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Abstract

In this contribution the number of activated MIMO layers and the number of bits per symbol along with the appropriate
allocation of the transmit power and the rate of the BICM error correcting codes are jointly optimized under the constraint of
a given fixed data throughput. The performance investigations are carried out by computer simulations and confirmed by the EXIT
charts. Our results show that not necessarily all MIMO layers have to be activated in order to achieve the best BERs.
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1. Introduction

Iterative demapping and decoding-aided bit-
interleaved coded modulation (BICM-ID) was designed
for bandwidth efficient transmission over fading chan-
nels [1,2]. The BICM philosophy has been extended by
using different throughput modulated signal constella-
tions and bit-to-symbol mapping arrangements, lead-
ing to the concept of bit-interleaved coded irregular
modulation (BICIM) schemes, which offer an improved
link adaptation capability and an increased design free-
dom[3]. Since the capacity of Multiple Input Multi-
ple Output (MIMO) systems increases linearly with the
number of antennas at both, the transmitter as well as
the receiver side, MIMO-BICM schemes have attracted
substantial attention [4,5]. However, their parameters
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have to be carefully optimized, especially in conjunc-
tion with adaptive modulation [6—11].

Against this background, the novel contribution of
this paper is that we jointly optimize the number of
activated MIMO layers and the number of bits per
symbol along with the appropriate allocation of the
transmit power and the rate of the BICM scheme’s
error correcting codes used under the constraint of
a given fixed data throughput and integrity. Since
the “design-space” is large, a two-stage optimization
technique is considered. Firstly, the uncoded Spatial
Division Multiplexing (SDM) MIMO scheme is
optimized, investigating the adaptive allocation of both
the number of bits per modulated symbol and the
number of activated MIMO layers at a fixed data rate.
Secondly, the resultant uncoded systems are extended
by incorporating BICM-ID, whereby both the uncoded
as well as the coded systems are required to support
the same user data rate within the same bandwidth. The
performance investigations are carried out by computer
simulations and confirmed by EXIT charts [12].
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The remainder of this letter is organized as follows
Section 2 introduces our system model and the
performance metrics. In Section 3 the channel-encoded
MIMO system is introduced, while our EXIT chart
analysis is provided in Section 4. The associated
performance results are presented and interpreted in
Section 5. Finally, Section 6 provides our concluding
remarks.

2. System model and quality criteria

When considering a non-frequency selective SDM
MIMO link constituted by nt transmit and nr receive
antennas, the system is modelled by

u=H-c+w. €))

In (1), uis the (nr x 1) received vector, ¢ is the (nt X
1) transmitted signal vector containing the complex
input symbols and w is the (ng x 1) vector of the
Additive White Gaussian Noise (AWGN) having a
variance of Ul% for both the real and imaginary parts.
Furthermore, we assume that the coefficients of the
(nr x nT) channel matrix H are independently Rayleigh
distributed with equal variance. Throughout this paper,
vectors and matrices are printed in boldface roman
letters. Furthermore, sequences of random variables
(r.v.s) are indicated by boldface italics capital letters
and their corresponding realizations by boldface italics
lower case letters, respectively. The mitigation of
the interference between the different antennas’ data
streams, which is introduced by the off-diagonal
elements of the channel matrix H, requires appropriate
signal processing strategies. A popular technique is
based on the singular value decomposition (SVD) of
the system matrix H, which can be written as H =
S .V .DY where S and DY are unitary matrices
and V is a real-valued diagonal matrix of the positive
square roots of the eigenvalues of the matrix HHH
sorted in descending order. The transpose and conjugate
transpose (Hermitian) of D are denoted by DT and
D!, respectively. The SDM MIMO data vector ¢ is
now multiplied by the matrix D before transmission.
In turn, the receiver multiplies the received vector u by
the matrix SH. Thereby neither the transmit power nor
the noise power is enhanced. The overall transmission
relationship is defined as

y=SHH-D.-c+w)=V-c+w. )

Here, the channel matrix H is transformed into
independent, non-interfering layers having unequal
gains. In general, the quality of data transmission can
be informally assessed by using the half vertical eye

opening and the noise power at the detector’s input.
The resultant quality criteria per quadrature component
becomes

_ (Half vertical eye opening)2 _ ) A)2
(Ur)*

o 3)

Noise Power
which is often used as a quality parameter [13].
The relationship between the quality criteria ¢ =
U/i / UI% and the bit-error probability (BER) evaluated
for AWGN channels and M-ary Quadrature Amplitude
Modulation (QAM) is given by [11,14]

P. = 2 (1— ! )erfc( Q) 4)
© 7 log, (M) M 2]

When applying the proposed system structure, the SVD-
based equalization leads to different eye opening per
MIMO layer ¢ and per transmitted symbol block k
according to

Ut = Jer - Ust, (5)

where Ugl denotes the half-level transmit amplitude
assuming My-ary QAM and \/% represents the
positive square roots of the eigenvalues of the matrix
HY H. Considering QAM constellations, the average
transmit power Ps, per MIMO layer £ may be expressed
as [15,14]

2 0

Py = 3 Ug(Mg — 1). (6)
Using parallel transmissions over L < min(nT, nR)
MIMO layers, the overall mean transmit power becomes
P = Zle Py, where the number of readily separable
layers' is limited by min(nt, ng). In order to transmit
at a fixed data rate while maintaining the best possible
integrity, i.e. BER, an appropriate number of MIMO
layers has to be used, which depends on the specific
QAM constellation size, as detailed in Table 1. The BER
per MIMO layer £ and transmitted symbol block & after
SVD is given by [13]:

2(1- -+
Ph = ( x/Me> erfe [ [8tk Ust ) o
log, (Mpg) 2 Ur

The resultant average BER per transmitted symbol
block k assuming different QAM constellation sizes

L1t is worth noting that with the aid of powerful non-linear near-
Maximum Likelihood (ML) sphere decoders it is possible to separate
nR > nT number of layers [16].
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Table 1
QAM constellations M, and corresponding a®
My, a® M,, a®@ Ms, a® My, a®
4 bit/s/Hz 16, 1 0,0 0,0 0,0
4 bit/s/Hz 4,1/2 4,1/2 0,0 0,0
6 bit/s/Hz 64, 1 0 0 0
6 bit/s/Hz 16, 2/3 4,1/3 0 0
6 bit/s/Hz 4,1/3 4,1/3 4,1/3 0
8 bit/s/Hz 256, 1 0 0 0
8 bit/s/Hz 64,3/4 4,1/4 0 0
8 bit/s/Hz 16, 1/2 4,1/4 4,1/4 0
8 bit/s/Hz 4,1/4 4,1/4 4,1/4 4,1/4
becomes
L
k .k

PP = — > logy(Mg) PR (8)

Y logy (M) =!

v=1

When considering time-variant channel SNR condi-
tions, rather than an AWGN channel, having a fixed
SNR, the BER can be derived by considering the dif-
ferent transmission block SNRs.

3. Coded MIMO system

BICM is constituted by the concatenation of an
encoder, an interleaver and a mapper, which is extended
here to a BICM-MIMO scheme, where different signal
constellations are mapped appropriately to different
SDM layers. Here, a sequence of information bits i,
organized into blocks of Nj; bits, is encoded by a non-
recursive, non-systematic convolutional (NSC) code,
resulting in the block b of N, bits. The encoded bits are
bit-interleaved by a random interleaver and stored in the
vector b. Afterwards, the NSC-encoded and interleaved
bits are divided into sub-blocks (b1 ks bz ks oo bL,k)
consisting of

L
R = Zlog2 M, )
=1

bits. These sub-blocks are mapped onto the L activated
MIMO layers. Each symbol of a sub-block B[’k,
consisting of log, M, bits, is mapped to the M,-ary
QAM symbol ¢, according to the specific mapper
used. The specific fraction of the data sequence b that
is transmitted over the £th SDM layer is given by
the MIMO-layer-specific parameter «(® that can be
calculated as follows

logo M
a® = 082 Tt E.

R (10)

) (v— ()
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Fig. 1. Iterative demodulator structure
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Fig. 2. Detailed soft-demapper demodulator structure.

The ratios «®© € [0, 1] must satisfy the condition

L
Za@ =1 (11)
=1

The resultant iterative demodulator structure is shown in
Fig. 1. When using the iteration index v, the first itera-
tion of v = 1 commences with the soft-demapper deliv-
ering the Ny, log-likelihood ratios (LLRs) L'=" (b) of
the encoded and 1nterleaved information bits, whose de-
interleaved version L (b) represents the input of the
convolutional decoder deplcted in Fig. 1. This channel
decoder provides the estimates Lg“ ])(1) of the original
uncoded information bits as well as the LLRs of the Ny
NSC-encoded bits in the form of

LY=P ) = ijf”(b) + L‘” D). (12)

As seen in Fig. 1 and Eq. (12), the LLRs of the
NSC-encoded bits consist of the receiver’s input signal
itself plus the extrinsic information L(” 1)(b) which is
generated by subtracting L(U 1)(b) from L(U 1)(b) The
appropriately ordered, i.e. 1nterleaved extrmsw LLRs
are fed back as a priori information L(V =2 (b) to
the soft-demapper of Fig. 1 for the second iteration.
Following the detailed structure of the soft-demapper
in Fig. 2, the Ny LLRs Lg’)(f)) are composed of
the sub-blocks (LY (b1 ), LY (bax), ..., LY (br 1)),
consisting of R number of LLR elements. Each vector
L(zv) (f)“) is generated by the soft-demapper from
the MIMO channels’ output y;; and the a priori
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Fig. 3. Uncoded BERs when using the MIMO configurations
introduced in Table 1 and transmitting 8 bit/s/Hz over non-frequency
selective uncorrelated Rayleigh channels.

information Lgvz) (f)@,k) provided by the channel decoder.
After the first iteration, this a priori information
emerges from the Ny LLRs Lgv; (f)).

4. EXIT chart analysis

The transmitted data sequence B is multiplexed onto
the L different MIMO layers, which results in the layer-
specific sequence By, £ = 1,2, ..., L. The stationary
binary input sequence By = [By,1, B2, ..., Bog, .. .]
consists of the r.v.s By, where the corresponding
realizations by x have an index length of 1 bit and
are taken from a finite alphabet B = {0, 1}. The
sequence C;, = [Cy1,Ce2,...,Cpk,...] mapped
onto the fth layer consists of the r.v.s Cy, where
the corresponding realizations c¢ convey log,(My)
number of bits and are taken from a finite M,-ary QAM
alphabet C = {0,1,..., M, — 1}. The symbols c¢
are transmitted over independent channels, resulting
in the received values y; . The sequence A, =
[A¢1,A¢2, ..., A¢k,...], having the corresponding
realizations ay ; contains the a priori LLR information
passed to the demapper. EXIT charts visualize the
input/output mutual information transfer between the
data sequence B, and the sequence Ay of a priori LLR
information at the input of the soft-demapper, as well
as between B, and the sequence E; of the extrinsic
LLR, respectively. Denoting the mutual information
between two rv.s X and Y as [(X;Y) we may
define the quantities I, 4 = 1(Ag; By) as well as
Iy g = I(Ey; By) for a given sequence By, where I; 4
represents the average a priori information and I g
the average extrinsic information, respectively [17]. The
EXIT characteristic T of the soft-demapper in Fig. 1
is given by Iy g = T(lg A, p), where p represents
the SNR of the communication channel. Analyzing

the outer decoder in a serially concatenated scheme
T does not depend on p. The EXIT chart is now
obtained by plotting the transfer characteristics T for
both the demapper and the decoder of Fig. 1 within
a single diagram [12]. The number of transmitted bits
per symbol and block, including all L SDM MIMO
layers, results in R bits, as defined in (9). Together
with the MIMO-layer-specific parameter *) defined
in (10), the fraction of the data sequence B that is
transmitted over the £th layer, i.e. By can be defined.
Hence, the mutual information for a given sequence
B and the extrinsic LLR E at the output is the a(©-
weighted linear combination of the layer-specific EXIT
function I (Ey; By) and is obtained by

L
I(E;B) =) a“I(Ey;: By). (13)
=1

Beneficial values of «'® may be chosen by ensuring
that there is an open EXIT tunnel between the
soft-demapper transfer characteristic and the decoder
transfer characteristic at a given Eg/Ng value that is
close to the channel’s capacity bound.

5. Results

5.1. Uncoded system

Assuming predefined QAM constellation sizes, a
fixed total throughput can be guaranteed for each data
block. The corresponding calculated BER curves are
depicted in Fig. 3 for the different QAM constellation
sizes and MIMO configurations of Table 1, when
transmitting at a bandwidth efficiency of 8 bit/s/Hz,
assuming a Nyquist roll-off factor of 0.5. Assuming an
equal transmit power for the activated MIMO layers, it
turns out that not all MIMO layers have to be activated
in order to achieve the best BERs. More explicitly,
our goal is to find that specific combination of the
QAM mode and the number of MIMO layers, which
gives the best possible BER performance at a given
fixed bit/s/Hz bandwidth efficiency. The Es/Ny value
required by each scheme at BER 10™* was extracted
from computer simulations and the best systems are
shown in bold in Table 1. Further improvements in
terms of the BER are possible by using unequal power
allocation (PA). However, as shown in [18], unequal
PA is only effective in conjunction with finding the
optimum number of activated MIMO layers.

5.2. Coded system

Using the half-rate, constraint-length K = 3 NSC
code with the generator polynomials of (7, 5) in octal
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Fig. 4. Soft-Demapper transfer characteristic using anti-Gray
mapping on all used MIMO layers and the (16,4,4,0) QAM
constellation at 10 logy(Es/Ng) = 0 dB.
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Fig. 5. EXIT chart for an effective throughput of 4 bit/s/Hz and the
(16,4, 4,0) QAM constellation at 10 logyo(Es/Ng) = 2 dB.

notation, the BER performance is analyzed for an
effective throughput of 4 bit/s/Hz. In addition to the
number of bits per symbol and the number of activated
MIMO layers, the achievable performance of the
iterative decoder is substantially affected by the specific
mapping of the bits to both the QAM symbols as
well as to the MIMO layers. While the employment of
the classic Gray-mapping is appropriate in the absence
of a priori information, the availability of a priori
information in iterative receivers requires an exhaustive
search for finding the best non-Gray — synonymously
also referred to as anti-Gray — mapping scheme [2].
Assuming predefined QAM constellation sizes and
the corresponding «®, the soft-demapper’s EXIT
characteristic is given by combining the single MIMO

_R -4, 40, 0) QAM uncoded
10 —#5 (16,4,4,0) QAM, Gray, 3 lter.
3 -©- (16.4,4,0) QAM, anti-Gray, 3 lter.

T C =7 (16,4,4,0) QAM, anti-Gray, 10 lter.
_.Cl_z
g
§ 10 *+
5
g

107 a

2 3 4 5
10-Ig(E./Ng) (indB) —

Fig. 6. BER assuming Gray or anti-Gray mapping schemes on all
activated MIMO layers for an effective user throughput of 4 bit/s/Hz.

layers” EXIT characteristics using the parameter o(®),
as depicted in Fig. 4. A mapping scheme optimized
for perfect a priori information has usually a poor
performance, when there is no a priori information.
However, when applying iterative demapping and
decoding, large gains can be achieved as long as
the reliability of the a priori information increases
upon increasing the number of iterations. As depicted
in Fig. 5, the maximum iteration gain can only be
guaranteed, if anti-Gray mapping is used on all activated
MIMO layers. However, observed by comparing the
EXIT chart results of Fig. 5, the overall performance
is strongly influenced by the most susceptible MIMO
layer, which is here the MIMO layer transmitting
4 bit/s/Hz. The BER performance is characterized
in Fig. 6 for the half-rate, constraint-length K = 3
NSC code assuming an effective user throughput of
4 bit/s/Hz. The BER investigations using the NCS code
are based on the best uncoded schemes of Table 1.
The information word length is 1000 bits and a random
interleaver is applied. The influence of the Gray versus
anti-Gray mapping is clearly visible in Fig. 6.

6. Conclusion

In analogy to BICIM, we introduced a MIMO-
BICM scheme, where different signal constellations
and mappings were used within a single codeword.
The proposed system includes an adaptation of the
transmit parameters. EXIT charts are used for analyzing
and optimizing the convergence behaviour of iterative
demapping and decoding. The choice of the number
of bits per symbol and the number of MIMO layers
combined with error correcting codes substantially
affects the performance of a MIMO system, suggesting
that not all MIMO layers have to be activated in order
to achieve the best BERs.
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