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Abstract—Bandwidth efficient parallel-concatenated Turbo
Trellis Coded Modulation (TTCM) schemes were designed for
communicating over uncorrelated Rayleigh fading channels. A
symbol-based union bound was derived for analysing the error
floor of the proposed TTCM schemes. A pair of In-phase (I) and
Quadrature-phase (Q) interleavers were employed for interleav-
ing the I and Q components of the TTCM coded symbols, in order
to attain an increased diversity gain. The decoding convergence
of the IQ-TTCM schemes was analysed using symbol-based
EXtrinsic Information Transfer (EXIT) charts. The best TTCM
component codes were selected with the aid of both the symbol-
based union bound and non-binary EXIT charts, for designing
capacity-approaching IQ-TTCM schemes in the context of 8PSK,
16QAM, 32QAM and 64QAM modulation schemes.

Index Terms—Decoding convergence, distance spectrum, code
design, EXIT charts, Turbo Trellis Coded Modulation, union
bound.

I. INTRODUCTION

TRELLIS Coded Modulation (TCM) [1] was originally
proposed for transmission over Additive White Gaussian

Noise (AWGN) channels, but later it was further developed
for applications in mobile communications [2], [3], since it
accommodates all the parity bits by expanding the signal
constellation, rather than increasing the bandwidth require-
ment. Turbo Trellis Coded Modulation (TTCM) [4] is a more
recent joint coding and modulation scheme that has a structure
similar to that of the family of power-efficient binary turbo
codes [5], but employs two identical parallel concatenated
TCM schemes as component codes. A symbol-based turbo
interleaver is used between the two TCM encoders and the
encoded symbols of each component code are punctured
alternatively for the sake of achieving a higher bandwidth effi-
ciency as detailed in [4], [6]. The design of the TTCM scheme
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outlined in [4] was based on the search for the best component
TCM codes using the so-called ‘punctured’ minimal distance
criterion, where the constituent TCM codes having the maxi-
mal ‘punctured’ minimal distance were sought. However, the
TTCM schemes designed for AWGN channels in [4] would
exhibit a high error floor, when communicating over Rayleigh
fading channels, if any information bits are unprotected by the
constituent component codes [7]. Hence, a different TTCM
design is needed, when communicating over Rayleigh fading
channels.

It was shown in [2] that the maximisation of the minimum
Hamming distance measured in terms of the number of differ-
ent symbols between any two transmitted symbol sequences is
the key design criterion for TCM schemes contrived for uncor-
related Rayleigh fading channels, where the fading coefficients
change independently from one symbol to another. More
specifically, Bit-Interleaved Coded Modulation (BICM) [8]
employing bit-based interleavers was designed for increasing
the achievable diversity order to the binary Hamming distance
of a code for transmission over uncorrelated Rayleigh fading
channels. A parallel-concatenated Turbo BICM scheme was
designed in [9] and was analysed in [10] when communicating
over Rayleigh fading channels, where a lower error floor is
attained as a benefit of having a higher minimum Hamming
distance. However, bit-interleaved turbo coding schemes have
a poorer decoding convergence [11] compared to their symbol-
interleaved counterparts due to the associated information loss,
when invoking a bit-to-symbol probability conversion during
each decoding iteration [12]. Hence, it is desirable to reduce
the error floor without using a bit-based interleaver in order to
retain the good convergence properties of symbol-interleaved
turbo coding schemes.

More specifically, apart from using bit interleavers, the
diversity order of a code can be increased with the aid of
spatial diversity, frequency diversity and signal space diver-
sity [13]. More explicitly, signal space diversity is obtained
by employing two independent channel interleavers for sepa-
rately interleaving the In-phase (I) and Quadrature-phase (Q)
components of the complex-valued encoded signals, combined
with constellation rotation. A TCM scheme designed with
signal space diversity was proposed in [14]. On the other
hand, it was shown in [15] that a diversity gain may also be
attained using IQ interleaving alone – i.e. without constellation
rotation – in the context of TCM and TTCM schemes. The
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diversity associated with IQ interleaving alone was referred to
as IQ-diversity [15], where the error floor of the IQ-diversity
assisted TTCM (IQ-TTCM) schemes was lower than that of
conventional TTCM schemes [15]. Hence, we will design new
TTCM schemes employing symbol-based turbo interleavers
for attaining an early decoding convergence as well as separate
I and Q channel interleavers for achieving a low error floor.

Note that turbo codes exhibit low a Bit Error Rate (BER)
in the low to medium Signal to Noise Ratio (SNR) region
due to their early decoding convergence. The asymptotic BER
performance of a code at high SNR is mainly dominated by
its minimum distance. However, the overall BER performance
of a code is influenced not only by the minimum distance,
but by several distance spectral components, in particular in
the medium SNR region [16]–[18]. Hence, the accurate Dis-
tance Spectrum [19] analysis has to consider several distance
spectral lines, when designing a turbo-style code. Note further
that the overall BER performance of a code is determined by
both the effective Hamming distance and the effective product
distance, when communicating over uncorrelated Rayleigh
fading channels [2]. Hence, a two-Dimensional (2D) distance
spectrum constituted by both the Hamming distance and
product distance has to be evaluated [20]. Recently, a TTCM
scheme employing bit-based turbo interleavers was proposed
and analysed in [20], where the corresponding union bound
of the BER was derived based on the 2D distance spectrum.
However, the convergence of the bit-interleaved TTCM of [20]
was again inferior compared to the symbol-interleaved TTCM
design, despite having a lower error floor. We will derive the
BER union bound for TTCM schemes employing symbol-
based turbo interleavers in order to analyse their error floor
performance.

EXtrinsic Information Transfer (EXIT) charts constitute
useful tools, when analysing the convergence properties of
iterative decoding schemes. They have been invoked for
analysing both concatenated binary coding schemes [21] and
non-binary coding schemes [22], [23]. As a result, near-
capacity codes have been successfully designed by applying
an EXIT chart based technique in [24], [25]. The novel
contribution of this paper is that we will employ the low-
complexity symbol-based EXIT charts proposed in [23] and
the corresponding BER union bound of the TTCM schemes in
order to design new, near-capacity symbol-interleaved TTCM
schemes. More specifically, new Generator Polynomials (GPs)
are sought for the TCM component codes, based on their
decoding convergence and on the error floor performance of
the TTCM decoder, rather than on the ‘punctured’ minimal
distance criterion of the TCM component codes defined in [4].
Our prime design criterion is to find a constituent TCM code,
where the corresponding EXIT charts exhibit an open tunnel at
the lowest possible SNR value, as well as having an acceptable
error floor as estimated by the truncated symbol-based union
bound.

The rest of the paper is organised as follows. The system
model is described in Section II. The novel symbol-based
union bound of the BER of the TCM and TTCM schemes
are derived based on the 2D distance spectrum in Section III.
An overview of the symbol-based EXIT charts is given in
Section IV. Our novel constituent code search algorithm is
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Fig. 1. Schematic of an IQ-TTCM encoder.

detailed in Section V and the resultant findings are presented
and discussed in Section VI. Finally, our conclusions are
offered in Section VII.

II. SYSTEM MODEL

In this paper, we consider only two-dimensional TCM and
TTCM schemes, where the code rate is given by R = m/(m+
1), employing 2m+1-ary PSK/QAM signal sets. Hence the
effective throughput is m bit per modulated symbol. A TCM
encoder consists of a Recursive Systematic Convolutional
(RSC) encoder and a signal mapper. An IQ-interleaved TTCM
encoder employing two TCM component schemes is shown in
Fig. 1. The N -symbol uncoded and encoded symbol sequences
are denoted as u and x, respectively. The superscripts (1)
and (2) are used for differentiating the uncoded and encoded
sequences belonging to the upper and lower TCM encoders,
respectively. The I and Q channel interleavers, namely πI

and πQ, are used for independently interleaving the I and Q
components of the complex-valued encoded symbol sequence
x.

Note that a TTCM scheme employs an Odd-Even Sep-
aration (OES) based symbol interleaver πs as the turbo
interleaver, where odd (even) indexed symbols are mapped
to another odd (even) position after interleaving. An OES
symbol deinterleaver π−1

s is also used at the output of the
lower TCM encoder. This ensures that after the alternative
puncturing, which is performed by the ‘Selector’ block shown
in Fig. 1, all even (odd) indexed symbols of the upper (lower)
TCM component encoder are punctured [4]. Note that the
information parts of each encoded symbol from the upper
and lower TCM encoders before the ‘Selector’ block are
identical. Hence, the information bits are transmitted exactly
once. Let us denote the punctured encoded symbol as x0(j)

t

for j ∈ {1, 2}, where the m information bits are retained, but
the parity bit is set to zero. Hence, we may view the actual
transmitted encoded symbol sequences from the upper and
lower TCM encoders as:

x(1) = [x(1)
1 x0(1)

2 x
(1)
3 x0(1)

4 x
(1)
5 x0(1)

6 . . .] , (1)

and

x(2) = [x0(2)
1 x

(2)
2 x0(2)

3 x
(2)
4 x

(2)
5 x0(2)

6 . . .] , (2)

respectively, while the TTCM encoded symbol sequence is:

x = [x(1)
1 x

(2)
2 x

(1)
3 x

(2)
4 x

(1)
5 x

(2)
6 . . .] . (3)

Note that for simplicity we do not differentiate the sequences
before and after the turbo interleaver.
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III. SYMBOL-BASED UNION BOUNDS

Let us define the encoded symbol sequence and the erro-
neously detected symbol sequence of N symbol durations as
x = [x1 x2 . . . xt . . . xN ] and x̂ = [x̂1 x̂2 . . . x̂t . . . x̂N ],
respectively. When communicating over uncorrelated Rayleigh
fading channels, the Pair-Wise Error Probability (PWEP) of
erroneously detecting the sequence x̂ instead of sequence
x can be upper bounded by the following exact-polynomial
bound [26, Eq. (35)]:

PPWEP(x → x̂) ≤
(

2ΔH − 1
ΔH − 1

) (
Es

N0

)−ΔH

(ΔP )−1(4)

which is tighter than the Chernoff bound of [2]. More ex-
plicitly, Es/N0 is the average channel SNR, ΔH is referred
to as the effective Hamming distance, which quantifies the
diversity order of the code and ΔP is termed as the effective
product distance, which quantifies the coding advantage of a
code. More specifically, the product distance of a TCM code
is defined as the product of the non-zero squared Euclidean
distances along the error path:

ΔP = ΔP (x, x̂) =
∏
t∈η

|xt − x̂t|2 , (5)

where η represents the set of symbol indices t satisfying the
condition of xt �= x̂t, for 1 ≤ t ≤ N , while the number of
elements in the set η is given by ΔH = ΔH(x, x̂), which
quantifies the number of erroneous symbol in the sequence x̂,
when compared to the correct sequence x.

For the parallel concatenated TTCM scheme, the ‘punc-
tured’ encoded symbol sequences of the upper and lower TCM
encoders, namely x(1) and x(2) of Eqs. (1) and (2), respec-
tively, are transmitted at different time instants and hence they
are independent of each other. Therefore, the product distance
between the TTCM encoded symbol sequences x and x̂ is
given by the product of the individual product distances of the
upper and lower TCM-encoded symbol sequences as follows:

ΔP = Δ(1)
P · Δ(2)

P , (6)

where Δ(j)
P = ΔP (x(j), x̂(j)) for j ∈ {1, 2}. Furthermore, the

resultant Hamming distance of TTCM is given by the sum of
the Hamming distances of the upper and lower TCM codes
as:

ΔH = Δ(1)
H + Δ(2)

H , (7)

where Δ(j)
H = ΔH(x(j), x̂(j)) for j ∈ {1, 2}.

The union bound of the average BER of a coding scheme
communicating over uncorrelated Rayleigh fading channels
can be derived based on [27, p. 125] as:

Pb ≤ 1
m

∑
ΔP

∑
ΔH

BΔP ,ΔH PPWEP , (8)

where m is the number of information bits per symbol and
BΔP ,ΔH is the 2D distance spectrum of the code, given by:

BΔP ,ΔH =
∑
w

w

N
· Aw,ΔP ,ΔH , (9)

where w is the information weight denoting the number of
erroneous information bits in an encoded N -symbol sequence.

Furthermore, Aw,ΔP ,ΔH is the three-dimensional Weight Enu-
merating Function (WEF), quantifying the average number of
sequence error events having an information weight of w, a
product distance of ΔP and a Hamming distance of ΔH .

A. TCM Distance Spectrum

Let us derive the WEF Aw,ΔP ,ΔH for a TCM scheme
having a block length of N encoded symbols and let the total
number of trellis states be M . We can define the State Input-
Redundancy WEF (SIRWEF) for a block of N TCM-encoded
symbols as:

A(N, S, W, Y, Z) =
∑
w

∑
ΔP

∑
ΔH

AN,S,w,ΔP ,ΔH ·

WwY ΔP ZΔH , (10)

where AN,S,w,ΔP ,ΔH is the number of paths in the trellis
entering state S at symbol index N , which have an information
weight of w, a product distance of ΔP and a Hamming
distance of ΔH . The notations W , Y and Z represent dummy
variables. For each symbol index t, the term At,S,w,ΔP ,ΔH

can be calculated recursively as follows:

At,S,w,ΔP ,ΔH =
∑

S′,S:ut

At−1,S′,w′,Δ′
P ,Δ′

H
, (1 ≤ t ≤ N) (11)

where ut represents the specific input symbol that triggers the
transition from state S′ at index (t − 1) to state S at index t,
while the terms w, ΔP and ΔH can be formulated as:

w = w′ + i(S′, S) , (12)

ΔP =
{

Δ′
P · Θ(S′, S) , if Θ(S′, S) > 0

Δ′
P , else

(13)

ΔH = Δ′
H + Φ(S′, S) , (14)

where w′, Δ′
P and Δ′

H are the information weight, the product
distance and the Hamming distance, respectively, of the trellis
paths entering state S′ at index (t− 1). Furthermore, i(S′, S)
is the information weight of symbol ut that triggers the
transition from state S′ to S, while Θ(S′, S) = |xt − x̂t|2
and Φ(S′, S) ∈ {0, 1} are the squared Euclidean distance and
Hamming distance between the encoded symbols x̂t and xt,
where x̂t is the encoded symbol corresponding to the trellis
branch in the transition from state S′ to S and xt is the
actual transmitted encoded symbol at index t. Let the encoding
process commence from state 0 at index 0 and terminate at
any of the M possible states at index N . Then the WEF used
in Eq. (9) is given by:

Aw,ΔP ,ΔH =
∑
S

AN,S,w,ΔP ,ΔH . (15)

Note that for linear codes [28] or for the strong-sense
regular TCM schemes defined in [29], the distance profile of
the code is independent of which particular encoded symbol
sequence is considered to be the correct one. Hence, for the
sake of simplicity, we can assume that the all-zero encoded
symbol sequence is transmitted, where the union bound of a
strong-sense regular TCM scheme can be computed based on
Eq (8) using both the PWEP of Eq (4) and the 2D distance
spectrum of Eq (9). By contrast, for TCM schemes which
are not strong-sense regular as defined in [29], we have to

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on December 23, 2008 at 16:39 from IEEE Xplore.  Restrictions apply.



NG et al.: NEAR-CAPACITY TURBO TRELLIS CODED MODULATION DESIGN BASED ON EXIT CHARTS AND UNION BOUNDS 2033

consider all possible correct sequences in order to generate the
distance spectrum, and hence a more sophisticated algorithm
such as that proposed in [29] is needed. However, the objective
of this paper is not to find the exact union bound of the
general TCM or TTCM schemes, but to use the ‘approximate’
union bound to design near-capacity TTCM schemes. Hence,
we will only consider the all-zero encoded symbol sequence
as the correct sequence, when computing the union bound.
We found that since most TCM and TTCM schemes are not
strong-sense regular, applying tailing symbols for having a
trellis terminated at state 0 at index N provides a marginal
performance improvement compared to having non-terminated
trellis, when communicating over uncorrelated Rayleigh fad-
ing channels. Furthermore, the union bound computed based
on the exact-polynomial bound of Eq. (4) using the all-zero
encoded sequence as the correct sequence turns out to be a
very tight bound when approximating the BER performance
of various TCM schemes employing 8PSK, 16QAM and
32QAM, as we will demonstrate in Section VI.

B. TTCM Distance Spectrum

Let us now derive the WEF Aw,ΔP ,ΔH introduced in Eq. (9)
for a TTCM scheme. Since a TTCM scheme employs two
TCM constituent codes, where the parity bits of the upper
and lower TCM encoded symbols are punctured at the even
and odd symbol indices, respectively, we have to compute
two separate distance spectra for the two punctured TCM
component codes. Let us denote the SIRWEF of the upper
and lower TCM component codes by A(1)(N, S, W, Y, Z) and
A(2)(N, S, W, Y, Z), respectively. Note that all the punctured
parity bits are considered to have a value of ‘0’ when
computing the two SIRWEF terms. We also assume that no
termination symbols are used since their performance benefits
were found to be modest. Hence both the trellises may be
terminated in any of the M possible trellis states. Then we
may compute the WEF of the TTCM scheme from the WEF
of the two punctured TCM component codes as:

Aw,ΔP ,ΔH = A
(1)

w,Δ
(1)
P ,Δ

(1)
H

· A(2)

w,Δ
(2)
P ,Δ

(2)
H

· PN,w
oe , (16)

where ΔP = ΔP (x, x̂) and ΔH = ΔH(x, x̂) are defined
in Eqs (6) and (7), respectively. The term PN,w

oe in Eq (16)
denotes the probability of occurrence for all the associated
error events having w information bit errors, when employing
an OES symbol interleaver having a length of N symbols.
Note that this term equals 1/

(
N
w

)
, when a bit-based random

interleaver of length N scrambling 1-bit symbols is employed
as the turbo interleaver, as in [30]. The value of PN,w

oe is com-
puted based on the uniform OES symbol interleaver concept,
which is developed by extending the uniform bit interleaver
proposed in [30]. More specifically, an OES symbol interleaver
may be partitioned into two symbol interleavers, where the
number of bits per symbol equals the number of information
bits per symbol, namely m, since we are only concerned with
the information bit errors as in [30]. The uniform OES symbol
interleaver may be defined as in Definition 1.

Definition 1: A uniform OES symbol interleaver of length
N symbols is a probabilistic device, which maps a given input
sequence of length N symbols having an information weight

Comm.

Channel

A Priori

Channel

W , A

Y

Encoder

XU D

E
Decoder

TCM

SISO

TCM

Fig. 2. Decoding model for a parallel concatenated TTCM scheme.

of w bits into all possible combinations in the odd and even
partitions of the interleaver, with equal probability of PN,w

oe

given by:

PN,w
oe =

wo=w∑
wo=0

(wo+we=w)

P �N/2�,wo
m · P �N/2�,we

m , (17)

where wo and we are the number of bit errors in the odd
and even partitions of the OES symbol interleaver and the
term PL,y

m denotes the probability of occurrence for the
error event having y information bit errors when employing
a uniform symbol interleaver of length L symbols, where
L ∈ {�N/2�, �N/2	} and m is the number of bits per symbol.
More explicitly, we have:

PL,y
m =

1∑
z∈χ(y,m)

(
L
z

) , (18)

where the set χ(y, m) consists of all possible combinations
of the z number of symbol errors for a given number of bit
errors y in a sequence of L symbols. Explicitly, this set is
given by:

χ(y, m) =

{
z :=

m∑
b=1

zb; for
m∑

b=1

b · zb = y

}
, (19)

where the number of symbol errors each having b bit errors
is zb.
The computation of the set χ(y, m) is given in the Appendix.

IV. SYMBOL-BASED EXIT CHARTS

The decoding model for one of the two constituent TCM
codes of the parallel concatenated TTCM scheme can be
represented by Fig. 2, where the information symbol sequence
U is encoded by the constituent TCM encoder, generating the
encoded symbol sequence X . The sequence X is transmitted
over the communications channel and the received symbol
sequence is denoted by Y . The a priori channel models the
generation of the extrinsic information by the other TCM
decoder and the sequence W can be thought of as the
hypothetical channel-impaired – i.e. error-prone – sequence,
when the information sequence U was transmitted over the a
priori channel. Furthermore, the a priori symbol probabilities
A of the TCM-encoded symbols fed to the SISO decoder of
Fig. 2 represent the extrinsic symbol probabilities that can be
extracted from the output of the other TCM decoder. Based
on both Y and A, the SISO decoder computes both the a
posteriori symbol probabilities D and the extrinsic symbol
probabilities E.
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We note that the extrinsic and the systematic information
associated with each a posteriori TTCM symbol probability at
the output of a constituent TCM decoder cannot be separated,
since the systematic and parity bits of a TTCM encoded
symbol are transmitted together in a modulated symbol over
the communication channels [4], [6]. However, we have to
extract the extrinsic information from the a posteriori symbol
probability in order to generate the corresponding symbol-
based EXIT chart [31]. Hence, the assumption that the extrin-
sic and systematic information are independent of each other is
needed [31], so that the extrinsic information may be extracted
from the a posteriori symbol probability. Nonetheless, despite
the limited validity of the above-mentioned independence, we
will show in Section VI that accurate code design is still
possible with the aid of the resultant EXIT charts.

An efficient method devised for generating symbol-based
EXIT charts from symbol-based a posteriori probabilities
(APPs) was proposed in [23]. This technique is based on the
fact that the symbol-based APPs generated at the output of a
SISO decoder represent sufficient statistics for all observations
(channel and a priori information) at its input. More specifi-
cally, the average extrinsic information IE(u) at the output of
the APPs decoder can be computed as [23]:

IE(u) = log2(M) − 1
N

N∑
k=1

E

[ M∑
i=1

e(u(i)
k ) log2(e(u

(i)
k ))

]

(20)

where N is the number of information symbols in the decod-
ing block, M = 2m is the cardinality of the m-bit information
symbol, u

(i)
k is the hypothetically transmitted information

symbol at time instant k for i ∈ {1, 2, . . . ,M}, e([.]) is the
extrinsic probability of symbol [.] and the expectation can
be approximated by simple time-averaging of the extrinsic
probabilities of the information symbol. As an advantage, the
symbol-based extrinsic mutual information can be computed
using Eq. (20) at a considerably lower complexity compared
to the conventional histogram-based approach.

V. CONSTITUENT CODE SEARCH

Let us first consider the RSC encoder structure of a con-
stituent TCM component code seen in Fig. 3, which depicts
the RSC encoder used by the constituent TCM component
code of an 8-state 8PSK-based TTCM scheme. The number
of information bits per symbol is m = 2 and there is only

one parity bit in each TCM encoded symbol. Hence, the code
rate is R = m/(m + 1). The connections shown in Fig. 3
between the information bits and the modulo-2 adders are
given by the GPs. The feed-forward GPs are denoted as gi

for i ∈ {1, 2 . . . , m}, while the feed-back GP is denoted
as gr. As shown in Fig. 3, there are 4 possible connection
points, when there are three shift register stages, each denoted
by D. The four binary digits seen in the GPs indicate the
presence or absence of connections. For example, the GP
corresponding to the first information bit, namely Bit 1, is
given by g1 = [0010]2, which indicates that Bit 1 is connected
only to the modulo-2 adders that is third from the left. Note
that we follow one of the rules provided in [1], where the right-
most connection point is connected to the parity bit only, so
that all the paths diverging from a common trellis state are
associated with codewords having the same parity bit, but at
least one different systematic bit [1]. The code GP is expressed
in octal format as G = [gr g1 g2]8 = [13 2 4]8.

The constituent TCM code search used for finding merito-
rious TTCM schemes was originally based on the ‘punctured’
minimal distance criterion [4]. However, we found that a
constituent code having the ‘punctured’ maximal minimal
distance guaranteed the highest coding gain only during the
first turbo iteration, but it was unable to always guarantee
a decoding convergence at the lowest possible SNR value.
By contrast, the EXIT chart characteristics had the ability to
predict decoding convergence, where decoding convergence
is indicated by having an open tunnel between the two EXIT
chart curves [21]. Therefore, the ‘punctured’ maximal minimal
distance is no longer the prime criterion, when designing
capacity-approaching TTCM schemes. Instead, the prime de-
sign criterion is to find a constituent TCM code, where the
corresponding EXIT charts exhibit an open tunnel at the lowest
possible SNR value, as well as an acceptable error floor
as estimated by the symbol-based union bound outlined in
Section III.

Since maximising the minimal distance is no longer the
main design objective, we can predefine the GP connections
of the information bits and then only search for the best GP
creating the parity bit. On one hand, using different GPs for
the information bits may result in a different optimal parity-
bit GP. On the other hand, we found that having a single
connection for each of the information bits to a single distinct
modulo-2 adder, as in Fig. 3, and then searching for the best
parity-bit GP, namely gr, had the potential of providing us
with constituent TCM component codes creating near-capacity
TTCM schemes. When the number of modulo-2 connections
for each of the information bits to the shift registers is set
to one, the correlation between the information bits and the
parity bit is minimised. Hence the potential EXIT chart and
decoding-trajectory mismatch may be reduced. Furthermore,
when the GPs of the m number of systematic information
bits are predefined, the search space is reduced from 2mν to
2ν , where ν is the number of shift register stages. Since each
information bit may only have a distinct connection to a single
modulo-2 adder, the minimum number of shift register stages
required equals the number of information bits, i.e. we have
ν = m.
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Fig. 4. Code search algorithm.

A. Code Search Algorithm

We derive a code-search algorithm for finding the TCM
constituent codes using the symbol-based EXIT charts of [23],
which is summarised in the flow chart shown in Fig. 4. The
algorithm commences by initialising five parameters. Firstly,
the GPs of the m information bits are initialised. Secondly,
the feedback polynomial set Gr was constructed by storing
all the 2ν possible parity bit polynomials gr. Thirdly, a step
size of κ = 0.2 dB was set. Fourthly, the initial value for the
average SNR per information bit, namely Eb/N0 was set to
γ = ω+0.5 dB, where ω is the corresponding Eb/N0 value at
a channel capacity of m bit/symbol, which is equivalent to the
overall code rate. Finally, the set Γ was introduced for storing
the Eb/N0 values, which was initialised as a null set. Then
the parity bit GP search begins by initialising the ‘good code’
set G to a null set. Then the current Eb/N0 value, namely γ,
was assigned to the set Γ.

The GP search procedure consisting of blocks 2, 3 and 4
constitutes the core of the algorithm, where the EXIT chart
of each tentatively tested GP invoking a new polynomial gr

from the full set Gr was computed in Block 3. If there is an

open tunnel in its EXIT chart, then the resultant TCM code is
considered a meritorious code and the corresponding gr value
is stored in the ‘good code’ set G at Block 4. The search
for near-capacity TCM codes continues, until all elements in
the full parity-polynomial set Gr are tested. If none of the
polynomials gr in the set Gr is free from an EXIT-chart cross-
over, i.e. we have G = {∅}, the algorithm proceeds to Block
7. However, if there are more than one elements in the set
G, we reinitialize the set Gr using the newly found ‘good
code’ set G and proceed to Block 12. Note that we do not
have to search for all possible parity bit polynomials gr again,
when visiting the main procedure (blocks 2, 3 and 4) this
time, since Gr consists of parity bit polynomials found during
the previous search, which are capable of approaching the
achievable capacity. When there is only one element in the set
G at Block 10, we have found the best TCM component code
and the search is concluded, where the estimated decoding
convergence threshold is given by the corresponding Eb/N0

value, namely γ.
The operations represented by blocks 12, 13 and 14 are now

used for reducing the Eb/N0 value γ by the stepsize κ. Note
that if (γ − κ) was found to be in the set Γ, this implies
that we have already carried out the search based on this
particular (γ−κ) value before. In this case, the stepsize κ will
be halved, as shown in Block 13, before the current γ value
is reduced by κ dB. The appropriate counterpart operations
are carried out in Blocks 7, 8 and 9, where the Eb/N0 value
γ is increased by the stepsize κ, when no polynomial was
found in the set G. Again, the step size will be halved, if
necessary in order to avoid repeating the same search. When
there are only up to 10 elements in the set G, we will store
them at Block 15. The union bounds of the TTCM schemes
employing these top 10 gr polynomials will be computed.
Note that the best code selected exhibits the best decoding
convergence, but not necessarily the lowest error floor among
the top 10 polynomials. Hence, if the error floor of the best
code is too high, one may consider the other 9 candidates,
which may provide a lower error floor at the cost of a slightly
worse decoding convergence.

Let us now consider the operational steps, when searching
for the constituent TCM code GPs for the 16-state 32QAM-
based IQ-TTCM scheme. More specifically, the associated
channel capacity is given by ω = 9.98 dB [6, p. 751].
Hence, according to the fourth initialisation parameter, the
TCM scheme’s parity GP search commences at γ = ω+0.5 =
10.48 dB. It takes three consecutive κ = 0.2 dB steps in
the negative direction, one κ = 0.1 dB step in the positive
direction and another κ = 0.05 dB in the positive direction,
as shown below:

10.48dB
κ = −0.2

=⇒ 10.28dB
κ = −0.2

=⇒ 10.08dB

κ = −0.2
=⇒ 9.88dB

κ = 0.1
=⇒ 9.98dB

κ = 0.05
=⇒ 10.03dB

before finding the best TCM parity bit polynomial, where the
estimated minimum SNR required for achieving decoding con-
vergence is Eb/N0 = 10.03 dB. Hence, the constituent TCM
code search designed for constructing capacity-approaching
TTCM schemes consists of a number of consecutive EXIT
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TABLE I
IQ-TTCM GPS FOR UNCORRELATED RAYLEIGH FADING CHANNELS. THE

CODES USING GPS MARKED WITH * YIELD A PERFORMANCE LESS THAN
0.5 DB AWAY FROM THE CHANNEL CAPACITY.

Modulation/ Polynomial (Octal) Thresholds (dB) ω m
States [gr g1 g2 g3 . . .] Est. Actual (dB) (bit)

8PSK/4 [7 2 4] 5.75 6.50 5.38 2
8PSK/8 [13 2 4] * 5.17 5.47
16QAM/8 [11 2 4 10] 8.41 8.20 7.57 3
16QAM/16 [27 2 4 10] 8.17 8.17
32QAM/16 [37 2 4 10 20] * 10.03 10.20 9.98 4
32QAM/32 [41 2 4 10 20] * 9.90 10.20
64QAM/32 [41 2 4 10 20 40] 13.40 13.30 12.71 5
64QAM/64 [103 2 4 10 20 40] 13.43 13.48
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Fig. 5. EXIT chart for the 64QAM-based IQ-TTCM scheme and three
snapshot decoding trajectories recorded for the transmission over uncorrelated
Rayleigh fading channels using a block-length of 50, 000 symbols, 32-state
rate-5/6 TCM codes.

chart evaluations and a search in a one-dimensional continuous
space along the Eb/N0 axis.

Note that, a TTCM scheme could also employ two non-
identical constituent TCM component codes. In that case, the
code search algorithm depicted in Fig. 4 may be employed for
matching the EXIT chart curve of one constituent TCM code
to that of the other. However, in this paper we only consider
classic TTCM schemes employing two identical constituent
TCM codes.

VI. RESULTS AND DISCUSSIONS

We assume that perfect channel state information is avail-
able at the receiver. The TCM constituent codes found by the
code search algorithm for IQ-TTCM schemes designed for
communicating over uncorrelated Rayleigh fading channels
are tabulated in Tab. I for 8PSK, 16QAM, 32QAM and
64QAM signal sets. The EXIT chart based estimation and the
simulation based Eb/N0 threshold values marking the edge of
the BER curve’s waterfall region were tabulated and compared
to the channel capacity limits ω in the table. The simulation-
based threshold corresponds to those Eb/N0-values, for which
a BER ≈ 10−4 is achieved using a block length of 100, 000
symbols. The EXIT charts and the corresponding decoding
trajectories of the 64QAM-based IQ-TTCM scheme are shown
in Fig 5, when communicating over uncorrelated Rayleigh
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Fig. 6. The BER and union bound performance of the 8PSK-based TCM
and TTCM schemes when communicating over uncorrelated Rayleigh fading
channels using a block length of N = 1000 symbols. The product distance
spectrum used for generating the union bound was truncated at ΔP max = 60.

fading channels. As mentioned in Section IV, the EXIT charts
were generated based on the assumption that the extrinsic
information and the systematic information are independent
of each other, which has a limited validity. Hence, there are
some mismatches between the EXIT charts and the simulation-
based decoding trajectories. However, it was found that most
of the codes designed perform within 1.0 dB of the channel
capacity. This demonstrates the efficiency of the EXIT chart
based code-search algorithm proposed in Section V-A.

Let us now compare the union bound and the actual BER
performance of the various TCM and TTCM schemes. We
found that when the product distance ΔP is sufficiently large,
the union bound will only change marginally when higher
product distances are considered. Hence, we can truncate
the computation of the union bound at a certain maximum
product distance ΔP max in order to minimise the compu-
tation time imposed. We found that using ΔP max = 60
is sufficient for the 64QAM based TTCM schemes. Hence,
we considered ΔP max = 60 for all schemes for the sake
of simplicity, although the required ΔP max value for lower-
order modulation schemes is lower than 60. Fig. 6 shows the
effect of truncating the union bounds using different values of
maximum Hamming distance ΔH max at a fixed maximum
product distance of ΔP max = 60. As seen in Fig. 6, we
need only a low value of ΔH max = 4 and ΔH max = 6 in
order to estimate the error floor of TCM and TTCM schemes,
respectively. Note that the truncated union bound matches
well with the BER of the TCM schemes, but there is a gap
between the truncated union bound and the BER of the TTCM
schemes. We note from [19, Fig. 8] that there is also a gap
between the truncated union bound and the BER of binary
turbo codes. This gap is mainly due to the employment of
the uniform interleaver concept in the computation of the
union bound, where the performance of the turbo codes or
TTCM is averaged over all possible interleavers. Furthermore,
employing only the all-zero encoded symbol sequence in the
computation of the TTCM union bound may also contribute
to this gap, if the employed constituent TCM scheme is not
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Fig. 7. The BER and union bound performance of the 8PSK-based TCM and
(IQ-)TTCM schemes when communicating over uncorrelated Rayleigh fading
channels using a block length of N = 1000 symbols. The product distance
spectrum used for generating the union bound was truncated at ΔP max = 60.
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Fig. 8. The BER and union bound performance of the 16QAM-based TCM
and (IQ-)TTCM schemes when communicating over uncorrelated Rayleigh
fading channels using a block length of N = 1000 symbols. The product
distance spectrum used for generating the union bound was truncated at
ΔP max = 60.

strong-sense regular. We consider all possible encoded symbol
sequences in the Monte Carlo simulations.

We fixed ΔP max = 60 and computed a truncated union
bound using ΔH max = 4 and ΔH max = 6 for the TCM and
TTCM schemes, respectively. The number of turbo iterations
for the TTCM schemes was fixed to 16. As we can see
from Figs. 7, 8 and 9, the estimated union bounds of the
8PSK, 16QAM and 32QAM based TCM schemes exhibit a
good match with respect to the corresponding BER curves.
As shown in Figs. 7 to 10, the estimated union bounds for
the TTCM schemes are lower than the actual TTCM BER
curves. However, the TTCM union bounds seemed to have a
good match to the IQ-TTCM BER curves in the context of
the 8PSK, 16QAM, 32QAM and 64QAM modulation schemes
considered. Hence, we can apply the TTCM union bound to
generate a good measure of the expected IQ-TTCM error floor.

As seen from Fig. 7, the BER performance of the 8PSK
based TCM schemes employing the GPs of [11 2 4]8 and
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Fig. 9. The BER and union bound performance of the 32QAM-based
(IQ-)TCM and (IQ-)TTCM schemes when communicating over uncorrelated
Rayleigh fading channels using a block length of N = 1000 symbols. The
product distance spectrum used for generating the union bound was truncated
at ΔP max = 60.
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Fig. 10. The BER and union bound performance of the 64QAM-based
(IQ-)TCM and (IQ-)TTCM schemes when communicating over uncorrelated
Rayleigh fading channels using a block length of N = 1000 symbols. The
product distance spectrum used for generating the union bound was truncated
at ΔP max = 60.

[13 2 4]8 is very similar. Likewise, observe in Fig. 8 that the
GPs [21 2 4 10]8 and [17 2 4 10]8 result in a similar BER
for the 16QAM based TCM schemes. This is because their
distance spectra are similar. However, as seen in Eq. (16), the
WEF of TTCM is the product of the WEFs of its constituent
TCM codes. The product distance and Hamming distance
of TTCM as given by Eq. (6) and Eq. (7), respectively,
are also different from that of its constituent TCM codes.
Hence the marginal difference in terms of the TCM distance
spectrum is further emphasized when using two different GPs.
Therefore, the BER performance curves of the resultant (IQ-
)TTCM schemes are significantly different, when employing
two different GPs, as seen in Figs. 7 and 8. More explicitly,
the 8PSK (IQ-)TTCM scheme performs one dB better, when
employing the proposed GP of [13 2 4]8 compared to the
GP of [11 2 4]8 adopted from [4]. We found that the octally
represented GP [21 2 4 10]8, which was designed for a
16QAM TTCM scheme based on the ‘punctured’ minimal
distance criterion of [4] was unable to achieve full decoding
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Fig. 11. The BER and the error floor bound performance of the various
IQ-TTCM schemes when communicating over uncorrelated Rayleigh fading
channels using a block length of N = 10, 000 symbols. The product distance
spectrum and Hamming distance spectrum used for generating the union
bound was truncated at ΔP max = 60 and ΔH max = 6, respectively.

convergence due to having a closed tunnel in its EXIT chart.
Hence, the BER performance of the 16QAM TTCM scheme
employing the proposed GP of [27 2 4 10]8 is significantly
better than that of the benchmarkers, as it is evidenced in
Fig 8.

As depicted in Fig. 11, when we increased the block length
to N = 10, 000 symbols, the IQ-TTCM schemes exhibit lower
error floors and a decoding convergence closer to the estimated
thresholds summarised in Tab. I, compared to the scenario
using a block length of N = 1000 symbols, as shown in
Figs. 7 to 10. Hence, capacity-approaching TTCM schemes
can be successfully designed based on the proposed symbol-
based EXIT chart aided and the truncated union bound assisted
code design. Furthermore, the proposed technique may also be
employed for designing symbol-interleaved space-time TTCM
schemes for approaching the multiple-input multiple-output
channel capacity.

VII. CONCLUSIONS

We have designed capacity-approaching TTCM schemes by
performing a search for good constituent TCM component
codes with the aid of symbol-based EXIT charts and truncated
symbol-based union bounds. The prime design criterion of
capacity-approaching TTCM schemes is that of finding an
open tunnel in the corresponding EXIT charts at the lowest
possible SNR values, while maintaining a sufficiently low
error floor, rather than maximising the ‘punctured’ minimal
distance of the constituent codes [4]. Hence, we can reduce
the code search space by fixing the feed-forward GPs and then
search for the best feed-back GP that provides an open tunnel
in the EXIT chart at the lowest possible SNR value. Although
the independence of the extrinsic information and systematic
information is not always satisfied by the symbol-based TTCM
scheme, most of the good constituent codes found assist the
TTCM schemes in performing near the channel capacity.

APPENDIX

The set χ = χ(y, m) = {z} in Eq. (19) can be generated
by using the following recursive function:
Find Symbol Error Set(y, m, χ, 0), which is defined as:
Find Symbol Error Set(int ỹ, int b, int* χ, int z̄){

if (b = 1) add (z̄ + ỹ) into χ
else {

for (zb = 0; zb ≤
⌊

ỹ
b

⌋
; zb + +)

Find Symbol Error Set(ỹ − b · zb, b − 1, χ, z̄ + zb)
}
return

}
where the values of the variables ỹ, b and z̄ could change
during the transition from the parent loop to the child loops.
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