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Abstract— In this contribution we design the Iteratively De-
coded Self-Concatenated Convolutional Codes (SECCC-ID) using
Extrinsic Information Transfer (EXIT) charts. Good consti tuent
Trellis Coded Modulation (TCM) codes are selected for commu-
nicating over both uncorrelated Rayleigh fading and Additive
White Gaussian Noise (AWGN) channels. At the receiver iterative
decoding is invoked for exchanging extrinsic information between
the hypothetical decoder components. The convergence behaviour
of the decoder is analysed with the aid of symbol-based EXIT
charts. Similarly, the search for the best TCM constituent codes
is also based on EXIT chart analysis. Finally, we demonstrate
that the selected codes are capable of operating within 1 dB from
the maximum achievable rate.

I. I NTRODUCTION

TCM constitutes a joint coding and modulation technique
proposed by Ungerböck [1], where a raten/(n + 1) trellis
code is combined with anM =

(

2n+1
)

- point signal con-
stellation. It requires no bandwidth expansion relative toan
uncoded2n-point modulation scheme and yet, it is capable
of achieving significant coding gains for transmission over
power- and band-limited channels. Its applications to wireless
communication channels has also been explored in [2] and [3],
for example.

Concatenated coding schemes were first presented in [4].
Turbo codes based on parallel concatenated convolutional
codes (PCCC) using two or more constituent codes were pro-
posed in [5]. The discovery of turbo codes was a breakthrough
in coding theory, because they are capable of operating near
the Shannon limit [6]. Various turbo trellis coded modulation
(TTCM) schemes were proposed in [7], [8] and [9]. Serially
concatenated convolutional codes (SCCC) [10] have been
shown to yield a performance comparable, and in some cases
superior, to turbo codes. Self-concatenated convolutional codes
(SECCC-ID) constitute another attractive iterative detection
aided-code family proposed by Benedettoet al. [11] and
Loeliger [12].

Extrinsic Information Transfer (EXIT) charts [13] constitute
an excellent tool designed for analysing the convergence
behaviour of an iterative decoding/detection scheme with-
out performing time-consuming bit-by-bit decoding. Symbol-
based EXIT charts [14] of non-binary serial and parallel
concatenated schemes have been studied in [15] and [16],
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respectively. However, EXIT charts have not been used for
designing SECCC-ID schemes.

SECCCs exhibit a low complexity system since they invoke
only a single encoder and a single decoder. The published
studies in the literature of SECCC-ID schemes do not aim
for finding good codes in terms of decoding convergence. An
EXIT chart based analysis of the iterative decoder provides
an insight into its decoding convergence behaviour and hence
it is helpful for finding the best constituent TCM codes for
SECCCs.

The rest of the paper is organised as follows. Section II
presents our system model, while Section III discusses our
code design procedure using EXIT charts. Our results are
discussed in Section IV, while our conclusions are offered
in Section V.

II. SYSTEM MODEL

We consider a half-rate SECCC scheme in this paper. Fur-
thermore,M = 4-ary Phase-Shift Keying (4PSK) modulation
is used and both the Additive White Gaussian Noise (AWGN)
and uncorrelated Rayleigh fading channels are considered.

As shown in Fig. 1, the input bit sequence{b1} of the
self-concatenated encoder is interleaved for yielding thebit
sequence{b2}. The resultant bit sequences are input to the
TCM constituent encoder. At the output of the encoder the
interleaved bit sequence is punctured. Hence, the output ofthe
encoder is composed of the combined systematic bit sequence
and parity bit sequence.

The TCM constituent encoder has a coding rate ofR0 = 2
3 ,

where two input bits, namelyb1 and b2 are fed to the TCM
encoder for generating three output bits, namelyb0, b1 andb2,
during each encoding instance. However, the interleaved bit b2

is punctured for attaining a higher rate ofR = 1
2 as compared

to a 1
3 -rate, if bit b2 was not punctured. The systematic and

parity bits,b0 andb1, are mapped to a QPSK symbol asx =
µ(b0b1), whereµ(.) is the Set Partitioning (SP) based mapping
function [2]. The QPSK symbolx is then transmitted over the
communication channel.

At the receiver side the received symbol is given by:

y = hx + n, (1)

whereh is the channel’s non-dispersive fading coefficient and
n is the AWGN having a variance ofN0

2 per dimension. This
signal is then used by a soft demapper for calculating the
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Fig. 1. SECCC-ID System

conditional probability density function (PDF) of receiving y,
whenx(m) was transmitted:

P (y|x(m)) =
1

πN0
exp

(

−

∣

∣y − hx(m)
∣

∣

2

N0

)

, (2)

wherex(m) = µ(b0b1) is the hypothetically transmitted 4PSK
symbol for m ∈ {0, 1, 2, 3}. Then these PDFs are passed to
a soft depuncturer for computing the conditional PDF of the
(n + 1) = 3-bit coded symbol:

P (y|x̃(l)) = P (y|x(m))P (b2), (3)

where x̃(l) is the hypothetically transmitted 3-bit symbol
related to b0, b1 and b2 for l ∈ {0, 1.., 7}. Since b2 was
punctured, the probability of transmittingb2 is given by

P (b2) = 0.5, (4)

The 23 = 8-valued PDFP (y|x̃(l)) characterising each3-bit
symbol is then passed to the SECCC decoder shown in Fig. 1.

The decoder is a self-concatenated decoder using a soft-
input soft-output (SISO)maximum a posteriori probability
(MAP) algorithm [17]. It first calculates the extrinsic Log-
Likelihood Ratio (LLR) of the information bits, namelyLe(b1)
and Le(b2). Then they are appropriately interleaved to yield
the a priori LLRs of the information bits, namelyLa(b1)
and La(b2), as shown in Fig. 1. Self-concatenated decoding
proceeds, until a fixed number of iterations is reached.

III. C ODE DESIGN

A. EXIT Charts

EXIT charts constitute a powerful tool designed for
analysing the convergence behaviour of concatenated codes
without time-consuming bit-by-bit simulation of the actual
system. They analyse the input/output mutual information
characteristics of a SISO decoder by modelling thea priori
LLRs and computing the corresponding mutual information
of the extrinsic LLRs. However, the EXIT chart computation
assumes the employment of a sufficiently long interleaver,
where the LLRs may be rendered Gaussian distributed. The
waterfall-like region in the BER curve of a concatenated code
can be successfully predicted with the aid of EXIT charts.

The decoding model of the SECCC-ID scheme can be
represented by Fig. 2. The information bit sequence isU ,

which is encoded for yielding the coded symbol sequenceX.
It is then transmitted over the communication channel and the
received symbol sequence is given byY , which is then fed to
the SISO SECCC decoder. Thea priori channel models thea
priori probabilities of the information bit sequenceU by A(U)
and its interleaved versionW by A(W ). The SECCC SISO
decoder then computes both thea posteriori bit probabilities
O(U) and theextrinsic bit probabilitiesE(U) andE(W ).
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Fig. 2. Decoding model for an SECCC-ID scheme.

B. Code Design Using EXIT Charts

The EXIT chart based code design procedure can be ex-
plained using the example of a memoryν = 3 rate-2/3 TCM
encoder as shown in Fig. 1. The connections shown at the en-
coder in Fig. 1 between the information bits and the modulo-2
adders are uniquely determined by the generator polynomials.
The feed-forward generator polynomials are denoted asgi for
i ∈ {1, 2 . . . , n}, while the feed-back generator polynomial
is denoted asgr. As shown in Fig. 1, there are 4 possible
connection points, when there are three shift register stages,
each denoted by D. The four binary digits seen in the generator
polynomials indicates the presence or absence of connections.
For example, the generator polynomial corresponding to the
first information bit b1 is given by g1 = [0010]2, which
indicate thatb1 is connected only to the third modulo-2 adder
from the left. The code generator is expressed in octal format
asG = [gr g1 g2]8 = [11 2 4]8.

Since we are not aiming for maximising the minimal dis-
tance, we can predefine the generator polynomial connections
of the information bits and then only search for the best
generator polynomial creating the parity bit [18]. The feed-
back generator polynomial is denoted asgr = [1xx1]2, where
the first and the last digits ofgr are fixed to one and the
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rest of the two digits can be either x= 0 or x= 1, giving
rise to only four possible devices forgr for the ν = 3 TCM
code. These four feed-back generator polynomials are given
by [11 2 10]8, [13 2 10]8, [15 2 10]8 and [17 2 10]8. We
plot the corresponding EXIT curves for all these polynomials
and then identify the specific code having the best decoding
convergence by choosing the one that has an open EXIT tunnel
at the lowest signal-to-noise ratio (SNR).
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The EXIT charts of self-concatenated codes are typi-
cally similar to those of the parallel concatenated TTCM
schemes [14, 16], where an open EXIT tunnel exists if the
EXIT curve does not intersect with the straight line connecting
the point (IA = 0, IE = 0) to the point (IA = 2, IE = 2)
in the EXIT chart. In [16] EXIT charts were successfully
used to compare performance of different TTCM schemes by
employing the same method to one of component decoders.

The EXIT curves for three of theν = 5 constituent TCM
codes are shown in Fig. 3, where it was found that the code
associated with the generator polynomial [77 2 10]8 has an
open EXIT tunnel at the lowestEb/N0 value of 3.02 dB. Fig. 4
depicts the EXIT curves of the constituent codes having a
generator polynomial of [77 2 10]8 together with two of its de-
coding trajectory snapshots. The two EXIT curves are for two
hypothtical decoder components of SECCC iterating between
each other. Since these are identical components, therefore
we need to compute the EXIT curve of only one component
and the other is its mirror image. It is for the same reason
that in Fig. 3 only one EXIT curve (of a particular generator
polynomial) has been compared against a 45 degree diagonal
line . The EXIT curves of the hypothtical decoders component
are plotted on the same EXIT chart together with its decoding
trajectory for the sake of visualizing the transfer of extrinsic
information between the decoders. Similar to the EXIT curves
of the TTCM schemes, the decoding trajectories based on bit-
by-bit simulations do not exactly match the predicted EXIT
curves [18]. The main reason for the mismatch is that the
EXIT charts were generated based on the assumption that
the extrinsic information and the systematic information of
each TCM encoded symbol are independent of each other,
which has a limited validity since both the systematic and
the parity bits are transmitted together as a single2n+1-ary
symbol. In a symbol based EXIT chart analysis mismatch is
expected [14] . However, we found that the EXIT charts of the
SECCC scheme can be used as upper bounds since the actual
EXIT chart tunnel is always wider than the predicted EXIT
chart tunnel. Furthermore, the best TCM code found based on
the EXIT charts also exhibits the best BER performance based
on bit-by-bit simulations, as we will see in Section IV.

IV. RESULTS AND DISCUSSION

More quantitatively, the above mentioned EXIT chart
method was used to find the best constituent TCM codes for
ν = {3, 4, 5}, when communicating over AWGN and uncorre-
lated Rayleigh fading channels. The corresponding generator
polynomials and the channel capacity limit are shown in
Table I together with the predicted and actual convergence
thresholds expressed inEb/N0.

ν Code AWGN Channel Rayleigh Channel
Polynomial Eb/N0 (dB) Eb/N0 (dB)
(Octal)

Pred. Actual ω Pred. Actual ω

3 [17 2 10]8 1.19 1.0 0.19 3.32 3.00 1.83
4 [37 2 10]8 1.06 0.7 3.09 2.70
5 [77 2 10]8 1.02 0.7 3.02 2.60

TABLE I

THE CODE POLYNOMIALS OF THE BESTTCM CONSTITUENT CODES AND

THEIR DECODING CONVERGENCE THRESHOLDS.

The predicted convergence threshold is based on the EXIT
chart analysis as explained in Section III-B, while the actual
convergence threshold is based on the corresponding BER
curve given by the specifiedEb/N0 value, where there is
a sudden drop of BER after a certain number of decoding
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iterations. It becomes possible to attain an infinitesimally low
BER beyond the convergence threshold, provided that the
block length is sufficiently long and the number of decod-
ing iteration is sufficiently high. The BER versusEb/N0

performance curves of the various 4PSK-assisted SECCC-
ID schemes recorded from symbol-by-symbol simulations are
shown in Figs. 5, 6 and 7. A block length of104 symbols
was considered and the number of decoding iterations (I) was
fixed to 20 in the simulations.

For the best constituent TCM codes at fixed code memory
ν, the distance from the channel capacity to their convergence
threshold has been shown in Figs. 5, 6 and 7.
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Fig. 5. The BER versusEb/N0 performance of variousν = 3 half-rate
4PSK-assisted SECCC-ID schemes when employing a block length of 104

symbols andI = 20 decoding iterations.
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Fig. 6. The BER versusEb/N0 performance of variousν = 4 half-rate
4PSK-assisted SECCC-ID schemes when employing a block length of 104

symbols andI = 20 decoding iterations.

It can be observed that by increasing the code memoryν
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Fig. 7. The BER versusEb/N0 performance of variousν = 5 half-rate
4PSK-assisted SECCC-ID schemes when employing a block length of 104

symbols andI = 20 decoding iterations.
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Fig. 8. The BER versusEb/N0 performance of best codes amongν = 3, 4

and5, half-rate 4PSK-assisted SECCC-ID schemes when employinga block
length of104 symbols andI = 50 decoding iterations.

from 3 to 4 there is a 0.3 dB gain in case of both AWGN
and uncorrelated Rayleigh fading channel. However, whenν
is increased from 3 to 5, the gain stays at 0.3 dB in case of
the AWGN channel, but increases to 0.4 dB in case of the
uncorrelated Rayleigh fading channel.

As we can see from Table I, the actual achievable conver-
gence threshold is about 0.3 dB lower than the convergence
threshold predicted by the EXIT chart. However, the best code
found for a given code memory also exhibits the best BER
performance among the top three codes considered for that
particular code memory, as we can see from Figs. 5 to 7.
Hence, the symbol-based EXIT chart is useful for finding
the best TCM constituent codes, when designing SECCC-
ID schemes for having a decoding convergence at the lowest
possibleEb/N0 value. However, we need a ‘truncated’ union
bound analysis [19], if we aim for attaining a low BER floor.
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In general, a low BER floor can be attained by increasing the
block length [19].

The Eb/N0 values required for attaining a capacity of
1 bit/s/Hz are 0.19 dB and 1.83 dB for the 4PSK-based
discrete-input AWGN and Rayleigh fading channels, respec-
tively [20]. As seen in Figs. 5 to 7, the codes found from
the EXIT chart based design are capable of approaching the
channel capacity of both the AWGN and uncorrelated Rayleigh
fading channels. We then further increased the number of
decoding iterations fromI = 20 to 50 and plotted the BER
curves of best codes forν = 3, 4 and5 in Fig. 8.

When the number of iterations is increased from 20 to 50,
a further 0.1 dB gain is achieved by employing a generator
polynomial of [77 2 10]8 for communicating over either the
AWGN or uncorrelated Rayleigh fading channels, as seen in
Figs. 7 and 8. Finally, we can see from Fig. 8, that theν = 5
SECCC-ID scheme is only 0.41 dB and 0.67 dB away from the
AWGN and Rayleigh fading channel’s capacity, respectively.

V. CONCLUSIONS

We have designed near-capacity SECCC-ID schemes based
on their decoding convergence analysis. The symbol-based
EXIT chart was found to be fairly accurate in predicting
the decoding convergence threshold, despite the inaccurate
simplifying assumption that theextrinsic information and
the systematic information of each SECCC-encoded symbol
are independent of each other, which again has a limited
validity. Good constituent TCM codes were found for assisting
the SECCC-ID scheme in attaining decoding convergence at
the lowest possibleEb/N0 value, when communicating over
both AWGN and uncorrelated Rayleigh fading channels. The
SECCC-ID schemes designed are capable of operating within
about 0.5 dB and 1.0 dB from the AWGN and Rayleigh fading
channel’s capacity, respectively. Our future work will focus
on investigating the performance of SECCC-ID scheme in
non-coherently detected cooperative communication systems
as well as on designing other near-capacity self-concatenated
codes using different constituent schemes.
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