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Abstract—We conceive and investigate the family of classical
topological error correction codes (TECCs), which have the
bits of a codeword arranged in a lattice structure. We then
present the classical-to-quantum isomorphism to pave the way
for constructing their quantum dual pairs, namely the quantum
topological error correction codes (QTECCs). Finally, we char-
acterize the performance of QTECCs in the face of the quantum
depolarizing channel in terms of both the quantum-bit error rate
(QBER) and fidelity. Specifically, from our simulation results, the
threshold probability of the QBER curves for the colour codes,
rotated-surface codes, surface codes and toric codes are given by
1.8× 10−2, 1.3× 10−2, 6.3× 10−2 and 6.8× 10−2, respectively.
Furthermore, we also demonstrate that we can achieve the benefit
of fidelity improvement at the minimum fidelity of 0.94, 0.97 and
0.99 by employing the 1/7-rate colour code, the 1/9-rate rotated-
surface code and 1/13-rate surface code, respectively.

Index Terms—quantum error correction codes, quantum sta-
bilizer codes, quantum topological codes, lattice code, LDPC

I. INTRODUCTION

One of the essential prerequisites to build quantum com-
puters is the employment of quantum error correction codes
(QECCs) to ensure that the computers operate reliably by
mitigating the deleterious effects of quantum decoherence [1]–
[3]. However, the law of quantum mechanics prevent us from
transplanting classical error correction codes directly into
the quantum domain. In order to circumvent the constraints
imposed by the nature of quantum physics, the notion of
quantum stabilizer codes (QSCs) emerged [4]–[6]. The in-
vention of QECCs and specifically the QSC formalism did
not immediately eradicate all of the obstacles of developing
reliable quantum computers. Employing the QSCs requires
redundancy in the form of auxiliary quantum bits (qubits) to
encode the logical qubits onto physical qubits. The redun-
dant qubits are then utilized to invoke the error correction.
Hence, additional components such as the quantum encoder
and decoder circuits built from quantum gates are required.
Therefore, the employment of a QSC itself has to be fault-
tolerant to guarantee that the QSC circuit does not introduce
additional decoherence into the quantum computers.
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The notion of QSC trigerred numerous discoveries in the
domain of QECCs, which are inspired by classical error
corrrection codes. Essentially, QSCs represent the quantum
version of the classical syndrome decoding-based error cor-
rection codes. Since the concept of utilizing the syndrome
values for error correction is widely exploited in the classical
domain, diverse classical error correction codes can be con-
veniently “quantumized”. Consequently, we can find in the
literature the quantum version of error correction codes based
on algebraic formalisms such as those of the Bose-Chaudhuri-
Hocquenghem (BCH) codes [7] and of Reed-Solomon (RS)
codes [8], quantum codes based on a coventional trellis
structure such as convolutional codes [9] and turbo codes [10],
[11], as well as quantum codes based on bipartite graphs, such
as low density parity check (LDPC) codes [12]–[16]. Another
approach that can be exploited to develop both classical and
quantum error correction codes hinges on code constructions
based on lattice or topological structures. Unfortunately, this
concept has not been widely explored in the classical do-
main. By contrast, in the quantum domain, having a code
construction relying on the physical configuration of qubits
is highly desirable for the low-complexity high-reliability
quantum computers.

The development of QECCs was inspired by Shor, who
proposed a 9-qubit code in [17]. The 9-qubit code, which is
also referred to as Shor’s code, can protect 9 physical qubits
from any type of quantum errors, namely bit-flips (X), phase-
flips (Z), as well as from simultaneous bit and phase-flips
(Y). Not long after the discovery of the first QECCs, Steane
invented the 7-qubit code, which was followed by Laflamme’s
perfect 5-qubit code [18], [19]. However, the construction of
these codes does not naturally exhibit inherent fault-tolerance.
The quantum circuit based implementation of these codes
always involves a high number of qubit interactions within
the codeword of physical qubits. As a consequence, an error
caused by a faulty gate within either the encoder, or within
the stabilizer measurement, and/or in the inverse encoder
potentially propagates to other qubits and instead of being
eliminated, the deleterious effects of quantum decoherence are
actually further aggravated.

The quantum version of the classical topological error cor-
rection codes (TECCs) [21], namely the quantum topological
error correction codes (QTECCs), constitute beneficial fault-
tolerant QSCs for improving quantum computer implementa-
tions. Firstly, they are capable of supporting the physical im-
plementation of quantum memory. For instance, this strategy
has been deployed for developing the IBM’s superconducting
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List of Acronyms
BCH Bose-Chaudhuri-Hocquenghem
CNOT Controlled-NOT
CSS Calderbank-Shor-Steane
GV Gilbert-Varshamov
LDPC Low Density Parity Check
ML Maximum Likelihood
PCM Parity Check Matrix
QBCH Quantum Bose-Chaudhuri-Hocquenghem
QBER QuBit Error Rate
QECC Quantum Error Correction Code
QSC Quantum Stabilizer Code
QTECC Quantum Topological Error Correction Code
TECC Topological Error Correction Code

List of Symbols
d Minimum Distance
F Fidelity
Fth Threshold Fidelity
H(x) Binary Entropy of x
H Parity Check Matrix, Hadamard Transformation
k Information Bit Length, Number of Logical Qubits
n Codeword Length, Number of Physical Qubits
p Depolarizing Probability
pth Threshold Probability
r Classical Coding Rate
rQ Quantum Coding Rate
Si Stabilizer Operator
S Stabilizer Group
t Error Correction Capability
δ Normalized Minimum Distance
⊗ Kronecker Tensor Product
|ψ〉 Quantum State ψ
C(n, k, d) Classical Error Correction Codes Having Parameter n, k and d
C[n, k, d] Quantum Stabilizer Codes Having Parameter n, k and d

(a) 5 qubits (ibmqx2). (b) 5 qubits (ibmqx4).

(c) 16 qubits (ibmqx5).

Fig. 1: The qubit arrangement of IBM’s superconducting
quantum computers. The circles represent the qubits, while
the arrows represent the possible qubit interactions within the
computers [20].

quantum computers, as shown in Fig. 1. From this figure, we
can see the qubit arrangement of the three prototypes of IBM’s
quantum computer - which can be viewed online - namely
the ibmqx2, ibmqx4, and ibmqx5 configurations [20]. The
first two of the quantum computers are the 5-qubit quantum
computers, while the last one is a 16-qubit quantum computer.
The circles in Fig. 1 represent the qubits, while the arrows
represent all the possible two-qubit interactions. It can be
clearly seen that the existing architectures impose a limitation,
namely the two-qubit interactions can be only performed
between the neighbouring qubits. Even though this particular
limitation potentially imposes additional challenges, when it
comes to QSCs deployment, the stabilizer effect can still be
achieved by the corresponding qubit arrangement by invoking
the QTECCs. Secondly, the locality of stabilizer measurements
minimizes the requirements imposed on the corresponding
quantum gates. The interdependence of the qubits within the
codeword are inevitable. However, the interaction between
the most distant qubits should be avoided, which imposes
challenges on the realization. Another property that makes the
QTECCs fault-tolerant is their growing minimum distance as
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a function of codeword length. More explicitly, the growing
minimum distance ensures having an increasing error correc-
tion capability per codeword for the QTECCs upon increasing
the codeword length, albeit this does not necessarily increase
the per-bit normalized error correction capability. To elaborate
a little further, increasing the number of physical qubits1 also
increases the number of qubit interactions within the block.
Thus, the per-codeword error correction capability of the code
should grow fast enough to compensate for the potential
error propagation, which may further aggravate the effect of
quantum decoherence. The latter phenomenon is also related
to the problem experienced in the classical coding theory field,
associated with the trade-off between the coding rate and the
error correction capability of the error correction code. The
study of this particular trade-off in QSCs is a pivotal subject,
because we can simply decrease the coding rate further and
further to achieve a certain error correction capability without
considering the sheer amount of redundant resources wasted,
when aiming for achieving the target performance. Therefore,
a comprehensive investigation related to this particular trade-
off has to be conducted for characterizing the performances
versus code parameters. A timeline portraying the important
milestones of the QTECCs’ development is depicted in Fig. 2.2

Based on the aforementioned background, our novel contri-
butions are:

1) We conceive the construction of classical error correc-
tion codes based on topological or lattice structures.
Additionally, we demonstrate for a long codeword that
the resultant codes have a resemblance to the classical
LDPC codes exhibiting reasonable code parameters.

2) We present a tutorial on both classical and quan-
tum topological error correction codes as well as the
classical-to-quantum isomorphism along with the com-
parative study of code parameters.

3) We derive the upper bound QBER performance of the
QTECCs in the face of quantum depolarizing channel
and the formula to determine the threshold fidelity.

The structure of the paper is described in Fig. 3 and the rest
of this treatise is organized as follows. In Section II, we com-
mence with design examples of classical TECCs to pave the
way for delving into the quantum domain. In Section III, we
provide a tutorial on the fundamentals of QSCs by exploiting
its isomorphism with the classical syndrome-based decoding,
while in Section IV we detail our QSC design examples for
QTECCs. We continue by characterizing the performance of
QTECCs over the popular quantum depolarizing channel in
terms of QBER and fidelity in Section V. Finally, we conclude
our discussion in Section VI.

II. CLASSICAL ERROR CORRECTION CODES FROM
TOPOLOGICAL ORDER: DESIGN EXAMPLES

As we mentioned earlier in Section I, the classical error
correction codes can be developed relying on diverse ap-

1The terms ‘number of physical qubits’ is usually used to refer the
‘codeword length’ in quantum codes.

2Shor’s, Steane’s and Laflamme’s codes do not belong to the QTECCs
family. However, we believe that it is still important to include the three pio-
neeering contributions on QECCs in the timeline for the sake of completeness.

Classical Error Correction Codes from Topological Order

Quantum Topological Error Correction Codes

A Brief Review of Quantum Information Processing

A Brief Review of Classical Syndrome−based Decoding

A Brief Review of Quantum Stabilizer Codes

QBER Versus Depolarizing Probability

Fidelity

QBER Versus Distance from Hashing Bound

Performance of Quantum Topological Error Correction Codes

The Road from Classical to Quantum Error Correction Codes

Conclusions

Fig. 3: The structure of the paper.

proaches [34]. We can find in the literature various family of
codes based on algebraic formalisms (such as BCH codes and
RS codes), codes based on conventional trellis structures (such
as convolutional codes and turbo codes) and also codes based
on bipartite graphs (such as LDPC codes). Another approach
that can be adopted to formulate a classical error correction
code is by exploiting the topological or lattice structure. By
assuming that we can arrange the bits of a codeword on a
lattice structure, it can inherently provide us with an error
correction scheme [21]. For instance, let us assume that a
codeword of classical bits is arranged on the square lattice
given in Fig. 4. The black circles laying on the edges of the
lattice define the encoded information bits or the codeword.
The red squares laying on the vertices of the lattice define the
parity check matrix (PCM) of the codes, which also directly
defines the syndrome values of the received codeword. The
number of black circles is associated with the codeword length
of n bits and the number of red squares is associated with the
length of the syndrome vector or the number of rows of the
PCM, which is equal to (n−k) bits. For the particular square
lattice seen in Fig. 4, the codeword length n is equal to 13
bits and the length (n− k) of the syndrome vector is equal to
6 bits. Hence, the number of information bits k is equal to 7
bits. Therefore, this code has 27 = 128 legitimate codewords
out of the 213 = 8192 possible received words. Based on the
above-mentioned construction, for example in classical BCH
codes, we would be able to distinguish 2(13−7) = 26 = 64
distinct error patterns (including the error free scenario) and
correct a single bit error based on sphere packing bound.

The coding rate r is defined by the ratio between the number
of information bits k to the codeword length n, yielding:

r =
k

n
(1)

Hence, the coding rate of the square lattice code of Fig. 4 is
r = 7/13.

Now, let us delve deeper into how the error correction
works. Let us revisit the square lattice of Fig. 4. The k
information bits are encoded to n-bit codewords, where n > k.
Noise or decoherence imposed by the channel corrupts the
legitimate codeword. The syndrome computation is invoked to
generate the (n− k)-bit syndrome vector, which tells us both
the predicted number and the position of the errors. In Fig. 4,
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1995

2014

Shor Code, non dual-containing CSS [17]. The pioneer work of QECCs by introducing 9-qubit code for correct-
ing any type of single qubit error.1995

Steane Code, dual-containing CSS [18]. A 7-qubit code was proposed for correcting the physical qubits from any
type of single qubit error.

1996

Laflamme Code, non-CSS [19]. The ”perfect” 5-qubit code for protecting the physical qubits from single qubit
error. The construction achieves the quantum Hamming bound and quantum Singleton bound.

1996

The formulation for quantum stabilizer code (QSC) was proposed, which is the general concept of syndrome-based
QECC [4]–[6].

1997

Toric Codes, non dual-containing CSS [22], [23]. The first QTECC is proposed, which is the QSC based on
topological order, exploiting the nature of qubit arrangement on torus.

1997

Surface Codes, non dual-containing CSS [24]. The extension of toric codes by introducing boundaries on torus,
hence the qubits can be arranged on a planar or a surface.

1998

Colour Codes, dual-containing CSS [25]. A class of QTECCs whose stabilizer formalism is defined by three-
coloured surface tiles.2006
Hyperbolic Surface Codes, non dual-containing CSS [26], [27]. A class of surface codes based on Cayley graphs
exhibiting higher coding rates, but it causes a slower growth of minimum distance as the number of physical
qubits increases.

2009 Hypergraph Product Codes, CSS [28]–[30]. A class of topologically inspired QSCs with faster growing mini-
mum distance compared to the predecessors.

2009

Rotated Surface Codes, non dual-containing CSS [31]. A modification of surface codes with a rotated lattice
structure reducing the number of physical qubits required to obtain identical error correction capability.

2012 Hyperbolic Colour Codes, dual-containing CSS [32]. A class of colour codes with higher coding rates, but the
minimum distance grows slower upon increasing the codeword length.2013

Homological Product Codes, CSS [33]. The fastest growing minimum distance of topologically inspired QSCs
known at the time of writing.

2014

Fig. 2: Timeline of important milestones in the area of QTECCs. The code construction is highlighted with bold while the
associated code type is marked in italics.
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43

21

Fig. 4: Example of a classical bit arrangement on a square
lattice structure. The black circles laying on the edges of the
lattice denote the bits of the codeword, while the vertices of the
lattice denoted by red squares define the parity check matrix
and also the syndrome values.

the i-th red square indicates a syndrome bit of si. Hence, the

syndrome vector s is a 6-bit vector, which is given by

s = [s1 s2 s3 s4 s5 s6]. (2)

In the case of an error-free received codeword, the resultant
syndrome vector is s = [0 0 0 0 0 0]. By contrast, if an error is
imposed on the codeword, it triggers a syndrome bit value of 1
at the adjacent syndrome bit positions. For example, if an error
occurs at the bit index 4 of Fig. 4, it triggers the syndrome
values of s1 = 1 and s3 = 1. The rest of the syndrome values
remain equal to 0. Therefore, an error corrupting the bit index
4 generates a syndrome vector of s = [1 0 1 0 0 0]. Hence,
the decoder flips the value of bit index 4. Similarly, if an
error occurs at bit number 3, it only triggers the syndrome
value of s2 = 1. Hence, it generates the syndrome vector of
s = [0 1 0 0 0 0] and the error recovery procedure proceeds
accordingly.

Now let us consider the ocurrence of two bit errors in the
codeword. For instance, let us assume that errors occur at
bit indices of 6 and 7 of Fig. 4. Note that both these errors
affect s3, therefore they cancel each other effect on s3 out,
hence generating a syndrome bit value of s3 = 0. However,
we still do not receive an all-zero syndrome vector, because
the bit index 7 results in a syndrome bit value of s4 = 1
of Fig. 4. Therefore, the resultant syndrome vector due to a
bit error in both bit 6 and 7 is s = [0 0 0 1 0 0]. Since the
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syndrome vector of s = [0 0 0 1 0 0] is also associated with the
error incident upon bit index 8, the error recovery procedure
decides to flip bit 8 instead, because a single error occurance
is more likely to happen than a double-error when the error
probability less than 1/2. This example is an illustration that
the occurence of two bit errors in the codeword is beyond
the error correction capability of the code given in Fig. 4. We
conclude that the code based on the square lattice illustrated in
Fig. 4 is capable of correcting only a single bit error. The error
correction capability of t bits for a given code construction is
defined by the minimum distance d of the code as formulated
by

t =

⌊
d− 1

2

⌋
. (3)

Hence, a code that is only capable of correcting a single error
has a minimum distance of d = 3, as exemplified by the square
lattice code given in Fig. 4. Moreover, the minimum distance
of a square lattice code is defined by the dimension of the
lattice. Therefore, to increase the error correction capability of
the code, we can simply increase the dimension of the lattice,
which directly translates into the increase of the minimum
distance. The square lattice considered in our example can
be generalized to a rectangular lattice structure having a
dimension of (l×h), where l is the length of the lattice and h is
the height of the lattice. In the case of a rectangular structure,
the minimum distance is defined by

d = min(l, h). (4)

The codeword length is also uniquely defined by the dimension
of the lattice. More explicitly, for a rectangular lattice of
dimension (l×h), the codeword length is equal to the number
of the lattice edges, which is given by

n-edges = nsquare = 2lh− l − h+ 1. (5)

The number of rows in the PCM of a square lattice code is
defined by the number of faces or plaquettes of the rectangular
lattice, which is formulated as follows:

n-vertices = nsquare − ksquare = h(l − 1). (6)

Hence, from Eq. (5) and (6), the number of information bits
k encoded by the rectangular lattice codes is

ksquare = nsquare − (nsquare − ksquare)

= lh− l + 1. (7)

The most efficient code can be constructed by a square lattice,
where d = l = h. Therefore, the expression given in Eq. (5)
and (7) can be simplified to

nsquare = 2d2 − 2d+ 1 (8)

ksquare = d2 − d+ 1. (9)

Hence, the coding rate of square lattice based codes can be
formulated as follows:

rsquare =
ksquare

nsquare
=

d2 − d+ 1

2d2 − 2d+ 1
. (10)

The PCM can be readily constructed in a similar fashion.

TABLE I: Constructing the PCM of the square lattice code of
Fig. 4 with minimum distance of d = 3. Each row is associated
with the syndrome operators denoted by red squares in Fig. 4

1 2 3 4 5 6 7 8 9 10 11 12 13
h1 1 1 0 1 0 0 0 0 0 0 0 0 0
h2 0 1 1 0 1 0 0 0 0 0 0 0 0
h3 0 0 0 1 0 1 1 0 1 0 0 0 0
h4 0 0 0 0 1 0 1 1 0 1 0 0
h5 0 0 0 0 0 0 0 0 1 0 1 1 0
h6 0 0 0 0 0 0 0 1 0 1 0 0 1

Each red square of Fig. 4 represents the row of the PCM,
where the adjacent black circles denote the index of the
column containing a value of 1. For example, the first red
square is adjacent to the black circles numbered 1, 2, and 4.
Therefore, in the first row of the PCM, there are only three
elements containing a value of 1 and those are marked by
the index 1, 2, and 4. The remaining rows of the PCM are
generated using the same principle. Explicitly, each row of
the PCM of the square lattice code of Fig. 4 is portrayed in
Table I. Finally, the PCM H of the square lattice code of Fig. 4
is given by

H =




h1

h2

h3

h4

h5

h6



. (11)

The code construction based on the general lattice structure
is not limited to a rectangular lattice. Let us consider, for
example the triangular lattice of Fig. 5. The black circles
laying on the vertex of the lattice define the codeword and
the red squares on the faces of the lattice define the syndrome
vector. The error correction principle of the triangular lattice
code is similar to that of its square counterpart. Hence, the
PCM of the triangular lattice code is readily derived using the
following equation:

H =




h1

h2

h3


 , (12)

where h1, h2, and h3 correspond to the syndrome bits given
in Table II. It is important to point out that the resultant
triangular lattice code is one of the possible construction for
the classical C(7, 4, 3) Hamming code. Specifically, both codes
have a codeword length of n = 7 and number of information
bits of k = 4. Hence, the length of syndrome vector is 3 bits.

TABLE II: Constructing the PCM of the triangular lattice code
with minimum distance of d = 3. Each row is associated with
the syndrome operators denoted by blue circles in Fig. 5

1 2 3 4 5 6 7
h1 1 1 1 1 0 0 0
h2 0 0 1 1 1 1 0
h3 0 1 0 1 0 1 1
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Fig. 5: Example of a classical bit arrangement constructed
over a triangular lattice structure. The black circles laying
on the vertices of the lattice represent the codeword bits,
while the faces or the plaquettes of the lattice denoted by red
squares define the parity-check matrix and the syndrome bits
of the error correction code. This configuration is an alternative
representation for the C(7, 4, 3) classical Hamming code.

Consequently, the codes have 24 legitimate codewords out of
the possile 27 received words. Based on the sphere packing
bound, the codes are capable of distinguishing 23 = 8 distinct
error patterns including the error-free scenario. Therefore, both
constructions are capable of correcting exactly a single error
with an identical coding rate of r = 4/7.

Similar to its rectangular counterpart, increasing the error
correction capability of a triangular lattice code is achieved
by expanding the underlying lattice configuration. However,
increasing the number of vertices of the triangular lattice
structure is not as straightforward as that of its rectangular
counterpart because it can be carried out in several differennt
ways. In this example, we use the construction proposed
in [25] and Fig. 6 illustrates how to increase the number of
encoded bits of the triangular lattice code of Fig. 5 by using
hexagonal tiles.

Fig. 6: Extending the length of the triangular lattice code,
which directly increases the numbers of error corrected.

Following the pattern of Fig. 6, the codeword length, which
is also given by the number of vertices of the given lattices,

is explicitly formulated as follows:

n-vertices = ntriangular =
1

4
(3d2 + 1), (13)

where d is the minimum distance of the code. The number of
faces in the triangular lattice, which corresponds to the number
of rows of the PCM and also to the syndrome vector length,
can be encapsulated as

n-faces = ntriangular − ktriangular =
1

8
(3d2 − 3). (14)

Hence, the number of information bits can be expressed as

ktriangular = ntriangular − (n− k)triangular

=
1

8
(3d2 + 5). (15)

Finally, the coding rate of the triangular lattice codes of Fig. 6
is formulated as follows:

rtriangular =
ktriangular

ntriangular
=

3d2 + 5

2(3d2 + 1)
. (16)

Then, the normalized minimum distance, which directly cor-
responds to the error correction capability per-bit of a code
may be defined as:

δ =
d

n
(17)

For square lattice and triangular lattice codes, the normalized
minimum distances are given by

δsquare =
d

2d2 − 2d+ 1

δtriangular =
4d

3d2 + 1
. (18)

(b)(a)

check node ci

variable node vi
1 2 3

4 5

6 7 8

9 10

11 12 13

21 3 4 5 6 7 8 9 10 11 12 13

5 6

3 4

21

1 2 3 4 5 6

Fig. 7: Example of how to represent the square lattice code. (a)
The representation in lattice structure. (b) The representation
in Tanner or bipartite graph.

In the rest of this treatise, we will consider the family of er-
ror correction codes based on lattice structures as a prominent
representative of classical topological error correction codes
(TECC). The lattice structures given in Fig. 4 and 5 can be
transformed to Tanner graphs [35]. The dual representation of
TECCs in the rectangular lattice domain and in the Tanner
graph domain is given in Fig. 7 as exemplified by the square
lattice code. We can observe that TECCs based on square
lattices have a maximum row weight of ρmax = 4 and a
maximum column weight of γmax = 2. By contrast, the codes
based on triangular lattices have ρmax = 6 and γmax = 3. For
a very long codeword, these properties lead to sparse PCMs.
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Hence, classical TECCs can be viewed as a specific family
of LDPC codes. The asymptotical limit of the coding rate for
LDPC codes based on TECCs can be directly derived from
Eq. (10) and (16). As the codeword length tends to infinity
(n → ∞), the minimum distance d is also expected to tend
to infinity. Hence, at the asymptotical limit we have

r∞square = lim
d→∞

d2 − d+ 1

2d2 − 2d+ 1
=

1

2
, (19)

r∞triangular = lim
d→∞

3d2 + 5

2(3d2 + 1)
=

1

2
. (20)

Let us observe Fig. 8, where we plot the minimum distance
(d) versus coding rate (r) of TECCs based on Eq. (10)
and (16). We also include the classical codes based on the
sphere packing concept, namely the Hamming codes and the
BCH codes, whose parameters are portrayed in Table III
and IV, respectively. We also include some labels for several
codes in the figure, in order to show how to convert the code
parameters into data points in the figure. More explicitly, let
us consider the specific triangular codes T1 and T2, where
T1 represents the triangular code having a minimum distance
of 3, which we have already used in the example in Fig. 5.
As it has been elaborated on earlier, the resultant code T1 is
C(7, 4, 3). Hence, the coding rate is r = 4/7 ≈ 0.57. Again,
the triangular code T1 has identical code parameters to the
Hamming code C(7, 4, 3), which is labeled H1. Hence, the
same point in Fig. 8 represents both T1 and H1. Next, the
code parameters of the triangular code T2 having a minimum
distance of d = 5 are obtained using Eq. (13) and (15) for
determining the codeword length n and the information length
k, respectively. Explicitly, by substituting d = 5 into Eq. (13)
and (15), we have n = 19 and k = 10. Finally, we arrive
at the coding rate of r = k/n = 10/19 ≈ 0.53 for the
triangular code T2. The rest of the code parameters for square
codes, triangular codes, Hamming codes and BCH codes are
protrayed in the same way in Fig. 8.

In general, increasing the minimum distance of the codes
while mantaining the codeword length can be achieved at
the expense of reducing the coding rate. This penomenon is
perfectly reflected by the behaviour of classical BCH codes
in Fig. 8. Explicitly, in Fig. 8 we portray BCH codes having
a constant codeword length of n = 255, which are described
in Table IV. As seen, upon increasing the minimum distance
of BCH codes, the coding rate is gradually reduced. Next,
increasing the coding rate while maintaining the minimum

TABLE III: Code parameters of classical Hamming code
having a single error correction capability, which is used in
Fig. 8 and 9. The coding rate r and normalized minimum
distance δ are calculated using Eq. (1) and (17), respectively.

n k d n k d

3 1 3 127 120 3
7 4 3 255 247 3
15 11 3 511 502 3
31 26 3 1023 1013 3
63 57 3 . . . . . . . . .

TABLE IV: Code parameters of classical BCH codes having
codeword length of n = 255, which is used in Fig. 8 and 9.
The coding rate r and normalized minimum distance δ are
calculated using Eq. (1) and (17), respectively.

n k d n k d n k d

255 1 255 255 87 53 255 171 23
255 9 127 255 91 51 255 179 21
255 13 119 255 99 47 255 187 19
255 21 111 255 107 45 255 191 17
255 29 95 255 115 43 255 199 15
255 37 91 255 123 39 255 207 13
255 45 87 255 131 37 255 215 11
255 47 85 255 139 31 255 223 9
255 55 63 255 147 29 255 231 7
255 63 61 255 155 27 255 239 5
255 71 59 255 163 25 255 247 3
255 79 55

distance of the code can indeed be achieved by increasing
the codeword length. In this case, the Hamming codes, whose
code parameters are described in Table III, reflect perfectly
this phenomenon. Observe in Fig. 8, that for the Hamming
codes exhibiting a constant minimum distance of d = 3, we
can see the gradual increase of coding rate upon increasing
the codeword length. However, the behaviour of the BCH
and Hamming codes is not reflected by the TECCs. Let us
elaborate on the TECCs behaviour in Fig. 8. The increase of
minimum distance of TECCs upon increasing the codeword
length looks very impressive, since they do not seem to require
much sacrifice in terms of coding rate reduction. In fact,
the coding rate is saturated at approximately r = 1/2 for
long codewords. This is indeed a rather different behaviour
compared to that of the classical BCH codes. However, it
is of pivotal importance to mention again that the increasing
error correction capability per codeword does not necessarily
imply the improvement of error correction capability per
bit. Therefore, we have to normalize the performance to the
codeword length in order to portray a fair comparison.

Let us now observe Fig. 9, where we plot the normalized
minimum distance (δ) versus the coding rate (r) of TECCs
based on Eq. (18). We include both the BCH codes as well
as the Hamming codes for the sake of comparison. We also
plot the classical Hamming bound [36] and Gilbert-Varshamov
(GV) [37] bound in this figure to portray the upper bound
and lower bound of the normalized minimum distance, which
correspond directly to the normalized error correction capa-
bility, given the coding rate. The classical Hamming bound is
formulated as follows [36]:

k

n
≤ 1−H

(
d

2n

)
, (21)

where H(x) is the binary entropy of x defined by H(x) =
−x log2 x− (1−x) log2(1−x), while the classical GV bound
is expressed as [37]

k

n
≥ 1−H

(
d

n

)
. (22)
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Fig. 8: The coding rate versus minimum distance of TECCs. For asymptotical limit, the TECCs may be categorized into LPDC
codes and the coding rates converge to r = 1

2 . We also include the BCH codes and Hamming codes for the sake of comparison.
The coding rate for the square lattice based codes and the triangular lattice based codes are defined in Eq. (10) and (16),
respectively. The code parameters for classical Hamming and BCH codes are described in Table III and IV, respectively. We
put labels only for several codes as examples on how to convert the given code parameters into the figure.

The classical Hamming bound and GV bound defined in
Eq. (21) and (22) are valid for asymptotical limit where
n→∞.

The classical Hamming codes constitute the so-called per-
fect codes for a finite-length, since they always achieve
the Hamming bound for finite-length codes3. Therefore, the
Hamming codes also mark the upper bound of normalized
minimum distance, given the coding rate of finite-length code-
words. Secondly, the classical BCH codes having a codeword
length of n = 255 lay perfectly - as expected - between the
Hamming and GV bound in the asymptotical limit, as shown in
Fig. 9. However, we observe an unusual behaviour for the fam-
ily of TECCs, since the normalized minimum distance drops to
zero upon increasing the codeword length, while the coding
rate saturates at r = 1/2. We hypothesize that since these
codes were not designed using the sphere packing concept
- which the Hamming and BCH codes are based on - the
Hamming distance radius of the associated decoding sphere
in the TECCs codespace is most likely to be non-identical for
the different codewords. In addition, the minimum distance of

3The Hamming bound for finite length codes has a different formulation
from that of asymptotical limit. Therefore, we refer to [38] for further
explanations.

TECCs is only on the order of O(√n), which implies that
the codeword length of TECCs is proportional to the factor of
O(d2). By contrast, for clasical BCH and Hamming codes the
growth of the minimum distance is approximately linear, i.e.
of order O(n). It is clearly seen that even though the growth
of minimum distance per codeword of the TECCs appears to
be impressive in Fig. 8, it is not fast enough to compensate for
the undesired effect of the increasing codeword length. Hence,
the TECC error correction capability per bit tends to zero in
the asymptotical limit. Nevertheless, we leave the definitive
answer for this peculiar phenomenon open for future research,
since our focus in this treatise is on finding the classical-to-
quantum isomorphism of TECCs.

Since the TECC associated with the asymptotical limit of
n → ∞ belongs to the family of LDPC codes, an efficient
LDPC decoder such as the belief propagation (BP) tech-
nique [39] can be invoked for these code constructions. How-
ever, the normalized minimum distance of the LDPC codes
based on topological order tends to zero, as the codeword
length increases. Nevertheless, TECC-based LDPC codes ex-
hibit several desirable code properties, such as an attractive
coding rate (r ≈ 1/2), structured construction and unbounded
minimum distance. However, another aspect worth considering
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Fig. 9: The coding rate versus normalized minimum distance of TECCs. For asymptotical limit, the TECCs may be categorized
into LPDC codes and the coding rates converge to r = 1

2 , while the normalized minimum distances (δ) vanish to zero. In
addition, we also include the classical Hamming and BCH codes, which constructed based on sphere packing bound, for the
sake of comparison. The code parameters for classical Hamming and BCH codes are portrayed in Table III and IV, respectively.
We put labels only for several codes as examples on how to convert the given code parameters into the figure.

TABLE V: The code parameters of TECC-based LDPC codes.

Parameter Square lattice Triangular lattice
r ≈ 1

2 ≈ 1
2

d O(√n) O(√n)
δ d

2d2−2d+1
4d

3d2+1

ρmax 4 6
γmax 2 3
Girth 6 4

for TECC-based LDPC codes is the fact that we can find
numerous cycles of length 4 in triangular constructions and
cycles of length 6 in square constructions, which potentially
degrades the performances of the codes. A brief summary
of code parameters of TECC-based LDPC codes is given in
Table V.

III. THE ROAD FROM CLASSICAL TO QUANTUM ERROR
CORRECTION CODES

In this section, we provide a brief review of quantum
information processing. This will be followed by a rudimen-
tary introduction of classical syndrome-based decoding and

how we can demonstrate the isomorphism towards quantum
stabilizer codes.

A. A Brief Review of Quantum Information Processing

In the classical domain the information is represented by a
series of binary digits (bits), whilst in the quantum domain the
information is conveyed by quantum bits (qubits). A classical
bit can only hold a value of either ‘0’ or ‘1’ at a time, while
the qubit can hold the value of ‘0’, ‘1’ and the superposition
of both values. More specifically, the state of a single qubit
can be expressed mathematically as follows:

|ψ〉 = α0|0〉+ α1|1〉, α0, α1 ∈ C, (23)

where P0 = |α0|2 and P1 = |α1|2 are the probability of
obtaining the value of 0 and 1 upon measurement, respectively.
Hence, the unitary constraint of having |α0|2 + |α1|2 = 1 is
applied. Representing the pure states of ‘0’ by the notation |0〉
and the pure state of ‘1’ by the so-called ket notation |1〉4, as
shown in Eq. (23), is referred to as the Dirac notation [40].

4The terminology ket comes from the bra-ket notation. The bra notation
refers to the 〈ψ| notation, while ket notation is used for |ψ〉 notation.
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The pure state of |0〉 and |1〉 can also be represented as a
2-element vector in the Hilbert space H as follows:

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (24)

Hence, substituting the vectors given in Eq. (24) into Eq. (23)
yields:

|ψ〉 =
(
α0

α1

)
, α0, α1 ∈ C. (25)

The state of a single qubit can be manipulated by using the
quantum unitary transformations. A unitary transformation of
U may be realized by a quantum gate, which is the elementary
building block of quantum computers. All of the quantum
domain unitary transformations are represented by unitary
matrices to ensure that the final probability of quantum states
remains 1, which can be explicitly formulated as

U†U = I, (26)

where I is an identity matrix. The Pauli gates or Pauli operators
constitute a collection of unitary transformations representing
the discrete set of errors that may be imposed on a single qubit.
The Pauli operators are defined using the Pauli matrices, as
follows:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (27)

The Pauli matrices can be physically interpreted as a bit-flip
error, phase-flip error as well as both bit-flip and phase-flip
error for the Pauli matrix X, Z and Y, respectively. The Pauli-
I matrix is an identity matrix corresponding to the absence of
errors.

The error imposed on multi-qubit systems can be described
using the Kronecker tensor product. Explicitly, for the matrices
P and Q having (a× b) elements and (x× y) elements,
respectively, the resultant Kronecker product is a matrix having
(ax× by) elements formulated by

P⊗Q =




p11Q · · · p1(b−1)Q p1bQ
p21Q · · · p2(b−1)Q p2bQ

...
. . .

...
...

p(a−1)1Q · · · p(a−1)(b−1)Q p(a−1)bQ
pa1Q · · · pa(b−1)Q pabQ



.

(28)
For instance, a two-qubit system is represented by the Kro-
necker product between a pair of two-element vectors given in
Eq. (24). More explicitly, let us consider the qubit having the
state of |ψ1〉 = α0|0〉+ α1|1〉 and another one in the state of
|ψ2〉 = β0|0〉+β1|1〉. The superimposed state can be described
as follows:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =
(
α0

α1

)
⊗
(
β0
β1

)
=




α0β0
α0β1
α1β0
α1β1




≡ α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉, (29)

where α0, α1, β0, β1 ∈ C. It can be observed that a two-qubit
state is a superposition of all four possible states that can be
generated by two bits i.e. 00, 01, 10 and 11. Moreover, the
unitary condition of |α0β0|2+|α0β1|2+|α1β0|2+|α1β1|2 = 1
still holds. The Kronecker product of a pair of two-element
vectors yields a vector consisting of 22 elements. Hence,
the N -qubit systems yield all of the 2N possible states that
can be generated by an N -bit sequence. If i is the decimal
representation of an N -bit sequence, the N -qubit superposition
state can be expressed by the Dirac notation as follows:

|ψ〉 =
2N−1∑

i=0

αi|i〉 where αi ∈ C and
2N−1∑

i=0

|αi|2 = 1. (30)

Since the N -qubit state is represented by a 2N -element col-
umn vector, the unitary transformation of the N -qubit system
is defined by a (2N×2N ) elements unitary matrix. In quantum
communication, the quantum decoherence may impose a bit-
flip error, phase-flip error, as well as both bit-flip and phase-
flip error. For the sake of modeling the behaviour of quantum
information in the presence of quantum impairments, the Pauli
channel model is widely used [41]. To elaborate a little further,
the Pauli channel inflicts an error P ∈ Gn on the state of an N -
qubit system, where each qubit may independently experience
either a bit-flip error (X), a phase-flip error (Z), or both bit-
flip and phase-flip error (iXZ = Y). For an N -qubit system,
the general Pauli group Gn is represented by an N -fold tensor
product of G1, as described below:

Gn = {P1 ⊗ P2 · · · ⊗ Pn|Pj ∈ G1}, (31)

where the Pauli group G1 is constituted by the unitary transfor-
mations applied to a single qubit state, which is closed under
multiplication and is explicitly defined as follows:

G1 = {eP : P ∈ {I,X,Y,Z}, e ∈ {±1,±i}}. (32)

The laws of quantum mechanics prevent us from directly
transplanting the classical error correction codes into the
quantum domain owing to the following obstacles:

1) No Cloning Theorem. In the classical domain, the
basic technique of protecting the information bits in
repetition coding is that of copying the same information
several times. By contrast, in the quantum domain,
this simple approach cannot be implemented, since no
unitary quantum transformation is capable of performing
this specific task.

2) The quantum bit collapses into the corresponding
classical bit upon measurement. In the classical do-
main, the error correction schemes are typically fed by
measuring the bits received at the output of the demod-
ulator. In the quantum domain, measuring the qubits
represented by the superposition of the classical states
will collapse the superposition into a single classical
post-measurement state and consequently we lose the
original quantum information.

3) QECCs have to handle not only bit-flip errors, but
also phase-flip errors, as well as the simultaneous bit-
flip and phase-flip errors. By contrast, in the classical
domain, we deal with a single type of error, which is the
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bit-flip error. In quantum domain, the nature of quan-
tum decoherence is continuous and it can be modeled
as a linear combination of bit-flip errors (X), phase-
flip errors (Z), or both bit-flip and phase-flip errors
(iXZ = Y). However, thanks to the beneficial effect
of the stabilizer measurement, the continuous nature of
quantum decoherence can be treated as a discrete set of
independent errors imposed on the physical qubits.

Albeit all of the aforementioned obstacles hindering the devel-
opment of QECC schemes, the invention of QSC formulation
succeeded in circumventing these problems.

B. A Brief Review of Classical Syndrome-based Decoding

As mentioned earlier, the problems revolving around the
QECCs are effectively circumvented by QSCs, which es-
sentially constitute the syndrome-based decoding version of
QECCs. Hence, for the sake of sheding some light onto the
parallelism between the classical and quantum regime, we
proceed with the classical syndrome-based decoding first.

In the classical domain a C(n, k) code maps k information
bits into n coded bits, where k < n. The purpose of attaching
(n − k) redundant bits is to facilitate error detection or even
error correction. Let us refer to Fig. 10 and consider the
classical C(7, 4) Hamming code, which maps 4 information
bits into 7 coded bits and hence becomes capable of correcting
a single error. In general, the mapping of the k information
bits is performed by multiplying the information row vector
x consisting of k elements by the generator matrix G having
(k × n) elements. Explicitly, the mapping can be formulated
as

y = x ∗G, (33)

where the resultant codeword y is a row vector having n
elements, while the notation of ∗ represents the matrix multi-
plication over modulo-2. For instance, the generator matrix of
the C(7, 4) Hamming code is defined by

GHamming =




1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


 . (34)

From Eq. (33) and (34) we can generate the code space
mapping shown in Table VI, where xi denotes all the pos-
sible combination of information bits and yi represents the
associated legitimate codeword bits.

The generator matrix G can be arranged into a systematic
form as

G = (Ik|P) , (35)

where Ik is a (k×k) identity matrix and P is a matrix having
k × (n − k) elements. The form given in Eq. (35) generates
a systematic codeword y consisting of the k-bit information
word x followed by (n − k) parity bits. A generator matrix
G is associated with an (n− k)× n-element PCM H, which
is defined as

H =
(
PT |In−k

)
. (36)

TABLE VI: The code space mapping of the C(7, 4) classical
Hamming code.

i xi yi

1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 1 1 1 1
3 0 0 1 0 0 0 1 0 0 1 1
4 0 0 1 1 0 0 1 1 1 0 0
5 0 1 0 0 0 1 0 0 1 0 1
6 0 1 0 1 0 1 0 1 0 1 0
7 0 1 1 0 0 1 1 0 1 1 0
8 0 1 1 1 0 1 1 1 0 0 1
9 1 0 0 0 1 0 0 0 1 1 0
10 1 0 0 1 1 0 0 1 0 0 1
11 1 0 1 0 1 0 1 0 1 0 1
12 1 0 1 1 1 0 1 1 0 1 0
13 1 1 0 0 1 1 0 0 0 1 1
14 1 1 0 1 1 1 0 1 1 0 0
15 1 1 1 0 1 1 1 0 0 0 0
16 1 1 1 1 1 1 1 1 1 1 1

As an example, the generator matrix of the classical C(7, 4)
Hamming code of Eq. (34) is associated with the following
PCM:

HHamming =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


 . (37)

The PCM of H is constructed for ensuring that a valid
codeword y satisfies the following requirement:

y ∗HT = 0. (38)

A received word y may be contaminated by an error vector
e ∈ {0, 1}n due to channel impairments, which is denoted
by E in Fig. 10. More explicitly, the resultant received words
corrupted by the additive noise E can be formulated as

y = y + e. (39)

The error syndrome s is a row vector having (n−k) elements
obtained by the following calculation:

s = y ∗HT = (y + e) ∗HT

= y ∗HT + e ∗HT

= 0+ e ∗HT

= e ∗HT . (40)

The syndrome vector s contains the information related to
the error pattern imposed by the channel. To elaborate, we
have 2k legitimate codewords generated by the all possible
combination of the k information bits, 2n possible received
bit patterns of ŷ and 2(n−k) possible syndromes s, each
unambiguously identifying one of the 2(n−k) error patterns,
including the error-free scenario. Hence, for the classical
C(7, 4) Hamming code, the syndrome vector si can detect and
correct a single error pattern as specified in Table VII. The
error recovery ri is determined based on the most likely error
pattern. After obtaining the syndrome vector, the recovery
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Fig. 10: The basic model of classical error correction codes invoking syndrome-based decoding. The operation G denotes the
generator matrix, which maps the k information bits x to the n coded bits y. The channel E inflicts an error vector e ∈ {0, 1}n
upon the codeword y, resulting in the corrupted received bits y. The receiver calculates the syndrome vector s based on the
PCM H and the received bits y to predict the number and the position of errors contained in the received bits y. The error
recovery R generates the error recovery vector r, which is applied to the received bits y. This operation collapses the received
bits y to one of the legitimate codedword y, yielding the predicted codeword ŷ. Finally, we can readily determine the predicted
information bits x̂ from the predicted codeword ŷ.

vector ri is applied to the received words to obtain the
predicted codeword ŷ = y + r, as depicted in Fig. 10. The
application of the recovery operator ri to the received word
always collapses it into one of the legitimate codewords y,
hence the predicted codeword ŷ can be finally demapped in
order to obtain the predicted information bits x̂ using Table VI,
as illustrated in Fig. 10. For linear systematic codes, this
process can be simply performed by chopping the last (n−k)
bits, namely the redundant bits.

TABLE VII: The look-up table to determine the most likely
error pattern ei ∈ E that corresponds to the syndrome value
si, which is created based on Eq. (37) and (40).

i si ei

1 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 1
3 0 1 0 0 0 0 0 0 1 0
4 0 1 1 0 0 1 0 0 0 0
5 1 0 0 0 0 0 0 1 0 0
6 1 0 1 0 1 0 0 0 0 0
7 1 1 0 1 0 0 0 0 0 0
8 1 1 1 0 0 0 1 0 0 0

For more a detailed example, let us consider k information
bits of x = (1 1 0 1). The information bits are encoded
using the classical C(7, 4) Hamming code employing the
generator matrix of Eq. (33), yielding the coded bits of
y = (1 1 0 1 1 0 0). Let us assume that the channel corrupts
the legitimate codeword y by imposing an error pattern of
e = (1 0 0 0 0 0 0) yielding the received word of y =
(0 1 0 1 1 0 0). Next, the received word is fed to the syn-
drome calculation block, which contains the PCM of Eq. (37).
Based on Eq. (40), the received word y = (0 1 0 1 1 0 0)
generates the syndrome vector of s = (1 1 0). Utilizing the

look-up table of Table VII, the error recovery vector becomes
r = (1 0 0 0 0 0 0). Upon applying the error recovery vector,
the received word y is collapsed to one of the legitimate code-
words y in Table VI, which is ŷ = (1 1 0 1 1 0 0). Assuming
that the predicted codeword ŷ is valid, the demapper decides
to translate the predicted codeword ŷ = (1 1 0 1 1 0 0) to
the predicted information bits as x̂ = (1 1 0 1). Hence, the
original information is successfully recovered. The whole pro-
cess of syndrome calculation, error recovery and demapping
jointly form the decoding process. It is important to note that
in practice, the syndrome calculation, recovery operator and
demapper are amalgamated into a single decoder block.

Let us now assume that the channel imposes an error
pattern beyond the error correction capability of the classical
C(7, 4) Hamming code. For example, assume that we send
k information bits of x = (1 1 0 1), similar to that of in
the previous example, while the channel inflicts an error
pattern of e = (1 1 0 0 0 0 0). As a result, we have the
received codeword bits of y = (0 0 0 1 1 0 0). Based on
the received codeword, we have the syndrome vector of
s = (0 1 1). Based on the syndrome vector, the error recovery
of r = (0 0 1 0 0 0 0) is chosen. Consequently, the error
recovery vector collapses the received word to the incorrect
legitimate codeword, which is ŷ = (0 0 1 1 1 0 0), instead
of the correct codeword of y = (1 1 0 1 1 0 0). Since the
demapper assumes that the error recovery completes the task
perfectly, the demapper decides that the predicted information
bits are x = (0 0 1 1). Compared to the original information
bits, the predicted information bits are considered as an error.
This example demonstrates that the classical C(7, 4) Hamming
code is unable to operate flawlessly beyond its error correction
capability.
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C. A Brief Review of Quantum Stabilizer Codes

The formulation of QSCs is capable of detecting both the
number and the position of errors without actually observing
the state of physical qubits, which is vitally important since
otherwise the quantum state will collapse to classical bits
upon measurement. This was achieved by amalgamating the
classical syndrome-based decoding with the QECCs. Similar
to classical error correction codes, QSCs also rely on attaching
redundant qubits to the information qubits for invoking error
correction. The basic model of QSCs is depicted in Fig. 11,
which will be contrasted to its classical pair in Fig. 10. In order
to generate the codespace C, the redundancy is constituted
by (n− k) auxiliary qubits. Next, a unitary transformation V
transforms the k qubits in the state of |ψ〉 and the (n − k)
auxiliary qubits into an n qubits in the state of |ψ〉. The
unitary transformation of V represents the action of the quan-
tum encoder. Explicitly, the mapping of the logical qubits
constituting the state of |ψ〉 ∈ C2k to the physical qubits
forming the state of |ψ〉 ∈ C2n by the encoder V of Fig. 11
can be mathematically formulated as follows:

C = {|ψ〉 = V(|ψ〉 ⊗ |0〉⊗(n−k))}. (41)

The QSCs rely on the stabilizer operators Si ∈ S for
identifying the type, the number and also the position of
the qubit errors. A stabilizer operator Si is an n-tuple Pauli
operator, which preserves the state of physical qubits as
defined below:

Si|ψ〉 = |ψ〉. (42)

The quantum channel inflicts errors represented by n-tuple
Pauli operators P ∈ Gn, as given in Eq. (31), which transforms
the encoded physical qubits that were originally in the state
of |ψ〉 to the potentially corrupted physical qubits in the state
of |ψ̂〉, as seen in Fig. 11. More explicitly, this process can be
described as follows:

|ψ̂〉 = P|ψ〉. (43)

The stabilizer operators act similarly to the syndrome calcu-
lations routinely used in classical error correction codes. To
elaborate a little further, a stabilizer operator will return an
eigenvalue of +1, when an error operator P commutes with
the stabilizer operator, while we arrive at the eigenvalue of
−1, if it anti-commutes. The eigenvalues of +1 and −1 are
analogous to the classic syndrome bit of 0 and 1, respectively,
which can be defined as follows:

Si|ψ̂〉 =
{
|ψ̂〉 , SiP = PSi

−|ψ̂〉 , SiP = −PSi.
(44)

Therefore, the stabilizer operators naturally have to inherit
the commutative property. Consequently, the product between
the stabilizer operators Si yields another legitimate stabilizer
operator. Furthermore, the commutativity property implies that

Si|ψ〉 = Sj |ψ〉 = SiSj |ψ〉 = |ψ〉,∀Si,j ∈ S, (45)

suggesting that the stabilizer group S is closed under multi-
plication.

Based on the syndrome measurement by the stabilizer

operators Si, a recovery operator constituted by the n-tupple
Pauli operator of R ∈ Gn seen in Fig. 11 is applied to the
corrupted physical qubit state |ψ̂〉, yielding the predicted state
of the original encoded logical qubit |ψ′〉, which is formulated
as

|ψ′〉 = R|ψ̂〉. (46)

Finally, the inverse encoder V† of Fig. 11 performs the
following transformation5:

V†|ψ′〉 = V†R|ψ̂〉
= V†RP|ψ〉
= V†RPV(|ψ〉 ⊗ |0〉⊗(n−k))
= (L|ψ〉)⊗ (M|0〉⊗(n−k)), (47)

where we have V†RPV ≡ L⊗M and L ∈ Gk represents the
error inflicted on the logical qubits according to |ψ′〉 = L|ψ〉,
whileM∈ Gn−k represents the residual error remained in the
(n − k) auxiliary qubits after the error correction procedure.
In the case of R = P , we arrive at RP = I⊗n, where
I⊗n denotes an n-fold tensor product Pauli-I matrix. Another
possibility is to arrive at RP = Si. In either of these cases,
the state of the physical qubits is not altered, since we have
RP|ψ〉 = |ψ〉. Therefore, the decoding procedure of Fig. 11
successfully recovers the original quantum state constituted by
the logical qubits, yielding |ψ′〉 = |ψ〉.

The stabilizer operators can be translated into the classical
PCM H by mapping the Pauli matrices I, X, Y and Z onto
(F2)

2 as follows:

I→
(
0 | 0

)
,

X→
(
0 | 1

)
,

Y →
(
1 | 1

)
,

Z→
(
1 | 0

)
. (48)

This concept is also known as the Pauli-to-binary isomor-
phism. By exploiting the Pauli-to-binary isomorphism, the
stabilizer operators of any QSC can be represented as a pair
of PCMs Hz and Hz , where Hz is invoked for handling the
phase-flip (Z) errors and Hx for handling the bit-flip (X)
errors. Explicitly, the classical PCM representation of the QSC
stabilizer operators may be written as follows:

H = (Hz|Hx) . (49)

The classical representation of the stabilizer operators gives
the advantage of predicting and evaluating the performances
of QSCs by treating them similarly to classical error correction
codes. Additionally, it allows us to transform a pair of classical
PCMs into the correponding quantum counterpart. However,
to ensure that the commutative property is preserved in the
quantum domain, a pair of classical PCMs have to satisfy the
so-called symplectic criterion [6] given by

Hz ·HT
x +Hx ·HT

z = 0. (50)

A special class of QSCs, namely the family of Calderbank-

5The inverse encoder V† is the Hermitian transpose of encoder V . It is
referred to as the inverse, since it satisfies the unitary requirement of V†V = I,
as the inverse of the matrix does.
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|0〉
|0〉

|0〉
|0〉

|0〉

|ψ〉

... ...V†
M|0〉⊗(n−k)

|ψ′〉 = L|ψ〉

PV R

S

|ψ〉 |ψ̂〉 |ψ′〉

Fig. 11: The basic model of QSCs implementation over the quantum depolarizing channel. The k logical qubits are mapped
into n physical qubits with the aid of (n − k) redundant/auxiliarry qubits (ancillas) to provide protection from the quantum
decoherence. This schematic is similar to the classical error correction model where (n − k) redundant bits are added to k
information bits in order to provide error correction. The quantum encoder V serves the same purpose as G of the classical
error correction codes in Fig. 10. The quantum encoder V transforms the state of k logical qubits |ψ〉 into the state of n
physical qubits |ψ〉 with the aid of (n − k) ancillas. The quantum depolarizing channel imposes the error vector represented
by the n-tupple Pauli operator P ∈ Gn. The syndrome operators Si ∈ S generate the eigenvalues of ±1, which are analogous
to the value 0 and 1 of the classical syndrome vector, which is provided by the PCM H in Fig. 10. The error recovery R
applies the correction according to the syndrome values provided by the syndrome measurements. Finally, the quantum-domain
inverse encoder V† transforms the predicted state of physical qubits |ψ′〉 back to the predicted state of logical qubits |ψ′〉,
which carries out the same function as the demapper D in the classical syndrome-based decoding of Fig. 10.

Shor-Steane (CSS) codes, treats the phase-flip (Z) and bit-flip
(X) errors as two separate entities. More specifically, this can
be interpreted as having the PCMs of Hz and Hx in Eq. (49)

formulated as Hz =

(
H′z
0

)
and Hx =

(
0
H′x

)
, respectively.

Therefore, the binary PCM H can be expressed as follows:

H =

(
H′z 0
0 H′x

)
. (51)

Consequently, the symplectic criterion given in Eq. (50) can
be reduced to the following criterion:

H′z ·H′x
T
= 0. (52)

Furthermore, we can formulate a CSS code by using a PCM
of H′z = H′x and the resultant quantum code may be referred
to as a dual-containing quantum CSS code or self-orthogonal
quantum CSS code. For dual-containing CSS codes, the sym-
plectic criterion can be further simplified to H′zH

′
z
T
= 0. For

a more detailed example, please refer to [38].

IV. QUANTUM TOPOLOGICAL ERROR CORRECTION
CODES: DESIGN EXAMPLES

Let us now delve deeper into the TECC concept in the
quantum domain. The quantum version of TECCs, namely the
QTECCs, constitute a member of the QSC family, whose sta-
bilizer operators are defined by the underlying lattice structure.
This formalism offers several benefits for the implementation
of quantum computers. Firstly, it explicitly accommodates the
physical implementation of quantum memory by mapping the
qubits to the lattice arrangement exemplified by Fig. 4 and 5.
Secondly, the localized nature of the stabilizer measurements
confines the interaction amongst qubits and also eliminates the
interaction of qubits associated with a specific quantum gate
that physically far from each other. Thirdly, the number of
errors corrected can be increased simply by extending the size
of the lattice. For now, let us assume having a square lattice
structure similiar to Fig. 4 for defining the stabilizer operators
of a surface code illustrated in Fig. 12 [24]. Explicitly, surface
codes represent the quantum equivalent of classical TECCs on
rectangular lattice structures. The physical qubits are portrayed
by the black circles laying on the edge of the lattice, the
X stabilizer operators are defined by the red squares on the
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lattice vertices, while the Z stabilizers are defined by the
blue triangles on the lattice plaquettes (faces). The stabilizer
operators of QTECCs are defined as follows:

Av =
∏

i∈vertex(v)

Xi , Bp =
∏

i∈plaquette(p)

Zi, (53)

where i indicates the index of stabilizer operators containing
the Pauli matrix X as well as Z and the rest of the stabilizer
operators are given by the Pauli identity matrix I. Hence, the
encoded state of the physical qubits of QTECCs is constrained
within a code space C satisfying

C = {|ψ〉 ∈ H|Av|ψ〉 = |ψ〉, Bp|ψ〉 = |ψ〉; ∀v, p}. (54)

More specifically, let us revisit Fig. 12 for exemplifying the
construction of the stabilizer operators of a QTECC, namely
of the surface codes, which is one of the QTECC constructions
whose stabilizer operators are defined by a rectangular lattice
structure [24]. For instance, the red square on the vertex
number 3 of Fig. 12 represents the X stabilizer operator of
A3 = X4X6X7X9

6 as seen in the row S3 of Table VIII.
Similarly, the blue triangle on the plaquette number 5 of
Fig. 12 defines the Z stabilizer operator of B5 = Z7Z9Z10Z12

as seen in the line B5 of Table VIII. By performing the same
evaluation for all of the red squares and blue triangles, we
arrive at the stabilizer operators for the quantum surface codes,
as listed in Table VIII.

TABLE VIII: The stabilizer operators (Si) of the quantum
surface code having the lattice construction of Fig. 12. The
code has a minimum distance of 3 (d = 3), which means that
it is only capable of correcting a single qubit error.

Si Av Si Bp

S1 X1X2X4 S7 Z1Z4Z6

S2 X2X3X5 S8 Z2Z4Z5Z7

S3 X4X6X7X9 S9 Z3Z5Z8

S4 X5X7X8X10 S10 Z6Z9Z11

S5 X9X11X12 S11 Z7Z9Z10Z12

S6 X10X12X13 S12 Z8Z10Z13

Let us now consider an example of how the error correction
procedure works using the QTECCs, which is similar to the
classical TECCs, by revisiting Fig. 12. For instance, let assume
that the quantum decoherence imposes a bit-flip (X) error on
the physical qubit index 7. Since, the X-type error commutes
with the Z stabilizer operators, which are represented by the
blue triangles, the adjacent Z stabilizer operators return the
eigenstate values of −1 upon measurement. Consequently,
the Z stabilizer measurements yield a syndrome vector of
sz = [0 1 0 0 1 0], where only the vector elements of i = 2, 5
have the value of 1. For the short block code considered
in Fig. 12, the error recovery operators R of Fig. 11 are
determined based on hard-decision maximum-likelihood (ML)
decoding, which is translated into a simple look-up table
(LUT) decoder. Therefore, based on the syndrome vector of sz ,

6This representation is used for simplifying the original stabilizer operator
of A3 = I1⊗I2⊗I3⊗X4⊗I5⊗X6⊗X7⊗I8⊗X9⊗I10⊗I11⊗I12⊗I13.
For the rest of this paper, the simplified notation is used.

654

1 2

3 4

5 6

1 2 3

1 2 3

4 5

6 7 8

9 10

11 12 13

X

Z

Fig. 12: Example of qubit arrangement on a rectangular lattice
structure. The black circle-based qubits on the edges of the
lattice represent the physical qubits or the encoded state, the
red square-based qubits lying on the vertices of the lattice act
as the X stabilizer operators, while the blue triangle-based
qubits lying on the plaquettes (faces) of the lattice constitute
the Z stabilizer operators.

the error recovery operator R of Fig. 11 is given by R = X7.
Likewise, let us now assume that the qubit on index 7 also
suffers from a Z-type error imposed by the quantum channel.
The associated syndrome vector gleaned from the X stabilizer
operators is sx = [0 0 1 1 0 0], where only the vector elements
of i = 3, 4 have the value of 1. Thus, based on the syndrome
vector of sx, the decoder applies the error recovery operator
of R = Z7.

Again, similar to the classical TECCs, the construction of
QTECCs is indeed not limited to the square lattice structure.
Let us now elaborate on another construction inspired by the
construction proposed in [25] using the triangular lattice based
on the classic example of Fig. 5. In the proposal of [25],
this specific code construction is often referred to as the
(triangular) colour code, since the underlying triangular lattice
is composed by the tri-coloured hexagonal tiles. However,
constructing the stabilizer operators of colour codes slightly
differs from that of the surface codes. The colour codes use
the lattice plaquettes to define both the Z and X stabilizer
operators. Consequently, the resultant colour codes belong to
the family of dual-containing CSS codes, which is in contrast
to the surface codes that belong to the class of non-dual-
containing CSS codes. For colour codes, defining both the Z
and X stabilizer operators using the same plaquette always
guarantees satisfying the symplectic criterion of Eq. (50).
However, for surface codes, we cannot always satisfy the
symplectic criterion by using the same procedure. Therefore,
the dual of the lattice is used for defining half of the stabilizer
operators of the surface codes in order to satisfy the symplectic
criterion.7

7The dual of a lattice or a graph G is the graph that has a vertex for each
plaquette of the graph.
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Fig. 13: Example of a qubit arrangement for colour code,
which is a type of QTECCs whose stabilizer operators are
defined by a triangular lattice structure. The black circles-
based qubits on the vertices of the lattice represent the physical
qubits, while the faces or the plaquettes of the lattice denoted
by red squares define stabilizer operators of the colour code.
The resultant code has a minimum distance of d = 3 and
hence becomes capable of correcting a single qubit error. This
specific configuration bears a resemblance to the C[7, 1, 3]
Steane’s 7 qubit code.

Let us consider Fig. 13 for constructing the stabilizer
operators of distance-3 colour codes, which are only capable
of correcting a single qubit error. The plaquette denoted by
red square at index 3 is used to define both the Z and X
stabilizer operators. Thus, the resultant X stabilizer operator
is A3 = X2X4X6X7 and the resultant of Z stabilizer operator
is B3 = Z2Z4Z6Z7. The stabilizer operators for the colour
code having the minimum distance 3 in Fig. 13 are listed in
Table IX. We can observe that the colour code of Fig. 13
exhibits a strong resemblance to Steane’s 7-qubit code.

To draw on the parallelism between classical TECCs and
QTECCs, let us consider the stabilizer operators of the colour
code having a minimum distance of d = 3, as seen in Table IX.
Since the distance-3 colour code belongs to the family of
quantum CSS codes, the PCM H obtained by using Eq. (48)
and (51) is encapsulted as follows:

H =




1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1



.

(55)

A CSS stabilizer code C[n, k, d] having (n − k) stabilizer
operators can be portrayed as a classical code having a PCM
H containing (n−k)×2n elements. Therefore, the coding rate
of the classical dual of a quantum CSS code can be expressed

as follows [11]:

rC =
2n− (n− k)

2n
,

=
n+ k

2n
,

=
1

2

(
1 +

k

n

)
,

=
1

2
(1 + rQ) , (56)

where rC is the coding rate of the classical dual of the
stabilizer code C[n, k, d] exhibiting a quantum coding rate of
rQ. The relationship between the classical and quantum coding
rate in Eq. (56) can be rewritten as

rQ = 2rC − 1. (57)

For instance, let us consider the distance-3 colour codes
C[n, k, d] = C[7, 1, 3], as exemplified in Fig. 13, and its
classsical dual C(n, k, d) = C(7, 4, 3)8, as seen in Fig. 5.
Explicitly, we have the classical coding rate of rC = 4/7 for
the C(7, 4, 3) code. By substituting rC = 4/7 into Eq. (57),
we obtain the quantum coding rate for its quantum counterpart
as rQ = 1/7, which is the quantum coding rate of distance-3
colour code C[7, 1, 3]. The same goes for the classical square
codes and their quantum counterpart, namely for the surface
codes. Let us consider the distance-5 classical square code,
which is labeled by S2 in Fig. 8 and its quantum pair, which
is labeled by S2 in Fig. 14. We can readily determine the
quantum coding rate of the surface code S2 C[41, 1, 5], which
is rQ = 1/41. Therefore, by substituting rQ = 1/41 into
Eq. (56), we arrive at the coding rate of its classical dual
given by rC = 21/41, which is indeed the coding rate of the
classical square code S2 C(41, 21, 5).

TABLE IX: The stabilizer operators (Si) of the colour code
seen in Fig. 13. The code has a minimum distance of 3 (d =
3), which means that it is only capable of correcting a single
qubit error.

Si Ap Si Bp

S1 X1X2X3X4 S4 Z1Z2Z3Z4

S2 X3X4X5X6 S5 Z3Z4Z5Z6

S3 X2X4X6X7 S6 Z2Z4Z6Z7

Similar to their classical counterparts, the code parameters
of QTECCs, such as the number of logical qubits k, the
number of physical qubits n, the minimum distance of the
code d, as well as the quantum coding rate rQ, depend on the
size of the lattices. Following the same line of investigation as
for the classical TECCs, we derive the complete formulation
for the number of logical qubits k and the number of physical
qubits n as a function of the minimum distance of the codes,
which is given in Table X. We plot the minimum distance (d)
versus quantum coding rate (rQ) of QTECCs in Fig. 14 for
colour codes [25], for rotated surface codes [31], for surface

8To avoid ambiguity, we use the notation C(n, k, d) for classical error
correction codes and C[n, k, d] for quantum stabilizer codes.
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TABLE X: The code parameters for various QTECCs based on the minimum distance d of the code.

Codes type Dimension Number of physical qubits Number of stabilizers Number of logical qubits
Colour d∗ 1

4

(
3d2 + 1

)
1
4

(
3d2 − 3

)
1

Rotated-surface d× d d2 d2 − 1 1
Surface d× d 2d2 − 2d+ 1 2d2 − 2d 1
Toric d× d 2d2 2d2 − 2 2

∗ for triangular colour codes the dimension is defined by the side length of the equilateral triangle
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Toric code, T1 = C[18, 2, 3]
Toric code, T2 = C[50, 2, 5]
Surface code, S1 = C[13, 1, 3]
Surface code, S2 = C[41, 1, 5]
Rotated surface code, R1 = C[9, 1, 3]
Rotated surface code, R2 = C[25, 1, 5]
Colour code, C1 = C[7, 1, 3]
Colour code, C2 = C[19, 1, 5]
Quantum Hamming code, QH1 = C[8, 3, 3]
Quantum Hamming code, QH2 = C[16, 10, 3]
QBCH code, QBCH1 = C[127, 113, 3]
QBCH code, QBCH2 = C[127, 99, 5]
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R2, T2

QBCH1

QBCH2

Increasing codeword length

Increasing codeword length
and minimum distance

Fig. 14: The minimum distance (d) versus quantum coding rate (rQ) of QTECCs based on parameter given in Table X. For
QTECCs, the quantum coding rate tends to zero as we increase the minimum distance. We also include the QBCH codes having
the physical qubits of n = 127 and quantum Hamming codes for the sake of comparing the QTECCs with the non-topological
QSCs.

TABLE XI: Code parameters of quantum Hamming codes
having a single error correction capability, which is used in
Fig. 14 and 15. The quantum coding rate rQ and normalized
minimum distance δ are calculated using Eq. (1) and (17),
respectively.

n k d n k d

8 3 3 256 246 3
16 10 3 512 501 3
32 25 3 1024 1012 3
64 56 3 2048 2035 3
128 119 3 . . . . . . . . .

codes [24] and for toric codes [22]. We also include the non-
topological QSCs, namely the QBCH codes [7] having n =

TABLE XII: Code parameters of QBCH codes having code-
word length of n = 127, which is used in Fig. 14 and 15. The
quantum coding rate rQ and normalized minimum distance δ
are calculated using Eq. (1) and (17), respectively.

n k d n k d

127 1 19 127 71 9
127 15 16 127 85 7
127 29 15 127 99 5
127 43 13 127 113 3
127 57 11

127 physical qubits and the quantum Hamming codes, which
constitute the quantum analogue of Hamming bound-achieving
code constructions [42]. Similarly to the classical domain, the
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Toric code, T1 = C[18, 2, 3]
Toric code, T2 = C[50, 2, 5]
Surface code, S1 = C[13, 1, 3]
Surface code, S2 = C[41, 1, 5]
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Fig. 15: The normalized minimum distance versus quantum coding rate of QTECCs based on parameter given in Table X. For
QTECCs, the normalized minimum distance and quantum coding rate tend to zero as we increase the minimum distance. We
also include the QBCH codes having the physical qubits of n = 127, quantum Hamming codes, quantum Hamming bound
and also quantum GV bound for CSS codes for the sake of comparing the QTECCs with the non-topological QSCs.

behaviour of both the QBCH codes and the quantum Hamming
codes is as expected, exhibiting the behaviour inherited from
their classical analogues. However, it is interesting to observe
that the quantum coding rate of QTECCs tends to zero for long
codewords. Nevertheless, this phenomenon is expected, if we
consider the classical to quantum isomorphism in the context
of the coding rate given in Eq. (56) and (57). For the classical
TECCs, the coding rate rC approaches the value of rC = 1/2
for long codewords. Hence, by substituting rC = 1/2 into
Eq. (57), we arrive at rQ = 0, which is the phenomenon we
observe in Fig. 14.

Next, we plot the normalized minimum distance (δ) versus
the quantum coding rate (rQ) in Fig. 15. Once again, for the
sake of comparison, we also include the quantum Hamming
bound [43] and the quantum GV bound derived for CSS
codes [44] in addition to the QBCH codes and the quantum
Hamming codes. The quantum Hamming bound is defined
by [43]

k

n
≤ 1−

(
d

2n

)
log2 3−H

(
d

2n

)
, (58)

while the quantum GV bound for CSS codes is given by [44]

k

n
≥ 1− 2H

(
d

n

)
. (59)

Both the quantum Hamming bound and the quantum GV
bound of Fig. 15 serve the same purpose as the classical
Hamming bound and the GV bound seen in Fig. 9. Explic-
itly, they portray the upper bound and the lower bound of
normalized minimum distance versus quantum coding rate
trade-off. Once again, the puzzling behaviour of classical
TECCs resurfaces for the QTECCs, as observed in Fig. 15.
Since all the QBCH codes, quantum Hamming codes and
QTECCs inherit the properties of their classical counterparts,
their behaviour is reminiscent of that of their classical counter-
parts. As for the QTECCs, the definitive interpretation of this
unusual behaviour is left for future exploration in our research.
Nonetheless, for a relatively long codeword, the QTECCs are
reminiscent of QLDPC codes. Observe from Fig. 15 that both
the normalized minimum distance and the quantum coding
rate of QTECCs tend to zero upon increasing the minimum
distance by increasing the codeword length. Therefore, the
QTECCs are deemed to be more favourable for short to
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medium codeword lengths.

V. PERFORMANCE OF QUANTUM TOPOLOGICAL ERROR
CORRECTION CODES

In this treatise, we consider the performance of QTECCs un-
der the popular quantum depolarizing channel. Explicitly, the
quantum depolarizing channel is characterized by the quantum
depolarizing probability p inflicting an error pattern constituted
by the Pauli operators P ∈ Gn upon the state of physical
qubits, where each qubit may independently experience a bit-
flip error (X), a phase-flip error (Z), or both bit-flip and phase-
flip error (Y) with an equal probability of p/3. In order to get a
more precise insight into the performance trends of QTECCs,
we have to distinguish how the different error patterns affect
the state representing the physical qubits. Explicitly, the n-
tupple Pauli error pattern may be classified as follows, which
will be exemplified in Fig. 16 and 17 after their definitions:

1) Harmful detected error pattern. This specific type of
error pattern has a similarity to the conventional bit error
in the classical domain. The error pattern of P anti-
commutes with the stabilizer operators Si ∈ S, hence
triggers non-trivial syndrome values.

2) Harmful undetected error pattern. The error pattern
commutes with all of the stabilizer operators, except
that it does not belong to the stabilizer group S. In
the classical domain, this is similar to the error pattern
that returns the all-zero syndrome. The error pattern is
harmful, since it does not trigger a non-trivial syndrome
value, yet it corrupts the legitimate state of the physical
qubits.

3) Harmless undetected error pattern. This particular
error pattern does not have any classical analogue.
The error pattern is harmless, because it belongs to
the stabilizer group S . This is also referred to as a
degenerate error pattern. Consequently, the error patttern
does not alter the legitimate state of the physical qubits.
By considering the degeneracy, the actual performances
of QTECCs are potentially improved.

In order to illustrate both the harmless and harmful unde-
tected error patterns, we refer to Fig. 16 and 17. First, we
commence with the harmless undetected error pattern, which
is illustrated in Fig. 16. In this example, we consider a surface
code having a minimum distance of 5, which implies that it
is only capable of correcting two qubit errors. Following the
stabilizer formulation of QTECCs discussed in Section IV, the
physical qubits are arranged along the edges of the square lat-
tice, while the X stabilizer operators are located in the vertices.
Therefore, the X stabilizer operators on the vertices are used
for indicating the Z errors, which will trigger eigenvalues of
−1 if they anticommute with the X stabilizer operators. Let us
assume that the quantum depolarizing channel inflicts three Z
errors on the physical qubits, which are denoted by the filled
black circles in Fig 16, while the hollow black circles represent
the error free physical qubits. All of the error patterns given
in Fig 16 (a), (b) and (c) trigger the eigenvalues of −1 for the
stabilizer operators denoted by filled red squares, while the
rest of the stabilizer operators are represented by hollow red

squares, which return eigenvalues of +1. Since the decoder
relies on hard-decision ML decoding, all of the error patterns
given in Fig. 16 (a), (b) and (c) have the same probability of
occurence. Let us assume that the decoder always decides to
apply the error recovery pattern of Fig. 16 (a) for the specified
values of stabilizer measurement. When the actual error pattern
is the one given in Fig. 16 (a), the states of the physical qubits
are fully recovered. By contrast, if the actual error pattern is
the one seen in Fig. 16 (b), but it is corrected using the error
recovery operator of Fig. 16 (a), we arrive at the accumulated
error pattern shown in Fig. 16 (d). Lastly, when the actual
error pattern is the one given by Fig. 16 (c), but we attempt to
correct it using the error recovery of Fig. 16 (a), we obtain the
error pattern seen Fig. 16 (e). However, if we observe closely
the error pattern illustrated in Fig. 16 (d), it is reminiscent
of a plaquette Z stabilizer operator denoted by the filled
blue triangle. Therefore, based on the definition of stabilizer
operators, the error pattern given in Fig. 16 (d) does not alter
the legitimate state of physical qubits. Similarly, the error
pattern of Fig. 16 (e) resembles the product of two adjacent
plaquette stabilizer operators. Since the product between a pair
of stabilizer operators return another valid stabilizer operator,
the error pattern given in Fig. 16 (e) belongs to the stabilizer
group S. Once again, by definition, the error pattern given in
Fig. 16 (e) does not corrupt the legitimate state of physical
qubits. This is an example of harmless undetectable error
patterns.

To elaborate a little further, a harmless undetected error can
be directly generated by the quantum decoherence, where the
Pauli operator P ∈ Gn imposed by the quantum depolarizing
channel is identical to the stabilizer operator Si. Another
possibility is that it is generated by the associated error
recovery procedure, when trying to recover an ambiguous error
pattern, where there are more than one possible error patterns
associated with a specific syndrome value, as illustrated in
Fig. 16. The degeneracy property, which is associated with the
harmless undetectable error patterns, does not have a classical
analogue, because in the classical setup, the resultant error
patterns illustrated in Fig. 16 (d) and (e) will always be
considered as an error. Ultimately, considering the degeneracy
potentially improves the performance of QECCs.

Let us consider a range of different scenario for illustrating
the presence of harmful undetected error patterns, which is
portrayed in Fig. 17. Similar to the previous example of
Fig. 16, three Z errors are imposed on the state of logical
qubits by the quantum depolarizing channel. The error patterns
given in Fig. 17 (a) and (b) trigger the eigenvalues of −1
for the stabilizer operators denoted by filled red squares in
Fig. 17, while the rest of the stabilizer operators represented
by hollow red squares return eigenvalues of +1. Given the
associated syndrome value, the decoder always decides to
apply the error recovery operator of Fig. 17 (a). In the specific
scenario, where the actual error pattern is the one given by
Fig. 17 (b), the resultant error pattern is given in Fig. 17
(c). We can observe that the resultant error pattern of Fig. 17
(c) commutes with all of the stabilizer operators in Fig. 17.
However, this specific error pattern does not belong to the
stabilizer operator S, since we cannot represent a chain of
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Fig. 16: Illustration of how the error recovery operator R creates the degenerate error patterns and how the degeneracy nature
of QECCs may improve the performance of QTECCs. All of error patterns given in (a), (b) and (c) represent error patterns
generating an identical syndrome value. Without lose of generality, let us assume that based on the generated syndrome value,
the decoder always decides to perform error recovery operator R of (a) on the corrupted state of physical qubits. If the actual
error pattern is (a), the corrupted state of physical qubits will be fully recovered. By contrast, figure (d) shows the resultant
error pattern if the actual error pattern is (b), but it is corrected using the error pattern given in (a). Moreover, figure (e)
represents the resultant error pattern if the actual error pattern is (c) and it is corrected using the error recovery pattern of
(a). As the result, the error pattern (d) represents a stabilizer operator of a plaquette, while the error pattern (e) resembles
the product of two adjacent stabilizer operators. Both error patterns of (d) and (e) constitute the harmless undetecteable error
patterns, since they belong to the stabilizer group S. Therefore, the state of physical qubits is not altered after the recovery
operator R of (a) is applied to all error patterns of (a), (b) and (c). In classical set up, both error patterns (d) and (e) are
considered as error events. However, in quantum domain, both error patterns (d) and (e) are considered as error-free cases.
This specific error-type has no similarity in quantum domain and hence potentially improves the performance of QTECCs.

errors by the product of stabilizer operators. Consequently, this
undetectable error pattern inevitably corrupts the legitimate
state representing the physical qubits. This is an example of
the harmful undetectable error patterns. This error pattern is
similar to that of its counterpart in the classical domain, where
the error pattern returns the all-zero syndrome.

Therefore, based on these conditions, by modifying the
probabilty of correct decoding in the classical domain [45],
we can readily formulate the worst-case upper-bound QBER
performance of QTECCs as

QBERupper(n, d, p) =1−
t=b d−1

2 c∑

i=0

(
n

i

)
pi(1− p)n−i

−
|S|∑

i=1,∀Si∈S

pw(Si)(1− p)n−w(Si), (60)

where w(Si) is the weight of the stabilizer operator Si, which
is defined by the number of non-identity Pauli operators within
the stabilizer operators. The second term of Eq. (60) represents
all the correctable error patterns of QTECCs, while the last

term of Eq. (60) represents the degenerate error patterns that
belong to the stabilizer operators. For example, let us revisit
the construction of the surface codes of Fig. 12. There are
12 stabilizer generators for a distance-3 surface code, as
seen in Table VIII. Hence, we can potentially generate in
total 212 unique stabilizer operators, since the product of the
stabilizer operators returns another valid stabilizer operator.
However, in order to further simplify the expression given
in Eq. (60), we only consider the error patterns resembling
the specified stabilizer operators given in Table VIII, since
they exhibit a lower weight of non-identity Pauli matrices and
hence have a higher probability of occurance. Therefore, for
surface codes, the last term of Eq. (60) can be approximated
as (2d2 − 2d)p4(1 − p)n−4. The term (2d2 − 2d) represents
the number of stabilizer operators, which is given in Table X,
and we assume that all the weight of the stabilizer operators
w(Si) are equal to 4.

A. QBER Versus Depolarizing Probability

In order to characterize the performance of QTECCs by
simulations, we exploit the fact that the QTECCs belong to
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Fig. 17: Illustration of the harmful undetectable error pattern in quantum domain. The actual error pattern inflicts the state
of physical qubits is given in (b), while the decoder always decides to perform a recovery operator given in (a). Instead of
recovering the legitimate state of the physical qubits, the specified error recovery procedure generates a chain of error that
commutes with all of the stabilizer operators, as shown in (c). In quantum domain, it constitutes the harmful undetectable
error patterns. In classical domain, it resembles the error pattern that generates all-zero syndrome values.

the family of quantum CSS codes, which handle the bit-flips
(X) and phase-flips (Z) separately. Hence, we invoke two
independent binary symmetric channels (BSC), one for the
X channel and one for the Z channel, where each channel is
characterized by the flip probability of 2p/3, where p is the
associated depolarizing probability of the quantum depolariz-
ing channel [13], [16]. The decoder utilizes hard-decision ML
decoding relying on a simple LUT decoder, as exemplified
in Section III. However, this classical-domain simulation only
represents the performance of QTECCs without considering
the degenerate error patterns. To elaborate a little further, we
generate all-zero information bits at the input and send them
through the two independent BSC channels. Therefore, we
always consider all of non all-zero decoded bits at the decoder
output as an error. However, in order to additionally consider
several cases of degenerate error patterns, which is exemplified
in Fig. 16, we performed an additional evaluation step. We
evaluate the non all-zero corrected received words and check
for the degenerate error patterns. If it satisfies the degenerate
error pattern criterion that we have defined above, we conclude
that this is an error free case. However, we are not capable
of providing a complete list of all possible degenerate error
patterns and in this treatise we only consider the error pattern
resembling the stabilizer generators of Si, which is exemplified
in Table VIII and IX for surface codes and triangular codes,

respectively. The QBER performance of distance-3 QTECCs
versus the quantum depolarizing probability is portrayed in
Fig. 18, where the code parameters are given in Table XIII.
We also include the upper bound of the QTECCs performance
of Eq. (60) in Fig. 18. It can be clearly observed that the
upper bounds match with the QTECCs performance without
considering the degenerate error patterns.

As we mentioned earlier, there are two sources of the
degenerate error pattern at the output of the decoder. First,
the degenerate error patterns that imposed ubiquitous directly
by the quantum channel, where the error exhibits an identical
pattern to the stabilizer operator Si. Second, the degenerate
error pattern generated by the recovery operator R, when it
tries to recover the legitimate physical qubits, as illustrated
in Fig. 16. The second case is more dominant than the first
one. The reason can be explained as follows. Let us assume
the Z stabilizer operators of distance-3 surface code given in
Table VIII. There are six Z stabilizer operators correspond to
the 26 = 64 possible syndrome vector, including the error-free
scenario. Remember that the distance-3 surface code can only
flawlessly correct a single error qubit within the block of 13
physical qubits, where each of the single qubit error pattern
is associated with only one syndrome vector. In other words,
amongst all of 64 possible syndrome vectors, there are only 13
syndrome vectors used to uniquely distinguish the correctable
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(c) Surface code

Fig. 18: QBER performance of the distance-3 surface code,
rotated-surface code and colour code over the quantum depo-
larizing channel, which is capable of correcting a single qubit
error. The code parameters are given in Table XIII. For this
scenario, the decoder using hard-input ML decoding approach
for predicting the error pattern.

error patterns, while the rest of the syndrome vectors are
associated with the error pattern ambiguity, as exemplified in
Fig. 16 and 17. Due to this reason, the QTECCs are considered
as the highly degenerate QSCs. Hence, the upper bound of
the QBER performance matches the simulation-based perfor-

mance recorded without considering the degeneracy, since it
considers only the first source of the degeneracy, where only
a portion of all valid stabilizer operators Si ∈ S in Eq. (60)
is included in calculation. However, by accommodating both
of the degeneracy cases, the QBER performance of QTECCs
is indeed improved, as displayed in Fig. 18.

Increasing the minimum distance of a given QSC construc-
tion, which directly improves its per-codeword error corrrec-
tion capability (t), is achieved by increasing the number of
physical qubits (n) or by decreasing the quantum coding
rate. Specifically for QTECCs, increasing the minimum dis-
tance means simultaneously increasing the number of physical
qubits (n) and decreasing the quantum coding rate (rQ).
Naturally, the goal of increasing the minimum distance of the
QSCs is to achieve a better QBER performance. However, the
improvement of QBER the performance can only be observed
below a certain value of depolarizing probability (p), which
may be referred to as the threshold probability (pth). Using
the upper bound QBER performance of Eq. (60), we plot the
QBER curves for colour, rotated-surface, surface and toric
codes in Fig. 19. For each of the QTECC constructions, we
portray the upper bound QBER performance for the minimum
distances of d = {3, 5, 7, 9, 11}. The threshold probability
of each code is denoted by the crossover QBER curves,
which we portray in dashed line. The threshold probability of
colour, rotated-surface, surface and toric codes are 1.83×10−2,
1.34× 10−2, 6.28× 10−3 and 6.77× 10−3, respectively.

B. QBER Versus Distance from Hashing Bound

Presenting the performance of QTECCs over quantum de-
polarizing channel by portraying the QBER curves versus
the depolarizing probability (p) does not take the quantum
coding rate (rQ) into consideration. As we mentioned earlier,
we can simply decrease the quantum coding rate further and
further in order to increase the error correction capability of
the QTECCs. Nonetheless, for the sake of depicting a fair
comparison upon reducing the quantum coding rate, we have
to scrutinize how much performance improvement we obtain
upon decreasing the quantum coding rate. Therefore, in order
to demonstrate how much performance improvement we attain
compared to the how much we decrease the quantum coding
rate, we normalize the QBER performance by incorporating
the quantum hashing bound. More explicitly, the quantum
hashing bound can be expressed as follows [46]:

CQ(p) = 1−H(p)− p. log2(3), (61)

where H(p) is the binary entropy of p. More specifically, the
quantum hashing bound of Eq. (61) dictates that a random
quantum code C having a sufficiently long codeword and a

TABLE XIII: Code parameters for distance-3 colour code,
rotated surface code and surface code.

Code type n k d rQ

Colour code 7 1 3 1/7
Rotated surface code 9 1 3 1/9
Surface code 13 1 3 1/13
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Fig. 19: Upper bound QBER performance of QTECCs for the minimum distance of d = {3, 5, 7, 9, 11} based on Eq. (60)
and the code parameters given in Table X. The crossover amongst the QBER curves represents the threshold probability (pth),
which are portrayed in dashed line.

quantum coding rate rQ ≤ CQ(p) may yield an infinites-
imally low QBER for a given depolarizing probability p.
Alternatively, we can refer to CQ(p) as the hashing limit
for the quantum coding rate rQ associated with a given
depolarizing probability p. In terms of its classical dual pair,
the value of CQ is similar to the capacity limit. Similarly, for
a given coding rate rQ, we can find a value of p∗ satisfying
rQ = CQ(p

∗), where p∗ denotes the maximum value of
depolarizing probability p so that a quantum code C having
quantum coding rate of rQ can operate at an infinitesimally
low QBER. The value of p∗ may be referred to as the hashing
limit for depolarizing probability of p associated with a given
quantum coding rate rQ. In classical domain the value of p∗

is similar to the noise limit. Therefore, in general, the aim is
that of finding a QSC that is capable of performing as close
as possible to the quantum hashing bound.

For example, let us consider the distance-3 and distance-5
rotated surface codes having quantum coding rate of rQ = 1/9
and rQ = 1/25, respectively. By substituting CQ = 1/9 and
CQ = 1/25 into the Eq. (61), we obtain the noise limit of
p∗ = 0.160 and p∗ = 0.179, respectively. It is clearly seen
that the noise limit is higher for the quantum code exhibiting
a lower quantum coding rate. To incorporate the quantum
hashing bound into the QBER performances of QTECC, we

define the distance from hashing bound as follows:

D , p(rQ)− p, (62)

where p(rQ) is the hashing limit for depolarizing probability
of p associated with a given quantum coding rate rQ. In other
words, by changing the horizontal axis from the depolarizing
probability p to the distance D from hashing bound, we shift
all the QBER curves according to their hashing bounds, so that
all the hashing bounds are at the reference point of D = 0.

Several pertinent questions arise from the quantum hashing
bound formulation. Firstly, is there a noise limit, where no
QSC constructions are capable of achieving a satisfactorily
low QBER? Indeed, the answer is yes. By substituting the
CQ = 0 into Eq. (61), which is the lowest possible value
of achievable quantum coding rate, we arrive at the ultimate
hashing bound of p(0) ≈ 0.1893. Secondly, what is the
farthest possible distance from the quantum hashing bound
for any QSC construction. To answer this question, we have
to consider the worst-case scenario, where a QSC exhibiting
a near zero quantum coding rate (rQ ≈ 0) achieves an
infinitesimally low QBER at near zero quantum depolarizing
probability (p ≈ 0). By substituting the value of rQ = 0 and
p = 0 into Eq. (62), we define the ultimate distance of hashing
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Fig. 20: Upper bound performance of QTECCs in term of the QBER versus the distance D from the hashing bound. The code
parameters are given in Table X. The dashed lines portray the ultimate distance to the quantum hashing bound of D0 = 0.1893.

bound D0 as

D0 = p(0)− p
= 0.1893− 0

= 0.1893. (63)

Therefore, the desirable performance of any QSCs quantified
in terms of the QBER versus distance from the quantum
hashing bound is represented by the curves exhibiting a
reasonably low QBER as close as possible to the reference
point of D = 0. Naturally, this implies having a low QBER as
far as possible from the ultimate distance from the hashing
bound of D0 = 0.1893. In simpler terms, any QSCs can
only operate at a reasonably low QBER within the hashing
bound range of 0 ≤ D ≤ D0. Consequently, we should
consider the reduction of the quantum coding rate rQ as
beneficial only if the associated QBER performance curve
moves closer to the reference point of D = 0. Otherwise,
it is more advisable to find a better code construction ex-
hibiting an identical quantum coding rate, to increase the
number of physical qubits, while maintaining the quantum
coding rate, or to invoke more powerful decoding scheme,
for example by utilizing a soft-decision-aided decoder. The
QBER performance of QTECCs versus their distances from
the quantum hashing bound are portrayed in Fig. 20. It can be

observed that even though increasing the minimum distance
of the QTECCs yields a performance improvement in terms
of their QBER versus depolarizing probability p shown in
Fig. 19, in terms of their distance from the hasing bound
D, at low QBER, the curves are crowded in the vicinity of
the ultimate hashing bound distance of D0. Moreover, the
results show an agreement with the quantum coding rate versus
minimum distance evolution of QTECCs seen in Fig. 15.
The improvement of the minimum distance, which is directly
linked to the error correction capability, upon reducing the
quantum coding rate is not fast enough to compensate the
increasing number of physical qubits. Therefore, we believe
that QTECCs are most suitable for short to moderate codeword
lengths.

C. Fidelity
From an implementational perspective, a quantum gate

or quantum channel is often characterized by the so-called
fidelity, which represents the closeness of a pure quantum state
of |ψ〉 compared to the mixed states having the quantum den-
sity operator of ρ. More explicitly, since the quantum channel
imposes the quantum decoherence on our legitimate quantum
state representing the physical qubits |ψ〉, there is a probability
that decoder does not successfully recover the legitimate state.
Therefore, the ensemble of all the possible predicted legitimate
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Fig. 22: Upper bound fidelity performance of QTECCs.

state of physical qubits |ψ̂〉 can be represented using the
state of |ψi〉 having a probability of pi. The fidelity can be
formulated as follows [47]–[49]:

F = 〈ψ|ρ|ψ〉. (64)

while ρ, which portrays the statistical characteristics of a the
mixed states, is defined by

ρ =

N∑

i=1

pi|ψi〉〈ψi|, (65)

where the |ψi〉 represents all of the possible state in the
ensemble and pi is the probability of having state |ψi〉 in the
ensemble, which is subject to unity constraint of

∑N
i=1 pi = 1.

In order to demonstrate the benefit of QTECCs in the
context of quantum depolarizing channel, we compare the
so-called initial fidelity Fin and final fidelity Fout. The initial
fidelity is the fidelity of the pure quantum state of |ψ〉 over

the quantum depolarizing channel P unprotected by any QSCs
scheme. Therefore, the initial fidelity Fin can be expressed as
follows:

Fin = 1− p. (66)

The final fidelity is that of the pure state of the desired
output |ψ′〉 protected by the a QSC scheme after the recovery
procedure R and inverse encoder V† of Fig. 11. Therefore,
the final fidelity Fout of the quantum system can be readily
formulated as

Fout = 1− QBER. (67)

The fidelity performance for the distance-3 QTECCs are de-
picted in Fig. 21. The black solid line represents the condition
of Fin = Fout. The crossover point between the line of Fin =
Fout and fidelity performance curve of QTECCs is the break-
even point, which we may referred to as the threshold fidelity
Fth. The break-even point denotes the minimal initial fidelity
required to ensure that we do acquire a fidelity improvement
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Fig. 21: The performance of QTECCs having a minimum
distance of 3 in terms of fidelity of Eq. (64). The colour code
reaches the fidelity threshold earlier than the rotated-surface
and surface code, since the colour code has the lowest number
of physical qubits compared to the rotated surface code and
the surface code. The code parameters are given in Table XIII.

upon the applicaton of the QSC scheme, which is invoked for
protecting the state of the physical qubits. The upper bound of
threshold fidelity Fth for the different types of QTECCs having
code parameters listed in Table X is depicted in Fig. 22. It
can be observed that different code families having various
minimum distances d result in different threshold fidelity Fth.
For the QSCs utilizing hard-decision syndrome decoding, we
derive the upper-bound approximation formula for determining
the value of Fth. First, from Eq. (60) and Eq. (67), we arrive
at

Fout = 1− QBERupper

= 1−


1−

t=b d−1
2 c∑

i=0

(
n

i

)
pi(1− p)n−i




= 1−
n∑

b d−1
2 c+1

(
n

i

)
pi(1− p)n−i. (68)

For a low depolarizing probability p, the expression given in
Eq. (68) can be approximated in order to determine the upper
bound of the output fidelity as follows:

Fout ≈ 1−
(

n

bd−12 c+ 1

)
pb

d−1
2 c+1. (69)

Since the threshold fidelity satisfies the relationship of Fth =
Fin = Fout, we can substitute Fout = Fth and p = 1− Fth into
Eq. (69). Finally, the upper bound for the threshold probability

can be encapsulated as

Fth(n, d) = 1−
(

n

bd−12 c+ 1

)−1/b d−1
2 c

. (70)

For example, the threshold for a distance-3 colour code
having a quantum coding rate rQ = 1/7 based on Fig. 22
is Fth = 0.942, while using the upper bound approximation of
the fidelity threshold in Eq. (70) we have Fth = 0.952. For the
distance-3 of rotated surface code, surface code and toric code,
the threshold fidelity values based on Fig. 22 are Fth = 0.968,
Fth = 0.986 and Fth = 0.993, respectively. By using the
approximation of Eq. (70), the upper bound fidelity thresholds
are given by Fth = 0.972, Fth = 0.987 and Fth = 0.994,
respectively for the distance-3 rotated surface code, surface
code and toric code. Here, we use the family of QTECCs
as our representative examples, while the threshold fidelity of
Eq. (70) is generically applicable for any QSCs using hard-
decision syndrome decoding. Ultimately, the implementation
of QTECCs are capable of reducing the effect of quantum
decoherence, which is demonstrated by the QBER reduction
and also improving the reliability of quantum channel, which
is demonstrated by the fidelity improvement.

VI. CONCLUSIONS

We portrayed the evolution of the topological error correc-
tion codes designed in the classical domain to their quantum-
domain dual pairs. We showed that by arranging the bits of the
codeword on a lattice structure in classical domain provides
a benificial inherent error correction capability. Furthermore,
for a long codeword, the classical topological error correction
codes (TECCs) correspond to the family of LDPC codes
exhibiting attractive properties, such as unbounded minimum
distance as a function of the codeword length, structured con-
struction and a coding rate of r = 1/2. By contrast, the quan-
tum topological error correction codes (QTECCs) are more
suitable for applications requiring short to moderate codeword
lengths, since the quantum coding rate of QTECCs tends to
zero for a long codeword. We characterized the performance
of QTECCs in the face of the quantum depolarizing channel
in terms of the QBER attained. First, we showed that QTECCs
are highly degenerate quantum codes, therefore the classical
simulation is only capable of portraying the performance of
QTECCs without considering the degeneracy property. Sec-
ondly, we demonstrated that increasing the minimum distance
of the QTECCs improves the QBER performance. Addition-
ally, we normalized the performance by taking the coding
rate into consideration by introducing the distance from the
hashing bound. Explicitly, we have shown that the growth of
minimum distance of QTECCs upon increasing the codeword
length is not fast enough to compensate for the increased
codeword length. Consequently, the QBER performance of
QTECCs gradually tends to the ultimate distance from the
hashing bound. Finally, we determined the fidelity threshold
for QSCs based on hard-decision syndrome decoding, which
represents the minimum fidelity value required for a quantum
system in order to glean benefits from QSCs. Ultimately, the
employment of QSCs will improve the reliability of quantum
computers.
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