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Abstract—Quantum error correction codes (QECCs) can be
constructed from the known classical coding paradigm by exploit-
ing the inherent isomorphism between the classical and quantum
regimes, while also addressing the challenges imposed by the
strange laws of quantum physics. In this spirit, this paper pro-
vides deep insights into the duality of quantum and classical
coding theory, hence aiming for bridging the gap between them.
Explicitly, we survey the rich history of both classical as well
as quantum codes. We then provide a comprehensive slow-paced
tutorial for constructing stabilizer-based QECCs from arbitrary
binary as well as quaternary codes, as exemplified by the dual-
containing and non-dual-containing Calderbank–Shor–Steane
(CSS) codes, non-CSS codes and entanglement-assisted codes.
Finally, we apply our discussions to two popular code families,
namely to the family of Bose–Chaudhuri–Hocquenghem as well
as of convolutional codes and provide detailed design examples
for both their classical as well as their quantum versions.

Index Terms—Channel coding, quantum error correction,
BCH codes, convolutional codes.
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CNOT Controlled-NOT
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CRSS Calderbank-Rains-Shor-Sloane
CSS Calderbank-Shor-Steane
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Manuscript received February 6, 2018; revised June 12, 2018; accepted
July 22, 2018. Date of publication July 31, 2018; date of current ver-
sion February 22, 2019. This work was supported in part by the European
Research Council through the Advanced Fellow Award QuantCom and
in part by the Engineering and Physical Sciences Research Council
under Grant EP/PO34284/1. The research data for this paper is avail-
able at [https://doi.org/10.5258/SOTON/D0616]. (Corresponding author:
Lajos Hanzo.)

The authors are with the School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
zb2g10@ecs.soton.ac.uk; dc2n14@ecs.soton.ac.uk; sxn@ecs.soton.ac.uk;
lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/COMST.2018.2861361

EXIT EXtrinsic Information Transfer
FPTD Fully-Parallel Turbo Decoder
FPQTD Fully-Parallel Quantum Turbo Decoder
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IRCC IRregular Convolutional Code
LDPC Low Density Parity Check
LUT Look-Up Table
MAP Maximum A Posteriori
ML Maximum Likelihood
MLSE Maximum Likelihood Sequence Estimation
MRRW McEliece-Rodemich-Rumsey-Welch
PCM Parity Check Matrix
PGZ Peterso-Gorenstein-Zierler
QBCH Quantum Bose-Chaudhuri-Hocquenghem
QBER Quantum Bit Error Ratio
QCC Quantum Convolutional Code
QECC Quantum Error Correction Code
QIRCC Quantum IRregular Convolutional Code
QKD Quantum Key Distribution
QLDPC Quantum Low Density Parity Check
QRS Quantum Reed-Solomon
QSC Quantum Stabilizer Code
QSDC Quantum Secure Direct Communication
QTC Quantum Turbo Code
QURC Quantum Unity Rate Code
RM Reed-Muller
RRNS Redundant Residue Number System
RS Reed-Solomon
RSC Recursive Systematic Convolutional
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SOVA Soft-Output Viterbi Algorithm
TCM Trellis-Coded Modulation
TTCM Turbo Trellis Coded Modulation
URC Unity Rate Code
VA Viterbi Algorithm
XOR Exclusive OR.

LIST OF SYMBOLS

General Notation

• The notation |.〉 is used to indicate a quantum
state. Therefore, |ψ〉 represents a qubit having the
state ψ.
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• The notation |.| is used to indicate a magnitude operation.
Therefore, |α| represents the magnitude of a complex
number α.

• The notation � is used to indicate the symplectic product.
• The notation ⊗ is used to indicate the tensor product.
• The notation � is used to indicate the discrete convolution

operation.
• The notation

∑
is used to indicate the sum operation.

• The notation 〈, 〉 is used to represent the inner product.
• The GF(4) variables are represented with a ˆ on top,

e.g., x̂ .
• The notation (n, k) is used for a classical code, while the

notation [n, k] is used for a quantum code.
• The superscript T is used to indicate the matrix transpose

operation. Therefore, xT represents the transpose of the
matrix x.

Special Symbols

η Spectral efficiency.
B Classical channel bandwidth.
c Number of pre-share entangled qubits (ebits).
C Classical code space.
C Quantum code space.
C Set of complex numbers.
C Classical channel channel.
CQ (.) Quantum channel capacity.
E Entanglement consumption rate.
Fq Galois field GF(q).
G Generator matrix.
Gn n-qubit Pauli group.
gi ith stabilizer generator.
H Parity check matrix.
H Stabilizer group.
H2(.) Binary entropy function.
H Hadamard gate.
I Pauli-I operator.
k Length of information word.
n Length of codeword.
N Classical noise power.
p Channel error (or flip) rate, e.g., channel depolariz-

ing probability.
P Pauli error inflicted on the transmitted codeword.
Rc Equivalent classical coding rate of a quantum code.
RQ Quantum coding rate.
S Classical signal power.
Tr[.] Trace operator.
V Clifford encoder.
X Pauli-X operator.
Y Pauli-Y operator.
Z Pauli-Z operator.

I. INTRODUCTION

IF COMPUTERS that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,
And they’ll read our e-mail,
Till we get crypto that’s quantum, and daunt ’em.

Jennifer and Peter Shor

Fig. 1. Realization of a classical and quantum bit using the spin of an
electron, where spin-up denotes the state |0〉 (or classical bit 0), while spin-
down represents the state |1〉 (or classical bit 1). A qubit exists in superposition
of the two states, but collapses to a single definite value (or state) upon
measurement.

In the midst of the fast technological advances seen over the
last several decades, ‘Quantum Technology’ has emerged as a
promising candidate, which has the potential of radically rev-
olutionizing the way we compute as well as communicate.
Quantum technology derives its strengths from harnessing
the peculiar laws of quantum physics, namely the super-
position and entanglement. The fundamental postulates of
quantum physics are rather different from the widely known
and well-understood laws of classical physics, as exemplified
by Newton’s laws and Maxwell’s equations.

A classical bit can assume the value of either 0 or 1 at
any particular instant. By contrast, a quantum bit (qubit),1

which is the integral constituent unit of a quantum system,
exists in a ‘superposition’ of the states |0〉 and |1〉 until it is
‘measured’ or ‘observed’, as illustrated in Fig. 1. Explicitly, a
qubit concurrently exists in the states |0〉 and |1〉. The resul-
tant superimposed state of a qubit can be described using the
state vector:

|ψ〉 = α|0〉+ β|1〉, (1)

where | 〉 is called the Ket or Dirac notation [1] used for denot-
ing a quantum state. Furthermore, the complex coefficients α
and β may take any arbitrary value as long as |α|2+ |β|2 = 1.
Upon ‘measurement’ or ‘observation’ invoked for determining
its value, the qubit |ψ〉 either collapses to the state |0〉 or to
the state |1〉, which may happen with a probability of |α|2 and
|β|2, respectively, as exemplified in Fig. 1. Hence, a qubit is
basically a 2-dimensional state vector, while an N-qubit com-
posite system may be represented as a 2N -dimensional state

1A classical bit or qubit can take different forms, for example two energy
levels of an atom, different alignments of a nuclear/electronic/atomic spin,
two different photon polarizations, or the charge/current/energy of a Josephson
junction.
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Fig. 2. Comparison of classical and quantum processing of a function f (x) defined as f (x) : {0, 1}2 → {0, 1}2 [3]. Classical system serially computes
f (x) for all possible x ∈ {00, 01, 10, 11}; hence, requiring four evaluations. By contrast, a quantum system concurrently processes all the possible x values,
since a 2-qubit quantum register exists in superposition of all the four states, i.e., |ψ〉 = α0|00〉 + α1|01〉 + α2|10〉 + α3|11〉; hence, requiring a single
evaluation. The resulting outcome (α0|f (00)〉+ α1|f (01)〉+ α2|f (10)〉+ α3|f (11))〉 is also in superposition of all the four possibilities. Please note that
it is not possible to read all the four values of f (x), since the quantum register will collapse to one of the four values upon measurement. Nonetheless, the
superimposed output may be processed further to get a desired property of the function f (x), for example the minimum or maximum of f (x) [4]–[7].

vector, which is formulated as:

α0|00 . . . 0〉+ α1|00 . . . 1〉+ · · ·+ α2N−1|11 . . . 1〉, (2)

where αi ∈ C and
2N−1∑

i=0
|αi |2 = 1. To elaborate further, an

N-qubit system concurrently exists in superposition of all the
2N possible values, which gives quantum systems the inherent
property of quantum parallelism, as exemplified in Fig. 2.2

In contrast to superposition, ‘entanglement’, which Einstein
termed as a ‘spooky action at a distance’ [8], is the myste-
rious, correlation-like property of two or more qubits, which
implies that the entangled N-qubit state cannot be expressed as
tensor product of the individual qubits. For example, consider
a 2-qubit state |ψ〉 given by:

|ψ〉 = α|00〉+ β|11〉, (3)

and having non-zero coefficients α and β. It is impossible to
express |ψ〉 as the tensor product of constituent qubits, because
we have [2]:

α|00〉+ β|11〉 �= (α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉), (4)

for any choice of αi and βi subject to normalization, where
⊗ denotes the tensor product.3 Consequently, a strange rela-
tionship exists between the two entangled qubits, which entails
that measuring one of them also reveals the value of the other,
even if they are geographically separated. Explicitly, if the first
qubit of Eq. (3) collapses to the state |0〉 upon measurement,
which may happen with a probability |α|2, then the second
qubit is definitely |0〉. Similarly, if the first qubit collapses to
the state |1〉, which may occur with a probability |β|2, then
the second qubit is also |1〉.

The phenomenon of ‘superposition’ as well as ‘entangle-
ment’ have no counterparts in the classical domain, but they
give rise to a new range of powerful computing and secure
communication paradigms. For example, quantum comput-
ing algorithms have the potential to solve problems often
deemed intractable at a substantially reduced complexity, as

2Please refer to [2] for the fundamentals of quantum mechanics.
3The right hand side of Eq. (4) can be expanded as follows:

α|00〉+ β|11〉 �= α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉.

exemplified by Shor’s pioneering factorization algorithm [6]
and Grover’s search algorithm [7]. This astounding processing
power is derived from the inherent quantum parallelism result-
ing from quantum-domain superposition. More specifically, in
contrast to an N-bit classical register, which can only store one
of the 2N possible values, an N-qubit quantum register can
hold all the 2N possible values (or states) concurrently, hence
facilitating parallel processing, whose complexity is deemed
equivalent to a single classical evaluation. This massive paral-
lel processing potential may be beneficially exploited in large-
scale communication systems’ processes, for example in multi-
user detection [9], [10] and in routing optimization [11], [12],
as well as in diverse other applications, such as data
mining [13] and Gait Recognition [14], [15], just to
name a few.

It is anticipated that the enormous processing capability
of quantum computing algorithms may threaten the integrity
of the state-of-the-art trusted classical public key encryption,
which relies on the computational complexity of the underly-
ing mathematical functions. While classical cryptography is at
risk of being deciphered due to quantum computing, quantum
communications support secure data dissemination, since any
‘measurement’ or ‘observation’ by an eavesdropper perturbs
the quantum superposition, hence intimating the parties con-
cerned [2], [16]. Some of the main applications of secure quan-
tum communications are Quantum Key Distribution (QKD)
techniques [17], [18], Quantum Secure Direct Communication
(QSDC) [19]–[21], and unconditional quantum location veri-
fication [22] for the future driverless ‘Quantum Car’ [23] and
quantum geo encryption [24]. Deploying quantum communi-
cations is also imperative for making the future ‘Quantum
Internet’ (Qinternet) [25] a reality. Explicitly, the Qinternet
is envisaged as a global network of heterogeneous quantum
systems, which may be interconnected through quantum chan-
nels in pursuit of building larger quantum systems, for example
ultra-powerful distributed quantum computers [26], [27], long-
haul secure QKD, QKD and quantum based location verifica-
tion aided secure banking transactions, as well as ultra-precise
quantum clocks for global synchronization, as illustrated in
Fig. 3. It is pertinent to mention here that the quantum back-
haul, which is likely to be a combination of free-space wireless
channels and optical fibers, is particularly suitable for the
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Fig. 3. Stylized illustration of the global ‘Qinternet’ interconnecting hetero-
geneous quantum processing and communication nodes over large distances,
for example for distributed quantum computing, long-haul QKD, QKD and
location verification aided secure banking transactions, as well as for quantum
clock aided ultra-precise synchronization and navigation.

Qinternet owing to the inherent quantum parallelism [25].
More specifically, an N-qubit quantum state would require
only N uses of the quantum channel for transmitting the
complete state information, while 2N channel uses would
be required if classical transmission is invoked. Similarly, if
k N-qubit quantum nodes are entangled, then their overall
capacity will be that of a (kN)-qubit system having a 2kN -
dimensional state space. By contrast, if the k N-qubit nodes are
classically connected, they will have an effective state space of
k2n . Hence, quantum connectivity guarantees an exponentially
larger state space compared to classical connectivity.

Unfortunately, the quantum channels as well as the quantum
systems of Fig. 3 are not perfect, which is a major impedi-
ment to the practical realization of a global Qinternet. More
specifically, qubits may experience both channel-induced as
well as quantum processing impairments [28]. Explicitly, the
deleterious quantum channel attenuation measured in dB per
km severely limits the reliable transmission rate, or equiv-
alently the transmission range. For example, the secret key
transmission rate of a QKD system decays exponentially
with the distance [29]. By contrast, the quantum processing
impairments are inflicted by the imperfections in the quantum
hardware, such as the quantum gates.

Quantum-based communication systems support the trans-
mission of both classical as well as of quantum information.
When the information to be transmitted is classical, we may
invoke the family of classical error correction techniques for
counteracting the impact of quantum impairments [30], [31].
More specifically, the classical information is first encoded
using a classical error correction code. The encoded bits are
then mapped onto the qubits, which are transmitted over a
quantum channel. The mapping of classical bits to qubits may
be carried out for example by the so-called superdense cod-
ing protocol [30], [32]. Likewise, QKD also relies on classical
error correction codes [33], [34]. By contrast, for a more gen-
eral communication system, which supports the transmission
of both classical as well as quantum information, and for

Fig. 4. Paper rationale.

reliable quantum computation, we have to resort to Quantum
Error Correction Codes (QECCs), which exploit redundancy
in the quantum domain. More explicitly, similar to the clas-
sical error correction codes, QECCs redress the perturbations
resulting from quantum impairments, hence enabling qubits to
retain their coherent quantum states for longer durations with
a high probability. This has been experimentally demonstrated
in [35]–[37].

QECCs relying on the quantum-domain redundancy are
indispensable for conceiving a quantum communication
system supporting the transmission of quantum information
and also for quantum computing. Therefore, in this paper, we
survey the intricate journey from the realm of classical chan-
nel coding theory to that of the QECCs, while also providing a
slow-paced tutorial on the duality of these two seemingly dif-
ferent coding regimes. In particular, we provide deeper insights
into the subtle similarities and differences between them.

A. Outline

Fig. 4 captures the rationale of this paper, while Fig. 5
provides an overview at a glance. We commence our dis-
course in Section II, where we detail the various quantum
channel models and highlight the duality between the widely
used quantum depolarizing channel and the classical discrete
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Fig. 5. Paper structure.

quaternary channel. We then survey the rich history of clas-
sical and quantum codes in Section III. In Section IV, we
detail the transition from the classical to the quantum code
designs with the help of simple design examples. Specifically,
we design the quantum counterpart of the simple classical
rate-1/3 repetition code. We then generalize our discussions
in Section V, where we present the quantum version of classi-
cal linear block codes by relying on the so-called stabilizer
formalism, which is a theoretical framework conceived for
constructing quantum codes from the existing families of
classical error correction codes. Continuing further our dis-
cussions, we next detail the quantum to classical isomorphism
in Section VI, which is a useful analysis technique for map-
ping quantum codes onto the equivalent classical codes and
vice versa. The quantum-to-classical mapping allows us to
use the state-of-the-art classical syndrome decoding techniques
in the quantum realm, while the inverse mapping, i.e., the
classical-to-quantum mapping, helps in importing arbitrary
classical codes into the quantum domain. Furthermore, based
on this isomorphism, we present the taxonomy of stabilizer
codes in Section VII. We also detail the associated design
principles with examples. In Section VIII, we delve deeper
into a pair of popular code families, explicitly the Bose-
Chaudhuri-Hocquenghem (BCH) codes and the convolutional
codes, by providing tutorial insights into their classical as well
as quantum counterparts. Finally, we conclude our discourse
in Section IX.

Fig. 6. Quantum channel models.

II. QUANTUM DECOHERENCE

Environmental decoherence generally constitutes a major
source of quantum impairments, which may occur for example
during quantum transmission or quantum processing as well as
in quantum memories. In this section, we review the quantum
channels of Fig. 6, which are widely used for modeling envi-
ronmental decoherence. Explicitly, our intention is to help the
readers understand the duality between quantum and classical
channels.

A. Amplitude Damping Channel

In the simple terms, environmental decoherence may be
described as the undesired interaction, or more specifically
entanglement, of the qubit with the environment, which per-
turbs its coherent superposition of basis states. In one such
instance, the qubit (or quantum system) loses energy due to its
interaction with the environment, for example the excited state
of the qubit decays due to the spontaneous emission of a pho-
ton or the photon is lost (or absorbed) during its transmission
through optical fibers [38], [39]. This decoherence process can
be conveniently modeled using an amplitude damping channel.
Let us consider a qubit realized using a two-level atom having
the ground state |0〉 and the excited state |1〉. Furthermore, let
|0〉E and |1〉E be the basis states of the environment initial-
ized to the vacuum state |0〉E . Then, the amplitude damping
channel characterizes the evolution of the resultant system as
follows [39]:

|0〉|0〉E → |0〉|0〉E ,
|1〉|0〉E →

√
1− γ|1〉|0〉E +

√
γ|0〉|1〉E , (5)

where γ is the damping probability, or more specifically the
probability of losing a photon. In physically tangible terms,
Eq. (5) implies that the state of the qubit remains the same if
it is in the ground state |0〉, while it looses a photon with a
probability of γ, when in the excited state |1〉. Explicitly, in
the event of a photon loss, the state of the qubit changes from
|1〉 to |0〉, while that of the environment changes from |0〉E
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to |1〉E ; hence resulting in the state |0〉|1〉E of Eq. (5), which
may occur with a probability of γ. Based on Eq. (5), a qubit
|ψ〉 = α|0〉 + β|1〉, which is in coherent superposition of the
basis states, entangles with the environment as:

|ψ〉|0〉E →
(
α|0〉+ β

√
1− γ|1〉

)
|0〉E +

√
γβ|0〉|1〉E .

(6)

It is pertinent to mention here that |ψ〉 is generally not an
isolated qubit. It may be entangled with other qubits as part
of an N-qubit composite quantum system. Hence, slightly
‘abusing’ the usual notation, the coefficients α and β repre-
sent the (N-1)-qubit states entangled to the states |0〉 and |1〉,
respectively, of the qubit undergoing decoherence. We further-
more assume that each qubit interacts independently with the
environment, hence the associated decoherence process is tem-
porally and spatially uncorrelated. We can readily infer from
Eq. (6) that if the environment is found to be in state |0〉E ,
then |ψ〉 decoheres to (α|0〉+β

√
1− γ|1〉), which reduces to(

α√
1−γβ2

|0〉+ β
√
1−γ√

1−γβ2
|1〉
)

upon normalization, otherwise

|ψ〉 collapses to |0〉.
If a quantum system is a statistical ensemble of pure states,

then it may be described using the density operator (also called
density matrix) ρ, as follows:

ρ ≡
∑

i

pi |ψi 〉〈ψi |, (7)

where pi denotes the probability of occurrence of the ith pure
state |ψi 〉. Explicitly, a pure quantum state is one whose state
vector |ψ〉 is exactly known. Hence, it is described by a single
state vector |ψ〉 and the density operator of Eq. (7) reduces to
ρ = |ψ〉〈ψ|. By contrast, the mixed state of Eq. (7) is a prob-
abilistic mixture (not superposition) of different pure states
|ψi 〉. Hence, we do not exactly know the state of the system
and it may be found in the ith pure state |ψi 〉 with a probabil-
ity of pi . This may happen for example due to coupling with
the environment or due to inaccuracies of the equipment. The
loss of energy in a generalized quantum system described by
Eq. (7) may be modeled using an amplitude damping channel
NAD, which maps an input state, having the density operator
ρ, as follows:

NAD(ρ) = E0ρE
†
0 + E1ρE

†
1, (8)

where the error operators (also called Kraus operators)4 E0

and E1 are given by [2]:

E0 =

(
1 0
0

√
1− γ

)

, E1 =

(
0

√
γ

0 0

)

. (9)

The decohered state of a qubit may be readily described by
using the error operators of Eq. (9). Resuming our previous

4A quantum channel N is a completely positive, trace-preserving linear
mapping, which maps an input state having the density ρ as [2]:

N (ρ) =
∑

k

EkρE
†
k
,

where the matrices Ek are known as the Kraus operators or error operators
of the channel. Furthermore, we have

∑
k E†

k
Ek = I, where I is an identity

matrix.

example of |ψ〉 = α|0〉+ β|1〉, the error operator E0 corrupts
|ψ〉 as follows:

E0|ψ〉 =
(
1 0
0

√
1− γ

) (
α
β

)

=

(
α√

1− γβ

)

≡ α|0〉+
√

1− γβ|1〉, (10)

which occurs with a probability of |E0|ψ〉|2 = (1−γβ2). Upon
normalization, the corrupted state of Eq. (10) is reduced to:

E0|ψ〉 = α
√
1− γβ2

|0〉+ β
√
1− γ

√
1− γβ2

|1〉. (11)

Similarly, the error operator E1 acts on |ψ〉 as follows:

E1|ψ〉 =
(
0

√
γ

0 0

) (
α
β

)

=

(√
γβ
0

)

≡ √
γβ|0〉, (12)

which happens with a probability of |E1|ψ〉|2 = γβ2 and is
equivalent to the classical bit |0〉. In realistic systems, γ at
time instant t is characterized by the qubit relaxation time T1

as follows [40]:

γ = 1− e−t/T1 . (13)

B. Phase Damping Channel

Another instantiation of environmental decoherence, known
as dephasing or phase damping, characterizes the loss of quan-
tum information without the loss of energy, which may occur
for example due to the scattering of photons, or the perturba-
tion of electronic states caused by stray electrical charges. The
error operators of the resultant phase damping channel NPD
are defined as follows [2]:

E0 =

(
1 0

0
√
1− λ

)

, E1 =

(
0 0

0
√
λ

)

, (14)

where λ is the scattering probability of a photon (without loss
of energy). We may observe that E0 of Eq. (14) is similar
to the E0 of the amplitude damping channel, while the error
operator E1 acts on |ψ〉 as follows:

E1|ψ〉 =
(
0 0

0
√
λ

) (
α
β

)

=

(
0√
λβ

)

≡
√
λβ|1〉, (15)

which occurs with a probability of |E1|ψ〉|2 = λβ2 and it is
equivalent to the classical state |1〉. The probability λ relies
on the relaxation time T1 as well as on the dephasing time
T2, i.e., we have [40]:

λ = 1− e
t

T1
− 2t

T2 . (16)

Intuitively, Eq. (13) and Eq. (16) imply that the qubit is likely
to decohere if the operation time (transmission or processing
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Fig. 7. Schematic of Pauli-I, Pauli-Z, Pauli-X and Pauli-Y gates.

or storage) t is comparable to the relaxation time T1 and the
dephasing time T2. Equivalently, T1 and T2 characterize the
life-time of a reliable qubit.

C. Pauli Channel

The environmental decoherence can be modeled using a
combined amplitude and phase damping channel. However,
it is not feasible to classically simulate such channels for an
N-qubit composite system, since the resultant system has a
2N -dimensional Hilbert space. For the sake of facilitating effi-
cient classical simulations,5 the combined amplitude and phase
damping channel can be approximated using a so-called Pauli
channel NP, which maps an input state, having the density
operator ρ, as follows [41]:

NP(ρ) = (1− pz − px − py )IρI+ pzZρZ+ pxXρX+ pyYρY,

(17)

where I, X, Y and Z are single-qubit Pauli operators (or gates)
of Fig. 7 defined as:

I =

(
1 0
0 1

)

, X =

(
0 1
1 0

)

,

Z =

(
1 0
0 −1

)

, Y =

(
0 −i
i 0

)

, (18)

while pz , px and py are the probabilities of encounter-
ing Z, X and Y Pauli errors, respectively, which rely
on the qubit relaxation and dephasing time as given
below:

px = py =
1

4

(
1− e−t/T1

)

pz =
1

4

(
1 + e−t/T1 − 2e−t/T2

)
. (19)

Explicitly, I is an identity operator, or merely a repeat
gate, which leaves the state |ψ〉 intact, as shown
below:

I|ψ〉 =
(
1 0
0 1

)(
α
β

)

=

(
α
β

)

≡ α|0〉+ β|1〉. (20)

5Classical modeling of quantum systems is discussed in Section VI.

The operator Z is a phase-flip operator, which acts as:

Z|ψ〉 =
(
1 0
0 −1

)(
α
β

)

=

(
α
−β
)

≡ α|0〉 − β|1〉, (21)

while X is a bit-flip operator analogous to the classical NOT
gate, which yields:

X|ψ〉 =
(
0 1
1 0

)(
α
β

)

=

(
β
α

)

≡ β|0〉+ α|1〉. (22)

By contrast, Y is a combined bit-and-phase-flip operator (Y =
iXZ), which acts on |ψ〉 as:

Y|ψ〉 =
(
0 −i
i 0

)(
α
β

)

=

(−iβ
iα

)

≡ −i(β|0〉 − α|1〉). (23)

Hence, the Pauli channel of Eq. (17) maps the input state
|ψ〉 onto a linear combination of the original state (Pauli-I
operation), phase-flipped state (Pauli-Z operation), bit-flipped
state (Pauli-X operation), as well as bit-and-phase-flipped state
(Pauli-Y operation) during the process of decoherence. In
essence, the resultant quantum error is continuous in nature.
We may observe in Eq. (19) furthermore that the time T1

affects bit-flips, phase-flips as well as bit-and-phase-flips. By
contrast, the time T2 is only related to the phase-flip errors.
This is because the bit-flip as well as bit-and-phase-flip errors
are associated with amplitude damping, while the phase-flip
errors result from phase damping. In most practical systems,
the value of T1 is several orders of magnitude higher than
that of T2 [42], [43]. Consequently, most practical quantum
systems behave as so-called asymmetric channels and they
experience more phase-flips than bit-flips as well as bit-and-
phase-flips. Furthermore, a special class of Pauli channels,
known as the ‘depolarizing channel’, models the worst-case
scenario by assuming that all three errors are equally likely,
i.e., (pz = px = py ). Explicitly, a depolarizing channel
having the probability p inflicts a phase-flip (Pauli-Z) or a
bit-flip (Pauli-X) or bit-and-phase-flip (Pauli-Y) error with
a probability of p/3 each, which may be mathematically
encapsulated as:

NDP(ρ) = (1− p)ρ+
p

3
(ZρZ+XρX+YρY). (24)

In this treatise, we will only consider the widely used depo-
larizing channel model.

The aforementioned quantum channel models are summa-
rized in Fig. 8. We may observe in Fig. 8 that the Pauli
channel may be deemed to be the quantum analogue of the
classical discrete quaternary channel. However, while the clas-
sical quaternary channel may inflict only one of the four
possible errors, the error inflicted by the Pauli channel may
be in superposition of the four possible errors, i.e., I, Z,
X and Y. The Pauli channel may further be simplified by
using two independent bit-flip and phase-flip channels, which
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Fig. 8. Mathematical interpretation of quantum channel models.

are analogous to classical binary symmetric channels hav-
ing cross-over probabilities of (px + py ) and (pz + py ),
respectively.

III. HISTORICAL OVERVIEW OF CLASSICAL & QUANTUM

ERROR CORRECTION CODES

In this section, we survey the major milestones both in the
realm of classical as well as in quantum coding theory, which
are chronologically arranged in Table I.

A. Classical Coding Theory

1) Design Objectives: Shannon’s pioneering work [44] on
classical channel capacity marks the beginning of classical
coding theory. Explicitly, Shannon predicted that sophisticated
channel coding techniques, having coding rate R lower than
the Shannon limit (or channel capacity) C, may be invoked
for the sake of achieving reliable transmission over a noisy
bandwidth-limited channel. Intuitively, this implies that it is
possible to transmit information virtually free from errors,
as long as the coding rate does not exceed the Shannon
limit,which is characterized by the channel bandwidth B (Hz),
the signal power S (Watts) and the uncorrelated Additive White
Gaussian Noise (AWGN) power N (Watts) as follows:

C = B log2

(

1 +
S

N

)

, (25)

or equivalently in terms of the spectral efficiency (bits/s/Hz) as:

η =
C
B

= log2

(

1 +
S

N

)

. (26)

Hence, the Shannon limit of Eq. (25) (and equivalently
Eq. (26)) quantifies the highest possible coding rates still capa-
ble of ensuring error-free transmission, as illustrated in Fig. 9.
Furthermore, we may infer from Eq. (25) that the resultant
information transfer rate of a system is limited by the channel
bandwidth B as well as the system’s Signal-to-Noise Ratio
(SNR) S/N. As demonstrated in Fig. 9, the capacity limit
increases upon increasing the SNR. Ultimately, when the SNR
approaches infinity in the noiseless scenario, it is possible
to achieve an infinite transmission rate even for a very low
bandwidth. Similarly, the capacity limit also increases upon
increasing the bandwidth. Hence, we may strike a trade off

Fig. 9. Shannon capacity limit for AWGN channel characterized by Eq. (26).

Fig. 10. Stylized representation of conflicting design parameters affecting
the design of classical codes.

between the bandwidth and the SNR, as detailed and exempli-
fied in [141, Sec. 2.13.1]. However, an infinite bandwidth does
not guarantee an infinite transmission rate, because the noise
power also increases upon increasing bandwidth, as shown
mathematically in [141].

Shannon did not provide any explicit code constructions
in his seminal work [44]. However, his work inspired the
research community to design practical codes in line with
the achievable code design region of Fig. 9. This in turn
highlighted various other conflicting design trade-offs, which
are captured in Fig. 10. For example, given particular chan-
nel conditions, a code may be optimized to achieve a lower
Bit Error Ratio (BER) or a higher coding gain.6 However,
this typically imposes an increased decoding complexity and
transmission delay, or reduced effective throughput, as detailed
in [141] and [142].

The Shannon limit of Eq. (25) quantifies the capacity of
a Continuous-input Continuous-output Memoryless Channel

6Coding gain quantifies the reduction in bit-energy achieved at a certain
BER, when error correction is invoked.



978 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE I
MAJOR ACHIEVEMENTS IN THE CLASSICAL AND QUANTUM CODING PARADIGMS

(CCMC), which may only be achieved by infinitely long
random-like codes. Since the state-of-the-art communication
systems transmit binary information, several bounds have been

conceived for characterizing the rate-versus-minimum-distance
trade-off, rather than the rate-versus-SNR trade-off of Fig. 9.
Explicitly, these bounds provide either an upper or a lower
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TABLE II
RATE-VERSUS-MINIMUM-DISTANCE BOUNDS FOR CLASSICAL CODES [147], [148]. H2(p) DENOTES THE BINARY ENTROPY

FUNCTION, WHICH IS EQUIVALENT TO H2(p) = p log2(p) + (1− p) log2(1− p)

Fig. 11. Rate (R = k/n) versus normalized minimum distance δ =
dmin
n

asymptotic bounds [148]. The closed-form approximation of [147] is also
plotted, which relies on a simple quadratic function R(δ) = (2δ − 1)2 and
satisfies all the bounds. Upper bounds are plotted in blue, while the lower
bound is plotted in red.

limit on the maximum coding rate R = k/n given the minimum
Hamming distance dmin, or vice versa. Here, k and n denote
the number of information and coded bits, respectively, while
the minimum Hamming distance is defined as the minimum
distance between any two legitimate binary codewords. Hence
the resultant code is capable of correcting t = (dmin − 1)/2
errors. Table II enlists the popular finite block-length as well
as asymptotic (n → ∞) coding bounds, while Fig. 11 plots
the asymptotic bounds. Specifically, the Singleton bound [143]
is a loose upper bound, while the Gilbert-Varshamov (GV)
bound [146] is the tightest lower bound. Furthermore, the
Hamming bound [45] provides a tight upper bound at high
coding rates, while the McEliece-Rodemich-Rumsey-Welch
(MRRW) bound [144] is the tightest upper bound for low
and medium coding rates. The bounds of Table II give a
range of achievable minimum distances, or more specifically
the normalized minimum distances δ = dmin

n , for the desired
coding rate, and hence do not provide a precise solution to

the rate-versus-minimum-distance trade-off. Consequently, for
the sake of approximating the optimum trade-off between
the coding rate and the minimum distance, a simple invert-
ible closed-form analytical expression R(δ) = (2δ − 1)2 was
proposed in [147], which satisfies all the asymptotic bounds
of Table II, as demonstrated in Fig. 11. Akhtman et al. [147]
also formulated the corresponding closed-form expressions for
finite block-lengths, satisfying all the finite bounds of Table II.

2) Error Correction Codes: In 1950, Hamming con-
ceived the first practical family of classical error correction
codes [45]. More specifically, Hamming proposed an infi-
nite family of binary linear block codes capable of encoding
k = (2r − 1 − r) information bits into n = (2r − 1)
coded bits for r ≥ 2. The resultant codewords had a min-
imum Hamming distance of dmin = 3, hence correcting
t = (dmin − 1)/2 = 1 errors. The Hamming codes may
be classified as being ‘perfect’ codes, since the associated
coding rate R = k/n = 1 − r/(2r − 1) is the maximum
coding rate achievable for dmin = 3 and for a block length
of n = (2r − 1). Following these developments, in 1954,
Reed [46] and Muller [47] independently conceived a class of
multiple error correcting block codes, known as Reed-Muller
(RM) codes. Reed also introduced a simple majority-logic
based hard-decision decoder for RM codes in [46]. The same
year, a soft-decision based decoding algorithm, known as
Wagner decoding [48], was developed for a special class of
RM codes.

The afore-mentioned linear block codes primarily relied on
maximizing the minimum distance for a given pair of (n, k)
codewords encoding k bits into n, or equivalently maximizing
the coding rate given the dmin and n. The resultant families
of Hamming and RM codes only support a limited range of
code parameters given by (n, k , dmin). For the sake of design-
ing more codes offering a wider range of code parameters
at an affordable implementation complexity, Elias discovered
convolutional codes in 1955 [49], which marks the commence-
ment of the so-called probabilistic coding era. Convolutional
codes are capable of supporting encoding and decoding proce-
dures operating in a sliding window, hence resulting in lower
latencies than the above block codes. In this spirit, Viterbi
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invented a Maximum Likelihood Sequence Estimation (MLSE)
(or equivalently minimum Euclidean distance) algorithm for
convolutional codes [62]. Explicitly, the Viterbi Algorithm
(VA) aims for finding the most likely error sequence at an
affordable decoding complexity. Although the VA is an MLSE
algorithm, the resultant BER of the system is close to the min-
imum possible BER, but the latter was only achievable by a
complex Maximum Likelihood (ML) decoder, which evaluates
all valid coded sequences. To circumvent the high complexity
of the latter ML decoder, Bahl et al. proposed the minimum
BER decoding algorithm in 1974 [64], which was named the
Maximum A Posteriori (MAP) algorithm. It is also known as
BCJR after its inventors Bahl, Cocke, Jelinek and Raviv.

Pursuing further the realm of block codes, Prange inves-
tigated cyclic codes in 1957 [50]. Since the cyclic shift
of codewords of cyclic codes are also legitimate code-
words, the associated encoding and decoding procedures
can be efficiently implemented using shift registers. Inspired
by these developments, Hocquenghem [51] as well as
Bose and Ray-Chaudhuri [52], [149] independently discovered
the family of Bose-Chaudhuri-Hocquenghem (BCH) codes in
1959 and 1960, respectively. Specifically, BCH codes con-
stitute the family of multiple-error correcting cyclic block
codes, which encode k ≥ (n − rt) information bits into
n = (2r−1) coded bits, so that the resultant codewords exhibit
the maximum possible minimum Hamming distance. In 1960,
Reed and Solomon conceived a non-binary version of BCH
codes referred to as Reed-Solomon (RS) codes [53], while the
following year Gorenstein and Zierler developed the Peterson-
Gorenstein-Zierler (PGZ) decoding scheme for non-binary
RS/BCH codes. Later, Berlekamp and Massey developed the
Berlekamp-Massey decoding algorithm for cyclic RS/BCH
codes in [56]–[59], while a soft-decision aided Chase decoder
was proposed in [63]. Both these decoding algorithms are
widely adopted for decoding BCH as well as RS codes.
Unfortunately BCH codes did not find much practical appli-
cations, except as Cyclic Redundancy Check (CRC) codes in
Automatic-Repeat-reQuest (ARQ) systems. By contrast, RS
codes have found several practical applications owing to their
inherent capability of correcting both random as well as burst
of errors. Explicitly, RS codes are widely employed in mag-
netic tape and disk storage, which are susceptible to burst
errors. Furthermore, they are also used as outer codes in
concatenated coding schemes, which have been integrated in
various standardized systems, such as the deep-space coding
standard [150]. Another major milestone in algebraic coding
was achieved with the development of non-binary Redundant
Residue Number System (RRNS) codes [60], [61], which are
also maximum minimum-distance codes and hence exhibit
similar distance properties to RS codes.

By 1980, error correction codes were successfully deployed
in various deep-space, satellite and mobile communications
systems in conjunction with modulation schemes. However,
the error correction and modulation modules were treated
independently and the redundancy of the codes extended the
bandwidth requirement, when the signal constellation size was
fixed. For the sake of circumventing this disadvantage of cod-
ing, Ungerboeck invented a bandwidth-efficient trellis-based

joint coding and modulation scheme called Trellis-Coded
Modulation (TCM) [66]–[68]. Explicitly, TCM is a joint
channel coding and modulation scheme, which absorbs the
redundant coding bits by expanding the constellation size to
accommodate more bits/symbols and hence maintains a fixed
bandwidth. TCM provides attractive performance gains over
convolutional codes, while incurring a similar decoding com-
plexity. In 1992, another coded modulation scheme termed as
Bit-Interleaved Coded Modulation (BICM) [71], [72] was con-
ceived for transmission over fading channels, which invoked
bit-based interleavers in conjunction with Gray-coded bit-to-
symbol mapping. More specifically, parallel bit interleavers are
used at the output of a convolutional code in this joint coding
and modulation scheme for the sake of increasing the resultant
diversity gain by exploiting the fading of the bits in a multi-
bit symbol; hence enhancing the system’s performance over
fading channels. However, BICM does not outperform TCM
over AWGN channels, since it exhibits a reduced minimum
Euclidean distance.

Despite being into the fifth decade of coding theory, the
notion of operating near the Shannon limit was far from real-
ization until Berrou et al. [73], [74] conceived turbo codes
in 1993. More specifically, turbo code rely on a parallel con-
catenation of Recursive Systematic Convolutional (RSC) codes
with an interleaver between them. At the decoder, soft iterative
decoding is invoked, which relies on the Soft-In Soft-Out
(SISO) MAP algorithm of [64]. It is pertinent to mention
here that the MAP algorithm only slightly outperforms the VA
in terms of the achievable BER for non-iteratively decoded
convolutional codes, while imposing a substantially higher
complexity. Consequently, MAP decoding was rarely used for
decoding convolutional codes, until turbo codes were invented.
But given that turbo decoders require bit-by-bit soft-metrics,
they required complex MAP decoding. Fortunately, the com-
plexity of turbo decoders may be reduced by invoking less
complex SISO decoders, for example the Soft-Output Viterbi
Algorithm (SOVA) [69], the Max-Log-MAP algorithm [70]
and the Log-MAP algorithm [77].

Berrou’s turbo revolution triggered intensive research efforts
directed towards designing iterative ‘turbo-like’ codes. In par-
ticular, it led to the renaissance of Low Density Parity Check
(LDPC) codes in 1995 [78], [79]. LDPC codes were proposed
by Gallager as early as 1962 [55]. However, the associated
complexity was deemed enormous in that era. Consequently,
LDPC codes were abandoned for decades to come. However,
the invention of turbo codes revived the research interest in
LDPC codes. Various variants of LDPC codes have been
proposed over the years, which are known to operate arbi-
trarily close to the Shannon limit at sufficiently long code-
word lengths, for example irregular LDPC codes [89], [90],
LDPC convolutional codes [104], protograph-based LDPC
codes [113] and spatially coupled LDPC codes [129].

Turbo revolution also led to other iterative coding schemes,
which include for example Turbo BCH codes [81], Turbo
Hamming codes [91], BICM with Iterative Decoding (BICM)-
ID [92], Turbo Trellis Coded Modulation (TTCM) [103],
punctured turbo codes [105] and Unity Rate Code (URC)
assisted concatenated coding schemes [108]. The invention of
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EXtrinsic Information Transfer (EXIT) charts [109], [115] by
Ten Brink in 2001 marks another important milestone in the
realm of the afore-mentioned concatenated schemes relying on
iterative decoding. More specifically, EXIT charts constitute a
semi-analytical tool, which aids the design of near-capacity
iterative schemes [142], [151]. Quantitatively, the resultant
systems may operate within 1 dB of the Shannon limit, see
for example the IRregular Convolutional Code (IRCC) assisted
concatenated schemes of [111], the TTCM of [119] and the
BICM-ID of [126].

With the help of intensive research efforts, turbo cod-
ing was successfully commercialized within just a few years
and was incorporated into various standardized systems,
such as mobile communication systems and video broadcast
systems [142]. In particular, turbo coding was incorporated
in the 3G UMTS [152] and 4G LTE [153] mobile stan-
dards. However, the high latency associated with turbo codes
is anticipated to be a major impediment in next-generation
systems supporting ‘tactile services’. Consequently, a Fully-
Parallel Turbo Decoder (FPTD) was recently conceived by
Maunder in [137], which significantly reduces the associ-
ated latency; hence making turbo codes a promising candi-
date for next-generation systems. Over the years, the LDPC
coding scheme has proved to be a fierce competitor of
turbo codes, which has also been adopted by various stan-
dards, for example WiMax, IEEE 802.11n, IEEE 802.3an,
and DVB-S2.

Arikan’s polar code [125] conceived in 2009 sparked
another wave of excitement within the coding community,
since it is the first class of channel codes, which provably
achieves the capacity of symmetric memoryless channels,
while imposing only a modest encoding and decoding com-
plexity. Polar codes invoke a short and simple kernel code, so
that the physical channels are polarized into virtual channels,
which are either perfectly noiseless or completely random,
provided that the block length is sufficiently long. At prac-
tical block lengths, the channels are polarized into a set of
high-reliability and low-reliability virtual channels. Finally,
the information bits are sent across the high-reliability chan-
nels, while dummy bits, called ‘frozen bits’, are transmitted
via the low-reliability channels. If the block lengths are suf-
ficiently long, then the fraction of high reliability virtual
channels is equivalent to the achievable channel capacity. At
the receiver, the polar decoder invokes a low-complexity suc-
cessive cancellation decoding algorithm, which processes the
received bits serially. Despite having a low encoding and
decoding complexity, Polar codes, relying on cyclic redun-
dancy check-aided successive cancellation list decoding, are
capable of outperforming the standardized LTE turbo and
WiMax LDPC codes at moderate block lengths, as demon-
strated in [154]. Furthermore, the coding rate of polar codes
can be varied almost continuously by changing the number
of frozen bits, hence making them ideal for rate-compatible
scenarios. However, a major limitation of polar codes is
the high latency associated with the polar decoder, since it
sequentially processes the received information. Nonetheless,
polar codes have already found their way into the 5G system
for enhanced mobile broadband communications, where polar

codes and LDPC codes have been chosen for the control and
data channels, respectively.

To conclude, classical turbo, LDPC and polar codes have
made it possible to operate arbitrarily close to the Shannon
limit of Fig. 9. For example, the 1/2-rate turbo code of [73]
operates within 0.7 dB of the Shannon limit at a block length
of 65,536 bits, while the 1/2-rate irregular LDPC code of [90]
surpasses the performance of comparable turbo codes and
operates only 0.13 dB away from Shannon capacity at a block
length of 106 bits. Furthermore, polar codes [125] provably
achieve the capacity, albeit at infinitely long block lengths.
Hence, our ambition to reach the Shannon limit in turn resulted
in long decoding delays, which motivated the research on par-
allel decoding architectures, for example on the fully-parallel
LDPC and turbo decoders of [137] and [155], respectively.
The decoding latencies associated with polar codes are even
higher due to the serial nature of the polar decoder. Hence, it
seems that the research community first designed practically
infeasible codes in the spirit of reaching the Shannon limit
and then changed the ultimate goal to that of reducing the
decoding delays. Therefore, it remains an open challenge to
design codes, which strike exactly the desired design trade-offs
amongst all the parameters of Fig. 10. Explicitly, we need a
code, which maximizes the coding rate for the given chan-
nel conditions, while minimizing the achievable BER, system
bandwidth, delay and implementation complexity. It is also
desirable that the code should be rate-compatible, hence capa-
ble of operating in diverse use-cases under diverse channel
conditions. This is particularly important in the context of
the on-going debates concerning the 5G systems promising
seamless connectivity for diverse use-cases.

B. Quantum Coding Theory

1) Design Objectives: With around seven decades of rich
history, classical coding theory is already quite mature. By
contrast, quantum coding theory is still in its infancy, since
the implementation of quantum technology has not been com-
mercialized. Researchers have been actively working on dis-
covering the quantum versions of the existing classical codes.
In duality to the classical coding theory, QECCs are designed
to achieve the quantum channel capacity [93], [156], [157],
or more precisely the hashing bound. Explicitly, the hashing
bound is only a lower bound, because the actual capacity of a
quantum channel may be higher due to the ‘degenerate’ nature
of quantum codes [158], [159]. To elaborate further, the notion
of degeneracy implies that different error patterns may yield
the same corrupted quantum state. For instance, let us consider
the state |ψ〉 = |00〉+|11〉, which may experience the channel-
induced error IZ or ZI. We may observe that both these error
patterns result in the same channel output, i.e., (|00〉 − |11〉).
Consequently, the error patterns IZ and ZI are classified as
degenerate errors, as further discussed in Section V. Similarly,
the error pattern ZZ leaves the state |ψ〉 intact analogous to
the error-free scenario; hence ZZ and II are also degenerate
errors.

In duality to the Shannon limit of Eq. (25), the hashing
bound is completely specified by the channel’s depolarizing
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Fig. 12. Hashing bounds for the unassisted (c = 0) and maximally-
entangled (c = n − k) quantum codes, characterized by Eq. (27) and Eq. (29),
respectively. The enclosed region, labeled the ‘hashing region’, quantifies the
capacity for 0 < c < (n − k).

probability p as follows [85], [131]:

CQ (p) = 1− H2(p)− p log2(3), (27)

where H2(p) denotes the binary entropy function. Explicitly,
a random quantum code C may exhibit an arbitrarily low
Quantum Bit Error Ratio (QBER) at a depolarizing proba-
bility of p, if its coding rate does not exceed the hashing limit
CQ (p) of Eq. (27) and the codeword has a sufficiently long
length.

The Hashing bound of Eq. (27) is only valid for
unassisted quantum codes. Explicitly, there exists
a family of Entanglement-Assisted (EA) quantum
codes [112], [116]–[118], which does not exist in the
classical domain. In contrast to the unassisted quantum codes,
the EA quantum codes rely on pre-shared noiseless entangled
qubits, which naturally increases the achievable capacity.
Given that c entangled qubits are pre-shared with the receiver
over a noiseless channel, the associated EA hashing bound is
given by [131], [160]:

CQ (p) = 1− H2(p)− p log2(3) + E, (28)

where E denotes the ‘entanglement consumption’ rate, which
is equivalent to E = c

n for a code having k information
qubits, n coded qubits and 0 ≤ c ≤ (n − k) pre-shared qubits.
Explicitly, when c = 0, Eq. (28) reduces to the unassisted hash-
ing bound of Eq. (27). By contrast, when c has the maximum
value of (n − k), we get the maximally-entangled quantum
codes and the associated maximally-entangled hashing bound
is [131], [160]:

CQ (p) = 1− H2(p)− p log2(3)

2
. (29)

Hence, as shown in Fig. 12, an EA quantum code can operate
anywhere in the hashing region, which is bounded by Eq. (27)
and Eq. (29). Furthermore, in duality to Fig. 10, the parameters
involved in the design of QECCs are illustrated in Fig. 13.

Fig. 13. Stylized representation of conflicting design parameters affecting
the design of quantum codes.

In duality to the classical coding bounds of Table II,
Table III enlists the quantum coding bounds, which charac-
terize the rate-versus-minimum-distance trade-off for quan-
tum codes. Analogous to the classical coding bounds, the
quantum Singleton bound serves as a loose upper bound,
the quantum Hamming bound as a tighter upper bound,
and the quantum GV bound as the tightest lower bound.
Furthermore, Ashikhmin and Litsyn extended the classical
linear programming approach to quantum codes using the
MacWilliams identities [163] for the sake of tightening the
quantum Hamming bound. However, despite all efforts, a wide
gap existed between the upper and lower coding bounds until
Chandra et al. conceived a closed-form expression [148] for
characterizing the rate-versus-minimum-distance trade-off for
quantum codes. As demonstrated in Fig. 14, the closed-form
formulation of [148] satisfies all the known coding bounds.
Fig. 15 portrays the growth of achievable minimum distance
upon increasing the codeword length based on the finite-
length closed-form formulation of [148]. We may observe
in Fig. 15 that the minimum distance increases almost lin-
early with the codeword length, hence it is termed as the
‘unbounded minimum distance’. Consequently, it is desirable
to conceive code structures having an unbounded minimum
distance.

2) Error Correction Codes: The rate-1/3 repetition code
is the simplest single-error correcting code in the classical
coding paradigm, which relies on the cloning of informa-
tion bits. Unfortunately, qubits cannot be cloned owing to
the existence of the no-cloning theorem. Hence, it was gener-
ally believed that QECCs are infeasible, until Shor pioneered
the first quantum code in 1995 [80]. Shor’s code of [80] is a
rate-1/9 code capable of correcting a single bit-flip, phase-flip
as well as bit-and-phase-flip error. Motivated by this break-
through, Calderbank and Shor [83] as well as Steane [82], [84]
independently conceived a generalized framework for con-
structing quantum codes from classical binary linear codes,
which constitutes the popular family of Calderbank-Shor-
Steane (CSS) codes. Explicitly, the CSS construction relies
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TABLE III
RATE-VERSUS-MINIMUM-DISTANCE BOUNDS FOR QUANTUM CODES [148]

Fig. 14. Rate (RQ = k/n) versus normalized minimum distance δ =
dmin
n

asymptotic bounds [148]. The closed-form approximation of [148] is also
plotted, which relies on a simple quadratic function RQ (δ) = 32

9 δ
2− 16

3 δ+1
and satisfies all the bounds. Upper bounds are plotted in blue, while the lower
bound is plotted in red.

Fig. 15. The growth of achievable minimum distance with increasing
codeword length based on the finite-length closed-form formulation of [148].

on a pair of classical binary linear block codes C1 and C2,
which satisfy the criterion C2 ⊂ C1. Furthermore, a spe-
cial class of CSS codes, called dual-containing CSS codes,

was also introduced, which was derived from dual-containing
binary codes. Explicitly, dual-containing CSS codes consti-
tute a special type of CSS codes having C2 = C⊥

1 , where
C⊥
1 is the dual code7 of C1. Following these principles,

Steane [84] constructed a rate-1/7 single-error correcting code
from the classical [7, 4, 3] Hamming code. In the spirit of
further improving the coding rate, Bennett et al. [85] and
Laflamme et al. [86] independently designed the optimal rate-
1/5 single-error correcting quantum code, having the smallest
possible codeword length.

The CSS construction of [82]–[84] does not exploit the
redundant qubits efficiently, since the bit-flip and the phase-
flip errors are corrected independently by concatenating a
pair of classical binary codes. For the sake of designing an
optimal code having the smallest codeword length, similar to
the rate-1/5 code of [85] and [86], it is important to jointly
correct bit-flip and phase-flip errors. In pursuit of designing
such optimized codes, Gottesman established the theory of
Quantum Stabilizer Codes (QSCs) [87] during his Ph.D. [88].
Explicitly, Gottesman presented a more general formalism,
called stabilizer formalism, capable of facilitating the design
of quantum codes from the classical binary and quaternary
codes. As compared to the CSS codes, the stabilizer formalism
imposes a more relaxed constraint, generally called the ‘sym-
plectic product’ criterion, on the underlying classical codes;
hence, the resultant QECCs can have either a CSS or a non-
CSS (also called unrestricted) structure. In simple terms, the
symplectic product criterion is the constraint imposed on the
Parity Check Matrix (PCM) of the constituent classical code
(or codes), which ensures that the resultant quantum code
is a valid stabilizer code.8 Furthermore, while the CSS-type
codes independently correct bit-flip and phase-flip errors, the
non-CSS codes jointly correct bit-flip and phase-flip errors.
The advent of stabilizer formalism sparked a major revolution
in the history of quantum coding, leading to the devel-
opment of various code families, which includes Quantum
Bose-Chaudhuri-Hocquenghem (QBCH) codes [94]–[99],
toric codes [100]–[102], Quantum Reed-Muller codes [106],
Quantum Reed-Solomon codes (QRS) [107], Quantum Low
Density Parity Check (QLDPC) codes [110], [164]–[166],

7Let C be a classical linear block code having the generator matrix G and
the PCM H, then the dual code C⊥ is the code having the generator matrix
HT and the PCM GT .

8Further details are given in Section VI.
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Quantum Convolutional Codes (QCC) [114], [167]–[169],
Quantum Turbo Codes (QTC) [120], [121], Quantum
IRregular Convolutional Codes (QIRCC) [3] as well Quantum
Unity Rate Codes (QURC) [139].

The Quantum research fraternity has invested the last three
decades in designing the quantum counterparts of the existing
families of classical codes. Except for the parallel concate-
nated codes as well as for the joint coding and modulation
schemes of the classical regime, virtually all major fami-
lies of classical codes have a quantum counterpart. Amongst
these, short block codes are particularly important from an
implementation perspective, since the quantum technology
is still in its infancy and hence decoherence would prevent
the implementation of long codes. However, the desire to
approach the hashing bound of Fig. 13 motivated researchers
to design QLDPC [110], [164]–[166] codes and QTCs [120],
[121], which exploit iterative decoding. In particular, the
sparse nature of LDPC matrix is particularly important in the
quantum domain for achieving fault-tolerant decoding, since
the qubits interact with only a limited number of other qubits
during the syndrome computation process. Furthermore, since
the LDPC matrix is sparse, the resultant QLDPC codes exhibit
high degeneracy. However, the strict symplectic product cri-
terion associated with the design of stabilizer codes severely
limits the performance of QLDPC codes. More specifically,
owing to the symplectic criterion, the QLDPC matrix con-
sists of numerous short cycles, which have a length of 4. This
in turn degrades the performance of the LDPC decoder rely-
ing on the message passing algorithm, as detailed in [124].
Unfortunately, the LDPC decoder is not capable of capturing
the impact of degenerate errors. In fact, the LDPC decoder suf-
fers from the so-called ‘symmetric degeneracy error’ [124],
which results from the degenerate errors. For the sake of
improving the performance of the LDPC decoder in the
wake of length-4 cycles and the symmetric degeneracy error,
Poulin et al. conceived heuristic methods in [122]. These meth-
ods primarily relied on introducing random perturbations for
triggering decoding convergence. Then the QLDPC decoding
methods were further improved in [123] and [124]. Despite
these developments, the performance of QLDPC codes is still
not comparable to that of classical LDPC codes.

In 2008, Poulin et al. constructed the quantum counter-
parts of turbo codes in [120] and [121]. While classical turbo
codes generally rely on the parallel concatenation of con-
volutional codes, the QTCs of [120] and [121] rely on the
serial concatenation of QCCs. As compared to QLDPC codes,
QTCs offer more flexible code parameters, for example the
frame length, coding rate, constraint length as well as the
interleaver type. Furthermore, the iterative decoding of QTCs
takes into account the impact of degenerate errors. However,
the stabilizer-based QCCs cannot be concurrently recursive
as well as noncatastrophic9 [120], [121], [170]. Both these

9An encoder is catastrophic if it outputs a finite-weight coded sequence
for an infinite-weight input sequence. Consequently, a catastrophic code may
result in catastrophic error propagation, since a finite number of errors on the
coded sequence may yield infinite number of errors on the decoded sequence.
This in turn implies that the constituent codes of a concatenated code must
be non-catastrophic for the sake of achieving decoding convergence.

properties are essential for constructing good turbo codes.
Explicitly, a recursive inner code is required for achieving an
unbounded minimum distance, while both component codes
of a serially concatenated code must be noncatastrophic for
ensuring decoding convergence to an infinitesimally low error
rate. Hence, the QTCs of [120] and [121] exhibit a bounded
minimum distance, since they rely on non-recursive non-
catastrophic QCCs. For the sake of designing near-capacity
QTCs, Babar et al. [136] developed EXIT charts for the quan-
tum domain, while a Quantum IrRegular Convolutional Code
(QIRCC) structure and Quantum Unity Rate Code (QURC)
were proposed in [3] and [139], respectively. Recently, a
Fully-Parallel Quantum Turbo Decoder (FPQTD) was con-
ceived in [140], which substantially reduces the decoding
latency.

Recall that stabilizer codes must satisfy the stringent sym-
plectic product criterion. Consequently, not every classical
code can be ‘imported’ into the quantum realm. Furthermore,
the symplectic product criterion results in undesired code
characteristics, for example the unavoidable length-4 cycles
of QLDPC codes and the non-recursive nature of non-
catastrophic QCCs. For the sake of overcoming the issues
associated with the symplectic product criterion, the theory of
EA quantum codes was developed in [112] and [116]–[118],
which relies on the pre-sharing of entanglement between the
transmitter and the receiver. The notion of EA codes was
adopted for nearly all coding families, including EA-QLDPC
codes [127], EA-QCCs [128] and EA-QTCs [130], [131],
hence alleviating the issues arising from the symplectic prod-
uct criterion. Explicitly, EA-QLDPC codes may be designed
with no length-4 cycles in the binary formalism. Consequently,
the resultant performance is comparable to that of the classical
LDPC codes. Similarly, EA-QCCs can be concurrently recur-
sive as well as non-catastrophic [130], [131]. Consequently,
EA-QTCs are capable of having an unbounded minimum dis-
tance. Hence, the family of EA quantum codes finally brought
the performance of quantum codes in line with that of their
classical counterparts.

Polar codes have also attracted considerable attention within
the quantum research fraternity. Inspired by the provably
capacity achieving nature of Arikan’s polar codes as well
as their efficient encoding and decoding structures, Wilde
and Guha demonstrated the existence of the quantum channel
polarization phenomenon for classical and quantum informa-
tion in [132] and [133], respectively. The quantum polar codes
of [132] and [133] invoked a quantum-domain successive
cancellation decoder, which is based on the notion of quan-
tum hypothesis testing. The resultant decoder failed to match
the decoding complexity of Arikan’s successive cancellation
decoder. This issue was addressed by Renes et al. [134], where
CSS-type quantum polar codes were constructed from the clas-
sical polar codes, resulting in quantum codes having efficient
encoders as well as decoders. However, the quantum polar
codes of [132]–[134] rely on the sharing of noiseless entangle-
ment between the transmitter and the receiver. In this context,
the first unassisted quantum polar codes were recently con-
ceived in [138], which marks another major milestone in the
development of quantum codes.
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Fig. 16. Achievable performance at a word error rate (or frame error
rate) of 10−3 benchmarked against the Hashing bound for the ‘bicycle’
code (R = 0.25, n = 19,014) of [164], ‘SC QC-QLDPC’ code (R = 0.49,
n = 1,81,000) of [171], ‘non-binary QC-QLDPC’ code (R = 0.5, n = 20,560,
GF(210)) of [172] and [173], ‘LDGM-based SC-QLDPC’ code (R = 0.25,
n = 76,800) of [174], ‘QTC-assisted LDGM-based SC-QLDPC’ code
(R = 0.25, n = 8,21,760) of [175] and QURC-QIRCC code (R = 0.5,
n = 2,000) of [139].

In a nutshell, similarly to classical coding, quantum cod-
ing research has also been steered towards approaching the
capacity limit. In this pursuit, codes relying on long code-
word lengths were designed, as exemplified by the bicycle
QLDPC code (R = 0.25, n = 19,014) of [164], the Spatially-
Coupled Quasi-Cyclic (SC QC) QLDPC code (R = 0.49,
n = 1,81,000) of [171], the non-binary QC-QLDPC’ code
(R = 0.5, n = 20,560, GF(210)) of [172] and [173], the
Low Density Generator Matrix (LDGM)-based QLDPC code
(R = 0.25, n = 76,800) of [174], the QTC-assisted LDGM-
based SC-QLDPC code (R = 0.25, n = 8,21,760) of [175] and
the concatenated QURC-QIRCC code (R = 0.5, n = 2,000)
of [139], whose performance is benchmarked against the
hashing bound in Fig. 16. Such long codeword lengths are
particularly detrimental in the quantum domain, because of
the short relaxation and dephasing times of qubits. Explicitly,
if the codewords are very long, then the qubits may deco-
here faster than they can be corrected. Hence, quantum
codes relying on short block lengths are highly desirable,
at least until the relaxation and dephasing times of qubits
become sufficiently increased, as quantum-hardware matures.
Furthermore, in the quest for designing the quantum coun-
terparts of the known classical codes, various EA schemes
have been proposed, which impose the additional overhead
of ‘noiseless’ pre-shared qubits. This overhead must be min-
imized for practical implementations. Overall, it remains an
open challenge to holistically optimize the design trade-offs
depicted in Fig. 13. It would be an extremely beneficial
research objective to catalogue both the classical and quantum
codes on the hypothetical pareto front of optimal solutions.
Explicitly, the optimal pareto front is the collection of optimal
solutions in the spirit of Fig. 13, where none of the metrics can
be improved without degrading at least one of the other met-
rics. This research could commence with a low-complexity
triple-parameter optimization, including the QBER (or BER

for classical), coding rate and delay. Then it could be extended
to the complexity and other relevant metrics in future research.

IV. CLASSICAL-TO-QUANTUM TRANSITION

The peculiar laws of quantum mechanics make quantum
coding intrinsically different from their classical counterparts.
Nevertheless, efficient quantum codes can be designed from
the existing families of classical codes by cautiously address-
ing the following challenges, which do not exist in the classical
realm.

1) No-Cloning Theorem: Most classical error correction
codes rely on cloning. Explicitly, multiple copies of the
information bits are transmitted for the sake of pro-
viding redundancy. Unfortunately, it is not possible to
clone an arbitrary unknown qubit due to the no-cloning
theorem [176].

2) Measurement Operation: Classical codes rely on mea-
suring (or observing) the values of the received bits for
hard-decision as well as soft-decision aided decoding.
Unfortunately, it is not possible to measure (or observe)
a qubit without perturbing it, which would result in the
superimposed quantum states collapsing to the classical
domain upon measurement.

3) Nature of Quantum Errors: Classical channels only
impose bit-flip errors. By contrast, quantum chan-
nels inflict both bit-flips as well as phase-flip errors.
Furthermore, quantum impairments are continuous in
nature, since the received qubit may assume any value
on the Bloch sphere.

In this Section, we elaborate on these challenges by designing
the quantum counterparts of the simple rate-1/3 classical rep-
etition code, which can only correct a single classical error.
The overall evolution is summarized in Fig. 17 at a glance.

1) No-Cloning Theorem: Quantum codes exploit quantum-
domain redundancy without cloning the information qubits.

The encoder of a 3-bit classical repetition code copies each
information bit thrice. Explicitly, the information bits 0 and 1
are encoded as follows:

0 → (000) 1 → (111). (30)

The encoding process of Eq. (30) does not have a quantum
equivalent, because quantum information processing does not
permit cloning. Let U be a hypothetical cloning (or copying)
operation described as:

U|ψ〉 = |ψ〉 ⊗ |ψ〉. (31)

Eq. (31) can be expanded as:

U|ψ〉 = (α|0〉+ β|1〉)⊗ (α|0〉+ β|1〉)
= α2|00〉+ αβ|01〉+ αβ|10〉+ β2|11〉. (32)

Alternatively, Eq. (31) can also be evaluated by considering
the linearity of the cloning operator. Consequently, we have:

U|ψ〉 = U(α|0〉+ β|1〉)
= α U|0〉+ β U|0〉
= α|00〉+ β|11〉. (33)
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Fig. 17. Transition of error correction codes from the classical to the quantum domain [3]. Encoder: Classical encoders copy the information bits. Unfortunately,
no quantum cloning operator exists. Consequently, quantum codes entangle the information qubits with the auxiliary qubits, so that the information is cloned
in the basis states. Channel: Classical information may experience only bit-flip errors, while qubits may experience bit-flip as well as phase-flip errors. The
additional phase-flip errors of the quantum domain may be corrected by using the Hadamard basis {|+〉, |−〉}. Decoder: Classical decoders measure the
received bits for estimating the transmitted information. Unfortunately, qubits cannot be measured without perturbing their superimposed quantum state. As
an alternate, quantum codes rely on the PCM-based syndrome decoding, hence estimating the channel-induced error patterns without measuring the received
qubits.

It can be readily seen in Eq. (32) and Eq. (33) that:

U(α|0〉+ β|1〉) �= α U|0〉+ β U|0〉, (34)

which violates the linearity of cloning operation. Hence,
no cloning operator U exists in the quantum domain.
Consequently, |ψ〉 cannot be encoded to (|ψ〉 ⊗ |ψ〉 ⊗ |ψ〉).
The 3-qubit bit-flip repetition code overcomes the cloning con-
straint by cloning the basis states rather than the state |ψ〉,
i.e., the computational basis states |0〉 and |1〉 are encoded as
follows:

|0〉 → |0〉 ≡ |000〉,
|1〉 → |1〉 ≡ |111〉. (35)

Explicitly, two auxiliary qubits in state |0〉 are entangled with
the information qubit |ψ〉 with the aid of Controlled-NOT
(CNOT) gates, as shown in the circuit of Fig. 18. CNOT rep-
resents a two-qubit gate, which takes as its input a control
qubit and a target qubit. When the control qubit is in state |1〉,
the target qubit is flipped; otherwise, the target qubit is left
unchanged. More precisely, the output may be viewed as the
reversible counterpart operation of a classical Exclusive OR
(XOR) gate; hence, the CNOT gate may be deemed to repre-
sent a quantum counterpart of the classical XOR gate.10 This
can be mathematically expressed as:

CNOT(|ψ0〉, |ψ1〉) = |ψ0〉 ⊗ |ψ0 ⊕ ψ1〉, (36)

10Please note that while the classical XOR gate’s operation is irreversible,
since two inputs are combined to yield a single XOR-ed output, a CNOT gate’s
operation is reversible, because we can reconstruct the two inputs (control and
target) from the two outputs (control and target). In other words, CNOT is
basically a reversible XOR gate in the classical domain.

Fig. 18. Encoding circuit of 3-qubit bit-flip repetition code, where the
information qubit |ψ〉 is encoded into |ψ〉 with the help of two auxiliary
qubits.

where |ψ0〉 is the control qubit, while |ψ1〉 is the target qubit.
Consequently, the encoder of Fig. 18 replicates the compu-
tational basis states |0〉 and |1〉 three times in the encoded
3-qubit output |ψ〉, which is given by:

|ψ〉 ⊗ |0〉⊗2 → |ψ〉 = α|0〉+ β|1〉
≡ α|000〉+ β|111〉. (37)

2) Measurement Operation: Quantum codes have to esti-
mate the channel errors imposed without measuring (or
observing) the received qubits.

At the receiver, the decoder of a 3-bit classical repetition
code reads the received bits and decodes on the basis of
majority voting. For example, the received codeword (011)
is decoded to 1, while (100) is decoded to 0. This requires
measuring (or observing) the received sequence, which is
unfortunately not possible in the quantum domain. Explicitly,
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TABLE IV
LOOK-UP TABLE FOR THE RATE-1/3 CLASSICAL REPETITION CODE

if the received qubit (α|0〉+ β|1〉) is measured in the compu-
tational basis, it will collapse to the states |0〉 and |1〉 with a
probability of |α|2 and |β|2, respectively.

Alternatively, an (n, k) classical linear block code can be
decoded using an (n − k) × n-element PCM H, so that all
error-free legitimate codewords x yield:

xHT = 0. (38)

Given a received codeword y = x + e, where e is the
channel-induced error vector, the associated (n − k)-bit syn-
drome vector, which uniquely and unambiguously identifies
the error vector (if the number of channel-induced errors is
within the error correction capability of the code), is computed
as:

s = yHT = (x+ e)HT = xHT + eHT = eHT . (39)

Hence, the syndrome can be used for estimating the error
vector e using a pre-computed Look-Up Table (LUT). More
explicitly, since an (n, k) linear block code has (n − k) par-
ity bits, we have 2(n−k) unique syndromes. Consequently,
we can estimate 2(n−k) unique n-bit error patterns, which are
pre-computed and stored in an LUT. Similarly, a 3-bit classi-
cal repetition code can also be decoded using the PCM-based
syndrome decoding.11 The associated PCM is given by:

H =

(
1 1 0
1 0 1

)

, (40)

which yields a zero-valued syndrome vector for both valid
codewords (111) and (000), while at least one of the two syn-
drome elements is 1 when a single bit-flip error is experienced.
The resultant LUT is given in Table IV, which records all the
single bit-flip errors that may be estimated with the help of a
3-bit classical repetition code. Intuitively, the first row of H
compares the first two received bits of y. If both bits are equal,
the associated syndrome bit is 0, while if they are different,
then the syndrome bit is 1. Similarly, the second row of H
compares the first and third bit of y.

Working along similar lines, a 3-qubit bit-flip repetition
code can be decoded using a syndrome decoder, which simply
compares the qubits without actually knowing their specific
values. This is achieved by using two additional auxiliary
qubits and the CNOT gates of Eq. (36), as shown in the
‘Syndrome Processing’ block of Fig. 19. Explicitly, it may
be observed in Fig. 19 that the first auxiliary qubit is flipped,
if the first two qubits are different, while the second auxiliary
qubit is flipped, when the first and third qubits are different.

11In contrast to the conventional codeword decoding, which finds the most
likely codeword, having the minimum Hamming distance, syndrome decoding
finds the most likely error, having the minimum Hamming weight.

Fig. 19. Decoding circuit of 3-qubit bit-flip repetition code.

Explicitly, if |ψ〉 is transmitted, then we may receive one of
the following four codewords |ψ̂〉, assuming that only a single
bit-flip is incurred during transmission:

α|000〉+ β|111〉 III−−−−−→ α|000〉+ β|111〉,
α|000〉+ β|111〉 XII−−−−−→ α|100〉+ β|011〉,
α|000〉+ β|111〉 IXI−−−−−→ α|010〉+ β|101〉,
α|000〉+ β|111〉 IIX−−−−−→ α|001〉+ β|110〉. (41)

The syndrome computation process operates on each of the
possible received codeword |ψ̂〉 as follows. Firstly, if both the
first and second qubits as well as the first and third qubits
remain identical, i.e., all three qubits remain identical, as in the
case of error vector III, the auxiliary qubits remain unaltered:

α|000〉+ β|111〉 ⊗ |0〉⊗2 → α|00000〉+ β|11111〉
= (α|000〉+ β|111〉)|00〉. (42)

Secondly, when both the first and second qubits as well as
the first and third qubits are different, as in the case of error
vector XII, both auxiliary qubits are flipped:

α|100〉+ β|011〉 ⊗ |0〉⊗2 → α|10011〉+ β|01111〉
≡ (α|100〉+ β|011〉)|11〉. (43)

Thirdly, when the first and second qubits are different, but the
first and third qubits are identical, as in the case of error vector
IXI, only the first auxiliary qubit is flipped.

α|010〉+ β|101〉 ⊗ |0〉⊗2 → α|01010〉+ β|10110〉
= (α|010〉+ β|101〉)|10〉. (44)

Finally, when the first and second qubits are identical, but the
first and third qubits are different, as in the case of error vector
IIX, only the second auxiliary qubit is flipped.

α|001〉+ β|110〉 ⊗ |0〉⊗2 → α|00101〉+ β|11001〉
= (α|001〉+ β|110〉)|01〉. (45)

Then the auxiliary qubits of Eq. (42) Eq. (45) are measured
in the block M of Fig. 19 to yield the classical syndrome
s, which can take one of the four possible values, i.e., 00,
11, 10 and 01. The syndrome s can then be used for estimat-
ing the error P̃ using the LUT of Fig. 19 seen in Table IV.
Thereafter, the transmitted codeword is recovered by apply-
ing the recovery operation R of Fig. 19, which aims for
correcting the channel-induced flips based on the estimated
error P̃ . Explicitly, in the context of the 3-qubit bit-flip rep-
etition code, Pauli-X gates are applied during the recovery
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process for counteracting the impact of the estimated channel
error patterns of Table IV. Finally, the estimated information
word |ψ̃〉 is retrieved by feeding the recovered codeword |ψ̃〉
to the inverse encoder circuit, which is the same as that in
Fig. 18, but operates from right to left, hence mapping the
recovered encoded qubits onto the information qubits. It is
pertinent to mention here that a classical repetition code is
systematic in nature. Consequently, the information bit can
be extracted from the received codeword without invoking
an inverse encoding operation. By contrast, the information
qubit of a quantum repetition code is entangled with auxil-
iary qubits and hence cannot be separated without an inverse
encoder. For example, if |ψ̃〉 = α|000〉+ β|111〉, then apply-
ing the two CNOT gates of the inverse encoder of Fig. 18
yields:

α|000〉+ β|100〉 = (α|0〉+ β|1〉)|00〉
≡ |ψ̃〉|00〉, (46)

hence separating the information qubit |ψ̃〉 from the auxiliary
qubits |00〉.

3) Nature of Quantum Errors: Quantum codes correct
quantum bit-flip, phase-flip as well as bit-and-phase-flip errors.

When the classical coded bits (000) or (111) are transmit-
ted, a 0 may be flipped to a 1 and a 1 may be flipped to
a 0. Consequently, only discrete bit-flip errors are imposed
on the transmitted codewords. By contrast, when a qubit is
transmitted over the depolarizing channel of Section II-C, it
may experience bit-flip, phase-flip as well as bit-and-phase
flip errors, as discussed in Section II. A 3-qubit phase-flip
repetition code may be designed analogous to the bit-flip rep-
etition code, since phase-flips and bit-flips only differ in their
basis of operation. More specifically, bit-flips flip the compu-
tational basis {|0〉, |1〉}, while phase-flips flip the Hadamard
basis {|+〉, |−〉} defined as:

|+〉 ≡ H|0〉 = |0〉+ |1〉√
2

,

|−〉 ≡ H|1〉 = |0〉 − |1〉√
2

, (47)

where H represents a Hadamard gate acting on a single qubit
and specified by the matrix [2]:

H =
1√
2

(
1 1
1 −1

)

. (48)

Therefore, a phase-flip (Pauli-Z) switches the Hadamard basis
states as follows:

Z|+〉 = |−〉,
Z|−〉 = |+〉, (49)

while a bit-flip (Pauli-X) switches the computational basis, i.e.,
we have:

X|0〉 = |1〉,
X|1〉 = |0〉. (50)

Hence, a 3-qubit phase-flip repetition code protects against sin-
gle phase-flip errors by replicating the Hadamard basis states

Fig. 20. Encoding circuit of 3-qubit phase-flip repetition code, where the
information qubit |ψ〉 is encoded into |ψ〉 with the help of two auxiliary
qubits.

Fig. 21. Decoding circuit of 3-qubit phase-flip repetition code.

rather than the information qubit as follows:

|0〉 → |0〉 ≡ |+++〉,
|1〉 → |1〉 ≡ | − −−〉. (51)

This can be achieved by using the encoding circuit of
Fig. 20, which entangles two auxiliary qubits with the infor-
mation qubit |ψ〉 using CNOT and Hadamard gates. The
circuit of Fig. 20 is similar to that of the bit-flip repetition
code. However, it invokes additional Hadamard gates, which
transform the computational basis to the Hadamard basis.
Consequently, |ψ〉 is encoded as:

|ψ〉 ⊗ |0〉⊗2 → |ψ〉 = α|0〉+ β|1〉
≡ α|+++〉+ β| − −−〉. (52)

Analogous to the 3-qubit bit-flip repetition decoder, the
decoder of a 3-qubit phase-flip repetition code also uses two
auxiliary qubits for computing the associated 2-bit syndromes.
The first syndrome compares the phase of the first and sec-
ond qubits, while the second syndrome compares the phase
of the first and third qubits. This may be achieved using the
decoding circuit of Fig. 21, which is the same as that of the
3-qubit bit-flip repetition code with the additional Hadamard
gates invoked for transforming the Hadamard basis back to
the computational basis. In other words, we may say that
Hadamard gates are used at the input and output of the chan-
nel to transform the phase-flips to bit-flips. Hence, both bit-flip
and phase-flip errors can be corrected by concatenating the 3-
qubit phase-flip and bit-flip repetition codes, which actually
constitutes the rate-1/9 Shor code [80] capable of correcting a
single bit-flip, or phase-flip or alternatively a bit-and-phase-flip
error. More specifically, the information qubit is first encoded
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in Hadamard basis using the mapping of Eq. (52). The resul-
tant three coded qubits are then independently encoded using
the bit-flip repetition code of Eq. (37).12 Hence, the basis states
are mapped onto three 3-qubit blocks as follows:

|0〉 ≡ 1√
2
(|000〉+ |111〉)⊗ 1√

2
(|000〉+ |111〉)

⊗ 1√
2
(|000〉+ |111〉),

|1〉 ≡ 1√
2
(|000〉 − |111〉)⊗ 1√

2
(|000〉 − |111〉)

⊗ 1√
2
(|000〉 − |111〉), (53)

where the three qubits within a block are the codewords of a
bit-flip repetition code, while the three blocks are the result
of phase-flip repetition encoding. Taking the tensor product in
Eq. (53) yields:

|0〉 ≡ 1√
8
(|000000000〉+ |000000111〉+ |000111000〉

+ |000111111〉+ |111000000〉+ |111000111〉
+ |111111000〉+ |111111111〉),

|1〉 ≡ 1√
8
(|000000000〉 − |000000111〉 − |000111000〉

+ |000111111〉 − |111000000〉+ |111000111〉
+ |111111000〉 − |111111111〉). (54)

Consequently, the encoded state |ψ〉 is equivalent to:

α|0〉+ β|1〉 ≡ 1√
8
(α+ β)(|000000000〉+ |000111111〉

+ |111000111〉+ |111111000〉) + 1√
8
(α− β)

× (|000000111〉+ |000111000〉+ |111000000〉
+ |111111111〉), (55)

which may be decoded by concatenating the decoding circuits
of Fig. 19 and Fig. 21. Explicitly, the three 3-qubit blocks
of Eq. (53) are first independently decoded using the 3-qubit
bit-flip repetition decoder of Fig. 19, resulting in three infor-
mation qubits, which constitute the received codeword for
the 3-qubit phase-flip repetition decoder. Consequently, the
resultant three qubits are decoded using the 3-qubit phase-flip
repetition decoder of Fig. 21.

Furthermore, as encapsulated in Eq. (24), the received qubit
may be in the superposition of all the possible errors. In
essence, an (n, k) classical code, designed to protect a k-bit
message by encoding it into an n-bit codeword, aims for restor-
ing one of the 2k valid codewords. By contrast, since a k-qubit
information word is completely described by 2k continuous-
valued complex coefficients, quantum codes have to restore

12The order of concatenation is very important. If the order of concatenation
is reversed, i.e., if we invoke a bit-flip repetition code followed by a phase-flip
repetition code, then the resultant quantum code encodes the basis states into:

|0〉 → |+++〉 ⊗ |+++〉 ⊗ |+++〉,
|1〉 → | − −−〉 ⊗ | − −−〉 ⊗ | − −−〉,

which constitutes a strong rate-1/9 phase-flip repetition code, but it is not
capable of correcting bit-flip errors.

Fig. 22. Schematic of a quantum communication system invoking a quantum
stabilizer code for error correction [124].

all the 2k complex coefficients [164]. Fortunately, this con-
tinuous search space is reduced to a discrete one upon the
measurement of the auxiliary qubits used for computing the
syndrome. More specifically, although the 2k coefficients are
continuous-valued, some what serendipitously, the entire con-
tinuum of errors can be rectified, if the code is capable of
correcting discrete bit-flip, phase-flip as well as bit-and-phase-
flip errors acting on the constituent qubits. For example, let us
assume that only a single bit-flip error may be inflicted during
transmission. Then the received codeword of a 3-bit repetition
code can be expressed as:

|ψ̂〉 = p0III|ψ〉+ p1XII|ψ〉+ p2IXI|ψ〉+ p3IIX|ψ〉, (56)

where p0 is the probability of error-free transmission, while
pi is the probability of encountering a bit-flip error on the ith
qubit. The syndrome computation process of Fig. 19 entangles
two auxiliary qubits with |ψ̂〉 of Eq. (56) as:

|ψ̂〉 ⊗ |0〉⊗2 → p0
(
III|ψ〉)|00〉+ p1

(
XII|ψ〉)|11〉

+ p2
(
IXI|ψ〉)|10〉+ p3

(
IIX|ψ〉)|01〉, (57)

which collapses to one of the four superimposed states when
the auxiliary qubits are measured. The resultant state can then
be corrected based on the specific syndrome observed.

V. STABILIZER FORMALISM

The family of Quantum Stabilizer Codes (QSCs) rely on
the same design principles as that of the repetition codes of
Section IV. In particular, QSCs rely on the PCM-based syn-
drome decoding of classical linear block codes, hence, finding
the channel-induced error by measuring the auxiliary syn-
drome qubits, rather than by observing the received qubits.
Intuitively, the stabilizer formalism [87], [88] may be inter-
preted as the quantum-domain dual of the classical linear block
coding paradigm. Furthermore, most classical codes exploit
the same basic infrastructure as that of the classical linear
block codes. Consequently, the stabilizer formalism provides
a general theoretical framework for designing the quantum
versions of the known classical codes. In Section V-A, we
provide deeper insights into the duality of QSCs and classical
linear block codes, while in Section V-B, we discuss the clas-
sification of error patterns for both the QSCs as well as the
classical linear block codes.

A. Stabilizer-Based Code Design

Fig. 22 shows the system model of a quantum communica-
tion system relying on a QSC. A classical linear block code C
(n, k) encodes k-bit information word x into an n-bit codeword
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x with the aid of (n − k) parity bits 0n−k (initialized to zeros)
as follows:

C = {x =
(
x :0n−k

)
V}, (58)

where V is an invertible encoding matrix of size (n × n).
Similarly, a QSC C[n, k ]13 encodes a k-qubit information word
(logical qubits) |ψ〉 into an n-qubit codeword (physical qubits)
|ψ〉 with the help of (n − k) auxiliary qubits (also known as
ancilla), as follows:

C =
{|ψ〉 = V(|ψ〉 ⊗ |0n−k 〉)

}
, (59)

where V is an n-qubit unitary encoder. Explicitly, the aux-
iliary qubits of a QSC are analogous to the classical parity
bits. The encoded qubits |ψ〉 are transmitted over the quan-
tum depolarizing channel of Section II-C, which imposes an
n-qubit channel error vector P . The erroneous channel output
|ψ̂〉 may then be expressed as:

|ψ̂〉 = P|ψ〉. (60)

Similar to the decoders of the 3-qubit bit-flip and phase-flip
repetition codes of Fig. 19 and Fig. 21, the decoder of a QSC
invokes a 3-step process for correcting the transmission errors,
which includes syndrome processing, error recovery (R) and
the inverse encoder.

Let us now revisit the ‘syndrome processing’ block of
3-qubit bit-flip repetition code from the perspective of the sta-
bilizer formalism. Recall from Fig. 19 that we compute the
first syndrome bit by comparing the first and second qubits in
computational basis, while the second syndrome is obtained
by comparing the first and third qubits. This is equivalent to
measuring the eigenvalues14 corresponding to the 3-qubit Pauli
operators g1 = ZZI and g2 = ZIZ, which are known as the
stabilizer generators. Explicitly, Pauli-Z based stabilizer gen-
erators are used for comparing qubits in computational basis,
because they are capable of detecting errors in the compu-
tational basis, i.e., bit-flip errors. If the qubits, which are
being compared, are identical in computational basis, then
the Pauli-Z based stabilizer generators yield an eigenvalue
of +1, while if they are different, then the eigenvalue is
−1. For example, if the received codeword is a valid one,
implying that both the first and second qubits as well as
the first and third qubits are identical as in Eq. (42), then
we have:

g1
[|ψ〉] = ZZI(α|000〉+ β|111〉) = |ψ〉,

g2
[|ψ〉] = ZIZ(α|000〉+ β|111〉) = |ψ〉. (61)

Hence, the resultant eigenvalue is +1 for both g1 as well as
g2, when a legitimate codeword is received. By contrast, if
the corrupted codeword of |ψ̂〉 = |100〉 + β|011〉 is received,
implying that both the first and second qubits as well as

13We consistently use round brackets (.) for classical codes, while the
square brackets [.] are used for quantum codes.

14The eigenvector of a linear transformation T is a non-zero vector v, which
only changes by a scaling factor when T is applied, i.e., T(v) = λv. The
associated scaling factor λ is known as the eigenvalue.

Fig. 23. Quantum circuit of measuring the Z operator acting on the bottom
qubit [2] for bit-flip correction. The top qubit is the auxiliary qubit used for
computing the syndrome. The circuit on the left is more popular, while the
one on the right is more suitable for implementation.

TABLE V
SINGLE-QUBIT BIT-FLIP ERRORS TOGETHER WITH THE ASSOCIATED

EIGENVALUES FOR THE 3-QUBIT BIT-FLIP REPETITION CODE

HAVING g1 = ZZI AND g2 = ZIZ

the first and third qubits are different as in Eq. (43), then
we have:

g1

[
|ψ̂〉
]
= ZZI(α|100〉+ β|011〉)
= −α|100〉 − β|011〉 = −|ψ̂〉,

g2

[
|ψ̂〉
]
= ZIZ(α|100〉+ β|011〉)
= −α|100〉 − β|011〉 = −|ψ̂〉, (62)

where both g1 as well as g2 yield an eigenvalue of −1. Recall
from Eq. (38) that the PCM of a classical linear block code is
designed so that it yields an all-zero syndrome vector for legit-
imate codewords, while yielding a non-zero syndrome vector
for erroneous codewords, provided the number of channel-
induced errors is within the error correction capability of
the code. Similarly, the stabilizer generators of a QSC have
to be designed, so that they yield an eigenvalue of +1 for
legitimate codewords, while resulting in an eigenvalue of −1
for corrupted codewords. Hence, in duality to the PCM H,
which completely specifies the codes space of a classical code
C, the stabilizer generators define the code space a QSC.
Furthermore, the complete stabilizer group H of a QSC con-
sists of all the stabilizer generators and their products. For
example, the stabilizer group H of the 3-qubit bit-flip repeti-
tion code consists of the independent generators g1 and g2 as
well as the product of g1 and g2, i.e., IZZ.

The +1 and −1 eigenvalues of Eq. (62) are mapped onto
the classical syndromes 0 and 1, respectively, when the con-
stituent Z operators are realized using the quantum circuit of
Fig. 23, where the circuit on the left may be deemed more pop-
ular, while the one on the right is the equivalent circuit more
suitable for implementation [2]. In both circuits of Fig. 23,
the top qubit is the auxiliary qubit used for computing the
syndrome, while the bottom qubit is the coded qubit sub-
jected to the Z operator. The resultant syndromes are listed
in Table V together with the associated single-qubit bit-flip
errors, eigenvalues and the estimated error pattern P̂ , which
may be estimated using the syndrome decoding approach.

Analogous to the 3-qubit bit-flip repetition code, the code-
word of a 3-qubit phase-flip repetition code is stabilized by the
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Fig. 24. Quantum circuit of measuring the X operator acting on the bottom
qubit [2] for phase-flip correction. The top qubit is the auxiliary qubit used for
computing the syndrome. The circuit on the left is the more usual conceptual
construction, while the one on the right is more suitable for implementation.

generators g1 = XXI and g2 = XIX. We may notice here that
while Pauli-Z based stabilizer generators are invoked for bit-
flip detection, Pauli-X based stabilizer generators are invoked
for comparing qubits in the Hadamard basis, because they are
capable of detecting errors in the Hadamard basis, i.e., phase-
flip errors. The associated X operators can be implemented
using the circuit of Fig. 24.

Recall from Section IV that Shor’s codewords consist of
three 3-qubit blocks, so that the three qubits within each
block constitute the codeword of a 3-qubit bit-flip repetition
code. Consequently, bit-flips may be detected by indepen-
dently applying the stabilizer generators of the 3-qubit bit-flip
repetition code to the three 3-qubit blocks, which is equivalent
to comparing the three qubits within each block. This results
in the following six stabilizer generators:

g1 = ZZIIIIIII,

g2 = ZIZIIIIII,

g3 = IIIZZIIII,

g4 = IIIZIZIII,

g5 = IIIIIIZZI,

g6 = IIIIIIZIZ, (63)

which helps in detecting single bit-flip errors occurring in each
3-qubit block. By contrast, phase-flip errors may be detected
by comparing the blocks using Pauli-X operators. Explicitly,
the phase information of a 3-qubit block is extracted by apply-
ing the XXX operator to the three qubits. For the 9-qubit
Shor’s code, which consists of three 3-qubit blocks, this may
be implemented using the following two stabilizer generators:

g7 = XXXXXXIII,

g8 = XXXIIIXXX, (64)

where g7 compares the phase of the first two blocks, while g8
compares the phase of the first and third blocks.

Based on the above discussions, the 3-step decoding process
of Fig. 22 may be generalized as follows:

1) Syndrome Processing: While the code space C of a clas-
sical linear block code is defined by a PCM H having
(n − k) independent rows, the associated code space C
of a QSC is described by (n − k) independent n-qubit
Pauli operators gi , for 1 ≤ i ≤ (n − k), which are gener-
ally termed as the stabilizer generators (or stabilizers in
short). Explicitly, stabilizers are unique operators, which
do not perturb the state of legitimate codewords, hence
yielding an eigenvalue of +1. Furthermore, stabilizers

yield an eigenvalue of −1 for corrupted codewords, pro-
vided the number of channel-induced errors is within the
error correction capability of the stabilizer code. This
is equivalent to the classical syndrome values of 0 and
1, respectively, which are the elements of the syndrome
vector of Eq. (39). Alternatively, we may say that result-
ing eigenvalue is +1, when the channel-induced error P
commutes with the stabilizer gi , while it is −1, when the
error anti-commutes with gi . This can be mathematically
encapsulated as:

gi |ψ̂〉 =
{ |ψ〉, giP = Pgi
−|ψ〉, giP = −Pgi ,

(65)

where |ψ̂〉 = P|ψ〉. The resultant eigenvalues can be
mapped onto the classical error syndrome s by invok-
ing the quantum circuits of Fig. 23 and Fig. 24. Hence,
the set of stabilizers constitute the quantum counter-
part of the classical PCM. However, the stabilizers must
exhibit the additional commutativity property, which
states that the stabilizers must be each other’s commu-
tative pairs. Explicitly, for a pair of stabilizers g1 and
g2, we have:

g1g2|ψ〉 = g1|ψ〉 = |ψ〉, (66)

and similarly:

g2g1|ψ〉 = g2|ψ〉 = |ψ〉. (67)

Hence, the commutativity criterion naturally arises,
which does not exist in the classical realm. Furthermore,
the associated stabilizer group H, which contains the
(n − k) stabilizers gi as well as all the products of
gi , forms an Abelian subgroup of Gn . The decoder of
Fig. 22 processes the syndrome of the received sequence
|ψ̂〉 with the aid of the associated stabilizers, which are
implemented using auxiliary qubits. Analogous to the
decoders of the 3-qubit bit-flip and phase-flip repetition
codes seen in Fig. 19 and Fig. 21, respectively, the
auxiliary qubits collapse to classical syndromes upon
measurement, hence mapping the eigenvalues of +1
and −1 onto the classical bits 0 and 1, respectively.
The resultant classical syndrome bits are then fed to an
LUT or to a classical PCM-based syndrome decoder
for estimating the channel error vector P̃ (discussed
further in Section VI).

2) Error Recovery (R): The error recovery block R of
Fig. 22 recovers the potentially error-free codeword |ψ̃〉
using the estimated error pattern P̃ . Naturally, if the
number of errors exceeds the codes’ error-correction
capability, the recovery process becomes flawed. Hence,
its flawed corrective action actually precipitates more
errors than we originally had.

3) Inverse Encoder: Finally, the inverse encoder of Fig. 22
maps the recovered codeword |ψ̃〉 onto the estimated
transmitted information word |ψ̃〉. More specifically,
while an encoder maps the information words onto the
codewords, an inverse encoder works in the reverse
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direction, hence mapping the codewords onto the
information words.

Recall from Eq. (66) and Eq. (67) that the (n − k) sta-
bilizer generators gi of a QSC always commute with each
other. This implies that the constituent X, Y and Z operations
must be selected so that all the resultant stabilizers commute.
Explicitly, the non-Identity X, Y and Z operators intrinsically
anti-commute with each other. For example, we have:

XY =

(
0 1
1 0

)(
0 −i
i 0

)

=

(
i 0
0 −i

)

= iZ, (68)

while:

YX =

(
0 −i
i 0

)(
0 1
1 0

)

=

(−i 0
0 i

)

= −iZ. (69)

This implies that the operators XY and YX anti-commute, i.e.,
we have:

XY = −YX. (70)

Similarly, we can readily show that:

YZ = iX, ZY = −iX → YZ = −ZY

ZX = iY, XZ = −iY → ZX = −XZ. (71)

Owing to this anti-commutative nature of non-Identity Pauli
operators, the stabilizers have to be designed so that there are
only an even number of indices having different non-Identity
operators. For example, the 3-qubit Pauli operators ZZI and
XYZ commute, because they consist of two indices having
different non-Identity operators. By contrast, the operators ZZI
and YZI anti-commute, since there is a single index, which
has different non-identity operators.

B. Classification of Error Patterns

Based on the aforementioned discussions, we may conclude
that the stabilizer generators play the same role in quantum
error correction as the classical PCM H in classical error
correction. Explicitly, analogous to the classical PCM, stabi-
lizers yield syndrome bits, which in turn help in estimating
the quantum channel errors. More specifically, the error set
of a classical linear block code C having a PCM H can be
classified as:

1) Detected Error Patterns: These error patterns yield a
non-trivial syndrome, i.e., eHT �= 0, which may be
corrected by the code.

2) Undetected Error Patterns: This class of error patterns
results in a trivial syndrome, i.e., eHT = 0, which
cannot be detected by the code. More specifically, an
undetected error maps the transmitted codeword onto
another valid codeword. Since the resultant codeword
still lies in the code space C, it does not trigger a non-
zero syndrome. These undetected error patterns result
from the limited minimum distance of the code.

Analogous to the classical detected error patterns, quantum-
domain detected error patterns anti-commute with at least
one of the stabilizer generators, which results in a non-trivial
syndrome. Similarly, the quantum undetected error patterns
commute with all the stabilizer generators, yielding an all-
zero syndrome. This commuting set of error patterns is also

Fig. 25. Error pattern classification for stabilizer codes.

known as the centralizer (or normalizer) of the stabilizer code
having the stabilizer group H, which is denoted as C (H) (or
N (H)). In particular, the centralizer of an [n, k] QSC is a dual
subspace consisting of n-tuple Pauli errors P ∈ Gn , which
are orthogonal to all the stabilizers of the stabilizer group H.
Furthermore, since the H is itself an Abelian group consist-
ing of mutually orthogonal generators, it is contained in the
centralizer, i.e., we have H ⊂ N (H). Recall that the stabilizer
generators do not modify the state of valid codewords. This in
turn implies that errors which belong to the stabilizer group,
i.e., we have P ∈ H, do not corrupt the transmitted code-
words and therefore may be classified as harmless undetected
error patterns. This class of errors does not have any classical
counterpart. By contrast, those error patterns, which lie in the
subspace N (H) \H, are the harmful undetected errors, which
map one valid codeword onto another. Hence, as depicted in
Fig. 25, quantum error patterns can be classified as follows:

1) Detected Errors Patterns: These error patterns fall out-
side the normalizer subspace, i.e., they satisfy P ∈
Gn \N (H).

2) Harmful Undetected Error Patterns: This class of error
patterns is defined as N (S) \ H.

3) Harmless Undetected Errors Patterns: These error pat-
terns fall in the stabilizer group H.

The class of harmless undetected error patterns makes quan-
tum codes ‘degenerate’ [135]. More specifically, error patterns
P and P ′ = giP are said to be degenerate, because they dif-
fer only by the elements of the stabilizer group, which are
harmless. Consequently, both P as well as P ′ yield the same
output, as shown below:

P ′[|ψ〉] = giP[|ψ〉] = Pgi
[|ψ〉]. (72)

Since gi [|ψ〉] = |ψ〉, we get:

P ′[|ψ〉] = P[|ψ〉]. (73)

This in turn implies that degenerate error patterns can be
rectified by the same recovery operation.

Let us consider the error patterns P = IIX and P ′ = g1P =
ZZX, where g1 is the stabilizer of the 3-qubit bit-flip repetition
code defined in Eq. (61). When these error patterns are applied
to the legitimate codeword of Eq. (37), we get:

IIX[α|000〉+ β|111〉] = α|001〉+ β|110〉, (74)

ZZX[α|000〉+ β|111〉] = α|001〉+ β|110〉.
Hence, P and P ′ are degenerate errors, since both error
patterns yield the same corrupted codeword. Furthermore,
degeneracy enhances the achievable capacity, because the
codewords are not corrupted by the harmless undetected
error patterns; hence, the impact of quantum impairments is
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TABLE VI
QUANTUM-TO-CLASSICAL ISOMORPHISM

reduced. Equivalently, we may say that degeneracy enables a
quantum code to pack more information as compared to the
underlying classical design, because it can operate at a higher
coding rate.

VI. QUANTUM-TO-CLASSICAL ISOMORPHISM

Based on the duality of QSCs and classical linear block
codes established in Section V, in this section we present the
isomorphism between these two regimes, which in turn helps
in constructing the quantum-domain versions of the known
classical codes. Explicitly, QSCs may be designed from binary
and quaternary classical codes using the quantum-to-classical
mappings of Table VI, as detailed in Sections VI-A and VI-B,
respectively. Furthermore, this quantum-to-classical isomor-
phism also allows us to use the classical PCM-based syndrome
decoding procedures for decoding QSCs.

A. Pauli-to-Binary Isomorphism

Recall from Section V that stabilizers constitute the coun-
terparts of the classical PCM. Based on this duality, QSCs can
be described using an equivalent binary PCM, which in turn
aids in designing quantum codes from the existing families
of classical codes. More specifically, QSCs can be completely
characterized in the binary formalism by an equivalent binary
PCM H derived from the associated stabilizer generators. The
rows of H correspond to the stabilizers, while the constituent
I, X, Y and Z Pauli operators of the stabilizers are mapped
onto a pair of binary digits as follows:

I → (00), X → (01), Z → (10), Y → (11),

(75)

where a binary 1 at the first index represents a Z operator,
while a binary 1 at the second index represents an X operator.
The PCM H resulting from the Pauli-to-binary mapping of
Eq. (75) can also be expressed as:

H = (Hz |Hx ), (76)

where Hz and Hx are (n − k) × n binary matrices corre-
sponding to the Z and X operators, respectively. Let us recall
that the 3-qubit bit-flip repetition code relied on the stabilizers
g1 = ZZI and g2 = ZIZ. Consequently, the associated PCM
H is given by:

H =

(
1 1 0 0 0 0
1 0 1 0 0 0

)

, (77)

where Hx is an all-zero matrix, since g1 and g2 do not contain
any Pauli-X operators. Furthermore, the Hz of Eq. (77) is
identical to the PCM H of the classical repetition code given
in Eq. (40), hence both yield identical syndrome patterns in

TABLE VII
(F2)

2 ADDITION

Table IV and Table V. Similarly, the PCM of the 3-qubit phase-
flip repetition code is:

H =

(
0 0 0 1 1 0
0 0 0 1 0 1

)

, (78)

where we have g1 = XXI and g2 = XIX, while that of Shor’s
code is given in Eq. (79).

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(79)

Hence, an [n, k] QSC, having (n − k) stabilizers, can be
characterized by a binary PCM of size (n − k) × 2n.
Furthermore, the equivalent classical coding rate Rc can be
determined as follows:

Rc =
2n − (n − k)

2n

=
n + k

2n

=
1

2

(

1 +
k

n

)

=
1

2

(
1 + RQ

)
, (80)

where RQ is its quantum coding rate. Based on Eq. (80),
the equivalent classical coding rate of the rate-1/3 quantum
repetition code is 2/3, while that of Shor’s rate-1/9 code is 5/9.

The binary formalism of Eq. (75) transforms the multi-
plication of Pauli operators into the bit-wise addition of the
corresponding binary representation. For example, multiply-
ing the set of Pauli operators {I,X,Z,Y} with Pauli-X is
equivalent to the second column of Table VII, if the Pauli oper-
ators are mapped onto (F2)

2 according to Eq. (75). Similarly,
the commutative property of stabilizers in the Pauli formalism
implies that the rows of the PCM H must be orthogonal to
each other with respect to symplectic product (also referred
to as a twisted product) in the binary formalism. Explicitly, if
the ith row of H is denoted as Hi = (Hzi |Hxi ) following the
notation of Eq. (76), then the commutativity of the stabilizers
gi and gi ′ is transformed into the symplectic product of rows
Hi and Hi ′ , which is computed as follows:

Hi �Hi ′ =
(
Hzi ·Hxi′ +Hzi′ ·Hxi

)
mod 2. (81)

The resultant symplectic product yields a value of zero, if
the number of different non-Identity operators (X, Y or Z) in
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Fig. 26. Effective error P corresponding to the n-qubit Pauli error P .

the stabilizers gi and gi ′ is even; hence, satisfying the com-
mutativity criterion. Furthermore, since all stabilizers must be
commutative, the symplectic product must be zero for all rows
of H, i.e., the PCM H should satisfy:

HzH
T
x +HxH

T
z = 0 mod 2. (82)

This in turn implies that any pair of classical binary codes
having the PCMs Hz and Hx and satisfying the symplectic
product of Eq. (82) may be used for constructing a valid QSC.

The symplectic product of Eq. (82) may also be exploited
for computing the syndrome of a QSC in the binary domain,
for example during the PCM-based syndrome decoding. More
specifically, the Pauli-to-binary isomorphism of Eq. (75) trans-
forms an n-qubit Pauli error P ∈ Gn into an effective error
vector P of length 2n. Explicitly, analogous to the H of
Eq. (76), the effective error vector P may be expressed as
P = (Pz |Px ), where Pz and Px denote the Pauli-Z and Pauli-
X errors, respectively. More precisely, a 1 at the tth index of
Pz denotes a Pauli-Z (phase-flip) error on the tth qubit, while
a 1 at the tth index of Px represents the occurrence of the
Pauli-X (bit-flip) error on the tth qubit. Similarly, the Pauli-Y
(bit-and-phase-flip) error on the tth qubit yields a 1 at the tth
index of Pz as well as Px . Finally, the syndrome of a QSC
can be computed in the binary formalism using the symplectic
product and the effective error vector P as follows:

s = H � PT =
(
HzP

T
x +HxP

T
z

)
mod 2, (83)

where the Hz and Hx are used for correcting bit-flip and
phase-flip errors, respectively, as previously discussed in the
context of 3-qubit bit-flip and phase-flip repetition codes. The
resultant syndrome has either a value of 0 or 1. Thus, the
quantum-domain syndrome processing may be carried out in
the binary domain using the PCM H and the effective error
P. This in turn implies that the quantum decoding process is
equivalent to the syndrome decoding of the equivalent classical
code relying on the PCM H [164]. However, since quantum
codes are degenerate, as discussed in Section V, quantum
decoding aims for estimating the most probable error coset,
while the classical syndrome decoding estimates the most
probable error.

B. Pauli-to-Quaternary Isomorphism

Analogous to the Pauli-to-binary isomorphism, the Pauli-
to-quaternary isomorphism facilitates the design of quantum
codes from the existing classical quaternary codes. Explicitly,
the I, X, Y and Z Pauli operators may be transformed into
the elements of Galois Field GF(4) using the mapping given
below:

I → 0, X → 1, Z → ω, Y → ω, (84)

TABLE VIII
GF(4) ADDITION

TABLE IX
GF(4) MULTIPLICATION

TABLE X
GF(4) HERMITIAN INNER PRODUCT

where 0, 1, ω and ω are the elements of GF(4). Furthermore,
the multiplication operation in the Pauli domain is equivalent
to the addition operation in GF(4), while the commutativ-
ity (symplectic product) criterion in the Pauli domain is
equivalent to the trace15 inner product [88] in GF(4). The
associated additive and multiplicative rules of GF(4) are listed
in Table VIII and Table IX,16 respectively. To elaborate fur-
ther, multiplying the Pauli operators {I,X,Z,Y} with Pauli-X
is equivalent to adding the GF(4) element 1 (correspond-
ing to Pauli-X) to each element of GF(4), as done in the
second column of Table VIII. On the other hand, the com-
mutative relationship between two GF(4) elements Â and B̂
may be established with the help of the trace inner product as
follows:17

Tr〈Â, B̂〉 = Tr
(
Â× B̂

)
= 0, (85)

where 〈, 〉 denotes the Hermitian inner product, while B̂ is
the conjugate18 of B̂ . Moreover, Tr(0) = Tr(1) = 0, while
Tr(ω) = Tr(ω) = 1. Explicitly, both the Hermitian inner
product and the trace inner product between the elements of
GF(4) are tabulated in Table X and Table XI, respectively.

If a QSC is characterized by the classical PCM Ĥ in the
quaternary domain, then the commutativity constraint of the
stabilizers gi and g ′i is transformed into the trace inner prod-
uct of the ith and i ′th row of Ĥ. Explicitly, this may be

15The trace operator of GF(4) maps x onto (x + x), where x denotes the
conjugate of x [96].

16The addition and multiplication rules for GF(p), having a prime p, are
the same as the modulo p addition and multiplication, while the rules for
GF(pm ), having m > 1, do not follow the conventional rules for modulo
pm addition and multiplication. For example, the addition of the elements of
GF(4) is equivalent to the bitwise modulo 2 addition of the equivalent 2-bit
patterns. Hence, Table VIII may be obtained by mapping the 2-bit patterns
of Table VII onto the corresponding GF(4) elements.

17GF(4) variables are denoted with aˆon top, e.g., x̂ .
18The conjugate operation of GF(4) is defined as x = x2 [96].

Consequently, conjugation has no impact on the GF(4) elements 0 and 1,
while the elements ω and ω are swapped upon taking the conjugate.
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TABLE XI
GF(4) TRACE INNER PRODUCT

formulated as:

Ĥi � Ĥi ′ = Tr〈Ĥi , Ĥi ′〉 = Tr

(
n∑

t=1

Ĥit × Ĥi ′t

)

= 0, (86)

where Ĥit is the element in the ith row and tth column of Ĥ.
Let us now prove the equivalence of Eq. (81) and Eq. (86),

since both these equations correspond to the commutativity
requirement. Given Hi = (Hzi ,Hxi ) and the mapping of
Eq. (84), Ĥi may be expressed as:

Ĥi = ωHzi +Hxi . (87)

Substituting Eq. (87) into Eq. (86) yields:

Ĥi � Ĥi′ = Tr〈(ωHzi +Hxi ),
(
ωHzi′ +Hxi′

)〉
= Tr

(
(ωHzi +Hxi )

(
ωHzi′ +Hxi′

))

= Tr
(
HziHzi′ + ωHziHxi′ + ωHxiHzi′ +HxiHxi′

)
.

(88)

Recall that Tr(1) = 0 and Tr(ω) = Tr(ω) = 1. Therefore,
Eq. (88) reduces to:

Ĥi � Ĥi ′ = HziHxi′ +HxiHzi′ , (89)

which is the same as Eq. (81). Consequently, analogous to
Eq. (83), the syndrome in the quaternary domain is com-
puted as:

si = Tr(ŝi ) = Tr

(
n∑

t=1

Ĥit × P̂ t

)

, (90)

where si is the syndrome corresponding to the ith row of Ĥ
and P̂t is the tth element of P̂ , which represents the error
inflicted on the tth qubit.

Any arbitrary classical quaternary linear code, which is self-
orthogonal with respect to the trace inner product of Eq. (86),
can be used for constructing a QSC. Since a quaternary linear
code is closed under multiplication by the elements of GF(4),
this condition reduces to satisfying the Hermitian inner prod-
uct, rather than the trace inner product [96]. This can be proved
as follows.

Let C be a classical linear code in GF(4) having codewords
u and v. Furthermore, let us assume that:

〈u, v〉 = α+ βω. (91)

For the sake of satisfying the symplectic product, we must
have:

Tr〈u, v〉 = 0. (92)

Since Tr(ω) = 1, Eq. (92) is only valid, when β is zero
in Eq. (91). Furthermore, since the code C is GF(4)-linear,
Eq. (92) leads to:

Tr〈u, ωv〉 = 0, (93)

Fig. 27. Syndrome processing block of Fig. 22.

which in turn implies that α should also be zero in Eq. (91).
Hence, for a classical GF(4)-linear code, the Hermitian inner
product of Eq. (91) must be zero, when the trace inner product
of Eq. (92) is zero.

To conclude, the stabilizers may be mapped onto the equiv-
alent binary or quaternary representations, as summarized in
Table VI. These mappings in turn help in designing quantum
codes from the existing classical codes, as discussed further
in the next section. Furthermore, since a QSC can be mapped
onto an equivalent classical binary or quaternary PCM, clas-
sical PCM-based syndrome decoding may be invoked during
the quantum decoding process. More explicitly, the ‘syndrome
processing’ block of Fig. 22 may be expanded, as shown
in Fig. 27. The process begins with the computation of the
syndrome of the received sequence |ψ̂〉 using the stabilizer
generators, which collapse to a binary 0 or 1 upon measure-
ment. The binary syndrome sequence s is then fed to a classical
PCM-based syndrome decoder, which operates over the equiv-
alent classical PCM associated with the QSC for estimating

the equivalent channel error P̃ (or ˜̂
P in quaternary domain).

The classical PCM-based syndrome decoder of Fig. 27 is
exactly the same decoder, which we would use for any con-
ventional classical code, with the exception of the following
two differences:

1) In contrast to the syndrome of a classical code, which is
the product of the PCM and the transpose of the chan-
nel error (HPT ), the syndrome of a quantum code is
computed using the symplectic product of Eq. (83) (or
the trace inner product of Eq. (90)).

2) The conventional classical decoding aims for estimating
the most probable error, given the observed syndrome,
while quantum decoding aims for estimating the most
probable error coset, which takes into account the
degeneracy of quantum codes, as discussed in Section V.

Finally, the binary-to-Pauli mapping of Eq. (75) (or
quaternary-to-Pauli mapping of Eq. (84)) is invoked for map-
ping the estimated binary (or quaternary) error onto the
equivalent Pauli error P̃ .

VII. TAXONOMY OF STABILIZER CODES

The quantum-to-classical isomorphism of Section VI pro-
vides a solid theoretical framework for building quantum codes
from the known classical codes, which have already found
their way into commercial applications. Particularly, quantum
codes can be designed from a pair of arbitrary classical binary
codes, if they meet the symplectic criterion, or from arbitrary
classical quaternary codes, if they satisfy the Hermitian inner
product. Continuing further our discussions, in this section
we present the taxonomy of stabilizer codes with the aid of
Fig. 28, which is based on the structure of the underlying
equivalent classical PCM H.
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Fig. 28. Taxonomy of Stabilizer Codes (CSS: Calderbank-Shor-Steane, EA:
Entanglement-Assisted).

A. Calderbank-Shor-Steane Codes

Calderbank-Shor-Steane (CSS) codes [82]–[84] is a class
of stabilizer codes constructed from a pair of binary classical
codes. Specifically, the family of CSS codes may be defined as:

An [n, k1 − k2] CSS code can be designed from the binary
linear block codes C1(n, k1) and C2(n, k2), if the code space
of C1 subsumes that of C2 (C2 ⊂ C1). Furthermore, if both
C1 as well as the dual of C2, i.e., C⊥

2 , exhibit a minimum
Hamming distance of dmin, then the resultant CSS code also
exhibits a minimum distance of dmin; hence, it is capable
of concurrently correcting (dmin − 1)/2 bit-flips as well as
(dmin − 1)/2 phase-flips.

Explicitly, analogous to Shor’s code, a CSS code indepen-
dently corrects bit-flip and phase-flip errors. More specifically,
the binary code C1 is invoked for correcting bit-flips, while
the code C⊥

2 is used for phase-flip correction. Hence, if H′
z

and H′
x are the PCMs of C1 and C⊥

2 , respectively, then the
resultant CSS code has the following PCM:

H = [Hz |Hx ] =

(
H′
z 0
0 H′

x

)

, (94)

where we have Hz =

(
H′
z
0

)

, Hx =

(
0
H′
x

)

, while H′
z and

H′
x are (n − k1) × n and k2 × n binary matrices, respec-

tively. Furthermore, since C2 ⊂ C1, the symplectic condition
of Eq. (82) is reduced to:

H′
zH

′T
x = 0. (95)

Hence, the process of designing a QSC is reduced to finding a
pair of binary codes whose PCMs conform to the symplectic
criterion of Eq. (95). Since the resultant PCM of Eq. (94)
has (n − k1 + k2) rows, the quantum code encodes (k1 − k2)
information qubits into n qubits. Moreover, if we have H′

z =
H′
x , then the resultant code is called a dual-containing (or

self-orthogonal) code having Hz ′H′T
z = 0, which is equivalent

TABLE XII
UNIQUE COSETS OF C⊥

1 IN C1

to C⊥
1 ⊂ C1. Explicitly, in case of dual-containing CSS codes,

C2(n, k2) is the dual code of C1(n, k1). Therefore, we have
k2 = (n − k1) and the resultant dual-containing CSS codes
encodes (k1− k2) = (2k1−n) qubits into n coded qubits. We
classify the remaining CSS constructions, having H′

z �= H′
x ,

as non-dual-containing CSS codes.
An [n, k1 − k2] CSS code, relying on the binary codes C1

and C⊥
2 , is implemented by finding the unique cosets19 of

C2 in C1, so that each of the 2k1−k2 superimposed state can
be mapped onto a unique coset of C2 in C1. These unique
cosets are in turn derived by adding (bit-wise modulo-2) each
codeword of C1 to the code space of C2. More specifically, if
x1 ∈ C1 and x2 ∈ C2, then the normalized addition operation
can be formulated as:

|x1 + C2〉 = 1
√|C2|

∑

x2∈C2

|x1 + x2〉. (96)

Since the cardinality of C1 is |C1| = 2k1 , while that of C2

is |C2| = 2k2 , we get |C1|/|C2| = 2k1−k2 unique cosets of
C2 in C1. Consequently, each of the 2k1−k2 (k1 − k2)-qubit
orthogonal quantum state can be mapped onto a superposition
of the codewords of the unique coset.

Let us now consider the construction of Steane’s [7, 1]
code, which is derived from the dual-containing classical (7, 4)
Hamming code having the PCM:

H =

⎛

⎝
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

⎞

⎠. (97)

The PCM H of Eq. (97) yields HHT = 0, hence lending itself
to constructing a dual-containing CSS code. More specifically,
C1 is the (7, 4) Hamming code, while C2 is its dual code, i.e.,
C2 = C⊥

1 , having the parameters (7, 3). Since HHT = 0, the
code space of C2 is contained in that of C1, i.e., we have
C2 ⊂ C1. Furthermore, both C1 and C⊥

2 = C1 can correct a
single error. Consequently, a single-error correcting CSS code
can be constructed by finding the unique cosets of C⊥

1 in C1

using Eq. (96). This results in two unique cosets, which are
listed in Table XII. These two cosets together yield the code

19Assume C1 = (0, 1, 2, 3) with k1 = 2 and C2 = (0, 2) with k2 = 1,
modulo 4 addition yields following cosets:

0 + C2 ≡ (0, 2) = C2,

1 + C2 ≡ (1, 3) = 1 + C2,

2 + C2 ≡ (2, 0) = C2,

3 + C2 ≡ (3, 1) = 1 + C2.

Hence, resulting in two different cosets of C2 in C1, i.e., (0, 2) and (1, 3).
Equivalently, we may say that the two unique cosets (0, 2) and (1, 3) of C2
together constitute the code space of C1.
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Fig. 29. Syndrome decoder for CSS-type Quantum Codes.

space of the (7, 4) Hamming code. The two orthogonal states
|0〉 and |1〉 of the single qubit information word are hence
encoded as follows:

|0〉 ≡ 1√
8
(|0000000〉+ |0111001〉+ |1011010〉+ |1100011〉

+ |1101100〉+ |1010101〉+ |0110110〉+ |0001111〉),
|1〉 ≡ 1√

8
(|1111111〉+ |1000110〉+ |0100101〉+ |0011100〉

+ |0010011〉+ |0101010〉+ |1001001〉+ |1110000〉).
(98)

In other words, |0〉 and |1〉 are the equally weighted superpo-
sitions of all the codewords of the two cosets of Table XII.
Furthermore, H′

z and H′
x of the resultant quantum code

space are equivalent to the binary PCM of the Hamming
code (Eq. (97)). Hence, the associated bit-flip and phase-flip
detecting stabilizers of the [7, 1] Steane’s code are as follows:

g1 = ZZIZZII

g2 = ZIZZIZI

g3 = IZZZIIZ

g4 = XXIXXII

g5 = XIXXIXI

g6 = IXXXIIX. (99)

We may observe in Eq. (99) as well as in Eq. (94) that the
bit-flip and phase-flip detecting stabilizers (or equivalently
syndromes) of a CSS-type quantum code are independent.
Therefore, bit-flip and phase-flip estimation may be car-
ried out independently by two separate classical syndrome
decoders using H′

z and H′
x , respectively, as illustrated in

Fig. 29. Furthermore, when the simplified decoder of Fig. 29
is invoked, the performance of CSS codes observed in the face
of the depolarizing channel of Eq. (24) is isomorphic to their
performance over two independent phase-flip and bit-flip chan-
nels, where each has a marginalized depolarizing probability
of 2p/3. Hence, the QBER performance of CSS codes may be
approximated by adding together the BERs of the constituent
binary codes. More explicitly, given that pxe and pze are the

classical BERs for H′
z and H′

x , respectively, the resultant CSS
code exhibits a QBER of:

QBER = pxe + pze − pxe p
z
e ≈ pxe + pze , (100)

which is equivalent to 2pze for a dual-containing CSS code
having H′

x = H′
z .

B. Non-CSS Codes

We observed in the previous section that CSS codes inde-
pendently correct bit-flip and phase-flip errors. This in turn
results in a low coding rate. By contrast, non-CSS stabilizer
codes are capable of exploiting the redundancy more effi-
ciently, since they jointly correct bit-flip and phase-flip errors.
The PCM of a non-CSS code assumes the general structure
of Eq. (76). Consequently, a pair of binary PCMs conforming
to the symplectic product criterion of Eq. (82) or a classical
quaternary PCM satisfying the trace inner product of Eq. (86)
may be used for designing a non-CSS stabilizer code.

Calderbank, Rains, Shor and Sloane conceived a special
class of non-CSS codes, called Calderbank-Rains-Shor-Sloane
(CRSS) codes, which are constructed from the known classical
quaternary codes as follows [96]:

An [n, k] QSC can be designed in the quaternary
domain from a classical self-orthogonal (under the Hermitian
inner product) GF(4)-linear block code C (n, (n − k)/2).
Furthermore, if the dual (also called orthogonal) code
C⊥(n, (n + k)/2) exhibits a minimum Hamming distance of
dmin, then the resultant non-CSS code also exhibits a mini-
mum distance of dmin; hence, it is capable of concurrently
correcting (dmin − 1)/2 bit-flips as well as (dmin − 1)/2
phase-flips.

Based on this formalism, the PCM of the resultant CRSS
code is characterized as:

Ĥ =

(
Ĥc

ωĤc

)

, (101)

where Ĥc is the PCM of the dual code C⊥(n, (n+k)/2). For
example, there exists a classical self-orthogonal GF(4)-linear
code C(5, 2), whose dual code C⊥(5, 3) is a Hamming code
having the PCM Ĥc given by [169]:

Ĥc =

(
0 ω ω ω ω
ω 0 ω ω ω

)

. (102)

Consequently, the (5, 1) quantum Hamming code can be
constructed as:

Ĥ =

⎛

⎜
⎜
⎝

0 ω ω ω ω
ω 0 ω ω ω
0 1 ω ω 1
1 0 1 ω ω

⎞

⎟
⎟
⎠. (103)

Using the Pauli-to-GF(4) mapping of Eq. (84), the PCM Ĥ of
Eq. (103) is mapped onto the stabilizer generators listed below:

g1 = IYZZY

g2 = YIYZZ

g3 = IXYYX

g4 = XIXYY. (104)
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Fig. 30. System Model: Quantum communication system relying on an entanglement-assisted quantum stabilizer code.

Hence, while a single-error correcting CSS-type code has a
coding rate of 1/7, a single-error correcting non-CSS code
exhibits an improved coding rate of 1/5. The resultant codes
may be decoded by invoking a classical non-binary syndrome
decoder or a binary syndrome decoder operating over the
binary PCM of Eq. (76), which exploit the correlation
between the bit-flip and phase-flip errors, hence facilitating
the joint decoding of bit-flip and phase-flip errors. This in
turn provides enhanced decoding performance, albeit at the
cost of an increased decoding complexity.

C. Entanglement-Assisted Codes

Let us recall that QSCs may be constructed from the clas-
sical binary and quaternary codes only if the constituent
classical codes conform to the symplectic criterion of Eq. (82).
Consequently, while every QSC may have a classical coun-
terpart, we cannot claim that every classical code has a
stabilizer-based quantum version. Furthermore, the stringent
symplectic criterion may result in various design issues, such
as the unavoidable short cycles in QLDPC codes and the non-
recursive nature of non-catastrophic QCCs. For the sake of
overcoming these limitations, the entanglement-assisted sta-
bilizer formalism of [112] and [116] was conceived, which
relies on entangled qubits pre-shared with the receiver over a
noiseless channel. Explicitly, the EA formalism helps in trans-
forming a set of non-commuting Pauli generators into a set
of commuting generators, which in turn constitute valid stabi-
lizer codes. Consequently, when the underlying classical codes
do not satisfy the symplectic criterion, the EA formalism is
invoked for making the resultant stabilizers commutative.

Fig. 30 shows the system model of a quantum communi-
cation system relying on an Entanglement-Assisted Quantum
Stabilizer Code (EA-QSC). Explicitly, an [n, k, c] EA-QSC
encodes a k-qubit information word |ψ〉 into an n-qubit code-
word |ψ〉 with the help of (n − k − c) auxiliary qubits in state
|0〉 and c pre-shared entangled qubits (ebits). Explicitly, ebits
may be created in the Bell state |φ+〉, expressed as:

|φ+〉 = |00〉TXRX + |11〉TXRX

√
2

, (105)

so that the first qubit is retained at the transmitter, while the
associated entangled qubit is sent to the receiver before actual
transmission commences, for example during off-peak hours,
when the channels are under-utilized. The notations TX and
RX in Eq. (105) are used to identify the transmitter’s and
receiver’s half of the ebit, respectively. It is generally assumed

that the pre-sharing of ebits takes place over a noiseless chan-
nel. Furthermore, as illustrated in Fig. 30, the transmitter
only utilizes the transmitter’s half of the ebits for encoding
the information word |ψ〉 into the codeword |ψ〉. Finally, the
encoded information is sent over a noisy quantum channel. At
the receiver, the received noisy codeword |ψ̂〉 is combined with
the receiver’s half of the c ebits during the decoding process.
Specifically, the stabilizers of an EA-QSC jointly act on |ψ̂〉
and the receiver’s ebits for computing the syndrome vector,
which is then fed to a classical syndrome decoder for estimat-
ing the error pattern P̃ , as previously shown in Fig. 27. The
rest of the processing at the receiver is identical to that of the
unassisted QSC of Fig. 22.

The Bell state of Eq. (105) has unique properties, which
facilitate the mapping of a set of non-commuting generators
into a set of commuting generators. More explicitly, the 2-
qubit commuting generators XTXXRX and ZTX ZRX stabilize
the state |φ+〉, i.e., we have:

[
XTXXRX ,ZTX ZRX

]
= 0. (106)

However, the Pauli operators acting on the individual qubits
anti-commute with each other, i.e., we have:

[
XTX ,ZTX

]
�= 0,

[
XRX ,ZRX

]
�= 0. (107)

Therefore, if we have a pair of non-commutative generators
XTX and ZTX , which only act on the transmitter’s ebit, then
these generators can be transformed into a pair of commuting
generators by appropriately augmenting them with an addi-
tional operator acting on the receiver’s ebit. Explicitly, the
operator acting on the receiver’s ebits is specifically chosen
for ensuring that the resultant 2-qubit generators have an even
number of indices, which have different non-identity operators;
hence, resolving the anti-commutativity of the initial single
qubit operators.

Let us now construct an EA-QSC from two binary codes
having the PCMs20:

Hz =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 0
1 1 1 0
0 1 1 1

⎞

⎟
⎟
⎠, (108)

20This is an arbitrary, random example only conceived for illustrating the
construction of EA codes from the known classical codes. The associated
classical/quantum code may not have good error correction capabilities.
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and:

Hx =

⎛

⎜
⎜
⎝

1 0 1 0
1 1 0 1
1 0 0 1
1 1 1 0

⎞

⎟
⎟
⎠. (109)

The PCMs Hz and Hx may be concatenated for constructing
a non-CSS code having:

H =

⎛

⎜
⎜
⎝

0 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1
1 1 1 0 1 0 0 1
0 1 1 1 1 1 1 0

⎞

⎟
⎟
⎠. (110)

Unfortunately, the PCM of Eq. (110) does not meet the sym-
plectic product criterion of Eq. (82). Furthermore, the PCM H
may be transformed into the following non-commutative Pauli
generators using the Pauli-to-binary mapping of Eq. (75):

HQ =

⎛

⎜
⎜
⎝

X Z X I
X X I X
Y Z Z X
X Y Y Z

⎞

⎟
⎟
⎠. (111)

Explicitly, the first two generators (or rows) of HQ anti-
commute, while all other generators (or rows) commute with
each other. This is because the first two generators have a
single index having different non-Identity operators. In other
words, only the operators acting on the second qubit anti-
commute, while the operators individually acting on all other
qubits commute. For the sake of making the generators of
Eq. (111) commutative, the first two rows of HQ may be aug-
mented with a pair of anti-commuting operators, as shown
below:

HQ =

⎛

⎜
⎜
⎝

X Z X I Z
X X I X X
Y Z Z X I
X Y Y Z I

⎞

⎟
⎟
⎠, (112)

where the operators to the left of the vertical bar (|) act on
the n-qubit transmitted codewords, while those on the right of
the vertical bar act on the receiver’s half of the ebits. Hence,
only a single ebit is required in this design example.

VIII. DESIGN EXAMPLES

We may conclude from the above discussions that the sta-
bilizer formalism is a useful framework for exploiting the
known classical coding families. In this section, we extend our
discussions to the two widely used channel coding families,
i.e., the BCH codes (Section VIII-A) and the convolutional
codes (Section VIII-B), emphasizing the duality between their
classical and quantum versions.

A. Bose-Chaudhuri-Hocquenghem Codes

1) Classical Bose-Chaudhuri-Hocquenghem Codes [142]:
Bose-Chaudhuri-Hocquenghem (BCH) codes are classified
as maximum minimum-distance multiple-error correcting
cyclic block codes. A classical BCH code denoted as
BCH(n, k , dmin) encodes k ≥ (n −mt) information bits into
n-bit codewords, where n = 2m − 1, so that the resultant

code space has an odd minimum Hamming distance of dmin,
hence it is capable of correcting t = (dmin − 1)/2 errors.
Furthermore, BCH codes can be both systematic as well as
non-systematic. However, systematic BCH codes are known
to outperform their non-systematic counterparts [142]. This is
because they can exploit their error-detection capability for
disabling the decoding operations, when this would result in
correcting the wrong symbols owing to having more than t
errors. In such instances, the systematic BCH decoder sim-
ply retains the systematic part of the codeword. Unfortunately,
the non-systematic decoder does not have separate information
and parity segments, hence it would correct the wrong sym-
bols, when it is overloaded by more than t errors. This causes
even more errors after decoding than we had at the channel’s
output.

A systematic binary BCH code encodes k information bits
into n coded bits by appending (n − k) parity bits to the block
of k information bits. The parity bits are computed from the
information bits based on the generator polynomial g(x), which
is given by:

g(x ) = g0 + g1x + g2x
2 + · · ·+ gn−kx

n−k . (113)

As detailed in [142] and [177], the systematic encoder oper-
ates by first shifting the information polynomial d(x) to the
highest order position of the codeword c(x) by multiplying
d(x) with x (n−k) and then attaching the parity segment to it.
Explicitly, the parity symbols denoted by the polynomial p(x)
are defined according to the generator polynomial g(x), so that
the resulting codeword c(x) is a valid codeword. The overall
systematic encoding process may be summarized as:

c(x ) = x (n−k).d(x ) + p(x ), (114)

where p(x) is defined as:

p(x ) = −Rem

[
x (n−k).d(x )

g(x )

]

, (115)

for the sake of ensuring that c(x) constitutes a valid codeword,
hence yielding a zero-valued remainder upon division by the
generator polynomial g(x), i.e., we have:

Rem

[
c(x )

g(x )

]

= Rem

[
x (n−k).d(x ) + p(x )

g(x )

]

= Rem

[
x (n−k).d(x )

g(x )

]

+Rem

[
p(x )

g(x )

]

= 0,

(116)

since,

Rem

[
p(x )

g(x )

]

= p(x ), (117)

according to Eq. (115). The corresponding polynomial
multiplications and divisions of Eq. (114) and Eq. (115),
respectively, may be carried out by low-complexity shift
register based operations, as exemplified below.

The encoder of a systematic BCH code may be implemented
using shift registers, as depicted in Fig. 31, where ⊗ denotes
the multiplication operation, while ⊕ is the modulo-2 addition.
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Fig. 31. Schematic of the systematic BCH(n, k , dmin) encoder.

Fig. 32. Encoder of systematic BCH(15, 11, 3).

Specifically, the information bits d(x) are encoded into the
coded bits c(x) as follows:

1) Switch 1 is closed during the first k time instants (or
clock cycles), hence allowing the information bits d(x) to
flow into the (n − k) shift registers according to the rules
defined by the generator polynomial g(x). Explicitly, the
contents of the shift registers after the kth time instant
constitute the parity bits.

2) Concurrently, Switch 2 is in the down position, so that
the k information bits d(x) constitute the first k bits of
c(x).

3) After k time instants, Switch 1 is opened, while Switch
2 is moved to the upper position. This clears the shift
registers by moving their contents to the output c(x).

Let us consider the BCH(15, 11, 3) code having the
generator polynomial21:

g = 23octal

= 10011bin,

g(x ) = x4 + x + 1. (118)

The associated encoding circuit of Fig. 32 can be easily
derived from Fig. 31 based on the generator polynomial of
Eq. (118). We may observe in Eq. (118) that the coefficients
can only have a value of 1 or 0. Consequently, the multiplier
is replaced by a direct hard-wire connection, if the cor-
responding coefficient is 1, while no connection is made,
when the coefficient is 0. Let us assume an 11-bit input
sequence d = 11001110001, which may also be represented
as d(x ) = 1+ x + x4+ x5+ x6+ x10. The encoding process
proceeds as follows:

1) The shift registers are initialized to the all-zero state.
During the first k = 11 time instances, when the Switch
1 is closed, the input bits flow into the shift registers of

21The generator polynomial g(x) is often represented by an octal number, so
that when it is converted to the binary notation, the right-most bit constitutes
the coefficient of x0, i.e., the zero-degree coefficient.

TABLE XIII
BCH(15, 11, 3) ENCODING PROCESS FOR d = 11001110001

(d(x) = 1 + x + x4 + x5 + x6 + x10), WHICH YIELDS THE CODEWORD

c = 101011001110001 (c(x) = x2 + x4 + x5 + x8 + x9 + x10 + x14)

Fig. 32. The resultant states are tabulated in Table XIII
at each time instant.

2) Furthermore, since Switch 2 is downward position for
the first k = 11 time instances, the coded bits of c(x)
are the same as the information bits d(x).

3) Thereafter, since Switch 1 is opened and Switch 2 is
moved to the upper position, the values within the shift
registers represent the coded bits, as demonstrated in
Table XIII. Eventually, the shift registers are returned to
the initial all-zero state.

Equivalently, the encoding process of Table XIII may also be
represented by using the state transition diagram of Fig. 33,
which shows all possible transitions for the BCH encoder of
Fig. 32. In its conceptually simplest form, the decoding relies
on a simple decoding table, which has a total of 215 = 32768
entries and 211 = 2048 legitimate codewords. Since this code
has dmin = 3, the received corrupted codeword is readily
corrected in case of a single error, but the wrong legitimate
codeword is selected in case of two errors. The state transition
diagram of Fig. 33 also facilitates trellis decoding [65] of BCH
codes. However, the number of trellis states increases expo-
nentially with (n − k), since the trellis has a total of 2(n−k)

states. As an alternative strategy, the Berlekamp-Massey algo-
rithm [56]–[59] and Chase algorithm [63] are widely used for
efficiently decoding BCH codes. Fig. 34 portrays the coding
gain versus coding rate trend at a BER of 10−6 for different-
rate BCH codes relying on the same codeword length, i.e.,
for n = (15, 31, 63, 127). We may observe in Fig. 34 that
the coding gain increases upon increasing the coding rate
(or equivalently increasing k) until it reaches the maximum
value. More specifically, the maximum coding gain is typically
achieved when the coding rate is between 0.5 and 0.6.

2) Quantum Bose-Chaudhuri-Hocquenghem Codes:
Quantum BCH codes [94]–[99] can be derived from the
classical dual-containing binary BCH codes as well as self-
orthogonal quaternary BCH codes. In this section, we will
detail the construction of a dual-containing BCH code, based
on our discussions of Section VII-A.

Let us recall from Section VII-A that if C is the classi-
cal code specified by the PCM H and having the dual code
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Fig. 33. State transition diagram for BCH(15, 11, 3).

C⊥, whose code space is subsumed by that of C (C⊥ ⊂ C ),
then the resultant [n, k ′] dual-containing CSS code, having
k ′ = (2k − n), maps each of the 2k

′
superimposed states of

a k ′-qubit information word onto a unique coset of the dual
code C⊥ in the code space of C. The cosets of C⊥ in C
may be obtained by adding a legitimate codeword of C to
all the codewords of C⊥, as previously shown in Eq. (96).
However, only those codewords of C generate a unique coset
of C⊥, which do not differ by an element of C⊥. Explicitly,
the codewords x1 and x ′1 of C are said to differ by an element
of C⊥, if their bit-wise modulo-2 addition yields a codeword
of C⊥, i.e., x1 + x ′1 = x2, where x2 ∈ C⊥. Consequently,
such codewords of C yield the same coset of C⊥.

Let us elaborate on this by constructing the single-error cor-
recting QBCH[15,7] code from the dual-containing classical
BCH(15, 11) code of Fig. 32, whose PCM is:

H =⎛
⎜⎜⎝

1 0 0 0 1 1 1 1 0 1 0 1 1 0 0

0 1 0 0 0 1 1 1 1 0 1 0 1 1 0

0 0 1 0 0 0 1 1 1 1 0 1 0 1 1

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

⎞
⎟⎟⎠. (119)

Fig. 34. Coding gain versus coding rate for various families of BCH codes
at a BER of 10−6 over AWGN channel [142]. Berlekamp-Massey algorithm
was invoked for decoding.

The encoder of QBCH[15, 7] may be derived using the method
conceived by MacKay et al. [164], which proceeds as follows:

1) The classical dual-containing PCM H is first trans-
formed into the matrix H̃ = [I(n−k)|P] using elemen-
tary row operations as well as column permutations.
Explicitly, the elementary row operations include row
permutations and addition of one row to the other. Since
H is an (n − k) × n matrix, the resultant matrix I(n−k)
has dimensions (n − k) × (n − k), while P is an
(n − k) × k binary matrix. For the PCM H of Eq. (119),
we have H̃ = H.

2) As a next step, apply row operations to P so that it is
reduced to P̃ = [I(n−k),Q], where Q is an (n− k)× k ′
binary matrix. Therefore, we get

P̃ =

⎛

⎜
⎜
⎝

1 0 0 0 1 1 1 1 0 1 0
0 1 0 0 0 1 1 1 1 0 1
0 0 1 0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0 1 0 1

⎞

⎟
⎟
⎠.

(120)

3) The associated encoder may be implemented in two
steps, as shown in Fig. 35. In the first step, the matrix
Q acts on the second block of (n − k) = 4 auxiliary (or
parity) qubits controlled by the last k ′ = (2k − n) = 7
information qubits, which constitute the information
word. More explicitly, a Controlled NOT (CNOT) gate
acts on the ith qubit of the second block of (n − k)
qubits, which is controlled by the jth information qubit,
if Qij = 1. This may be formulated as follows

|0〉⊗(n−k)|0〉⊗(n−k)|q〉 → |0〉⊗(n−k)|Qq〉|q〉. (121)
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Fig. 35. Encoder of QBCH[15, 7] [178].

TABLE XIV
STABILIZERS OF THE QBCH[15, 7]

The resultant states constitute the set of codewords in C,
which do not differ by any element of C⊥ and therefore
are capable of generating unique cosets of C⊥.

4) The second stage adds the codewords of C⊥ to the
codewords of C generated in the previous step. More
specifically, the second stage on its own generates the
code space of C⊥ according to the PCM H̃. For a clas-
sical code C⊥, the first (n − k) bits are the systematic
information bits, which can have either the value of 0 or
1. Consequently, the first (n − k) = 4 auxiliary qubits
undergo a Hadamard transformation for the sake of gen-
erating the complete code space of the classical code C⊥.
Finally, the matrix P acts on the last k qubits controlled
by the first (n − k) qubits, hence generating the code
space of C⊥. More explicitly, a CNOT gate acts on the
jth qubit, which is controlled by the ith qubit, if Pij = 1.

The stabilizers of the QBCH[15, 7] code are constructed
using the PCM of Eq. (119) by replacing the 1’s with Z (or X),
while the 0’s are replaced with I. The resultant stabilizer gen-
erators are listed in Table XIV. Furthermore, due to the cyclic
nature of BCH codes, both the encoder of Fig. 35 as well as
the stabilizer generators of Table XIV can be implemented

using quantum shift registers,22 which in turn makes the
QBCH codes suitable for systems having cyclic symmetries,
for example circular ion traps [179]. The binary syndrome val-
ues obtained by applying the stabilizers of Table XIV are then
fed to a classical Berlekamp-Massey decoder, which estimates
the most likely error.

B. Convolutional Codes

1) Classical Convolutional Codes: Recall that an (n, k)
block code encodes each block of k information bits indepen-
dently into n coded bits. By contrast, an (n, k, m) convolutional
code exemplified in Fig. 36 encodes the entire information
sequence into a single coded sequence. More specifically, each
k-bit input is encoded into n bits, so that the encoded output
at each time instant also depends on the k information bits
received in the m previous time instances. The resultant convo-
lutional code has a memory of m, or equivalently a constraint
length of (m + 1), which is implemented using linear shift
registers. Furthermore, the code is specified by n generator
polynomials, which define the topology of modulo-2 gates for
generating the required coded sequence. Explicitly, generator
polynomials define the connectivity between the current and
m previous input sequences, which in turn ensures that the
encoded sequence is a legitimate coded sequence.

Let us consider the systematic (2, 1, 2) convolutional code
of Fig. 36, which is specified by the following generator
polynomials:

g0(x ) = 1

g1(x ) = 1 + x + x2. (122)

The generator polynomials may also be expressed as a binary
vector, where each bit signifies the presence or absence of
a link. Consequently, the generator polynomials of Eq. (122)
may also be expressed as:

g0 = (100)

g1 = (111), (123)

which are seen in Fig. 36. We may observe in Eq. (123) that g0
has a single non-zero entry. This is because of the systematic
nature of the code. By contrast, a non-systematic convolutional
code would have more than one non-zero term. Consequently,
the polynomial g0 of a non-systematic code would impose
more constraints on the encoded sequence, hence resulting in
a more powerful code.

Let us consider a 10-bit input sequence d = 0011011000,
which may also be represented as d(x ) = x2+ x3+ x5+ x6.
This input sequence is encoded into a 20-bit coded sequence
using the encoder of Fig. 36. The associated encoding process
is illustrated in Table XV. More explicitly, the shift register
is initialized to the all-zero state. With each clock cycle, the
state of register r0 is updated with the incoming information
bit, while its previous value is shifted to the next register r1.
Furthermore, the incoming information bit di constitutes the
systematic part of the coded bit c, while the output of the
modulo-2 adder of Fig. 36 constitutes the parity part.

22Please note that implementation of quantum circuits is beyond the scope
of this paper.
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Fig. 36. Schematic of the systematic (2, 1, 2) convolutional encoder.

TABLE XV
SYSTEMATIC (2, 1, 2) CONVOLUTIONAL CODE ENCODING PROCESS FOR

d = 0011011000 (d(x) = x2 + x3 + x5 + x6), WHICH YIELDS THE

CODEWORD c = 01001010001011000000
(c(x) = x + x4 + x6 + x10 + x12 + x13)

Fig. 37. State transition diagram for systematic (2, 1, 2) convolutional code.
Broken lines indicate legitimate transitions due to a 0-valued input, while con-
tinuous lines represent a 1-valued input. Furthermore, transitions are labeled
with the coded bits (c0c1).

Analogous to BCH codes, the encoding operation of a con-
volution code may also be characterized using a state transition
diagram, as demonstrated in Fig. 37 for the (2, 1, 2) convo-
lutional code of Fig. 36. Consequently, convolutional codes
invoke trellis decoding techniques, for example the Viterbi [62]
or MAP [64] algorithm, whose decoding complexity is pro-
portional to the number of trellis states 2m .

2) Quantum Convolutional Codes: Quantum Convolutional
Codes (QCCs) may be designed from the classical convo-
lutional codes by exploiting their semi-infinite block nature.
Explicitly, convolutional codes may be represented as lin-
ear block codes having a semi-infinite length [180]. This
equivalence in turn helps in constructing the stabilizer based
counterparts of the known classical codes.

Let us first elaborate on the semi-infinite block structure of
convolutional codes using a (2, 1, m) classical convolutional
code having the generators:

g0 =
(
g
(0)
0 g

(1)
0 . . . g

(m)
0

)

g1 =
(
g
(0)
1 g

(1)
1 . . . g

(m)
1

)
. (124)

In essence, the generator polynomials g0 and g1 describe
the encoder’s impulse response functions, which are con-
volved with the input sequence [d = (d0d1d2 . . . )] to yield
the encoded bit sequences [c0 = (c

(0)
0 c

(1)
0 c

(2)
0 . . . )] and

[c1 = (c
(0)
1 c

(1)
1 c

(2)
1 . . . )], respectively. This encoding process

can be mathematically encapsulated as:

c0 = d � g0

c1 = d � g1, (125)

where � represents discrete convolution (modulo 2). The
convolution process of Eq. (125) may also be expressed as:

c
(l)
j =

m∑

i=0

dl−ig
(i)
j = dlg

(0)
j + dl−1g

(1)
j + · · ·+ dl−mg

(m)
j ,

(126)

where j = 0, 1, l ≥ 0 and ul−i � 0 for all l < i. Finally, the
pair of encoded sequences c0 and c1 are multiplexed, yielding
a single encoded sequence c as follows:

c =
(
c
(0)
0 c

(0)
1 c

(1)
0 c

(1)
1 c

(2)
0 c

(2)
1 . . .

)
. (127)

The encoding process of Eq. (126) can also be represented in
matrix notation as follows:

c = dG, (128)

where the generator matrix G is constructed g1 as follows23:

G =

⎛

⎜
⎜
⎜
⎜
⎝

g
(0)
01 g

(1)
01 . . . g

(m)
01

g
(0)
01 g

(1)
01 . . . g

(m)
01

g
(0)
01 g

(1)
01 . . . g

(m)
01

. . . . . .
. . .

⎞

⎟
⎟
⎟
⎟
⎠
, (129)

and g
(i)
01 � (g

(i)
0 g

(i)
1 ). The resultant matrix G of Eq. (129) has

a semi-infinite length, since the input sequence d may have an
arbitrary length. Furthermore, we may observe that the ith row
of G is obtained by shifting the (i − 1)th row to the right by
(n = 2) places. When d is truncated to have a finite length of
N, then the matrix G of Eq. (129) is of size (N × 2(m + N)).
For a more general convolutional code, having the parameters
(n, k, m), the generator matrix G can be expressed as:

G =

⎛

⎜
⎜
⎜
⎝

G(0) G(1) . . . G(m)

G(0) G(1) . . . G(m)

G(0) G(1) . . . G(m)

. . . . . .
. . .

⎞

⎟
⎟
⎟
⎠
,

(130)

23Zeros indicate blank spaces in the matrix.
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TABLE XVI
DESIGN GUIDELINES FOR CONSTRUCTING STABILIZER CODES

where G(l) is defined as:

G(l) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g
(l)
1,1 g

(l)
1,2 . . . g

(l)
1,n−1

g
(l)
2,1 g

(l)
2,2 . . . g

(l)
2,n−1

...
...

...

g
(l)
k ,1 g

(l)
k ,2 . . . g

(l)
k ,n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (131)

The PCM H of a convolutional code can also be expressed
as a semi-infinite matrix similar to the generator matrix G of
Eq. (130), as shown below:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(0)

H(1) H(0)

H(2) H(1) H(0)

...
...

...

H(m) H(m−1) H(m−2) . . . H(0)

H(m) H(m−1) H(m−2) . . . H(0)

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(132)

where H(l) is a submatrix of size an ((n − k) × n). The
PCM H of Eq. (132) exhibits a block-band structure, which
is also illustrated in Fig. 38. More specifically, if each row
of submatrices (H(m)H(m−1)H(m−2) . . .H(0)) is viewed as
a single block, then H has a block-band structure, so that each
block is a time-shifted version of the previous block and the
successive blocks have m overlapping submatrices. This block-
band structure, which appears after the first m blocks, may be
expressed as:

hj ,i =
[
0j×n , h0,i

]
, 1 ≤ i ≤ (n − k), 0 ≤ j , (133)

Fig. 38. Semi-infinite classical PCM H having a block-band structure.

where i denotes the row index within a block, while j is for
the block index. Furthermore, 0j×n is an all-zero row-vector
of size ( j × n). In duality to Eq. (133), the stabilizer group
H of an [n, k, m] QCC may be formulated as [167]:

H = sp
{
gj ,i = I⊗jn ⊗ g0,i

}
, 1 ≤ i ≤ (n − k), 0 ≤ j ,

(134)

where sp denotes a symplectic group.
Let us now design a CSS-type rate-1/3 QCC [168], [169]

from a classical self-dual rate-2/3 binary convolution code
having the PCM:

H =

⎛

⎝
1 1 1 1 0 0 1 1 0 0 0 0 . . .
0 0 0 1 1 1 1 0 0 1 1 0 . . .

. . .

⎞

⎠,

(135)
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and a minimum distance of 3. The corresponding X and Z
stabilizers of a CSS-type QCC may be obtained by replacing
the 1’s of Eq. (135) with Pauli X and Z operators, respectively.
Hence, the stabilizers of the resultant [3, 1] QCC are:

g0,1 = [XXX,XII,XXI], (136)

g0,2 = [ZZZ,ZII,ZZI], (137)

which can correct a single error. The associated stabilizer
group H may be constructed using Eq. (134).

Next, we design a non-CSS, or more precisely CRSS, QCC
given by Forney in [168] and [169]. It is constructed from
the classical rate-2/3 quaternary convolutional code having the
PCM:

H =

⎛

⎝
1 1 1 1 w w̄ 0 0 0 . . .
0 0 0 1 1 1 1 w w̄ . . .

. . .

⎞

⎠,

(138)

which is self-orthogonal. The stabilizers of the corresponding
[3, 1] QCC may be constructed using Eq. (101). Explicitly, the
stabilizers g0,i , for 1 ≤ i ≤ 2, are obtained by multiplying the
H of Eq. (138) with the GF(4) elements w and w̄ , and mapping
the resultant GF(4) elements onto the Pauli operators. Hence,
the resultant stabilizers are:

g0,1 = (XXX,XZY), (139)

g0,2 = (ZZZ,ZYX). (140)

Analogous to other stabilizer codes, the binary syndrome
values obtained using the stabilizers of a QCC are fed to a
classical syndrome decoder. However, classical convolutional
codes generally employ either the Viterbi [62] or the MAP [64]
decoding algorithm operating over a code trellis for the sake
of estimating the most likely codeword. By contrast, QCCs
invoke the syndrome-based error trellis [181]–[185] for esti-
mating the most likely error pattern rather than the most likely
codeword. Explicitly, unlike the classic trellis of a convolu-
tional code seen in Fig. 37, which is constructed using the
encoding circuit, syndrome-based trellis is constructed using
the PCM H of Eq. (132). Furthermore, the conventional trel-
lis, for example the one obtained using the state transition
diagram of Fig. 37, is known as a code trellis, because each
path of it is a valid codeword. By contrast, each path of
the error trellis is a legitimate error sequence for a given
observed syndrome. Therefore, a code trellis is used for code-
word decoding, while an error trellis is used for syndrome
decoding. However, both trellis representations are equivalent,
since every path in the error trellis corresponds to a path in
the code trellis. Furthermore, a degenerate Viterbi decoding
algorithm was also conceived for QCCs in [135], which takes
into account degenerate quantum errors, hence improving the
decoding process.

IX. CONCLUSION & DESIGN GUIDELINES

QECCs are essential for rectifying the undesirable pertur-
bations resulting from quantum decoherence. Unfortunately,
the well-developed classical coding theory, which has evolved
over seven decades, cannot be directly applied to the quantum

regime. Explicitly, unlike a classical bit, a qubit cannot be
copied and it collapses to a classical bit upon measure-
ment. Furthermore, while bit flips are the only type of errors
experienced during transmission over a classical channel, a
quantum channel may inflict both bit-flips as well as phase-
flips. Therefore, it is not feasible to directly map classical
codes onto their quantum counterparts. Nevertheless, quan-
tum codes may be designed from the existing classical codes
by exploiting the subtle similarities between these two cod-
ing regimes. In particular, as detailed in Section II, quantum
decoherence may be modeled using the quantum depolariz-
ing channel, which is deemed equivalent to a pair of binary
symmetric channels, or more specifically to a classical 4-ary
channel. This similarity has helped researchers to develop the
quantum versions of the known classical codes, as evident
from our survey of Section III. For the sake of providing
deeper insights into the transition from classical to quantum
coding theory, we started our discussions in Section IV with a
simple repetition code, which brought forth three fundamental
design principles:

• The copying operation of classical codes is equivalent to
quantum entanglement;

• Measurement of a qubit may be circumvented by invok-
ing the classical syndrome decoding techniques;

• Phase-flips may be corrected by using the Hadamard
basis.

Based on these design principles, we detailed the stabilizer
formalism in Section V, which is in essence the quantum-
domain counterpart of classical linear block codes. Since
most of the classical codes rely on the basic construction
of linear block codes, the stabilizer formalism has helped
researchers to build on most of the known families of classi-
cal codes. In Section VI, we detailed the equivalence between
the quantum and classical parity check matrices, focusing
specifically on the Pauli-to-binary isomorphism as well as
on the Pauli-to-quaternary isomorphism. The Pauli-to-binary
isomorphism helps in designing quantum codes from arbi-
trary classical binary codes, if they meet the symplectic
product criterion, while the Pauli-to-quaternary isomorphism
allows us to harness arbitrary classical quaternary codes,
if they satisfy the Hermitian inner product. Furthermore,
based on this isomorphism, we presented the taxonomy of
stabilizer codes in Section VII, namely the dual-containing
and non-dual-containing Calderbank-Shor-Steane (CSS) codes
non-CSS codes and entanglement-assisted codes, which are
summarized in Table XVI. Finally, in Section VIII, we applied
our discussions to a pair of popular code families of the classi-
cal world, namely the BCH codes and the convolutional codes,
for designing their quantum counterparts.
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