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Near-Capacity Code Design for
Entanglement-Assisted Classical Communication

over Quantum Depolarizing Channels
Zunaira Babar, Soon Xin Ng, and Lajos Hanzo

Abstract—We have conceived a near-capacity code design for
entanglement-assisted classical communication over the quan-
tum depolarizing channel. The proposed system relies on effi-
cient near-capacity classical code designs for approaching the
entanglement-assisted classical capacity of a quantum depolar-
izing channel. It incorporates an Irregular Convolutional Code
(IRCC), a Unity Rate Code (URC) and a soft-decision aided
Superdense Code (SD), which is hence referred to as an IRCC-
URC-SD arrangement. Furthermore, the entanglement-assisted
classical capacity of an N -qubit superdense code transmitted
over a depolarizing channel is invoked for benchmarking. It is
demonstrated that the proposed system operates within 0.4 dB
of the achievable noise limit for both 2-qubit as well as 3-qubit
SD schemes. More specifically, our design exhibits a deviation
of only 0.062 and 0.031 classical bits per channel use from the
corresponding 2-qubit and 3-qubit capacity limits, respectively.
The proposed system is also benchmarked against the classical
convolutional and turbo codes.

Index Terms—Entanglement-assisted classical communication,
superdense coding, irregular convolutional codes, EXIT charts,
near-capacity design.

I. INTRODUCTION

ENTANGLEMENT-ASSISTED classical capacity [1] sets
the ultimate capacity limit on the reliable transmission of

classical information over a noisy quantum channel, when an
unlimited amount of noiseless entanglement is shared between
the sender and the receiver. The corresponding classical-
quantum-classical transmission model, whereby classical in-
formation is transmitted over a quantum channel with the aid
of the Superdense (SD) coding protocol, is depicted in Fig. 1.
Here, Alice intends to transmit her 2-bit classical message x
to Bob using a 2-qubit maximally entangled state |ψx〉AB ,
where A denotes the information qubit, while B is a pre-
shared entangled qubit transmitted over a noiseless channel.
The classical message x is encoded (block E of Fig. 1) into
the corresponding quantum state using the 2-qubit Superdense
(2SD) coding protocol of [2]. The processed qubit A′ is passed
through a quantum depolarizing channel, which is denoted
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Fig. 1. Classical-quantum-classical transmission model employing 2-qubit
SD.

as NA′→B′
. Here, NA′→B′

can be viewed as a Completely
Positive Trace-Preserving (CPTP) mapping, which maps a
state ρ onto a linear combination of itself and the maximally
entangled state. More explicitly, for a depolarizing probability
p, this mapping is given by [3]:

Np(ρ) = (1− p)ρ+
p

3
XρX+

p

3
YρY +

p

3
ZρZ, (1)

where X, Y and Z are Pauli matrices. The receiver Bob
performs symbol-by-symbol Bell-basis measurement [3], [4]
(block D of Fig. 1) on the received state |ψy〉B

′B , yielding
the 2-bit classical message y. Thus, the overall transmission
model reduces to a classical discrete-memoryless channel for
which the resultant entanglement-assisted classical capacity is
quantified as follows [1], [5]:

C2sd = 2+ (1− p) log2(1− p)+ p log2(p/3) cbits/use1. (2)

This transmission model was extended to a distributed net-
work in [6], whereby the 2SD scheme of [2] was generalized
to an N -particle system with the aid of an N -qubit maximally
entangled state. The resultant protocol facilitates the receiver
to detect messages from (N − 1) users with the aid of a
single maximally entangled quantum state as well as a single
quantum measurement at the cost of a reduced entanglement-
assisted classical capacity.

In this treatise, we exploit the efficient near-capacity clas-
sical code designs of [7], [8] for the sake of approaching
the aforementioned entanglement-assisted classical capacity
of the depolarizing channel. More explicitly, we have pro-
posed a superdense coding based near-capacity design for
entanglement-assisted classical communication over a depo-
larizing channel, which incorporates a classical Irregular
Convolutional Code (IRCC) and a Unity Rate Code (URC).
We have also introduced a soft-decision aided SD decoder

1Classical bits per channel use.
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for facilitating iterative decoding. The proposed scheme is
intrinsically amalgamated both with 2-qubit as well as 3-
qubit superdense codes and it is benchmarked against the
corresponding entanglement-assisted classical capacity. Based
on our simulation results, the former exhibits only a slight
deviation of 0.062 cbits/use with respect to the entanglement-
assisted capacity, while the latter operates at 0.031 cbits/use
from the attainable capacity. In terms of convergence thresh-
old, both schemes operate within 0.4 dB of the maximum noise
limit.

The rest of the paper is organized as follows. We commence
by reviewing the entanglement-assisted classical capacity of
N -qubit SD in Section II. We then introduce our system model
in Section III. This is followed by our near-capacity design,
which is detailed in Section IV. Finally, our simulation results
are discussed in Section V, while our conclusions are offered
in Section VI.

II. ENTANGLEMENT-ASSISTED CLASSICAL CAPACITY OF

N -QUBIT SUPERDENSE CODE

The entanglement-assisted classical capacity of 2SD over
a depolarizing channel given by Eq. (2) has been derived
in [1], [5] based on its equivalence to a 4-ary discrete classical
channel. In this section, we will generalize it to N -qubit SD by
exploiting the well-known equivalent M -ary classical channel
model (M = 2N ).

Let us recall that the capacity C of a classical channel is
equivalent to the maximum value of the conveyed information
I(x, y) [9], i.e. we have:

C = max
P (x)

I(x, y) = max
P (x)

[H(y)−H(y|x)], (3)

where H is the classical entropy function. Since C is max-
imized for equiprobable source symbols, the capacity of an
M -ary classical channel is given by:

C = log2 M −H(y|x), (4)

which is further defined as follows [10], [11]:

C = log2 M +E

[
M−1∑
m=0

P (y|x = x(m)) log2 P (y|x = x(m))

]
,

(5)
using Eq. (10) and (11) of [10]. Here E[.] is the expectation (or
time average) of y and x(m) is the hypothetically transmitted
classical message for m ∈ {0, 1, . . . ,M − 1}.

Based on Eq. (5), the capacity of N -qubit SD coding relying
on a single noiseless pre-shared entangled qubit may be readily
expressed as:

CNsd =
N +

∑M−1
m=0 P (y|x = x(m)) log2 P (y|x = x(m))

N − 1
,

(6)
where P (y|x) denotes the transition probabilities of the in-
duced classical channel2.

Since symbol-by-symbol measurements performed at the
2-qubit superdense decoder reduces the transmission model

2Due to the time-invariant nature of P (y|x), the average information is
the same as the instantaneous value. The expectation operation of Eq. (5) can
therefore be ignored.
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Fig. 2. Schematic of the proposed IRCC-URC-SD classical-quantum
communication system.

of Fig. 1 to a 4-ary classical channel, its channel transition
probabilities are given by:

P (y|x = x(m)) =

{
1− p, if E = 0
p/3, if E ∈ {1, 2, 3}, (7)

where m ∈ {0, 1, 2, 3}. Furthermore, E is the decimal equiv-
alent of the N -bit classical error e, which is induced by the
depolarizing channel characterized in Eq. (1). More specif-
ically, the N -bit classical error e = [e0, . . . , ei, . . . , eN−1]
relates the ith bit of x = [x0, . . . , xi, . . . , xN−1] to that of
y = [y0, . . . , yi, . . . , yN−1] as follows:

yi = xi ⊕ ei or ei = yi ⊕ xi. (8)

Similarly, symbol-by-symbol measurements performed at
the 3-qubit superdense decoder reduces the overall transmis-
sion to an 8-ary classical channel, whose transition probabil-
ities can be readily worked out as follows:

P (y|x = x(m)) =

⎧⎪⎪⎨
⎪⎪⎩

(1− p)2 + p2/9, if E ∈ {0}
(1− p)(p/3) + p2/9, if E ∈ {2, 3, 6, 7}
2(1− p)(p/3), if E ∈ {4}
2p2/9, if E ∈ {1, 5},

(9)
where we have m ∈ {0, 1, . . . , 7}.

III. SYSTEM MODEL

In this section we will present the architecture of our
proposed classical-quantum communication system, which is
designed for approaching the entanglement-assisted classical
capacity of the N -qubit superdense code with the aid of
EXtrinsic Information Transfer (EXIT) charts [7], [12], [13].
Fig. 2 shows the general schematic of the proposed system,
which employs an Irregular Convolutional Code (IRCC) [14],
[15] for achieving the near-capacity performance. Further-
more, a symbol-based recursive Unity Rate Code (URC)
having a generator polynomial of G(D) = 1

1+D [7] is used
as a precoder for reaching the (1, 1) point of perfect decoding
convergence in the EXIT chart [16]. Since the resultant system
of Fig. 2 has three serially concatenated stages, we would
need two 3-dimensional EXIT charts, which is cumbersome
to handle. Hence, we amalgamated our Superdense code (SD)
with the symbol-based URC, which hence constitutes an
amalgamated inner component, while the bit-based IRCC is
our outer component.
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At the transmitter, the system is fed with classical bits
{u1}, which are encoded by an IRCC encoder. The IRCC-
encoded bits {v1} of Fig. 2 are then interleaved (π), yielding
the permuted bit stream {u2}, which is converted to symbols3

and fed to the URC encoder of Fig. 2. Classical to quantum
domain conversion then takes place at the SD encoder, which
maps the classical symbols x onto the orthogonal quantum
states |ψx〉A

′B using the maximally entangled state |ψx〉AB ,
as discussed in Section I. Hence, the SD encoder has a function
similar to that of the classical PSK/QAM bit-to-symbol map-
per, which maps several classical bits onto a complex-valued
phasor for communication using the classical electromagnetic
waves. The qubits of the resultant quantum state are then
serially transmitted over the quantum depolarizing channel4.

At the receiver, iterative decoding is invoked for exchanging
extrinsic information between the inner (URC-SD) and outer
(IRCC) decoders. Here the notations A(b) and E(b) refer
to the a priori and extrinsic probabilities of b, where we
have b ∈ {v1, u2, x}, which are exploited for achieving
decoding convergence to a vanishingly low BER. The SD
decoder converts the received orthogonal states |ψy〉B

′B to
classical symbols y by performing a joint measurement in
the orthonormal basis. It must be highlighted here that a
conventional SD decoder yields the hard-decision outputs.
Instead, here we conceive a soft-decision SD decoder, which
computes the corresponding extrinsic probability E(x) for the
transmitted classical symbol x, as follows:

E(x) ≈ P (y|x), (10)

where P (y|x) is given by Eq. (7) and (9) for the 2-qubit and
3-qubit schemes, respectively.The soft output E(x) is then
fed into the URC MAP decoder, which engages in iterative
decoding with the IRCC decoder.

IV. NEAR-CAPACITY DESIGN

A. EXIT Charts

EXIT charts [7], [12], [13] are capable of visualizing the
convergence behaviour of iterative decoding schemes by ex-
ploiting the input/output relations of the constituent decoders
in terms of their average Mutual Information (MI) transfer
characteristics. In the context of our proposed model of Fig. 2,
the EXIT chart visualizes the exchange of the following four
MI terms:

1) average a priori MI between u2 and A(u2): IA(u2),
2) average a priori MI between v1 and A(v1): IA(v1),
3) average extrinsic MI between u2 and E(u2): IE(u2), and
4) average extrinsic MI between v1 and E(v1): IE(v1).

Here, IA(u2) and IE(u2) constitute the EXIT curve of the
inner decoder, while IA(v1) and IE(v1) yield the EXIT curve
of the outer decoder. For the sake of constructing the inner
and outer EXIT curves, the a priori information, A(u2) and
A(v1) respectively, is modeled using a Gaussian distribution,
having a mean of zero and a variance of σ2

A, for a range of

3Bit-to-symbol convertor is assumed to be inside the URC Encoder block
of Fig. 2.

4As illustrated earlier in Fig. 1, the processed qubit(s) A′ is transmitted
over the noisy quantum channel, while B is shared between Alice and Bob
over a noiseless channel.

IA(u2), IA(v1) ∈ [0, 1]. The corresponding average extrinsic
MI can be formulated as [10], [11]:

IE(u2) = log2 M + E

[
M−1∑
m=0

E(u
(m)
2 ) log2(E(u

(m)
2 ))

]
, (11)

and

IE(v1) = log2 M + E

[
M−1∑
m=0

E(v
(m)
1 ) log2(E(v

(m)
1 ))

]
. (12)

Furthermore, since we are employing symbol-to-bit conversion
at the URC decoder, we incorporate binary EXIT charts in our
design. This in turn implies that in Eq. (11) and (12) we have
M = 2 and m ∈ {0, 1}. The resultant inner EXIT function
Tu2 is given by:

IE(u2) = Tu2 [IA(u2), p], (13)

and outer EXIT function Tv1 is as follows:

IE(v1) = Tv1 [IA(v1)]. (14)

More explicitly, unlike Tv1 , Tu2 is a function of the depo-
larizing probability p, since the inner decoder is fed by the
channel. Finally, the MI transfer characteristics of both the
decoders encapsulated by Eq. (13) and (14) are plotted in
the same graph, with the x and y axes of the outer decoder
swapped. The resultant EXIT chart is capable of visualizing
the exchange of extrinsic MI as a stair-case-shaped decoding
trajectory, as the iterations proceed.

B. Near-Capacity IRCC-URC-SD Design

We have exploited the area property of EXIT charts [17] for
designing a near-capacity classical error correction code for
our classical-quantum communication system of Fig. 2. Ac-
cording to this property, the area under the EXIT curve of the
inner decoder is approximately equal to the attainable channel
capacity [17], provided that the channel’s input symbols are
equiprobable. Since our system model of Fig. 2 transmits
classical information over a quantum depolarizing channel, the
attainable channel capacity of the system is the entanglement-
assisted classical capacity given in Eq. (6). However, as
mentioned in Section III, symbol-to-bit conversion takes place
at the output of the URC decoder. This incurs an inherent
capacity loss, which cannot be recovered by any bit-based
error correcting code. The capacity loss for both the 2SD
and 3SD schemes is quantified in Fig. 3, which compares
their bit-based and symbol-based capacities. Here, the bit-
based capacity is computed by marginalizing the symbol-
based probabilities P (y|x) of Eq. (7) and (9) to bit-based
probabilities P (yi|xi) for i ∈ {0, 1, . . . , N − 1}, assuming
that the constituent bits are independent. Nevertheless, it must
be pointed out that by virtue of being a unity rate code, the
URC does not impose any capacity loss, as verified in Fig. 3.
The capacity of our inner decoder (URC-SD) is approximately
equal to the attainable bit-based entanglement-assisted classi-
cal capacity for both 2-qubit and 3-qubit superdense codes.
The URC is only invoked for transforming the horizontal
EXIT curve of the SD decoder to a slanted one for the sake
of improving the scheme’s decoding convergence, as detailed
in the next section.
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Fig. 3. Classical information rate (cbits/use) versus quantum depolarizing
probability for 2-qubit and 3-qubit superdense codes with and without URC.

Furthermore, the area under the EXIT curve of the outer
decoder is equivalent to (1 − Ro), where Ro is its coding
rate [17]. Therefore, our near-capacity design aims for creating
a narrow, but marginally open tunnel between the EXIT curves
of the inner and outer decoders at the highest possible depo-
larizing probability, which corresponds to the lowest possible
SNR for a classical channel. A feasible design option could
be to create the EXIT curves of all the possible convolutional
codes to find the optimal code C, which gives the best match,
i.e. whose EXIT curve yields a marginally open tunnel with
the inner decoder’s EXIT curve of URC-SD. To circumvent
this tedious task, we have invoked the Irregular Convolutional
Code (IRCC) of [15], whereby a family of subcodes Cl,
l ∈ {1, 2, . . . , L}, is used for constructing the target code
C. Due to its inherent flexibility, the resultant IRCC provides
a better match than any single code. Furthermore, for the
sake of reducing the encoding and decoding complexity, the
family of subcodes Cl is constructed by selecting an r1-rate
convolutional code C1 as the mother code and obtaining the
remaining (L− 1) subcodes Cl of rate rl > r1 by puncturing
the mother code Cl. The lth subcode has a coding rate of rl and
it encodes a specifically designed fraction, �l, of the original
information bits to �lNc encoded bits. Here, Nc is the total
length of the coded frame. More specifically, for an L-subcode
IRCC, �l is the lth IRCC weighting coefficient satisfying the
following constraints [14], [15]:

L∑
l=1

�l = 1 , Ro =
L∑

l=1

�lrl , �l ∈ [0, 1], ∀l , (15)

which can be conveniently represented in the following matrix
form:[

1 1 . . . 1
r1 r2 . . . rL

] [
�1 �2 . . . �L

]T
=

[
1
Ro

]
C � = d . (16)

In our design, we have employed an IRCC relying on a set
of 17 memory-4 convolutional subcodes having 17 different
coding rates between 0 and 1, which was found in [15]. These
17 subcodes are derived such that it covers the complete
range of coding rates from 0.1 to 0.9 with a rate-increment of
0.05, i.e. having rates of rl ∈ {0.1, 0.15, 0.2, . . . , 0.85, 0.9}.

exitchart-ircc-components.gle
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Fig. 4. Normalized outer EXIT curves (inverted) of the 17 IRCC subcodes.

Fig. 4 shows the inverted outer EXIT curves for each of the
constituent subcode of the IRCC scheme.

In physically tangible terms, the input bit stream is di-
vided into 17 fractions corresponding to the 17 different-rate
subcodes and the specific optimum fractions to be encoded
by these codes are found by dynamic programming. More
specifically, the EXIT curves of the 17 subcodes, given in
Fig. 4, are superimposed onto each other after weighting by
the appropriate fraction-based weighting coefficients, which
are determined by minimizing the area of the open EXIT-
tunnel. To elaborate a little further, the transfer function of
the IRCC is given by:

IE(v1) = Tv1

[
IA(v1)

]
=

L∑
l=1

�l Tv1,l

[
IA(v1)

]
, (17)

where Tv1,l

[
IA(v1)

]
= IE(v1),l is the transfer function of

the lth subcode. We employed the curve matching algorithm
of [14], [15] for optimizing the weighting coefficients of
the IRCC subcodes by ensuring that a narrow, yet open
tunnel exists between the EXIT curves of the outer and inner
decoder at the highest possible depolarizing probability; thus,
guaranteeing that the system has a near-capacity performance.

V. RESULTS AND DISCUSSIONS

Based on the aforementioned approach, we have designed a
superdense coding based near-capacity code for entanglement-
assisted classical communication over the quantum depolariz-
ing channel. Since we intend to design a 1/2-rate system, we
have assumed a constant overall coding rate of 0.5 for the
IRCC. Fig. 5 shows the normalized EXIT curves for 2SD at
a depolarizing probability of 0.15 and using an interleaver
length of 30, 000 bits. As expected, the EXIT curve of the
2SD decoder is a horizontal straight line. Hence, our URC is
used as a precoder, to transform this horizontal EXIT curve
into a slanted curve which terminates at the (1, 1) point of the
EXIT chart; thus, facilitating convergence to an infinitesimally
low BER. More specifically, the area under the EXIT curve
remains the same, yet reaches the (1, 1) point. Furthermore,
using the curve matching algorithm of [14], [15], the IRCC
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depolarizing probability of 0.15.

weight vector was optimized to get a narrow open tunnel
as evident in Fig. 5. The corresponding weights of the 17
IRCC subcodes are �T = [0 0 0 0.0177 0.0145 0 0.6455
0 0 0 0 0.1797 0.0580 0 0 0.0105 0.0742], where only
seven subcodes are activated. The tunnel is narrow, but wide
enough for successful convergence, as visualized using the
decoding trajectories of Fig. 5. If the depolarizing probability
is increased beyond 0.15, the EXIT curves of the inner and
outer decoder crossover, hence closing the tunnel. Thus, the
system has a convergence threshold of 0.15. In other words,
it can tolerate depolarizing probabilities upto p = 0.15, and
yet achieve an infinitesimally low BER. However, this would
require a high number of iterations between the IRCC and
URC-2SD, hence imposing a high complexity.

The coding rate of the designed IRCC-URC-2SD system is
1 cbit/use, since a 1/2-rate IRCC is used. From the bit-based
capacity curve of Fig. 3, it can be found that the associated
maximum tolerable depolarizing probability is 0.165. By
contrast, the convergence threshold of our system is 0.15.
Thus, it operates only [10 × log10(

0.165
0.15 )] = 0.4 dB within

the capacity limit. Alternatively, this discrepancy may also be
quantified in terms of the difference in the area under the inner
and outer EXIT curves, which corresponds to the normalized
capacity loss. The area under the normalized EXIT curve of
our URC-2SD scheme is 0.531, whereas that under the IRCC
is 0.5. Thus, the capacity of our IRCC-URC-2SD scheme is
only [0.031 × 2] = 0.062 cbits/use away from the capacity,
when p = 0.15.

As another example, Fig. 6 shows the EXIT curves for our
3-qubit SD at a depolarizing probability of 0.1. The optimized
IRCC weights are �T = [0 0 0 0 0 0.2641 0.4062 0 0 0
0 0.1068 0.1247 0 0 0 0.0982], where only five subcodes
are activated. For p ≤ 0.1, the system successfully converges
and the decoding trajectory terminates at the (1, 1) point of
the EXIT chart. Since our 3SD transmits 1.5 cbits/use and
we have used 1/2-rate IRCC, the effective throughput of the
designed system is 0.75 cbits/use. The corresponding depolar-
izing probability according to the bit-based capacity curve of
Fig. 3 is 0.11. Thus, in terms of the depolarizing probability,
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our designed system operates within [10× log10(
0.11
0.10 )] = 0.4

dB of the capacity. Furthermore, the area under the normalized
EXIT curve of the inner decoder is 0.5209. The deviation
from the capacity curve is therefore [0.0209 × 1.5] ≈ 0.031
cbits/use.

We have also evaluated the BER performance curves for
both our 2-qubit and 3-qubit based IRCC-URC-SD schemes,
which are shown in Fig. 7. As it can be observed, the per-
formance improves upon increasing the number of iterations.
More specifically, the 2-qubit system starts to converge to
a lower BER, as the number of iterations increases at a
depolarizing probability of p = 0.15. Similarly, the 3-qubit
scheme has a threshold of p = 0.1. Thus, these values match
the convergence thresholds predicted using EXIT charts. More
explicitly, since the EXIT chart tunnel closes beyond these
depolarizing probability thresholds, the system fails to con-
verge, if the depolarizing probability is increased further.
Hence, the performance does not improve upon increasing the
number of iterations if the depolarizing probability exceeds
the threshold. By contrast, when the depolarizing probability
is below the threshold, the BER improves at each successive
iteration. Here, the trade-off between the complexity imposed
and the performance attained comes into play. It should also be
noted that the performance improves with diminishing returns
at a higher number of iterations. For example, doubling the
number of iterations from I = 8 to I = 16 for IRCC-
URC-2SD increases the depolarizing probability by 0.0225,
corresponding to a BER of 10−4. A further increase to I = 32
iterations only improves p by around 0.01 at a BER of 10−4.

To elaborate further on the significance of using an IRCC
rather than a conventional 1/2-rate Convolutional Code (CC),
we have also conceived a corresponding setup, whereby the
IRCC of Fig. 2 is replaced by a memory-4 1/2-rate CC in
the proposed IRCC-URC-2SD system. This is synonymous to
employing an IRCC with a weighting factor of �T = [0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0], since the 9th subcode of IRCC
is a 1/2-rate CC. Fig. 8 shows the resultant EXIT curves for
p = 0.15 and p = 0.125. It can be observed in Fig. 8 that for
p = 0.15, which is the convergence threshold of our IRCC-
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URC-2SD design, the inner and outer EXIT curves of the
CC-URC-2SD scheme exhibit a cross-over. Thus, implying
that the CC-URC-2SD configuration fails to converge at p =
0.15. An open tunnel emerges only when p is decreased to
0.125. Consequently, the convergence threshold of CC-URC-
2SD is 0.125, which is lower than that of our near-capacity
design of Fig. 5. It must also be pointed out here that the area
between the inner and outer EXIT curves at the convergence
threshold is wider than Fig. 5. The wider the gap, the higher
the capacity loss. Therefore, using a regular CC, rather than
an IRCC, yields a poor match between the inner and outer
decoders’ EXIT curves.

We have further benchmarked the performance of our sys-
tem against the classical Turbo Code (TC) in Fig. 9. This was
achieved by replacing the IRCC-URC unit of Fig. 2 with TC5.
We have used a memory-3 1/2-rate TC for our comparison,
since it invokes 16 states in each iteration, which is the same as
the number of states invoked per iteration in our design6. The

5Symbol-to-bit conversion takes place at the output of SD decoder. Con-
sequently, the symbol-based probabilities of Eq. (7) and (9) are converted to
bit-based log likelihood ratios (LLRs), assuming that the bits constituting the
symbol are independent.

6Since a memory-3 turbo code has two components with 23 states, total
number of states per iteration are 2× 23 = 16. Similarly, a memory-4 IRCC
invokes 24 = 16 states per iteration.
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TABLE I
DEVIATION OF TC-SD AND IRCC-URC-SD FROM THE CAPACITY AT A

BER OF 10−4 .

TC-SD IRCC-URC-SD
2SD 1.9 dB 0.6 dB
3SD 2.5 dB 0.75 dB

uncoded BER curves of our 2SD and 3SD schemes are also
plotted in Fig. 9. Furthermore, we have used a sufficiently
high number of iterations, i.e. I = 32, for our designed
system to ensure that the system reaches the top right corner
of the EXIT chart at a depolarizing probability that is close to
the maximum tolerable depolarizing probability. By contrast,
I = 16 iterations were used for TC since it did not yield any
appreciable performance improvement, when the number of
iterations was increased beyond I = 8, as evidenced in Fig. 9.
Our proposed IRCC-URC-SD system is capable of performing
closer to the capacity, hence, outperforming the turbo code
for both 2SD and 3SD. The corresponding deviations from
the capacity expressed in terms of dB at a BER of 10−4 are
tabulated in Table I, where the deviation is the distance from
the maximum tolerable depolarizing probability of 0.165 and
0.11 for 2SD and 3SD, respectively.

VI. CONCLUSIONS

In this paper, we have proposed an EXIT chart based near-
capacity design for entanglement-assisted classical communi-
cation over a quantum depolarizing channel. Our proposed
IRCC-URC-SD system of Fig. 2 exploits channel coding
operating in the classical domain by serially concatenating an
IRCC and a URC with the SD encoder. Furthermore, we have
introduced a soft-decision aided superdense decoder facilitat-
ing iterative decoding. The EXIT chart of the scheme was
used for assisting our design and the achievable information
rates were quantified for both 2-qubit and 3-qubit superdense
codes. Our BER performance curves confirmed the EXIT chart
predictions. Moreover, the designed system outperformed its
counterpart relying on the classical convolutional as well as
turbo codes.
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