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Abstract— We propose a distributed spectrum access algorithm for cognitive radio relay net-
works with multiple primary users (PU) and multiple secondary users (SU) utilizing multiple
antennas at their transmitter. The overlay model is considered, where the PUs allow spectrum
access opportunities for the SUs, in exchange for the SUs cooperatively relaying the PUs’ data in
exchange for both spectrum access and monetary compensation. We show that the PUs which
utilize the SUs for cooperative relaying achieves a rate greater than what it would achieve with-
out cooperative relaying, i.e., direct transmission, and thus motivates their participation in the
proposed algorithm.

1. INTRODUCTION

Cognitive radio has been proposed as a promising technology to improve the spectral efficiency.
This is achieved by allowing unlicensed secondary users (SU) to coexist with licensed primary users
(PU) in the same spectrum. This coexistence is facilitated by spectrum access techniques, such as
those involving an agreement between the PUs and SUs on an acceptable spectrum access strategy.
The key idea is that the PUs are motivated to lease spectrum bands to the SUs in exchange for
some form of compensation.

Monetary compensation have been well studied (see e.g., [1–3]), with the predominant approach
for spectrum access and performance analysis involving the use of tools from game theory. For
these monetary payment schemes, the PUs are assumed to have sufficient spectrum for leasing to
the SUs, such that their own performance requirements are not affected. In practice, however, the
PUs may desire higher data rates than what its current spectrum can provide.

Multiple antenna technology is well known as a powerful technique to enhance performance, due
to their ability to provide diversity, high reliability and capacity in wireless networks. To allow for
higher data rates, the use of cooperative relaying has emerged as a powerful technique due to its
ability to exploit user diversity and provide high reliability and capacity in wireless networks [4].
This is achieved by the use of intermediate relay nodes to aid transmission between the source and
destination nodes. The use of cooperative relaying is particularly advantageous when the direct
link between the source and destination is weak, due to, for example, high shadowing.

This paper is organized as follows. In Section 2, we first describe our system model. We then
formulate the problem we are trying to solve in Section 3, and present a distributed solution to this
problem in Section 4. Finally, we analyze the performance and the implementation aspects of our
proposed algorithm in Section 5.

2. SYSTEM MODEL AND UTILITY SETTING

We consider an overlay cognitive radio wireless network, comprising of LPU PU transmitter {PTi}LPU
i=1

-PU receiver {PRi}LPU
i=1 pairs, with the `th pair having a rate requirement of RPU`,req, and with

each pair occupying a unique spectrum band of constant size. In the same network, there are LSU

SU transmitter {STi}LSU
i=1 –SU receiver {SRi}LSU

i=1 pairs, with the qth pair having a rate requirement
of RSUq,req, and seeking to obtain access to one spectrum band occupied by a (PT, PR) pair. The
secondary transmitters all are equipped with N antennas and the other transmitters and receivers
are equipped with single antenna. We assume that there are T time slots per transmission frame,
and each (ST, SR) pair has access to a monetary value C.

Each PT attempts to grant spectrum access to a unique (ST, SR) pair, as determined by the
various matching algorithms, in exchange for (i) the ST cooperatively relaying the PT’s data to
the corresponding PR, and (ii) monetary compensation. In particular, without loss of generality
(w.l.o.g), let us consider (PT`, PR`), whose transmission is relayed by STq during a fraction β`,q

(0 ≤ β`,q ≤ 1) of T , whilst also receiving a fraction ζ`,q (0 ≤ ζ`,q ≤ 1) of C from STq, as depicted
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Figure 1: Secondary user and primary user spectrum-access model. The channel and price and time slot
allocation numbers are indicated for (PT`,PR`) and (STq, SRq).

in Fig. 1. We will refer to ζ`,q and β`,q as the price and time slot allocation numbers respectively,
whose exact values will be determined by the matching algorithms described in Section 3.

During the cooperative relaying stage in the initial β`,qT time slots, a fraction τ`,q (0 < τ`,q < 1)
is first allocated for PT` to broadcast its signal to STq and PR`, thus occurring in the first β`,qτ`,qT
time slots. In the subsequent β`,q(1−τ`,q)T time slots, STq will beamforming the PT`’s signal using
maximum ratio transmission (MRT) and cooperatively relays the signal from STq to PR`.

PR` then applies maximum ratio combining (MRC) to the signal received from PT` in the
first β`,qτ`,qT time slots, and the signal received from STq in the subsequent β`,q(1 − τ`,q)T time
slots. After this cooperative relaying stage, PT` ceases transmission, allowing STq to beamform to
SRq over the spectrum occupied by (PT`, PR`) in the final (1 − β`,q)T time slots. The STq will
beamforming its signal using maximum ratio transmission (MRT) and transmit the signal from
STq to SRq.

In particular, the received scalar signal from the PT` at the PR` in the time slot β`,qτ`,qT can
be written as

yPR`,1 =
√

PPT`
hPT`,PR`

xPT`
+ nPR`,1 (1)

where PPT`
is the transmission power at PT`, hPT`,PR`

∼ CN (0, d−α
PT`,PR`

) is the Rayleigh channel
from PT` to PR`, α is the path loss exponent, dPT`,PR`

is the distance from PT` to PR`, xPT`
is the

transmitted scalar symbol from the PT` with E[|xPT`
|] = 1, nPR`,1 ∼ CN (0, σ2) is additive white

Gaussian noise (AWGN) at the PR` and σ2 is the noise variance.
At the STq, after applying a 1 × N weight vector w†

r to the received signal from the PT`, the
resultant scalar signal at the STq in the β`,qτ`,qT time slot can be written as

ySTq
=

√
PPT`

w†
rhPT`,STq

xPT`
+ w†

rnSTq
(2)

where hPT`,STq
∼ CNN×1(0, d−α

PT`,STq
IN ) is the Rayleigh channel vector from the PT` to STq,

dPT`,STq
is the distance from PT` to STq, nSTq

is additive white Gaussian noise (AWGN) at the
STq and (.)† denotes conjugate transpose.

In the subsequent β`,q(1− τ`,q)T time slot, the STq first normalizes the received PT̀ ’s signal by
multiplying (2) by the normalization constant g`,q

ST=1/
q

w†
r(PPT`

hPT`,STqh
†
PT`,STq

+σ2IN )wr.

The STq then amplifies and forwards the normalized signal g`,q
STySTq

. ST then applies a N × 1
transmit weight vector wPU to the normalized PT’s signal. The received scalar signal at the PR`

from the STq can thus be written as

yPR`,2 = g`,q
ST-PRg`,q

STh†STq,PR`
wPUw†

rhPT`,STq
xPT`

+ g`,q
ST-PRg`,q

STh†STq,PR`
wPUw†

rnSTq
+ nPR`,2 (3)

where hSTq,PR`
∼ CNN×1(0, d−α

STq,PR`
IN ) is the Rayleigh channel vector from STq to PR`, dSTq,PR`

is the distance from STq to PR`, and nPR`,2 ∼ CN (0, σ2) is additive white Gaussian noise (AWGN)
at the PR`. g`,q

ST-PR is the normalization constant, designed to ensure that the total transmit power
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at the STq is constrained, and is given by g`,q
ST-PR=

q
PSTq /Trace(wPUw†

PU) where PSTq
is the transmission

power at STq.
In the time slot β`,qτ`,qT of the proposed scheme, the ST receives only the PT’s signal, and

thus the optimal linear weight design is MRC. The received weight wr at the ST is thus chosen
as wr = hPT`,STq

‖hPT`,STq‖ where ‖.‖ denotes the Frobenius norm. In the time slot β`,q(1− τ`,q)T , the ST
amplifies and forwards the PT’s signal. The transmit weight wPU at the ST is chosen according to
the principles of MRT as wPU = hSTq,PR`

‖hSTq,PR`
‖ .

The received scalar signal at the SRq from the STq in the (1−β`,q)T time slot can be written as

ySRq
= g`,q

ST-SRh†STq,SRq,`wSUxSTq
+ nSRq

(4)

where wSU is the N × 1 transmit weight vector, hSTq,SRq,` ∼ CNN×1(0, d−α
STq,SRq

IN ) is the Rayleigh
channel vector from STq to SRq while using the PT`’s spectrum, dSTq,SRq

is the distance from STq

to SRq, and nSRq
∼ CN (0, σ2) is additive white Gaussian noise (AWGN) at the SRq. g`,q

ST-SR is the
normalization constant, designed to ensure that the total transmit power at the STq is constrained,
and is given by g`,q

ST-SR=
q

PSTq /Trace(wSUw†
SU).

The transmit weight wSU at the ST is chosen according to MRT as wSU = hSTq,SRq

‖hSTq,SRq‖ . The PR`

then applies MRC to the two received signals, given in (1) and (4) in the first and second time slot
respectively, resulting in a received signal to interference noise ratio (SINR) at the PR` given by

γPR`,q
=

PPT`
|hPT`,PR`

|2
σ2

+
γ1γ2

γ1 + γ2 + 1
(5)

where γ1 = PPT`
|hPT`,STq |2

σ2 and γ2 = g`,q
ST-PR

2
g`,q
ST

2‖hSTq,PR`
‖4‖hPT`,STq‖4

g`,q
ST-PR

2
g`,q
ST

2‖hSTq,PR`
‖4|h†PT`,STq

|2+σ2
and the received signal to

interference noise ratio (SINR) at the SRq given by γSR`,q
= g`,q

ST-SR
2‖hSTq,SRq,`‖2

σ2 .
Note that the PRs requires hPT`,PR`

and g`,q
ST-PRg`,q

STh†STq,PR`
wPUw†

rhPT`,STq
xPT`

to perform
MRC at PR. hPT`,PR`

can be obtained via pilot training symbols [5], and the complex scalar
g`,q
ST-PRg`,q

STh†STq,PR`
wPUw†

rhPT`,STq
xPT`

, is initially transmitted from the ST before the transmis-
sion procedure.

In practice, channel state information (CSI) between the ST and SR can be obtained by the
classic channel training, estimation, and feedback mechanisms as in [5], while the CSI between the
PT and ST and the ST and PR can be obtained as in [6], as we assume that the PU and SU
systems cooperate with each other. Finally, in a fading environment, there might be cases where
it is difficult for the ST to perfectly estimate instantaneous channels. In such cases,the results
obtained in this paper provide upper-bounds for the performance of the proposed scheme in a CR
network.

In this paper, we consider the amplify-and-forward (AF) relaying protocol, due to its simple
and practical operation, and thus set τ`,q = 1

2 . We note, however, that the proposed algorithm is
applicable to any relaying protocol, such as the decode-and-forward or compress-and-forward pro-
tocol. The AF gain at STq is chosen such that its instantaneous transmission power is constrained
to PSUq

.
To evaluate the performance of each (PT,PR) and (ST, SR) pair, we consider the utility function,

which comprises of both rate and monetary factors. Specifically, for (PT`, PR`), the achievable
instantaneous rate is given by [4]

RPU`,q
(β`,q) =

β`,qT

2
log2

(
1 +

PPT`
|hPT`,PR`

|2
σ2

+
γ1γ2

γ1 + γ2 + 1

)
(6)

To allow for both the rate and monetary value to be combined into one utility function, we
introduce a variable c̄ ∈ R+, with unit defined as: rate per unit monetary value. We can thus
express the utility for (PT`, PR`) as

UPU`,q
(β`,q, ζ`,q) = RPU`,q

(β`,q) + c̄ ζ`,qC . (7)
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For (STq, SRq), the achievable instantaneous rate is given by

RSUq,`
(β`,q) = (1− β`,q)T log2

(
1 +

g`,q
ST-SR

2|hSTq,SRq,`|4
‖hSTq,SRq,`‖σ2

)
(8)

The utility for (STq, SRq) is thus given by

USUq,`
(β`,q, ζ`,q) = RSUq,`

(β`,q)− k̄ζ`,qC (9)

where k̄ ∈ R+ is a variable which is defined to allow for both the rate and monetary value to be
combined into one utility function, with unit defined as:rate per unit monetary value.

3. PROBLEM FORMULATION

In this section, we describe the optimization problem we aim to address. To proceed, we introduce
some notation. We first define the primary and secondary user sets respectively as P = {PU` =
(PT`,PR`)}LPU

`=1 and S = {SUq = (STq, SRq)}LSU
q=1. Moreover, we define a LPU × LSU matching

matrix M, with mi,j = 1 if PUi is matched with SUj , and mi,j = 0 otherwise, where the notation
xi,j denotes the (i, j)th entry of matrix X. From this matrix, we introduce an injective function
µ : (P ∪ S) → (P ∪ S ∪ {∅}), such that (a) µ(PU`) ∈ (S ∪ {∅}), (b) µ(SUq) ∈ (P ∪ {∅}),
and (c) µ(SUq) = PU` and µ(PU`) = SUq if m`,q = 1, for ` = 1, . . . , LPU and q = 1, . . . , LSU, (d)
µ(SUq) = ∅ if m`,q = 0, for ` = 1, . . . , LPU, and (e) µ(PU`) = ∅ if m`,q = 0, for q = 1, . . . , LSU.

We also define an LPU × LSU price allocation matrix G with gi,j = ζi,j , and an LPU × LSU

time-slot allocation matrix B with bi,j = βi,j , and where gi,j = bi,j = 0 if mi,j = 0. We denote the
price and time-slot allocation matrices with continuous elements as Gcont and Bcont respectively.
Mathematically, this implies that the elements of Gcont and Bcont respectively take values from the
sets {gcont

i,j = ζi,j ∈ R : 0 ≤ ζi,j ≤ 1} and {bcont
i,j = βi,j ∈ R : 0 ≤ βi,j ≤ 1}. So our problem here

is a matching between P and S such that for each primary and secondary user is to ensure their
minimum rate requirements are satisfied. When this is achieved, the secondary goal is to maximize
their utility functions. To address these issues, we propose a distributed low-complexity algorithm
which accounts for selfish users.

4. PROPOSED DISTRIBUTED MATCHING ALGORITHM

In this section, we describe the proposed algorithm which determines spectrum access for each
(PT, PR) and (ST,SR) pair.

We first describe two scenarios we will be considering in the proposed algorithm, characterized
by different assumptions on the received SNR at the transmitters and receivers.
4.1. Complete Received SNR

In the first scenario, PT` has perfect knowledge of the instantaneous receivedSNRs in{γPT`
|hPT`,PR`

|2
dα
PT`,PR`

},
{γPT`

|hPT`,STq |2
dα
PT`,STq

}, {γSTq |hSTq,PR`
|2

dα
STq,PR`

}LSU
q=1. Moreover, STq has perfect knowledge of the instantaneous

received SNRs in the expressions {γSTq |hSTq,SRq,`|2
dα
STq,SRq

}LPU
`=1 . As such, PT` and STq are able to respectively

calculate their instantaneous rate in (6) and (8).
4.2. Partial Received SNR
In the second scenario, PT` has knowledge of the average received SNRs in the term { γSTq

dα
STq,PR`

}LSU
q=1

and the instantaneous received SNRs in the terms {γPT`
|hPT`,PR`

|2
dα
PT`,PR`

,
γPT`

|hPT`,STq |2
dα
PT`,STq

}LSU
q=1. Moreover,

STq has perfect knowledge of the instantaneous received SNRs in the term {γSTq |hSTq,SRq,`|2
dα
STq,SRq

}LPU
`=1 . As

such, PT` is able to calculate its instantaneous conditional rate, given by the expectation of the
rate in (6) with respect to {hPT`,STq

}LSU
q=1, while STq is able to calculate its instantaneous rate in

(8).
4.3. Users Preference Lists
Each PT has a preference list of STs which can cooperatively relay the PT’s message such that it
obtains a rate greater than its minimum rate requirement.
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Similarly, each ST has a preference list of PTs which, if it transmits in the spectrum band
occupied by the (PT, PR) pair in the list, obtains a rate greater than its minimum rate requirement
and a utility greater or equal to zero.

4.4. Proposed Algorithm

The key idea of the proposed algorithm is that each (PT, PR) pair trades with the (ST, SR) pair
which provides the highest utility, through both cooperative relaying and monetary payment. This
trading will be done by negotiating on the price and time-slot allocation numbers {ζ`,q, β`,q}LPU

`=1
LSU
q=1.

We say PT` makes an offer of (ζ`,q, β`,q) to STq to imply that PT` is willing to allow STq to
transmit, in exchange for STq (i) cooperatively relaying PT`’s message with time slot allocation
number β`,q and, (ii) providing a monetary payment with price allocation number ζ`,q.

To summarize the main algorithm (MA), each PT will first make an offer to the ST which is
first in its preference list. The ST will then check if the offering PT is in it’s preference list. If
it is, and the ST is already matched with another PT, the ST has two choices: (a) if the offering
PT can provide a better utility than the ST’s current matching, then the ST will reject its current
matching in favor of the new matching,or (b) if the offering PT can not provide a better utility
than the ST’s current matching, the ST will reject the PT’s offer. If the ST is not matched, then
the ST will be matched with the offering PT. If the offering PT is not in the ST’s preference list,
the ST will reject the offering PT. The algorithm will then repeat this procedure with each PT
until no more matchings are possible.

Note that if the ST rejects a PT, then PT updates its proposal, and the PT will either (i) decrease
its price allocation number by a price step number δ, or (ii) decrease its time slot allocation number
by a time slot-step number ε, depending on which option maximizes the PT’s utility, and assuming
a positive price and time-slot allocation number and the minimum data rate requirement for the
PT is satisfied.

5. PERFORMANCE AND IMPLEMENTATION ANALYSIS

We now analyze the performance of the proposed algorithm, and consider related implementation
issues. We first present some assumptions we will be considering in the analysis. To demonstrate
that the (PT, PR) pairs are motivated to participate in the proposed algorithm, we set the minimum
rate requirement of each (PT, PR) pair to be the rate of the direct PT to PR link. This is given for
(PT`,PR`) by RPT`,PR`

=T log2(1+
γPT`

|hPT`,PR`
|2

dα
PT`,PR`

) where hPT`,PR`
and dPT`,PR`

denote respectively the
channel coefficient and distance from PT` to PR`. In this paper, we thus set RPU`,req = RPT`,PR`

.

5.1. Utility Performance

In fact, the proposed algorithm can achieve a utility for every matched (PT, PR) pair very close
to the centralized optimal algorithm. This can be observed in Fig. 2(a), which plots the average
sum-utility of all matched (PT, PR) pairs vs. time-slot step number ε for the proposed algorithm,
the centralized algorithm, and the random algorithm. Note that the average sum-utility corre-
sponds to the sum over all utilities achieved by the matched (PT, PR) pairs, averaged over the
channel realizations, and given by UPUΣ,µ =

∑
`∈Pµ

E[U`,µ−ind(`)(ζ`,µ−ind(`), β`,µ−ind(`))], where Pµ

corresponds to all the (PT, PR) pairs matched under µ.
We first observe in Fig. 2(b) that for the proposed algorithm, the complete and partial received

SNR scenarios achieve very similar performance, despite the different channel assumptions. We next
observe that the proposed algorithm (i) achieves a sum-utility comparable with the sum-utility of
the centralized algorithm for sufficiently small ε, and (ii) performs significantly better than the
random matching algorithm.

In practice, the unmatched PTs will transmit directly to their corresponding PRs and thus
(PT`, PR`) will achieve the rate RPT`,PR`

. However, the unmatched STs will not be able to transmit
at all. To remedy this, various modifications to the proposed algorithm can be made, such as
integrating a fairness mechanism into the algorithm so each ST has a turn transmitting, though at
different times.

5.2. Overhead and Complexity

The proposed algorithm is distributed, and thus incurs significantly less overhead and complexity
compared to centralized algorithms. It can be observed from the proposed algorithm that the total
number of times the PTs communicates with the STs scales as
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Figure 2: (a) Average sum-utility of all matched (PT, PR) pairs vs. time slot step-number ε. (b) Total
number of communication packets vs. ε for the complete instantaneous received SNR scenario with ζinit =
0.99, βinit = 0.99, δ = ε, γSU1 = . . . γSULSU

= 25 dB, LPU = 2, γPU1 = γPU2 = 5 dB, RSU,req = 0.1,
{RPU`,req = RPT`,PR`

}LPU
`=1 , N = 2, c̄ = 1, k̄ = 1 and α = 4.

Q ∼ LPULSU

(
a

⌊
ζinit

δ

⌋
+ b

⌊
βinit

ε

⌋)
(10)

where a, b ∈ R+. We observe in (10) that the amount of overhead, and thus the number of iterations,
decreases with ε and δ. We see that the total number of communication packets converge to a
constant at sufficiently high ε. This is because if ε is sufficiently large, the time-slot allocation
numbers are updated in the algorithm in such a way that the preference lists for each (PT, PR)
and (ST, SR) pair remain unchanged.

We note that the packet length required for communication between the PTs and the STs is
very short. In particular, assuming that ζinit, βinit, δ and ε are initially known to all users, each
PT is only required to send one bit to the first ST in its preference list indicating an offer, and the
corresponding ST only needs to send one bit back to the offering PT indicating either acceptance
or rejection. As demonstrated in Fig. 2(b), the total number of communication packets for each PT
can be designed to be reasonably small, and thus given the short packet lengths, the total running
time and amount of overhead from the proposed algorithm can be quite small.

6. CONCLUSION
We proposed a distributed algorithm for spectrum access which guarantees that the PUs’ and SUs’
rate requirement are satisfied. Numerical analysis also revealed that the distributed algorithm
achieves a performance comparable to an optimal centralized algorithm, but with significantly less
overhead and complexity.
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