—_

1
5 |- ()

O =

where Gax4(i,i) = 1,4 = [1,2] represents the successful
decoding of the IFs I;(¢) at the BS, which was transmitted
by User i during the BP B;. Having G2x4(1,3) = 71”7 or
Go4(2,4) = 72" means that the PF transmitted by User 1 or
User 2 during the CP C or () is successfully decoded at the
BS, and the linear combining coefficient of the IF I;(1) or
I5(2) in this PF has a value of ”1” or ”2”, respectively. Note
that having G2x4(2,3) = 71”7 or Gax4(1,4) = ”1” indicates
that IF I5(2) or I1(1) is successfully decoded by User 1 or
User 2, and the PF transmitted by User 1 or User 2 during
the CP C or (s is successfully decoded at the BS, provided
that the linear combining coefficient of the IF 1 (1) or [5(2)
in this PF has a value of ”1” or ”1”, respectively.

To elaborate further, the system might experience an actual
transmission session containing (k1M + koM) = 4 phases
depending on the success or failure of a specific transmission
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attempt as follows where / —' represents the transmission direction, while ' =
1’/ = 0/ means that the frame is successfully/unsuccessfully
; recovered at the destination, respectively. The matrix G;X4 is
(B1) Gy,4(1,3) = G2xa(1,3), defined as the corresponding *modified’ transfer matrix, where

[User 1 = B S G'2X 4(1,1) =0, the terminology 'modified’ implies that the entries of G2X 4
are modified from those of the original transfer matrix Goxy
of Eq. (1) according to the actual transmission session detailed

Broadcast phases

[User 1 =5 User 2] : Gy s (2,4) = Gaxa(2,4),

(B2) G;X4(2,4) = Gax4(2,4), in Eq. (2). As a result, G;M is formed as
[User 2 =% BS] : Gy, ,(2,2) =0, G _[00 01 )
2x4 — 0 0 | 0 2 )

[User 2 =% User 1] : Gy 4 (1,4) = Gaxa(1,4),
Cooperative phases

(C1)  [User 1 =% BS]: Gy, ,(i,3) =0,i=1,2,
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where the diagonal elements 1’ at the left of Eq. (1) be-




(Bj) Broadcast phases 1 (Bj) Broadcast phase 2

(C1) Cooperative phase 1 (C1) Cooperative phase 2

Fig. 8: The model of the system supporting M = 2 users,
where each user transmits k1 = 1 IFs and ks = 1 PFs [220].

come ’0’ owing to the unsuccessful [User 1 = BS] and
[User 2 =0 BS] transmissions in (2B7) and (2B3). The
0’ elements in the third column of Eq. (2) indicate the
unsuccessful [User 1 =0, BS] transmission in (2C1).

In the generalised system model, the transfer matrix
Gy M xky M+ko 0 (Or G for shorthand) comprising the identity
matrix Iy, prxk, v (or I for shorthand) and the parity matrix
Py, vixck,m (or P ofor shorthand) represents a transmission
session of the system, where all the frames transmitted during
that session are successfully decoded [219]. In fact, there
may be unsuccessful frame transmission occurring during the
transmission session, then the transfer matrix is modified for
reflecting the transmission session to become the modified
transfer matrix G . The formula representing how the G is
calculated from G is detailed in [220], [222].

The decoding process is carried out at the BS by employing
the modified transfer matrix G . To characterize the FER-
performance of the GDNC based system, a method referred to
as Purely Rank-Based Method (PRBM) is used in the study
presented in [28], [219]. Later, a method coined as Pragmatic
Algebraic Linear Equation Method (PALEM) is proposed in
[220]. The method is capable of providing more accurate FER
results for the characterisation of network codes than those
provided by PRBM. The PALEM facilitates the investigation
of the FER-performance bounds of GDNC based systems
[222], which allows to estimate FER-performance of large-
scale GDNC based systems.

2) Performance Bounds and Diversity Order of the GDNC
system: In the GDNC system, each of the M users broadcasts
the k; IFs to the other M — 1 users during BPs. Then, during
CPs each of M users transmits the ko IFs to the BS. If all the
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inter-user transmissions are successful, all the PFs formed by
a user are linearly independent combination of the IFs, which
were successfully received during BPs. As a result, an IF is
conveyed to the BS by (Mkz + 1) independent paths, which
leads to the diversity order of (Mky + 1).

By contrast, the unsuccessful inter-channel transmissions
may lead to the case where some of the PFs transmitted by
a user are not linearly independent combinations of the IFs.
The worst case is when each of the other (M — 1) user is
able to produce only a single linearly independent combination
(PF), while the user itself is always capable of constructing ks
linearly independent combinations. As a result of such worst
case, there are (M + ko) independent paths for carrying the
IF to the BS, which induces the diversity order of (M + k3).

In line with the above-mentioned analysis, it was proved
in [219], [223] that the diversity order D of the system is
bounded by

M+ ky <D< Mky+ 1. 3)

The authors of [222] formulated the diversity order D of the
GDNC based system mentioned in Eq. (3) as follows

— 10g2 Po
lim @ ————
SNR—oo logy SNR

where SN R is the signal to noise power ratio, while P, was
estimated on the basis of the best case PL°*" and worst case
PUPPer instead of using exact value of P,. Then, by using the
most influential terms of PYPP¢" and PX°we" instead of exact
value of P, in Eq. (4), it is observed in [222] that the upper
and lower bounds of the probability P, are in harmony with
the estimated diversity order given by Eq. (3).

As a further benefit of the performance bounds, one can
invoke the performance bounds derived in [222] for the sake
of exploring the GDNC system’s FER-performance in order
to find the most appropriate network code. More specifically,
it may be gleaned from the formula of PL°we™ in [222] that
the performance of the system approaches its lower bound
more closely, when the SNR value increases. Hence, we can
use the lower bound of the system performance for estimating
its capacity, when large transfer matrices are employed for
building the GDNC system.

For example, as seen in Fig. 9 that presents further
comparison of the system detailed in [70], along with the
increase of the size of the transfer matrix from Goyy4 to

D= @)

Gyxs, Gex12, G20x40, G200x400, G1000x2000, G10000x20000
and G12000x 24000, the distance from the GDNC system capac-

ity having a network coding rate of R;, s, = 1/2 is reduced to
1.7 dB from 24.8 dB, where a further marginal improvement
is exhibited when employing a transfer matrix having a larger
size than the matrix Gi2000x24000. From another perspective,
when a network code relying on a larger transfer matrix, say
G12000x24000 1S used, a maximum improvement of approxi-
mately 44 dB may be expected for the system investigated in
Fig. 9.

B. Network Coding 1: Full Diversity Mode

The Full Diversity (F'D) principle is first proposed in
[224] and later generalised in [70] for the NLMC system, in
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Fig. 9: The FER performance of network coding based systems
having R;,f, = 1/2 and employing the realistic IrCC-URC-
QPSK channel coding scheme [6], [70], when communicating
over wireless channels influenced by both the fast Rayleigh
and block Rayleigh fadings.

order to provide more diversity to the C' mode described in
Section III-A. In the F'D mode, the NLMC system is capable
of exploiting the inter-user transmissions during CPs, for
improving inter-user transmissions in BPs. More specifically,
if each user in the system is equipped with a network-coding
decoder, which is identical to the network-coding decoder
used at the BS, the user can decode all the IFs and PFs that
were successfully received, in order to improve its knowledge
about IFs transmitted by the other users. Then, the improved
knowledge is exploited for constructing the subsequent PFs
transmitted by the user. The process of decode-and-update
is repeatedly kicked off, as soon as the user receives a PF
transmitted by another user in the system. The decode-and-
update process at a certain user is no longer required, as soon
as all IFs transmitted by the other users during the BPs are
comprehensively known by the user.

In the C' mode, the system is potentially capable of ap-
proaching the full diversity that corresponds to the maximum
diversity order of D MFEs + 1, however this is not
guaranteed in all scenarios. Thus, the F'D mode is employed
for broadening scenarios, where the maximum diversity order
is achieved. These scenarios would emerge when a user has
a full knowledge of the IFs transmitted by the other users in
the system. Therefore, having a full knowledge of the IFs of
all the other users is the best scenario created by the F'D
mode. This best scenario is equivalent to the case, where all
of the inter-user transmissions carried out during the BPs are
successful. If this condition holds, the system always achieves
its maximum diversity order given in [224] as:

Mky + 1.

Max
DNLMC’

(&)

Hence, the system’s performance associated with the ide-
alised simplifying assumption of having perfect inter-user
channels, where the inter-user channels are error free, sets a
limit for the maximum attainable diversity gain of the near-
full-diversity process.

C. Network Coding 1: Adaptive Mode

24
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1) Operating mechanism: The inter-operation of channel-
and network-coding may be exploited for providing an im-

1 proved performance [67]. The inter-operation advocates an

adaptive mechanism, which relies on a feedback flag directly

i reflecting the performance of the network coding scheme. This
| feedback flag can be employed to control the channel coding

scheme, and vice versa, the feedback flag provided by the

| channel coding scheme may be utilised for controlling the

operation of network coding. The authors of [67] applied this
adaptive flag-controlled mechanism under the idealised simpli-
fying assumption of using an ideal/perfect channel code. The
authors of [70], [76], [220] further generalised this adaptive
feedback flag based solution for the NLMC system, where the
adaptive mechanism can be used with the F'D mode described
in Section III-B, while the flag-controlled mechanism operates
upon realistic near-capacity channel codes.

In the adaptive mechanism, each users transmit a change-
able number of PFs, which is decided upon feedback flags
sent from the BS. The feedback flags indicate success-
ful/unsuccessful transmission of the IFs received at the BS. As
a result, the multiplexing gain of NCI1 is increased due to the
reduction on the number of transmitted PFs. In line with [67],
the authors of [70], [76], [220] assume that the BS is capable
of sending back to the users a modest amount of information
containing feedback flags. Accordingly, let us denote the
number of PFs transmitted by User j in a transmission session
by ko ;. In order to increase the achievable multiplexing gain,
the value of ks ; has to be adaptively adjusted for each
transmission session according to two potential approaches
referred to as two adaptive modes, namely (A7) and (Asg) [67].

In the first adaptive (A1) mode, the diversity gain remains
unaltered, while the value of k; ; is adaptively adjusted based
on a feedback flag, which is an acknowledgement bit sent
by the BS to indicate the successful/unsuccessful reception
of all the Mk IFs transmitted by all the M users during
their BPs. In the second adaptive (As) mode, the value of
ko ; is adaptively adjusted upon a feedback flag, which is an
acknowledgement bit sent by the BS to indicate the success-
ful/unsuccessful reception of all the k; IFs transmitted by User
7 during his/her BPs. Hence, by the end of a transmission
session, in the (A;) mode there is a single acknowledgement
bit sent by the BS, while in the (A3) mode the BS needs to
send M acknowledgement bits during a transmission session.

Accordingly, the average adaptive network code rate corre-
sponding to the two adaptive modes, namely the A; mode and
the A, mode can be calculated upon given values of k1, ko, M
and P,. It should be noted that P, is the outage probability of a
single link in the system, which reflects the FER-performance
of the link [67]. As a result of having improved average
network code rates, namely the R;,f, 4, and the R, o A,,
we accordingly have the associated average multiplexing gain
defined as: 2, = R};fi:“‘l and (2, = %, where Ry fo
is the network codinénrz;te in the C model,n which can be can
be calculated by Ry, ¢, = ﬁ Moreover, it is observed in
[67], [70] that the average network coding rates I2;,, o, 4, and
Rin 0,4, increase when the outage probability P, decreases.
Since we have the outage probability 1 > P, > 0, the adaptive
network coding rates can reach its maximum value, when the
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outage probability approaches zero P, = 0. In other words,
having the average adaptive network coding rate reached its
maximum value of 1 corresponds to the scenario where PFs
are no longer required to be transmitted to the BS.

The maximum value of the average multiplexing gain as-
sociated with the adaptive modes A; and A, may be char-
acterised by the maximum value of the Ej/Ny-improvement
obtained by employing the adaptive feedback-flag based mech-
anism, which may be formulated as

Max {101log (£21)} [dB],
= Max {10log (22)} [dB],

— 10log <k1 ; k2> [dB), ©)
1

4

which merely depends on the values of the number of trans-
mitted IFs k; and the number of PFs ks.

2) Adaptive Network Coding: Multiplexing Gain versus
Diversity Gain: In order to feature the relationship between
the multiplexing aspect and the diversity aspect of the GDNC
system, which may appear when activating an individual mode
or a combination of available modes in the NCI layer, which
are described separately in Section III-B and Section III-C. It
should be noted that in order to have a fair comparison, the
gains have to be compared by the same basis, for example
SN R value of the system.

Let us recall the multiplexing gains, namely (2; and (25,
where its maximum value is determined by Eq. (6). If the
matrix Gay 4, the matrix G4«g or the matrix Ggy 12 is used at
the NC1, we have k1 = ko =1, k1 = ko =2 or k; = ko =
3, respectively [219]. As a result of substituting the specific
values of k1 and k5 into Eq. (6), we may obtain the maximum
value of the multiplexing gain as

10log (kl 2_ k2> [dB],
1

= 3[dB]. 7

max  __
91,2 =

Hence, it is expected that the multiplexing gains, namely (2;
and (25, increasingly approach the 2"3* = 3 dB, when
increasing the SN R value used in the NLMC system employ-
ing the matrix Gox4, the matrix Gy4xg or the matrix Ggx12.
Fig. 10a shows various gains affecting the performance of
the system relying on the IrCC-URC-QPSK scheme when
activating the A; mode or the As mode. Both multiplexing
gains, (21 and (2, increase along with the increase of the
SNR value. The ("5 = 3 dB sets an upper bound for both
multiplexing gains.

It is observed that the diversity gain can be represented
by changes in F'ER-versus-SN R performance of the system,
when a particular regime is employed in the system. The
regime can be set by activating F'D mode for approaching
the system’s full-diversity presented in Section III-B, or by
applying the adaptive mechanism (A; mode or As mode)
described in Section III-C or by employing a combination of
the adaptive mechanism and the full-diversity modes. More
specifically, when the adaptive mechanism is applied to the
system employing NCI1, the changes in FER-performance
of the system associated with a given SNR value reflects
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the effect of changing the number of PFs transmitted within
transmission sessions on the FER-performance of the system.
Hence, the attainable diversity gain can be characterised by
the FER-versus-SNR performance of the system, when
the adaptive mode is employed. Therefore, let us define the
diversity gain ¢, and ®» achieved in the system by applying
the A; and A, mode, respectively:

@, = SNRe — SNRy,, (8)
®y = SNRc — SNRa,, 9)

where SNRc, SNR 4, and SNR 4, denotes the SN R value
required by the system using the C' mode, A; mode and Ao
mode, respectively.

In the system supported by the A; mode, none of the PFs
are transmitted, when the BS already recovered all the IFs
[67]1, [70], [76], [220]. As a result, the F'ER-versus-SNR
performance of the system remains unchanged at a given SN R
value, when the A; mode is applied. Hence, the diversity gain
@, corresponding to the system exploiting the A; mode is
@, = 0, as seen in Fig. 10. Let us consider the total-gain X; =
{21+ @ as the sum of the diversity gain and multiplexing gain
in the case of employing the A; mode. As a result of having
a diversity gain of ¢, = 0 for the A; mode, the total-gain Xy
is equal to the multiplexing gain {27, as also seen in Fig. 10.

By contrast, having more levels for adjusting the number ko
of PFs, the A; mode is capable of supporting the improved
multiplexing gain 25 seen in Fig. 10 in comparison to that
associated with the A; mode. It is also shown by Fig. 10 that
although the system supported by the A; mode has the higher
multiplexing gain of (25, the overwhelming degradation® of
the related diversity gain @, results in an inferior total gain of
Yy = 25+P5. Hence, it is expected that the system employing
the A; mode outperforms the system invoking the As mode.

D. Network Coding 1: Dispensing with side information

In all existing contribution on GNDN [67], [219], the
BS (or destination) is assumed to have full knowledge of
the side-information concerning the encoding process at the
intermediate nodes. Hence, an imposed overhead containing
the side information about the instantaneous formation of
each PF has to be transmitted over an error-free channel or
a well-protected channel to achieve error-free transmission.
In this section, we introduce our approach on the so-called
No-side-Information based GDNC (NI-GDNC) scheme that
requires no prior knowledge of how the PFs were formed. In
order to characterise the performance of the NI-GDNC based
system, we compare the performance of GDNC systems in the
following scenarios:

o GDNC with perfect side information (BS is aware of the

formation of PFs);

o NI-GDNC without any side information at the BS;

e« GDNC with different amount of imperfect side infor-

mation, where the overhead is contaminated by realistic
error-prone channels.

3The degradation in diversity gain ®3 is caused by introducing 0, 1 or kg
PFs in the A2 mode, rather than employing O or k2 PFs in the A; mode
[67].
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Fig. 10: The diversity-versus-multiplexing gain breakdown of the G4« g based systems of Fig. 7 relying the NC1 and CC layers,
when considering both the A; mode and the A; mode at NC1 layer and activating the IrCC-URC-QPSK [70] and IrCC-URC-
DBPSK [220] at the CC layer. Both the block Rayleigh fading and the fast Rayleigh fading are considered, when a frame
is transmitted in the Ng,;, = 1 subframe regime [6] over the wireless channel. For the sake of brevity, the SNR-performance
used for characterising the diversity gains in the A; and As modes is presented in Section ITI-C2.

The different-accuracy imperfect side information is re-
flected by the BER Q, = {10! : 1076} of the signalling
channels that convey the side information. In the GDNC
system operating in different-BER signalling channels, if
the signalling channel provides reliable side information, the
GDNC system is switched to the perfect-side-information
mode, namely to GDNC. Otherwise a blind search algorithm
Sp is activated for exhaustively searching in the predefined
network coding search-space defined by the transfer matrix G
used for constructing the network coding codec, in order to
recover IFs transmitted by the users of the system.

To demonstrate the benefits of GDNC systems when no
side information is available, we use the simplest GDNC
configuration relying on the G2y 4 matrix of [67], [219], [222],
where a similar idealised channel coding scheme operating at
the CCMC capacity is employed for the sake of comparison
to existing benchmarkers [67], [219].

10"

o Single link performance
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Fig. 11: Comparison of GDNC system’s performance in dif-
ferent scenarios, namely perfect side information available at
the BS, no side information available at the BS and erroneous
signalling channels used for conveying the side information.

As elucidated by Fig. 11, when no side information is
available at the BS, the GDNC system is still capable of

providing a significant improvement of 18 dB compared to
that of the direct link transmission. The GNDC system requires
Q. = 1073 guaranteed by the signalling channels in order to
support a performance similar to that exhibited in the perfect
side information based scenario.

IV. NETWORK CODING 2: EXPANDING TIME DIVERSITY
AMONG TRANSMISSION SESSIONS

In order to enhance the reliability of NLMC system by
provisioning time diversity between transmission sessions oc-
curring at the NC1, NC2 may be activated in order to form the
triple-layer coding architecture [70]. When in use, a random
network code [60] at the NC2 layer is applied across the
H 1Fs, namely across I,...Iy, in order to generate the @
network-coded frames of 71, ..., Zg, where © > H. It should
be noted that © network-coded frames are then allocated
into transmission sessions at the NC1. As a result, a linear
combination of the H IFs having a length of N bits/frame
forms a network-coded frame Z;, Z; = Zfil a;1;, where
scalars o (i € [4,...,H] and j € [1,...,0]) may be chosen
randomly and uniformly from a GF(27). If the GF(29) is
sufficiently large, the expected number of successfully received
frames required by the BS for successfully decoding the H
IFs is approximately H [60], [225]. Hence, it can be deemed
that the reception of H network-coded frames at the BS is
sufficient for the BS to recover H corresponding IFs [60], [70].
An outage is declared, when the number of frames received
at the BS is less than H, and this outage occurs with the

probability:
fa) . ,
( . )(1 — P,)'po,
(3

where P, is the outage probability of the system when NC2
is not in operation. In practice, the outage probability P, is
represented by the FER-performance of the system without
activation of NC2 [70].

H-1

PéVCQ _ Z

=0

(10)
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Accordingly, the conventional information rate of NC2 may

be defined as:
H

Rinfo2 = 6 . (11)

Bearing in mind information rate R., R;, f, characterizing the
channel coding scheme at the CC layer and network coding
scheme at the NC1 layer and the network code rate R, , of
NC2, the aggregate code rate of the NLMC system becomes

Byive = ReX Ripngo X Ringo2 - (12)

It should be noted that when the delay due to the encoding
and decoding process becomes a critical criterion, the variants
detailed in [65], [79], [226] may be favoured. However, our
unified framework used in this paper can still be applied to
cover those variants.

A. Design and Benefits of NC2

As mentioned both in [225], [227], the scalar of ay; (¢ €
[¢, ..., H]) used in NC2 can be chosen from random coefficients
defined over GF(28), which is sufficiently large for providing
the © number of virtually unlimited sets of «;;, where the
resultant © sets of a;; form © vectors that are linearly
independent of each other. Accordingly, the coefficients «;;
may be obtained by obeying the constraints imposed by the
specific structure of the Vandermonde matrix [227], [228].
Then, the coefficient matrix may be pre-generated and be
stored by the users as well as by the BS for encoding and
decoding. Hence, the users only need to transmit the indices
of the coefficient sets employed for encoding the IFs to
be transmitted to the other users or the BS, as part of the
session set-up information, before transmitting actual data. As
a result, no overhead pertaining to the random coefficients is
transmitted during the actual communication session.

In order to simply demonstrate the benefit of the NC2 in the
context of NLMC system, let us consider ©® = 20, H = 18
that leads to the fixed coding rate R, 00 = N /6 according
to Eq. (11). Once NC2 is activated, the time diversity across
H = 18 frames is exploited by scattering over © = 20 en-
coded frames at the output of the NC2, in order to improve the
system’s performance. More specifically, as shown in Fig. 12a,
a significant FER versus Ej/Ny-performance improvement
of approximately 34 dB can be achieved at an FER of 10~*
by activating the most appropriate modes of the triple-layer
coding scheme presented in Fig. 7. It should be noted that the
(FD + A2) mode is the most appropriate mode that supports
the best performance of the system used in our illustration, as
readily seen in Fig. 12b. It should be noted that the appropriate
mode supporting the best performance of the system may be
selected by determining the operating region of the NC1 [70].

In order to study the factor deciding the operating region of
the NC1 layer as well as to investigate the most appropriate
value of R;, .2 associated with the highest improvement of
the system’s performance, let us consider the performance
associated with the NC2 configurations that are reflected by
different values of R;, .2, as presented in Fig. 13. As a
result of reducing the network coding rate R;,fo2 at the
NC2 layer, the system’s performance characterised in Fig. 13
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is improved. However, when the rate R;, .o falls below
the point corresponding to Ri,fo2 = 10/20 = 1/2, the
performance of the system degrades, as seen in Fig. 13.
This may be interpreted by assuming that the point having
Rinfor = 10 /20 = 1/2 is a threshold, where the gain provided
by activating the NC2 reaches its maximum value. Thus,
reducing the coding rate achieves no further network coding
gain, while the multiplexing gain represented by Ryrac of
Eq. (12) is reduced.

For further study, once the hardware capability of the
NLMC system allows us to support a higher value of H in
the NC2, we may extend our scope for finding the optimal
parameters of the NC2, namely the optimal value of H and
O, in order to attain the best possible performance of the
system, provided that the parameters of the CC and NCI1
layers are given. For example, it is suggested by Fig. 13 that
the rate of R;, 02 = 1/2 is the optimal network coding rate
in the scenario considered and that given Ry fo2 = 1/2, the
performance associated with higher values of the parameter O,
say © = 200, is better than that associated with the smaller
value of @ = 20, when comparing Fig. 13a and Fig. 13b.
Hence, it may be desirable to examine the optimal value of H
and O, provided that the network coding rate Ry o2 = 1/2
remains unaltered.

In order to address the issue regarding the optimal value of
the parameter H and © in the NC2 layer, we activate one of the
modes in the NCI relying on the matrix G4xs, namely mode
C, and employ the IrCC-URC-QPSK scheme in the CC layer
relying on the sub-frame transmission associated with N, =
1 [6], [70]. Then, the performance of the system is investigated
for different values of ©, namely for © = 2,20, 2 x 10,2 x
103,2 x 10%,2 x 10°. Note that we fix the network coding rate
t0 Rinfo2 = 1/2 and assume that the parameter © and H are
related by Eq. (11) as

H
o
Thus, we have to investigate different values of ©, in order to
determine the optimal value of © and H associated with the
best F'E R-versus-E;, /Ny performance. It can be readily seen
in Fig. 14 that when the value of © increases from @ = 2
to © = 2 x 10%, the Ej/Ny-versus-F ER performance of the
system is improved. However, when the value of © becomes
higher than © = 2 x 104, no further performance improvement
is exhibited. Hence, we may deem © = 2 x 10% to be the
optimal value for the system under investigation. As for the
general case, the issue of finding the optimal value of O,
provided that the other parameters of the system are given,
is set aside for future work.

Rinfo2 = (13)

V. SYSTEM DESIGN: APPROACHING NEAR-CAPACITY
PERFORMANCE

In this section, we consider our examples of the system
configurations to illustrate how the DCMC capacity can be
used as a benchmarker for the near-capacity performance of
the system, in order to design near-capacity NLMC system.
We begin performance comparison of the system supported
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(b) Performance in low Ej/Ng region, namely F'E'R values in a range
from 1072 to 10~! and Ej/No values in a range from 8.25 dB to 10.00 dB
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Fig. 12: The benefit of employing the NC2 (H = 10 and © = 20) in the NLMC system portrayed in Fig. 7, relying on the
NC2, NC1 and CC layers when the matrix G4xg is employed at the NC1 layer, while the [rCC-URC-QPSK [6], [70] activated
at the CC layer for the Ny, = 1 sub-frame transmission [6] over the wireless channel influenced by both the block Rayleigh

and the fast Rayleigh fadings.
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Fig. 13: The performance of the NLMC system portrayed in Fig. 7, relying on the NC2, NC1 and CC layers, when employing
different values of R;,f,2 at the NC2, while the matrix G4xg is selected for operating in the C' mode at the NC1 layer, whereas
the IrCC-URC-QPSK scheme [6], [70] is used for transmitting in the Ny,;, = 1 sub-frame regime [6] over wireless channels

influenced by both fast Rayleigh and block Rayleigh fadings.

by a realistic channel coding scheme, for example the IrCC-
URC-QPSK scheme detailed in [70], to that of the system
relying on the ideal/perfect coding scheme operating exactly
at the DCMC capacity detailed in [6], when activating various
configurations at the NC1 and NC2 layer, as listed Fig. 7.
Then, again the method detailed in [6] can be used as a basis
for determining the capacity of the NLMC system, in order to
lead to measures that might be invoked for approaching the
capacity.

A. Achievable Capacity of the Ideal/Perfect Coding Scheme

Let us consider Fig. 15, where the Ej/Ny-versus-FER
performance of the system employing the IrCC-URC-QPSK
scheme [70] is plotted along with that of the system relying
on the ideal/perfect channel coding scheme operating at the
DCMC capacity [6]. At the NCI1 layer of Fig. 7, all the

available modes, namely the C, Ay, A, FD + A; and
FD + As modes, are investigated, while the network coding
rate R;nfo2 = 1/2 is set at the NC2 layer of Fig. 7. It can
be seen in Fig. 15 that in all the studied cases, the perfor-
mance curves associated with the IrCC-URC-QPSK scheme
are approximately 1.0 dB apart from their corresponding per-
formance curve supported by the ideal/perfect coding scheme
at FER = 10~*. In other words, the FER-performance of
the NLMC system employing the IrCC-URC-QPSK scheme
is approximately 1.0 dB within its capacity, which is the
performance of the NLMC system assumingly relying on the
ideal/perfect coding scheme operating at the DCMC capacity.

B. Approaching the NLMC capacity

Let us continue by employing the approach detailed in [6]
for determining the NLMC system’s capacity. Accordingly, the
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Fig. 14: The performance of the NLMC system portrayed
in Fig. 7, relying on the NC2, NC1 and CC layers, corre-
sponding to different values of © at the NC2 layer, namely
6 =2,20,2 x 10,2 x 10,2 x 10%, 2 x 10°, when the matrix
G4xs along with the C' mode is used at the NC1, while the
IrCC-URC-QPSK [6], [70] is employed at the CC layer for
supporting the Ng,, = 1 sub-frame [6] transmission over
wireless channels influenced by both fast Rayleigh and block
Rayleigh fadings.

capacity of the NLMC based systems can be characterised by
the transmission links capacity spamming from a certain user
supported by the system to the BS. This link in the NLMC
based systems may be viewed as an equivalent single-link
model, where the equivalent transmission rate R, of the user-
to-BS link in the NLMC system can be formulated as

R, = RinfoZRinfoR ’ (14)

where R is the information rate of a single link in the NLMC
system, while the network-coding scheme’s rate R;, s, of the
NC1 and the network-coding arrangement’s rate R;,f,2 of
the NC2 are described in TABLE III. Then, the equivalent
transmission rate R, of Eq. (14) may be used for determining
the capacity of the channel in the case of the DCMC capacity
[70] and D-DCMC capacity [220], respectively.

Let us invoke the numerical example in TABLE III, in
order to illustrate the method employed for determining the
capacity of the NLMC system. Accordingly, the network-
coding’s information rate of NCI1 is R;,r, = 0.5. This
system employs a channel coding scheme characterised by an
information rate of R = 0.5 and by a coding rate of R. = 0.5.
The configuration of the system in this example results in the
number of modulated bits expressed as follows:
R 1.0

R. 05
Having ;1 =2 BPS means that the coherent (non-coherent)
modulation scheme of QPSK (DQPSK) may be employed
at the CC layer. Similar to the method invoked in [6] for
determining the receive SN R value (SNR,) corresponding
to a given throughput R, which is also considered as the
information rate in this context, the capacity of the above-
mentioned NLMC system may be equivalently determined by
identifying the corresponding value of SNR,..

i (15)

10.5
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Parameters CC layer
Coherent Non-coherent

R[BPS] 1.0(QPSK) T.0(DQPSK)
Rc 0.5 0.5
Ngup [bit] 1,10,10%,103 1,10,10%,103
Parameters NC1 layer
Mode C,FD, A1, As, FD + Ay, FD + A
G Gax4, Gyxs, Gex12
M [user] 2
k1 [frame] 1(G2x4), 2 (Gaxs), 3 (Gex12)
ko [frame] 1(G2x4), 2 (Gaxs), 3 (Gex12)
Rinfo 0.5
Dyrmyc Daxq =3,4< Dyxg <5,5< Dex12 <7
Parameters NC2 layer
H 10
[E] 20
R'Lnfo2 172

TABLE III: Parameters for an example of the NLMC system
portrayed in Fig. 7.

For the convenience of presentation, we define SNR.|g,
as the equivalent SNR, value corresponding to a given
throughput of R.. According to Eq. (14), the value of R. =
0.25 in the numerical example can be determined by using
Ringo = 0.5,Rinpo2 = 0.5 and R = 1.0 given in TABLE III.
Then, the SNR value can be determined based on the DCMC
capacity curve SNR.|gr, = —6.9 dB [70] or on the D-DCMC
capacity curve SNR.|r, = —2.73 [220]. These SNR.|r,
values can be benchmarked as the achievable capacity of the
system in the configurations considered.

It should be noted that the value of the system’s capacity is
determined on an SN R basis. By contrast, when considering it
on an E}, /Ny basis, the equivalent coding rate R. = 0.25 must
be taken into account, in order to infer to the corresponding
equivalent Ep /Ny value in ratio as

SNRE
BN, = SNRelr (16)
which leads to the corresponding E,/NE|z, = —0.88 dB in

the DCMC scenario E},/Ny|r, = 3.29 dB in the D-DCMC
scenario.

Having calculated the capacity of the NLMC system, we
can now proceed to evaluate the distance between the FER-
performance curve of a NLMC system and its capacity.
It is worth noting that the distance must be measured at
a vanishingly low value of FER, e.g. an FER = 1074
For example, Fig. 16 characterises the distance between the
system’s capacity and the Ej,/Ny-versus-F' E R performance of
the system employing R;, o2 = 1/2 at the NC2 and invoking
the matrix Ggx12 at the NCI1 activating the C' as well as the
F'D modes and relying on the IrCC-URC-QPSK scheme at
the CC layer supported by Ny, = 1 frame transmission. Note
that the value of Ej/Ny = —0.88 dB is the system’s Ej /Ny
limit. Accordingly, a relatively large gap of approximately
11 dB is exhibited at an FER = 10~*. This leads to a
question regarding which particular solution may be employed
for reducing the 11 dB-gap.

In order to address the above-mentioned issue, let us recall
the NLMC system’s architecture presented in Fig. 7, which
comprise three layers, namely CC, NC1 and NC2 layers. A
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Fig. 15: The performance of the NLMC systems portrayed in Fig. 7 comprising the NC2, NC1 and CC layers, when comparing
the two scenarios at the CC layer, namely that employing the coding IrCC-URC-URC-QPSK scheme [70] and that employing
the corresponding ideal/perfect coding scheme operating at the DCMC capacity [6]. The performance is recorded in various
modes of the NC1 relying on the matrix G4xs, namely the C', Ay, Ay, F'D + Ay and F D + Ay modes, while the Ry, f,2 at
the NC2 is fixed at the optimal value of R;,f00 = 1 /2, as determined in Section IV-A. A transmission frame is transmitted in

the Ng,p» = 1 subframe regime [6] over the wireless channel.
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Fig. 16: The E}/Ny-versus-F ER performance of the NLMC
system portrayed in Fig. 7, which comprises the NC2, NC1
and CC layers and has all parameters listed in TABLE III. The
system employs R fo2 = 1 /2 at the NC2, invokes the Ggx 12
matrix at the NCI1 layer operating in the C' and F'D modes
and relies on the [IrCC-URC-QPSK scheme at the CC layer
supported by Ng,, = 1 frame transmission.

straightforward approach is to optimise each individual layer
in a scenario, when the parameters of the other layers are
given. More specifically:

o At the CC: The employment of sub-frames and the near-
capacity coding design can be utilised for improving the
system’s performance;

o At the NCI1: Selecting the appropriate transfer matrices,
as suggested in Section III-A2, has the potential to en-
hance the system’s performance. Additionally, activating
a suitable mode of the available ones, namely of the C,
FD, Ay, Ay, FD+A; and F D+ A5 modes, may improve
the system’s performance;

o At the NC2: Applying the optimal network coding rate
Rinfo2 can help improve the system’s performance.

Hence, in the following sections, the above-mentioned opti-
mization issues at each layer are discussed in detail.

C. Solutions at Channel Coding Layer

Let us continue to employ the IrCC-URC-QPSK scheme [6],
[70] to demonstrate the benefits of the sub-frame transmission

| regime at the CC depicted in Fig. 7. As a remedy, the sub-

frame transmission regime detailed in [6] may be invoked
at the CC layer for improving the system’s performance. It
can be seen in Fig. 17 that the higher the number of sub-
frames (N,p) per transmission frame, the better the system’s
performance becomes. Particularly, if the system is designed
to allow a transmission frame partitioned into Ng,, > 104
sub-frames, the performance of the system supported by the
IrCC-URC-QPSK scheme is capable of operating at a mere
0.5 dB from the corresponding DCMC capacity. It should be
emphasised that when Ny, is higher than N, = 10, no
further improvements are observed. It may be further inferred
that once the system is permitted to partition a transmission
frame into N, = 10* sub-frames, there is no need for
employing the NC1 and NC2. If the NCI and NC2 are still
activated, the performance of the system would be degraded.
This is because the FER-versus-SNR performance is no longer
improved, but the multiplexing gain is reduced. However, in
order to make the system capable of automatically adjusting
its operational mode, the adaptive modes at both the NC1 and
NC2 have to be activated. We will further discuss this issue
later in Section V-D and Section V-E

Furthermore, in order to approach the near-instantaneous
channel capacity that varies according to the status of each
transmission link in the NLMC systems, the most appropriate
adaptive modulation regime has to be applied during each
transmission. Hence, the CC layer of the NLMC system of
Fig. 7 can be designed for having a beneficial BER/FER-
performance improvement over a fixed bandwidth. Alterna-
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Fig. 17: The benefit of employing different the sub-frames,
namely N, = 1,10,10%,10%,10%, in performance of the
IrCC-URC-QPSK scheme [6], [70], when communicating over
a wireless channel influenced by both the fast Rayleigh and
block Rayleigh fadings.

tively, it can be used for achieving an improved throughput
for a given BER/FER performance, or for reducing the us-
age of the bandwidth while maintaining the required target
throughput and BER/FER performance [76].

D. Solutions at the Network Coding 1 Layer

As discussed in Section V-C, there is no need to employ the
NCI1, when the number of sub-frames used for conveying a
transmission frame becomes as high as N,,;, = 10*. However,
invoking a large number of sub-frames N,;, may result in an
unaffordable delay incurred by a user. For example, a frame in
the Long Term Evolution-Advanced (LTE-Advanced) standard
is of 10ms duration [229], [230]. Let us consider a scenario,
in which the number of subframes is set to Ny, = 10* at
the CC layer for transmitting a single transmission frame,
while the fading coefficients remain constant during the time
period of a frame length and vary independently frame by
frame. In order to have a beneficial time diversity, each of the
10* sub-frames must be mapped to a single LTE-Advanced
frame having a length of 10ms [229], [230]. In other words,
10* LTE-Advanced frames are used for conveying a single
transmission frame, which is divided into Ns,;, = 10* sub-
frames. Consequently, a transmission frame incurs a delay of
10* x 10ms=100s, which is too long for interactive or delay-
sensitive applications. Hence, let us now consider a scenario
employing Ng,;, = 10 sub-frames per transmission frame,
which leads to a moderate delay of 10 x 10ms=100ms. It
should be noted that the employment of network coding can
also lead to an additional delay, which is as much as k; frame
lengths. For example, if the matrix Ggx12 is employed at the
NCl, the delay becomes k1 = 3 times of the delay for a
transmission frame, which is equal to 3 x 100 = 300ms.

Having opted for Ng,, = 10, let us now investigate
the benefit of employing the NC1. As seen in Fig. 18, the
network coding significantly improves the attainable system
performance. More specifically, the more powerful the network
coding, the better performance in comparison to that of the
system relying solely on sub-frame transmission, as seen in
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Fig. 18b. At an FER = 107*, the distance to the Ey /Ny
value corresponding to the system’s capacity having R, = 0.5

+ from the performance curve of the system employing the

Gyys and Ggy1o matrices is as low as 2.0 dB and 2.7 dB,
respectively, as seen in Fig. 18b. By contrast, that of the

| system solely supported by the N,,; = 10-based transmission

regime is approximately 7 dB, as seen in Fig. 17. Hence, a

1 gain of (7-2.0=5 dB) and (7-2.7=4.3 dB) may be achieved

by employing the G4xg and Ggxi2 matrices at the NCI

, layer, respectively. Note that Fig. 18a characterises the SN R-

versus-F' E'R performance of the system relying on the G4xs
and Ggx12 matrices at the NCI1 layer operating in the F'D,
FD+ Ay and FD + Ay modes of Fig. 7.

It should be noted that when the A; and A, modes are
activated at the NC1 layer of Fig. 7, the performance of the
system may be improved beyond the SN R value associated
with the capacity having R. = 0.25 and approaches that
associated with the capacity having R, = 0.5, as seen in
Fig. 18b. This can be interpreted by recalling Eq. (14), where
we can see that once the adaptive mechanism is employed,
the coding rate R;, s, becomes R, f, 4. Accordingly, when
a sufficiently high Ej /N, value is encountered, the value of
Rinfo,4 may approach its maximum of R;,r04 = 1. As a
result, the maximum value of R, can be calculated as

Re,maz (17)

= Max {Rinfo,A} R=R.
—_———
=1

This leads to obtaining the corresponding E},/No|r, maz =
1.78 dB.

Moreover, as a result of having an increased adaptive
network coding rate R;,r, 4 upon increasing the transmit
power, the system experiences an increased multiplexing
gain. Note that the multiplexing gain has no effect on the
FER-versus-SN R performance of the system, as seen in
Fig. 18a. However, a substantially increased multiplexing gain
ultimately leads to a considerably improved F'F R-versus-
E, /Ny performance, as seen in Fig. 18b, since the beneficial
multiplexing gain increase outweighs the detrimental SN R
increase. As a result, reduced E,/Ny values might actually
be associated with a fixed or even increased SNR value
owing to the changes in the coding rate, which potentially
allows the system to provide an improved F'E R-versus-E}, /Ny
performance.

E. Solutions at the Network Coding 2 Layer

As demonstrated in Section IV-A, the NC2 layer of Fig. 7
has the potential of further improving the system performance
in some scenarios. In a delay-tolerant system that allows
us to have a delay as high as N frame durations, NC2 is
capable of approaching the achievable capacity determined
in Section V-A.

Let us illustrate the above-mentioned issue by considering
the NLMC system of Fig. 7 relying on the IrCC-URC-QPSK
scheme [6], [70] and on the basis of N,,;, = 10 sub-frame
transmission determined in Section V-C, while the Ggyx 12
matrix is employed at the NC1, where the F'D + A; and
FD + A; modes at the CC layer of Fig. 7 may be used for
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Fig. 18: The benefit of employing the NC1 in the NLMC system pictured in Fig. 7. The system consists of the NC1 and CC
layers having all the parameters listed in TABLE III, where the G4xs and Ggx12 matrices are employed at the NC1 layer,
while the IrCC-URC-QPSK scheme is activated at the CC layer for supporting the Ny, = 10,10% sub-frame transmission
regimes over wireless channels influenced by both the fast Rayleigh and block Rayleigh fadings.

the sake of supporting the best attainable performance. Then,
we investigate the benefit of employing the NC2 for the sake
of approaching the capacity of the NLMC system, which is
characterised by parameters listed in TABLE IV.

Parameters CC layer
Coherent

R[BPS] 1.0(QPSK)

R 0.5

N [bit] 10°

Nowp [0il] 10

Parameters NC1 layer

Mode FD,FD+ A1, FD + Ag

G Gox4, Gyxs, Gex12

M [user] 2

k1 [frame] 3(Gsx12)

ko [frame] 3(Gex12)

Rinfo 0.5

DnLyvc 5 < Dgx12 <7

Parameters NC2 layer

H 10

[C] 20

Rin fo2 172

Mode Adaptive (Fixed)

TABLE IV: Parameters for an example of a NLMC system
used for illustrating the benefit of NC2.

It should be noted that the NC2 layer in Fig. 7 is capable
of operating in two modes. More specifically:

o The Fixed mode is configured for having a fixed rate for
the network codec at the NC2 layer. In other words, in
the fixed mode, we always have R;, .2 = H/O, which
is equal to Ry fo0 = 1/2, as listed in TABLE IV.

o The Rate adaptive mode may be activated, when the
system can afford the delay of acquiring the feed-back
information acknowledging the number of frames that are
correctly recovered at the BS. Upon receiving the feed-
back information from the BS, the users supported by the
system may decide to refrain from transmitting the rest
of the © encoded frames. Hence, the adaptive rate at the

NC2 may be expressed by:
e

E[Number of frames transmitted]

(18)

RinfoQ,A =

Hence, in the high SNR region, we may have
Max {RinfoQ,A} =1.

As seen in Fig. 19, when the adaptive mode is activated
at NC2, the performance of the system relying on the Ggx12
matrix at the NC1 operating in the C' mode tends to approach
its capacity within a distance of 1.5 dB at an FER = 10~*.
If we activate the adaptive mode at both the NC1 and NC2,
namely the F'D + A; and F'D + A5 modes at the NC1 layer
and the adaptive mode at the NC2 layer, it is expected that
the performance curves closely approach their corresponding
capacity, which is the one associated with the R, = 0.5, as
seen in Fig. 19b. However, there is a distance of approximately
4.4 dB seen in Fig. 19b, when we compare the capacity
associated with R, = 0.5 and the performance curve of the
system employing the NC1 activating the F'D + A; mode and
the NC2 operating in the adaptive mode. We set aside for
future study the issue of optimising the parameters in order to
match the two adaptive modes at both the NC1 and NC2.

It can be seen in Fig. 19b that the increased aggregate
multiplexing gain of both NC1 and NC2 requires reduced
Ey/Ny values for maintaining a fixed FFER value. Again,
this is due to the fact that the beneficial effect of the improved
multiplexing gain outweighs the detrimental effect of requiring
an increased SN R value. It should be noted that the increased
multiplexing gain has no impact on the F'ER-versus-SNR
performance, where the effect of the adaptive mechanism
employed at NC1 is excluded, as seen in Fig. 19a.

VI. DESIGN GUIDELINES AND CONCLUSIONS

To summarise, the design process of the NLMC may obey
the following phases.

Phase 1 is used for interpreting the details of the design re-
quirements, which may encompass two groups of parameters.
The first group contains parameters characterising the NLMC
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Fig. 19: The benefit of employing the NC2 in the NLMC system pictured in Fig. 7. The system comprises NC2, NC1 and CC
layers having all the parameter listed in TABLE IV, where H = 10 and © = 20 are employed at the NC2 layer operating in
both the fixed and adaptive modes, while the G4xg and Ggx12 matrices are employed at the NC1 layer, whereas the IrCC-
URC-QPSK scheme is activated at the CC layer for supporting the N, = 10 sub-frame transmission regime over wireless
channels influenced by both the fast Rayleigh and block Rayleigh fadings.

system as a whole, including the number of users and their
configurations, the number of relays and their configurations,
as well as the BER/FER target performance, the tolerable
delay, the affordable complexity, etc. The configuration of the
users or relays determines the transmission modes as well as
the corresponding maximum/minimum code rates (throughput)
in the NC2, NC1 and CC layers of the NLMC system. The
second group comprises parameters that can be used for
defining requirements of a single link’s transmissions in the
NLMC system, hence they are mainly related to the CC layers,
namely to the BER or FER performance, to the available coded
modulation schemes, the available transmission modes, etc.

In phase 2, we need to construct the overall system ar-
chitecture from the first group of parameter as well as to
determine the system’s configuration based on the constraints
and requirements given. Then, we can quantify the equivalent
capacity of the NLMC system, as detailed in Section V-A and
exemplified in Section V-B. Accordingly, the corresponding
capacity is employed as a reference point for carrying out
the three layer design, as demonstrated in Section V-C, Sec-
tion V-D and Section V-E.

In phase 3, the layer-design results are further calibrated for
matching to the stipulated design requirements on the system’s
overall performance in order to conceive various operating
regimes for the LMNC system.

In a nutshell, we have portrayed the road map leading to the
formation NLMC systems relying on multiple layers, namely
CC layer, NCI1 layer and NC2. The techniques proposed for
these layers have been analysed with the objective of facilitat-
ing near-capacity cooperative and cognitive communications.
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