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Abstract—A novel reduced-complexity near-optimal detection
algorithm is proposed for enhancing the recent Coherently-
detected Space-Time Shift Keying (CSTSK) scheme employing
arbitrary constellations, such as ℒ-point Phase-Shift Keying
(PSK) and Quadrature Amplitude Modulation (QAM). The pro-
posed detector relies on a modified Matched Filter (MF) concept.
More specifically, we exploit both the constellation diagram of
the modulation scheme employed as well as the Inter-Element-
Interference (IEI)-free STSK architecture. Furthermore, we gen-
eralize the Pulse Amplitude Modulation (PAM)- or PSK-aided
Differentially-encoded STSK (DSTSK) concept and conceive its
more bandwidth-efficient QAM-aided counterpart. Then, the
proposed reduced-complexity CSTSK detector is applied to the
QAM-aided DSTSK scheme, which enables us to carry out
low-complexity non-coherent detection, while dispensing with
channel estimation. It is revealed that the proposed detector is
capable of approaching the optimal Maximum Likelihood (ML)
detector’s performance, while avoiding the exhaustive ML search.
Interestingly, our simulation results also demonstrate that the
reduced-complexity detector advocated may achieve the same
performance as that of the optimal ML detector for the specific
STSK scheme’s parameters. Another novelty of this paper is that
the star-QAM STSK scheme tends to outperform its square-QAM
counterpart, especially for high number of dispersion matrices.
Furthermore, we provided both the theoretical analysis and the
simulations, in order to support this unexpected fact.

Index Terms—Differential encoding, diversity and multiplexing
tradeoff, space-time shift keying, spatial modulation, matched
filter, multiple antenna array, non-coherent detection.

I. INTRODUCTION

THE recent Multiple-Input Multiple-Output (MIMO) con-
cept of Spatial Modulation (SM) [1]–[4] or Space-

Shift Keying (SSK) [5]–[7] is capable of increasing the
achievable transmission rate with the aid of multiple-antenna
aided systems, which is ensured without resorting to spatial
multiplexing [8], [9]. To be more specific, since the SM
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transmitter activates one out of 𝑀 antenna elements for
conveying additional information bits during each symbol
interval, no Inter-Element-Interference (IEI) is imposed on
the receiver, hence potentially enabling low-complexity single-
stream detection. Due to the different system architecture
of classic spatial multiplexing and of the SM/SSK schemes,
new detection algorithms specific to the SM/SSK schemes
have been developed, which may be classified into two
fundamental categories, namely the low-complexity Matched-
Filter (MF) based detector [1] and the single-antenna-based
optimal Maximum-Likelihood (ML) detector [2]. In practice,
the majority of the previous SM/SSK receivers have adopted
the single-stream ML detector [2]–[7], where the optimal BER
performance is achieved at the cost of an increased decoding
complexity.

On the other hand, the MF-based detector [1] exhibits
a significantly reduced complexity, since the antenna index
𝑚 and the modulated constellation point 𝑙 are separately
estimated. However, as mentioned in [2], [10], this sub-optimal
detector only works under the idealized assumption of en-
countering noiseless channels at the antenna-index estimation
stage. Recently, the novel concept of Space-Time Shift Keying
(STSK) has been proposed in [11]–[13], where the encoding
principle is characterized by the fact that one out of 𝑄
space-time dispersion matrices is selected, while the above-
mentioned SM and SSK schemes simply activates one out of
𝑀 antenna elements. Since the STSK scheme is capable of
exploiting both the space- and time-dimensions, it allows us
to strike a flexible balance between the maximum attainable
diversity order and the throughput.1 Previous studies of the
STSK scheme [11]–[13] also considered the optimal single-
stream-based ML detector, similarly to the SM/SSK schemes
[2]. One exception is constituted by the solution in [14], where
a reduced-complexity detection algorithm was developed in
the context of Differentially-encoded STSK (DSTSK) systems
[11], which was assisted by Multiple-Symbol Differential
Sphere Decoding (MSDSD).2 The introduction of differen-

1In order to expound a little further, both the SM and SSK schemes are
subsumed by the STSK arrangement, as demonstrated in [11], [13].

2In [15] a Sphere Detector (SD) was conceived for the SM scheme, in
order to closely approximate the optimal ML search. Furthermore, in [14]
the matched filter based non-coherent detector was combined with a SD in
the context of a differentially-encoded STSK scheme, for the sake of further
reducing the conventional SD’s complexity without imposing any substantial
performance degradation. Although the same idea may be readily applicable
to the detector proposed in this paper, the related investigations will be left
for our future studies.
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tial encoding was an important mile-stone, since the corre-
sponding low-complexity non-coherent receivers are capable
of outperforming their high-complexity coherently detected
counterparts in the presence of realistic pilot-aided channel es-
timations, as detailed in [16], [17]. However, the applicability
of this detector is limited to specific low-order constellations,
such as On-Off Keying (OOK), Binary Phase-Shift Keying
(BPSK), Quadrature PSK (QPSK) and 8-PSK. Regretfully, it
is not suitable for bandwidth-efficient Quadrature Amplitude
Modulation (QAM) [18].

Against this background, the novel contributions of this
paper are as follows:

∙ Two efficient near-optimal detectors are proposed for the
Coherently-detected STSK (CSTSK) scheme. More specif-
ically, both detectors rely on a modified MF concept,
while taking into account the particular constellation
diagram of the modulation scheme employed. To be more
specific, while the first detector invokes exhaustive signal-
space search at the MF’s output, the second detector fur-
ther reduces the first detector’s complexity at the cost of a
modest performance penalty. The proposed detectors are
applicable to CSTSK receiver employing arbitrary modu-
lation schemes, including high-order QAM. Furthermore,
since the CSTSK scheme subsumes the family of SM/SSK
schemes as its special case, the proposed low-complexity
detector is directly applicable to the class of SM/SSK
schemes. Also, the computational complexity imposed by
the proposed detector is quantified and compared to that
of the conventional detectors in [1] and [2].

∙ Since our previous DSTSK schemes were limited to
Pulse Amplitude Modulation (PAM) [11] and PSK [14],
we extend them to their higher-throughput QAM-aided
counterpart. Then, the new reduced-complexity detectors
proposed for CSTSK in this paper are further devel-
oped to its non-coherently detected QAM-aided DSTSK
counterpart. The advantage of the non-coherent DSTSK
detector over its coherent counterpart is quantified in
scenarios contaminated by channel-estimation errors.

∙ An additional result of this paper is that the star-QAM
assisted STSK scheme tends to outperform its square-
QAM aided counterpart. This holds true both for the
optimal ML and for the proposed near-optimal detectors.
We carried out both the related analysis as well as
computer simulations, in order to support this somewhat
unexpected fact.

The remainder of this paper is organized as follows. Sec-
tion II outlines the system model of the CSTSK scheme. In
Section III we commence by reviewing the conventional detec-
tors and propose the novel near-optimal reduced-complexity
detection schemes, while Section IV applies the proposed de-
tectors to the non-coherent STSK scenario and then Section V
provides our simulation results. Finally, Section VI concludes
this paper.

II. SYSTEM MODEL OF COHERENT STSK

In this section, we briefly review the encoding principle
and the received signal model of the CSTSK scheme [11].
At the CSTSK transmitter, information bits are encoded with

the aid of two different operations, namely the dispersion-
matrix activation and the classic ℒ-PSK/QAM modulation.
More specifically, the 𝑄 space-time dispersion matrices
A𝑞 ∈ 𝒞𝑀×𝑇 (𝑞 = 1, ⋅ ⋅ ⋅ , 𝑄) satisfying the power-constraint
relationship of tr

(
A𝐻

𝑞 A𝑞

)
= 𝑇 are assigned to the transmitter

in advance of transmissions , where 𝑀 and 𝑇 denote the
number of transmit antennas and the number of symbols
per space-time block duration, respectively. Firstly, 𝐵 =
log2(𝑄 ⋅ ℒ) information bits per space-time block are input
to the transmitter, and then the input bits are Serial-to-Parallel
(S/P) converted to 𝐵1 = log2 𝑄 and 𝐵2 = log2 ℒ bits. Next,
one out of 𝑄 dispersion matrices is selected as A𝑞 according
to the 𝐵1 = log2 𝑄 input bits, while the 𝐵2 = log2 ℒ input
bits are modulated to a PSK/QAM symbol 𝑠𝑙. Finally, a space-
time codeword S𝑞,𝑙 = 𝑠𝑙A𝑞 ∈ 𝒞𝑀×𝑇 is transmitted from the
𝑀 transmit antenna elements over 𝑇 symbol durations.

The corresponding block-based signals Y ∈ 𝒞𝑁×𝑇 received
at the CSTSK receiver may be expressed as

Y = HS+N, (1)

where H ∈ 𝒞𝑁×𝑀 represent the channel components, each
obeying the complex-valued Gaussian distribution having a
zero mean and a unity variance, i.e. 𝒞𝒩 (0,1), while each noise
element of N ∈ 𝒞𝑁×𝑇 is the complex-valued Gaussian vari-
able obeying 𝒞𝒩 (0,𝑁0). Furthermore, 𝑁 denotes the number
of receive antennas and 𝑁0 represents the noise variance.

By implementing the vectorial stacking operation vec(⋅)
at both sides of Eq. (1) as shown in [11], we arrive at the
equivalent system model as

Ȳ = H̄K𝑞,𝑙 + N̄, (2)

where we have

Ȳ = vec(Y) ∈ 𝒞𝑁𝑇×1 (3)

H̄ = [h̄1, ⋅ ⋅ ⋅ , h̄𝑄]

= (I𝑇 ⊗H)𝜒 ∈ 𝒞𝑁𝑇×𝑄 (4)

𝜒 = [𝑣𝑒𝑐(A1), ⋅ ⋅ ⋅ , 𝑣𝑒𝑐(A𝑄)] ∈ 𝒞𝑀𝑇×𝑄 (5)

N̄ = vec(N) ∈ 𝒞𝑁𝑇×1 (6)

and

K𝑞,𝑙 = [0, ⋅ ⋅ ⋅ , 0, 𝑠𝑙, 0, ⋅ ⋅ ⋅ , 0]T ∈ 𝒞𝑄×1. (7)

↑
𝑞th element

Here, ⊗ represents the Kronecker product operation. In the
rest of this paper, we employ the parametric notation of
‘STSK(𝑀,𝑁, 𝑇,𝑄)’ for the sake of space economy.

III. LOW-COMLEXITY MF-BASED CSTSKS

This section firstly introduces the two conventional detec-
tors in the context of the CSTSK arrangement, namely the
conventional MF-based detector [1] and the single-antennna-
based ML detector [2]. Then we continue by outlining the two
near-optimal receiver architectures advocated, which exploits
the properties of the ℒ-PSK/QAM constellations employed.
Furthermore, we compare the computational complexity im-
posed by these four detectors. Note that the aim of the CSTSK
detectors is to identify the transmitted index set (𝑞, 𝑙) in a
reliable and low-complexity manner.
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Fig. 1. The structure of the proposed Detectors I and II.

A. The Conventional MF-Based Detector [1]

In the conventional detector of [1], the Hermitian transpose
of the equivalent channel matrix H̄ is multiplied by the
equivalent received signal Ȳ in order to formulate the decision
metric of G = [𝑔1, ⋅ ⋅ ⋅ , 𝑔𝑄]T ∈ 𝒞𝑄×1, as follows:

G = H̄𝐻Ȳ. (8)

Then, the index 𝑞 of the activated dispersion matrix and
the transmitted symbol index 𝑙 are estimated separately, as
follows:

𝑞 = argmax
𝑞

∣𝑔𝑞∣, (9)

𝑙̂ = 𝒟(𝑔𝑞) = argmin
𝑙

∣∣𝑔𝑞 − ∥h𝑞∥2𝑠𝑙
∣∣ , (10)

where 𝒟 denotes the demodulation function.
Note that since the transmitted-symbol estimation process of

Eq. (10) includes the result of the dispersion-matrix estimation
formulated in Eq. (9), the potential mis-detection of 𝑞 may
induce error propagation. Importantly, while the search space
of this detector determined by Eqs. (9) and (10), is as low
as the order of (𝑄 + ℒ), this detection scheme tends to
exhibit an error floor in fading environments [2], [10]. This is
mainly due to the fact that low-complexity MF-operation of
Eq. (8) ignores the effect of the channel’s fading envelope,
as well as because the decision metric of Eq. (9) only
considers the absolute value of the matched-filtered symbol,
rather than individually considering each constellation point.
In Section III-C below, our detector will be further developed
for the sake of combating these limitations, hence ultimately
achieving a higher BER performance than that of the detector
of this section.

B. The Single-Stream-Based ML Detector [2], [11]

The optimal ML performance may be attained by imple-
menting exhaustive search over the legitimate CSTSK code-
words K𝑞,𝑙 (1 ≤ 𝑞 ≤ 𝑄, 1 ≤ 𝑙 ≤ ℒ) at the cost of an
increased complexity. To be more specific, by maximizing the
probability of 𝑃 (Ȳ∣H̄,K𝑞,𝑙), the ML search may be expressed
as

(𝑞, 𝑙̂) = argmin
(𝑞,𝑙)

∥Ȳ − H̄K𝑞,𝑙∥2 (11)

= argmin
(𝑞,𝑙)

∥Ȳ − 𝑠𝑙h̄𝑞∥2, (12)

where h̄𝑞 is the 𝑞th column of H̄. As shown in Eq. (12), the
search space size of the ML detector is the order of (𝑄 ⋅ ℒ),
which is higher than (𝑄 + ℒ) in the detector [1] outlined in
Section III-A.

C. The Proposed MF-Based Detector I

In this section, we present the new reduced-complexity
CSTSK detector of Fig. 1. According to Eq. (4), the estimated
channels H are firstly transformed to the equivalent channels
H̄. Then, we normalized each column of H̄ in order to
generate the modified equivalent channels H′ as3

H′ =
[

h̄1

∥h̄1∥
, ⋅ ⋅ ⋅ , h̄𝑄

∥h̄𝑄∥
]
. (13)

Then, we have the MF output of

Z = [𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑄]T = H′𝐻Ȳ. (14)

Next, we consider the vector-by-vector exhaustive (𝑞, 𝑙)
search for the MF-output signals of Z as follows:

(𝑞, 𝑙̂) = argmin
𝑞.𝑙

∥∥Z− ∥h̄𝑞∥K𝑞,𝑙

∥∥2 (15)

= argmin
𝑞.𝑙

⎛
⎝∣∣𝑧𝑞 − ∥h̄𝑞∥𝑠𝑙

∣∣2 +∑
𝑞′ ∕=𝑞

∣𝑧𝑞′ ∣2
⎞
⎠ (16)

= argmin
𝑞.𝑙

(∣∣𝑧𝑞 − ∥h̄𝑞∥𝑠𝑙
∣∣2 + ∥Z∥2 − ∣𝑧𝑞∣2

)
(17)

= argmax
𝑞.𝑙

(
∣𝑧𝑞∣2 −

∣∣𝑧𝑞 − ∥h̄𝑞∥𝑠𝑙
∣∣2) (18)

= argmax
𝑞.𝑙

[
2∥h̄𝑞∥ {ℜ(𝑧𝑞)ℜ(𝑠𝑙) + ℑ(𝑧𝑞)ℑ(𝑠𝑙)}

−∥h̄𝑞∥2∣𝑠𝑙∣2
]
, (19)

while ℜ(⋅) and ℑ(⋅) represent the real and imaginary part,
respectively. In order to reduce the complexity of the detection
relying on Eq. (19), we introduce the separate detection of 𝑞
and 𝑙. More specifically, assuming that the modulation scheme
𝑠𝑙 has symmetric properties around both the 𝐼- and 𝑄-axis,
the detection of the activated dispersion-matrix index 𝑞 can
be expressed from Eq. (19) as Eqs. (20) and (21) at the top

3The computations of the modified equivalent channels H′ are carried out
as a part of the detection process in our detector, which has to be updated
at intervals corresponding to the channel’s coherence time 𝜏 . This naturally
imposes an additional decoding complexity and hence will be taken into
account in the complexity evaluation of Section III-E.
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𝑞 = argmax
𝑞,∀𝑙′

[
2∥h̄𝑞∥ {±∣ℜ(𝑧𝑞)∣ ∣ℜ(𝑠′𝑙′)∣ ± ∣ℑ(𝑧𝑞)∣ ∣ℑ(𝑠′𝑙′)∣}

−∥h̄𝑞∥2∣𝑠′𝑙′ ∣2
]

(20)

= argmax
𝑞,∀𝑙′

[
2∥h̄𝑞∥ {∣ℜ(𝑧𝑞)∣ ∣ℜ(𝑠′𝑙′)∣+ ∣ℑ(𝑧𝑞)∣ ∣ℑ(𝑠′𝑙′)∣}

−∥h̄𝑞∥2∣𝑠′𝑙′ ∣2
]

(21)

of the next page, where 𝑠′𝑙′ (𝑙′ = 1, ⋅ ⋅ ⋅ ,ℒ′) represents the
constellation points, which corresponds to the points 𝑠𝑙 having
the relationship of ℜ(𝑠𝑙),ℑ(𝑠𝑙) ≥ 0, as shown in Fig. 2.4

Then, by using the dispersion-matrix index 𝑞 estimated in
Eq. (21), the symbol index 𝑙 is detected according to

𝑙 = 𝒟(𝑧𝑞) = argmin
𝑙

∣∣𝑧𝑞 − ∥h̄𝑞∥𝑠𝑙
∣∣ . (22)

Note that the legitimate search space of Eqs. (21) and (22) is
𝑄ℒ′(≃ 𝑄ℒ/4) and ℒ, respectively, which is typically smaller
than the search space 𝑄ℒ of Eq. (19). Here, we define the
detector proposed in this section as ‘Detector I’, which is
characterized by Eqs. (14), (21) and (22).

D. The Proposed MF-Based Detector II

Furthermore, in this section we propose another detector,
which is capable of further reducing the complexity of Detec-
tor I of Section III-C. To be specific, the 𝑞-detection part of
Eq. (21) in Detector I is further approximated, while allowing
a modest performance penalty. Firstly, Eq. (21) is rewritten
as: Eq. (23), which is shown at the top of the following page.

Then, by only considering the last term of Eq. (23), we
arrive at its approximation of

𝑞 = argmax
𝑞,∀𝑙′

[
∣ℜ(𝑧𝑞)∣ ∣ℜ(𝑠

′
𝑙′)∣

∣𝑠′𝑙′ ∣
+ ∣ℑ(𝑧𝑞)∣ ∣ℑ(𝑠

′
𝑙′ )∣

∣𝑠′𝑙′ ∣
]
. (24)

Here, let us define the legitimate pairs of
(∣ℜ(𝑠′𝑙′)∣/∣𝑠′𝑙′ ∣, ∣ℑ(𝑠′𝑙′)∣/∣𝑠′𝑙′ ∣) as V number of unit-norm
vectors x𝑣 = [𝑥𝑣,𝐼 , 𝑥𝑣,𝑄] (𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 ). More explicitly,
as exemplified in Fig. 2 for both 16 square-QAM and 16
star-QAM, we have 𝑉 = 3 vectors.5 Finally, we have the
following decision metric of

𝑞 = argmax
𝑞,∀𝑣

(𝑔𝑞,𝑣) (25)

= argmax
𝑞,∀𝑣

[∣ℜ(𝑧𝑞)∣𝑥𝑣,𝐼 + ∣ℑ(𝑧𝑞)∣𝑥𝑣,𝑄] . (26)

Finally, the approximated version of Detector I is constituted
by Eqs. (14), (26) and (22), which is referred to as ‘Detector

4 For example, 𝑠′
𝑙′ (𝑙

′ = 1, ⋅ ⋅ ⋅ , 𝐿)′ is given by 𝑠′
𝑙′ ∈ {1} for BPSK, while

we have 𝑠′
𝑙′ ∈ {1/√2 + 𝑗/

√
2} for QPSK, 𝑠′

𝑙′ ∈ {1, 1/√2 + 𝑗/
√
2, 𝑗}

for 8-PSK and 𝑠′
𝑙′ ∈ {1/√10 + 𝑗/

√
10, 1/

√
10 + 𝑗3/

√
10, 3/

√
10 +

𝑗/
√
10, 3/

√
10 + 𝑗3/

√
10} for 16 square-QAM. Similarly, 𝑠′

𝑙′ (𝑙′ =
1, ⋅ ⋅ ⋅ , 𝐿)′ can be defined for any of the modulation schemes, which have
symmetric properties around the 𝐼- and 𝑄-axis.

5To elaborate a little further, this process of generating x𝑣 (𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 )
from the constellation points is applicable to modulation schemes, which have
symmetric properties around both the 𝑠𝐼 and 𝑠𝑄 axes. This indicates that the
proposed detection may be used for most of the conventional PSK/QAM
schemes or other constellation schemes, which do not have such symmetric
properties, all the constellation points have to be considered for the calculation
of x𝑣 (𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 ). Naturally, this is only possible at the cost of an
increased value of V, hence an increased decoding complexity, as formulated
in Eq. (35) of Section III-E.

II’ in this paper. For more details, we listed in Table I a set of
examples for characterizing the mapping of classic PSK/QAM
symbols to the corresponding sets of x𝑣 (𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 ).6

To be more specific, given a transmitted index set of (𝑞, 𝑙)
and the corresponding value of 𝑣, the correct element 𝑔′𝑞,𝑣 of
the decision metric G′ is represented by

𝑔′𝑞,𝑣 = 𝑥𝑣,𝐼

∣∣∣∣∣∥h̄𝑞∥ℜ(𝑠𝑙) + ℜ
(

h̄𝐻
𝑞

∥h̄𝑞∥
N̄

)∣∣∣∣∣
+ 𝑥𝑣,𝑄

∣∣∣∣∣∥h̄𝑞∥ℑ(𝑠𝑙) + ℑ
(

h̄𝐻
𝑞

∥h̄𝑞∥
N̄

)∣∣∣∣∣ , (27)

while the incorrect element 𝑔′𝑞,𝑣′ (𝑞 ∕= 𝑞, 1 ≤ 𝑣′ ≤ 𝑉 ) may be
expressed as

𝑔′𝑞,𝑣′ = 𝑥𝑣′,𝐼

∣∣∣∣∣ℜ
(

h̄𝐻
𝑞

∥h̄𝑞∥ h̄𝑞𝑠𝑙

)
+ ℜ

(
h̄𝐻
𝑞

∥h̄𝑞∥N̄
)∣∣∣∣∣

+ 𝑥𝑣′,𝑄

∣∣∣∣∣ℑ
(

h̄𝐻
𝑞

∥h̄𝑞∥ h̄𝑞𝑠𝑙

)
+ ℑ

(
h̄𝐻
𝑞

∥h̄𝑞∥N̄
)∣∣∣∣∣ . (28)

Provided that we have

𝑔′𝑞,𝑣 > 𝑔′𝑞,𝑣′ (𝑞 ∕= 𝑞, 1 ≤ 𝑣′ ≤ 𝑉 ), (29)

the correct index 𝑞 is found during each block interval. Here,
let us consider the ultimate scenario of 𝑁0 → 0. Then Eq.
(29) becomes

∥h̄𝑞∥ {𝑥𝑣,𝐼 ∣ℜ(𝑠𝑙)∣+ 𝑥𝑣,𝑄 ∣ℑ(𝑠𝑙)∣}︸ ︷︷ ︸
𝜙

>

𝑥𝑣′,𝐼

∣∣∣∣∣ℜ
(

h̄𝐻
𝑞

∥h̄𝑞∥
h̄𝑞𝑠𝑙

)∣∣∣∣∣+ 𝑥𝑣′,𝑄

∣∣∣∣∣ℑ
(

h̄𝐻
𝑞

∥h̄𝑞∥
h̄𝑞𝑠𝑙

)∣∣∣∣∣ . (30)

We note that considering the relationships of ∣𝑥𝑣′,𝐼 ∣2 +
∣𝑥𝑣′,𝑄∣2 = 1 as well as of ∣ℜ(𝑠𝑙)∣ , ∣ℑ(𝑠𝑙)∣ ≥ 0, 𝜙 =
𝑥𝑣,𝐼 ∣ℜ(𝑠𝑙)∣+𝑥𝑣,𝑄 ∣ℑ(𝑠𝑙)∣ of Eq. (30) may be upper-bounded
by

𝜙 = 𝑥𝑣,𝐼 ∣ℜ(𝑠𝑙)∣+ 𝑥𝑣,𝑄 ∣ℑ(𝑠𝑙)∣

=

√
∣ℜ(𝑠𝑙)∣2 + ∣ℑ(𝑠𝑙)∣2 ⋅

⎧⎨
⎩𝑥𝑣,𝐼

∣ℜ(𝑠𝑙)∣√
∣ℜ(𝑠𝑙)∣2 + ∣ℑ(𝑠𝑙)∣2

+ 𝑥𝑣,𝑄
∣ℑ(𝑠𝑙)∣√

∣ℜ(𝑠𝑙)∣2 + ∣ℑ(𝑠𝑙)∣2

⎫⎬
⎭

≤
√

∣ℜ(𝑠𝑙)∣2 + ∣ℑ(𝑠𝑙)∣2 = ∣𝑠𝑙∣. (31)

6Furthermore, for (ℒ ≥ 4)-point PSK constellations, we may be able to for-

mulate a set of parameters (x𝑣, 𝑉 ) as x𝑣 =
[
cos

𝜋(𝑣−1)
2(𝑉 −1)

sin
𝜋(𝑣−1)
2(𝑉 −1)

]
(𝑣 =

1, ⋅ ⋅ ⋅ , 𝑉 ) as well as 𝑉 = ℒ/4 + 1.
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𝑞 = argmax
𝑞,∀𝑙′

[
2∥h̄𝑞∥

{
∣ℜ(𝑧𝑞)∣ ∣ℜ(𝑠

′
𝑙′)∣

∣𝑠′𝑙′ ∣
+ ∣ℑ(𝑧𝑞)∣ ∣ℑ(𝑠

′
𝑙′)∣

∣𝑠′𝑙′ ∣
}
∣𝑠′𝑙′ ∣ − ∥h̄𝑞∥2∣𝑠′𝑙′ ∣2

]
,

= argmax
𝑞,∀𝑙′

[
−
(
∥h̄𝑞∥∣𝑠′𝑙′ ∣ −

{
∣ℜ(𝑧𝑞)∣ ∣ℜ(𝑠

′
𝑙′)∣

∣𝑠′𝑙′ ∣
+ ∣ℑ(𝑧𝑞)∣ ∣ℑ(𝑠

′
𝑙′ )∣

∣𝑠′𝑙′ ∣
})2

+

{
∣ℜ(𝑧𝑞)∣ ∣ℜ(𝑠

′
𝑙′ )∣

∣𝑠′𝑙′ ∣
+ ∣ℑ(𝑧𝑞)∣ ∣ℑ(𝑠

′
𝑙′ )∣

∣𝑠′𝑙′ ∣
}2
]

(23)

x1

x2

x3

x1

x2

x3

16 square QAM 16 star QAM

Fig. 2. Sets of 𝑠′
𝑙′ ∈ {𝑠′1, ⋅ ⋅ ⋅ , 𝑠′ℒ′} and X = [xT

1 , ⋅ ⋅ ⋅ ,xT
𝑉 ] for 16 square-QAM and star-QAM constellations.

TABLE I
MAPPING EXAMPLES FROM MODULATION SCHEMES TO POINTS x𝑣 (𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 )

Modulation x𝑣 (𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 ) Modulation x𝑣 (𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 )
Scheme Scheme

BPSK x1 = [1, 0] 64-square-QAM x1 = [ 7√
50

, 1√
50

]

QPSK x1 = [1, 0] x2 = [ 5√
26

, 1√
26

]

x2 = [0, 1] x3 = [ 3√
10

, 1√
10

]

8-PSK x1 = [1, 0] x4 = [ 7√
58

, 3√
58

]

16-star-QAM [19] x2 = [ 1√
2
, 1√

2
] x5 = [ 5√

34
, 3√

34
]

x3 = [0, 1] x6 = [ 7√
74

, 5√
74

]

16-PSK x1 = [1, 0] x7 = [ 1√
2
, 1√

2
]

64-star-QAM [20] x2 = [cos
(
𝜋
8

)
, sin

(
𝜋
8

)
] x8 = [ 5√

74
, 7√

74
]

x3 = [ 1√
2
, 1√

2
] x9 = [ 3√

34
, 5√

34
]

x4 = [cos
(
3𝜋
8

)
, sin

(
3𝜋
8

)
] x10 = [ 3√

58
, 7√

58
]

x5 = [0, 1] x11 = [ 1√
10

, 3√
10

]

4-square-QAM x1 = [ 1√
2
, 1√

2
] x12 = [ 1√

26
, 5√

26
]

16-square-QAM x1 = [ 3√
10

, 1√
10

] x13 = [ 1√
50

, 7√
50

]

x2 = [ 1√
2
, 1√

2
]

x3 = [ 1√
10

, 3√
10

]

In Eq. (31) we have equality if and only if

𝑥𝑣,𝐼

𝑥𝑣,𝑄
=

∣ℜ(𝑠𝑙)∣
∣ℑ(𝑠𝑙)∣ . (32)

Therefore, the projection operation from the constellation
points 𝑠𝑙 (1 ≤ 𝑙 ≤ ℒ) to the corresponding points x𝑣 (1 ≤
𝑣 ≤ 𝑉 ) on the unit circle, as shown in Fig. 2, is aimed for
having x𝑣 , which satisfies Eq. (32), hence maximizes the left
hand side of Eq. (30). As a result, Eq. (30) is always satisfied
and the conventional detector’s error floor can be eliminated.

E. Complexity Analysis

In this section, we compare the computational complexity
imposed by the four detectors presented in Section III, i.e. the
original MF-based detector [1], the optimal ML detector [2],
the proposed Detector I of Section III-C and the proposed De-
tector II of Section III-D. Here, we quantified the complexity
as the number of real-valued multiplications, where a single
complex-valued multiplication is deemed to be equivalent to
four real-valued multiplications.

The corresponding complexity per bit may be expressed,
respectively, as Eqs. (33)–(36), which are shown at the top
of the following page. Here, the coherence block interval
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𝐶Mesleh =
(4𝑀𝑁𝑇𝑄+ 2𝑁𝑇𝑄)/𝜏 + 4𝑁𝑇𝑄+ 2𝑄+ 4ℒ

log2(𝑄 ⋅ ℒ) , (33)

𝐶ML =
(4𝑀𝑁𝑇𝑄+ 4𝑁𝑇𝑄ℒ)/𝜏 + 2𝑁𝑇𝑄ℒ

log2(𝑄 ⋅ ℒ) , (34)

𝐶I =
(4𝑀𝑁𝑇𝑄+ 4𝑁𝑇𝑄+𝑄ℒ′)/𝜏 + 4𝑁𝑇𝑄+ 3𝑄ℒ′ + 4ℒ

log2(𝑄 ⋅ ℒ) , (35)

𝐶II =
(4𝑀𝑁𝑇𝑄+ 4𝑁𝑇𝑄)/𝜏 + 4𝑁𝑇𝑄+ 2𝑉 𝑄+ 4ℒ

log2(𝑄 ⋅ ℒ) (36)

𝜏 is defined as the number of space-time blocks, where
the channel matrix H remains constant. This indicates that
for example 𝜏 = 1 represents an instantaneously fading
scenario and that upon increasing the coherence interval 𝜏 ,
the associated complexity of Eqs. (33)–(36) may decrease,
because for example the calculations of H̄, 𝑠𝑙h̄𝑞 , ∥h̄𝑞∥2 and
H′ can be reused. Not that the complexity evaluations of the
proposed Detectors I and II, as formulated in Eqs. (35) and
(36), are detailed in the Appendix.

F. Effects of Constellations on High-𝑄 STSK Arrangements

In this section, we provide a qualitative analysis of the
effects of the specific constellation on the achievable coding
gain of the QAM-aided STSK scheme.

Let us define the Pairwise Error Probability (PEP) as
𝑃 (S𝑙,𝑞 → S𝑙′,𝑞′), which quantifies the probability that a
codeword S𝑙,𝑞 is erroneously decoded as S𝑙′,𝑞′ . According to
[21], at high SNRs the Chernoff bound of the PEP may be
expressed as

𝑃 (S𝑙,𝑞 → S𝑙′,𝑞′) ≤
(

1

4𝑁0

)𝑅𝑁

︸ ︷︷ ︸
diversity gain

⋅
(

𝑅∏
𝑟=1

1

𝜇𝑟

)𝑁

︸ ︷︷ ︸
coding gain

, (37)

where we have

Δ = S𝑙,𝑞 − S𝑙′,𝑞′ (38)

𝑅 = rank(ΔΔ𝐻). (39)

Furthermore, 𝜇𝑟 represents the 𝑟th non-zero eigenvalue of
ΔΔ𝐻 . Assuming that codewords are designed to satisfy a
rank of 𝑅 = min(𝑀,𝑇 ), the performance difference is essen-
tially determined by the minimum value of the multiplicative
coding-gain term in Eq. (37) for the legitimate combinations
of (S𝑙,𝑞,S𝑙′,𝑞′ ). For simplicity, let us consider a scenario of

𝑀 = 𝑇 . Then, the coding gain
(∏𝑅

𝑟=1
1
𝜇𝑟

)𝑁
of Eq. (37)

corresponds to det(ΔΔ𝐻)𝑁 , which may be classified by the
relationship between (𝑙, 𝑞) and (𝑙′, 𝑞′) as Eqs. (40a)–(40c),
which are shown at the top of the next page. Typically, the
minimum value of det(ΔΔ𝐻) may be given by Eq. (40a) or
Eq. (40b), rather than by Eq. (40c). We note, furthermore, that
∣𝑠𝑙 − 𝑠𝑙′ ∣ in Eq. (40a) corresponds to the distance between the
constellation points 𝑙 and 𝑙′, while ∣𝑠𝑙∣ indicates the absolute

TABLE II
COMPARISON OF SQUARE-QAM AND STAR-QAM CONSTELLATIONS

Minimum of Minimum of
∣𝑠𝑙∣2 ∣𝑠𝑙 − 𝑠𝑙′ ∣2

16 square-QAM 0.2 0.4
16 star-QAM [19] 0.416 0.244
32 square-QAM 0.077 0.154
32 star-QAM 0.133 0.078
64 square-QAM 0.048 0.095
64 star-QAM [20] 0.279 0.042

value of the 𝑙th constellation point.7

For high 𝑄 values it becomes more challenging to achieve
a high value for det

[
(A𝑞 −A𝑞′)(A𝑞 −A𝑞′ )

𝐻
]

for all the
legitimate (𝑞, 𝑞′) combinations in Eq. (40b), than to maintain
a high minimum value for det

(
A𝑞A

𝐻
𝑞

)
for all 𝑞 in Eq. (40a).

Hence employing specific modulation schemes, which have
a high minimum value of ∣𝑠𝑙∣, may result in a high coding
gain. For example, let us compare in Table II two important
constellations, namely 16 square-QAM [18] and 16 star-QAM
[19]. Observe in Table II that star-QAM attains a higher value
of ∣𝑠𝑙∣ than square-QAM for ℒ = 16, 32 and 64. Hence
somewhat unexpectedly, the star-QAM assisted STSK scheme
has the potential of outperforming its square-QAM counterpart
for high-𝑄 scenarios. This will be verified later in Section V.

IV. REDUCED-COMPLEXITY NON-COHERENT STSK
RECEIVER

In this section, we firstly formulate the QAM-aided DSTSK
scheme by further developing the DSTSK architecture of
[11], [14]. Then, we apply the proposed reduced-complexity
detectors of Sections III-C and III-D to our QAM-aided
DSTSK receiver.

A. System Model of QAM-Aided DSTSK Scheme

We arrange for 𝑄 dispersion matrices B𝑞 ∈ 𝒞𝑇×𝑇 (𝑞 =
1, ⋅ ⋅ ⋅ , 𝑄) to be pre-assigned at the transmitter, similarly to the
CSTSK scheme, where B𝑞 is a unitary-matrix, which satisfies
the relationship of B𝑞B

𝐻
𝑞 = B𝐻

𝑞 B𝑞 = I. It is also assumed
for the sake of simplicity that the number of transmit antennas

7To elaborate a little further, in the classic QAM modems the minimum
distance min(∣𝑠𝑙 − 𝑠𝑙′ ∣) affects the achievable performance, while the
minimum absolute value min(∣𝑠𝑙∣) does not. On the other hand, the recent
STSK scheme does not obey this well-known rule, as mentioned above. For
this reason, the star-QAM aided STSK scheme tends to outperforms its square-
QAM counterpart, which is in contrast to classic QAM modems.
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det(ΔΔ𝐻) =

⎧⎨
⎩

∣𝑠𝑙 − 𝑠𝑙′ ∣2 det
(
A𝑞A

𝐻
𝑞

)
, for 𝑙 ∕= 𝑙′, 𝑞 = 𝑞′ (40a)

∣𝑠𝑙∣2 det
[
(A𝑞 −A𝑞′)(A𝑞 −A𝑞′)

𝐻
]
, for 𝑙 = 𝑙′, 𝑞 ∕= 𝑞′ (40b)

det
[
(𝑠𝑙A𝑞 − 𝑠𝑙′A𝑞′) (𝑠𝑙A𝑞 − 𝑠𝑙′A𝑞′)

𝐻
]
, for 𝑙 ∕= 𝑙′, 𝑞 ∕= 𝑞′ (40c)

𝑀 is the same as the number of symbol durations 𝑇 per
transmission block.

In each block duration, 𝐵 information bits are input and
S/P converted to 𝐵1 and 𝐵2 bits, similarly to the CSTSK
transmitter. According to the 𝐵1 bits, one out of 𝑄 dispersion
matrices is activated as B

(𝑛)
𝑞 , while the 𝐵2 bits are mapped

to a PSK/QAM symbol 𝑠
(𝑛)
𝑙 . Here, the superscript 𝑛 denotes

the space-time block index. Finally, the transmitted space-time
matrix S(𝑛) of the 𝑛th block may be formulated with the aid
of differential encoding as follows:

S(𝑛) =
𝑠
(𝑛)
𝑙∣∣∣𝑠(𝑛−1)

𝑙

∣∣∣S(𝑛−1)B(𝑛)
𝑞 (𝑛 ≥ 1), (41)

where we have S(0) = I and
∣∣∣𝑠(0)𝑙

∣∣∣ = 1.8 Furthermore, the
number of successively encoded blocks per frame is defined
as 𝜁 in this paper.

Assuming that the channel matrix H remains constant over
two successive block intervals, the corresponding received
signals at the (𝑛− 1)st and the 𝑛th blocks may be expressed
as

Y(𝑛−1) = HS(𝑛−1) +N(𝑛−1), (42)

Y(𝑛) = HS(𝑛) +N(𝑛) (43)

=
𝑠
(𝑛)
𝑙∣∣∣𝑠(𝑛−1)

𝑙

∣∣∣HS(𝑛−1)B(𝑛)
𝑞 +N(𝑛). (44)

From Eqs. (41), (42) and (44), we arrive at

Y(𝑛) =
𝑠
(𝑛)
𝑙∣∣∣𝑠(𝑛−1)

𝑙

∣∣∣Y(𝑛−1)B(𝑛)
𝑞 +N′(𝑛), (45)

where we have the equivalent noise components of

N′(𝑛) = N(𝑛) − 𝑠
(𝑛)
𝑙∣∣∣𝑠(𝑛−1)

𝑙

∣∣∣N(𝑛−1)B(𝑛)
𝑞 . (46)

Hence, the ML detection at the 𝑛th block interval may be
represented by

(𝑞, 𝑙̂) = argmin
(𝑞,𝑙)

∥∥∥∥∥Y(𝑛) − 𝑠
(𝑛)
𝑙

𝜈
Y(𝑛−1)B(𝑛)

𝑞

∥∥∥∥∥ , (47)

where we assume that the estimate 𝜈 =
∣∣∣𝑠(𝑛−1)

𝑙̂

∣∣∣ is obtained

from the ML detection result of the (𝑛 − 1)st block, ac-
knowledging that this may potentially induce error propagation
to the detection of the 𝑛th block. We also note that the
DSTSK scheme’s ML detector formulated in Eq. (47) does not

8Although we assumed for the QAM-aided DSTSK scheme to have the
relationship of 𝑀 = 𝑇 , a lower transmit-AE scenario of 𝑀 < 𝑇 may be
readily used by choosing 𝑀 < 𝑇 rows from the signals S(𝑛) in Eq. (41).
This implementation is similar to that of the 𝐺3-OSTBC [22].

include any channel elements, hence dispensing with channel
estimation.

B. The Proposed DSTSK Detector

In order to enable us to implement the reduced-complexity
MF detectors proposed for the CSTSK scheme in the context
of the above-mentioned QAM-aided DSTSK scheme, we
firstly derive a linearized DSTSK model, which corresponds
to that of the CSTSK scheme of Eq. (2). More specifically, by
applying the vectorial stacking operation 𝑣𝑒𝑐(⋅) at both sides
of Eq. (45), we get

Ȳ(𝑛) = H̄(𝑛)K
(𝑛)
𝑞,𝑙 + N̄(𝑛), (48)

where we have

Ȳ(𝑛) = 𝑣𝑒𝑐
(
Y(𝑛)

)
, (49)

H̄(𝑛) =

⎛
⎝I𝑇 ⊗ Ȳ(𝑛−1)∣∣∣𝑠(𝑛−1)

𝑙

∣∣∣
⎞
⎠𝜒, (50)

𝜒 = [𝑣𝑒𝑐(B1), ⋅ ⋅ ⋅ , 𝑣𝑒𝑐(B𝑄)] , (51)

N̄(𝑛) = vec
(
N′(𝑛)

)
(52)

and

K
(𝑛)
𝑞,𝑙 = [0, ⋅ ⋅ ⋅ , 0, 𝑠(𝑛)𝑙 , 0, ⋅ ⋅ ⋅ , 0]T . (53)

↑
𝑞th element

Since Eq. (48) obeys the same system model as Eq. (2),
the detectors proposed in Sections III-C and III-D can be
directly applied to our PSK/QAM-aided DSTSK scheme. This
implies that higher-order PSK/QAM constellations can be
readily employed in a similar manner to the CSTSK scenario,
while those of the previous DSTSK scheme [14] are limited
to constellations up to 8-PSK.

Again, as shown in Eq. (50), the matrix H̄(𝑛) does not
contain any channel elements. Additionally, unlike the CSTSK
scenarios of Section III-C, the proposed DSTSK detector
has to update H̄(𝑛) at each block interval, regardless of the
channel’s coherence time 𝜏 . By contrast, while the perfor-
mance of the CSTSK scheme is routinely degraded by channel
estimation errors, the proposed DSTSK detector allows us to
dispense with channel estimation, hence potentially outper-
forming its CSTSK counterpart.

We also note that our DSTSK detector has the explicit
benefit of dispensing with the channel power estimation, while
this would be necessary for the QAM-aided Differential Or-
thogonal Space-Time Block Codes (OSTBC) detector of [23].
This contributes towards the mitigation of error propagation
to the forthcoming signaling blocks.
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Fig. 3. Achievable BER performance of the 16-QAM CSTSK(4,4,4,16) and
64-QAM CSTSK(4,4,4,64) schemes, where the optimal ML detector as well
as the proposed Detectors I and II were considered, while comparing star-
and square-QAM modulations.
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Fig. 4. Achievable BER performance of the 8-PSK modulated
CSTSK(4,4,2,8) scheme and the BPSK-modulated SM scheme employing
𝑀 = 𝑁 = 4 transmit and receive antennas, where the optimal ML
detector, the proposed Detectors I and II and Mesleh’s MF-based detector were
considered. Here, all the arrangements have the throughput of 3 bits/symbol
and are equipped with 𝑀 = 𝑁 = 4 transmit and receive antennas.

V. PERFORMANCE RESULTS

In this section we provide our performance results for
characterizing both the achievable BER and the computa-
tional complexity of the above-mentioned four detectors.9

Throughout the simulations, we considered frequency-flat
block Rayleigh fading channels.

In order to generate a dispersion-matrix set for each STSK
arrangement, Monte Carlo simulations were carried out, where
the dispersion-matrix set was optimized according to the rank-
and determinant criterion [11], by generating 105–106 random
matrices. Additionally, for the CSTSK and DSTSK schemes,
having the relationship of 𝑀 = 𝑇 , we imposed a unitary-
matrix constraint on the randomly generated matrices.

9Since the performance advantage of the class of STSK schemes over other
MIMO arrangements has been shown in the previous studies of [11], [13],
[24], in this paper we focus our attaintion on the comparisons between the
proposed and conventional STSK detectors. For readers who are interested in
the performance differences between the STSK scheme and the conventional
MIMO arrangements, please refer to [11], [13], [24]

Figs. 3 and 4 compare the BER of the STSK family,
namely of the SM and the CSTSK schemes, employing
𝑀 = 4 transmit and 𝑁 = 4 receive antenna elements. In
Fig. 3 we considered the 16-QAM assisted CSTSK(4, 4, 4, 16)
and 64-QAM assisted CSTSK(4, 4, 4, 64) schemes, employing
square- and star-QAM constellations, while in Fig. 4 the BER
curves of the BPSK-modulated SM and the 8-PSK modu-
lated CSTSK(4, 4, 2, 8) schemes having 𝑅 = 3 bits/symbol
were portrayed. Here, we also plotted the corresponding tight
BER upper-bound curves calculated based on the Moment-
Generating Function (MGF) [25], in order to confirm the ML
detector’s BER results.

Observe in Fig. 3 that both the ℒ = 16 and 64 scenarios
showed the similar results. More specifically, for star-QAM
the three detectors, i.e. the ML detector and the proposed
Detectors I and II, exhibited the alomost identical performance,
while for square-QAM Detector II showed a fraction of one dB
worse performance than those of the ML detector and Detector
I. This marginal performance penalty of Detector II is owing
to the fact that Detector II is designed to approximate the
𝑞-estimation part of Detector I for the sake of substantially
reducing the complexity, whose effects will also be verified
later in our simulations.

Also, in Fig. 4 while the original MF detector exhibited an
error floor as predicted from [2], [10], the proposed Detector
II achieved a near-optimal performance for CSTSK, similarly
to the results in Fig. 3.

In order to provide further insights, in Fig. 5 we com-
pared the effective SNRs recorded for BER = 10−4 in
the context of the 16-square-QAM and 16-star-QAM aided
CSTSK(4, 4, 𝑇,𝑄) schemes employing both the ML and the
proposed MF Detectors I and II. More specifically, in Fig. 5(a)
we varied the number of dispersion matrices from 𝑄 = 1
to 64, while maintaining the number of symbol durations at
𝑇 = 4. Furthermore, in Fig. 5(b) we varied the number of
symbol durations per block as 𝑇 = 1, 2, 3, 4 and 5. Observe in
Fig. 5(a) that since an increase of 𝑄 increases the normalized
throughput, this naturally increased the effective SNR required
for both QAM modems. The findings from Figs. 5(a) and 5(b)
are listed below:

∙ As predicted from Section III-F, the 16-star-QAM aided
CSTSK scheme outperformed its 16-square-QAM aided
counterpart for 𝑄 ≥ 2 and its performance advantage
increased upon increasing the value of 𝑄 regardless of
the specific choice of the detectors employed.

∙ The ML detector and Detector I exhibited an identical
performance for all the scenarios considered.

∙ For 𝑀 ≤ 𝑇 16-star-QAM scenarios the proposed
reduced-complexity MF Detector II achieved a perfor-
mance comparable to that of the optimal ML detector,
whilst there was an observable performance gap between
Detector II and the other two detectors for 16-square-
QAM and for 16-star-QAM scenarios associated with
𝑀 > 𝑇 .10

∙ Observe in Fig. 5(b) that the lower the value of 𝑇 , the

10An information-theoretic proof of the proposed detector’s capability of
attaining the exact scenario-specific ML performance remains an open issue,
which will be investigated in our future studies.
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Fig. 6. Complexity comparison between the four detectors, which are
presented in Section III, for the 16-star-QAM as well as 64-star-QAM assisted
CSTSK(4, 4, 4, 16) arrangements.

higher the performance gap became between Detector II
and the other two detectors.

Hence, it may be concluded that star-QAM constellations may
be more suitable for the high-𝑄 CSTSK scheme than the
classic square-QAM constellations. Let us emphasize that this
conclusion is somewhat surprising, since it is different from
the conventional QAM modems.

Moreover, Fig. 6 shows the computational complexity im-
posed by the above-mentioned four detectors for the 16-star
as well as 64-star-QAM assisted CSTSK(4, 4, 4, 16) schemes.
Observe in Fig. 6 that upon increasing the coherence interval
𝜏 , the complexity of each detector was reduced towards a
certain minimum value. As expected, the conventional MF
detector as well as the Detectors I and II attained a signifi-
cantly lower complexity than that of the ML detector. To be
more specific, the conventional MF detector and Detector II
exhibited almost the same complexity, which is approximately
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Fig. 7. BER comparison of the 16-square-QAM aided CSTSK(4, 4, 4, 16)
and the 16-star-QAM aided DSTSK(4, 4, 4, 16) schemes, where the proposed
MF-based Detector II was employed for both the schemes. We also considered
the effects of CSI error associated with an equivalent channel estimation’s
noise variance of 𝜔 = 0, 0.1, 0.03 + 0.8/𝑁0 and 1/𝑁0. The number of
successive blocks 𝜁 for the DSTSK scheme was set to 𝜁 = 10.

twice lower than that of Detector I for the 64-QAM scenario.

In Fig. 7 we compared the achievable BER performance of
the 16-square-QAM aided CSTSK(4, 4, 4, 16) and the 16-star-
QAM aided DSTSK(4, 4, 4, 16) schemes, both achieving the
normalized throughput of 2 bits/symbol, where the proposed
MF-based Detector II was employed for both the schemes.
Here, we also considered the effects of CSI errors, where
the estimated channels were contaminated by the additive
Gaussian noise of 𝒞𝒩 (0, 𝜔) having a power of 𝜔 = 0, 0.1 and
0.03+0.8/𝑁0 dB [26] as well as 𝜔 = 1/𝑁0 in comparison to
the average signal power. Observe in Fig. 7 that although the
CSTSK scheme outperformed its DSTSK counterpart for the
perfect-CSI and 𝜔 = 1/𝑁0 scenarios, upon introducing CSI-
estimation errors, it exhibited an error floor. This is because
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the DSTSK scheme remained unaffected by the potential
CSI-estimation errors owing to the explicit benefit of non-
coherent detection. Other implicit benefits of the DSTSK
scheme are that it does not require any pilot overhead and
that is completely dispensing with the complexity associated
with channel estimation unlike its CSTSK counterpart.

Next, we compared in Fig. 8 the achievable BER
performance of the 16-star-QAM and 16-square-QAM
DSTSK(4, 4, 4, 16) schemes, where the number of successive
blocks 𝜁 per frame was varied as 𝜁 = 5, 10, 25, 50 and 100. It
can be seen from Fig. 8 that an increase of 𝜁 leads to a perfor-
mance degradation for both schemes, since the mis-detection
of 𝑠

(𝑛−1)
𝑙 at the (𝑛−1)st block affects the following block, as

shown in Eq. (47). However, the degradation was found to be
marginal, especially for high SNRs. Surprisingly, the 16 star-
QAM scenario tended to attain a better performance than that
of 16 square-QAM, similarly to the CSTSK systems. This is
owing to the fact that the system model of the DSTSK scheme
has the same structure as that of the CSTSK scheme, as shown
in Eqs. (2) and (48). Hence the discussions of Section III-F
are also valid for the DSTSK scheme.

Based on the results of our simulations, it was found that the
proposed Detectors I and II have their own performance versus
complexity tradeoffs, depending on the particular STSK sce-
narios considered. More specifically, the following guidelines
may be provided:

∙ For the 𝑀 ≤ 𝑇 STSK schemes employing star-QAM
or PSK modulations, the adoption of Detector II is
preferable to that of Detector I, since the complexity of
Detector II is lower than that of Detector I, while both
the proposed schemes are capable of attaining the optimal
ML performance.

∙ For other scenarios, we have an option of choosing either
of the proposed Detectors I or II, according to the re-
ceiver’s design policy regarding its decoding complexity
and the achievable performance. This is because the BER
performance of Detector I is marginally better than that
of Detector II, while Detector II’s decoding complexity is
lower than that of Detector I.

Again, although predominantly the exhaustive ML search
has been employed for the SM, SSK and STSK schemes, the
proposed reduced-complexity detectors have the potential of
replacing it without any substantial performance loss.

VI. CONCLUSIONS

In this paper, we proposed a reduced-complexity near-
optimal detector for the STSK scheme employing an arbitrary
PSK/QAM constellation, which exploits the STSK-specific
IEI-free system model, rather than that of spatial multiplexing.
More specifically, the proposed MF detector takes into account
the specific constellation diagram considered. As a result,
our detector is capable of achieving a lower complexity
than that of ML detection, while avoiding any substantial
BER performance loss. Interestingly, our simulation results
demonstrated that the proposed reduced-complexity detector
may achieve a performance identical to that of the optimal
ML detector for the specific STSK’s parameters. Therefore,
the employment of this detector further augments the benefits
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Fig. 8. Achievable BER performance of the 16-star-QAM and 16-square-
QAM DSTSK(4, 4, 4, 16) schemes employing the proposed Detector II, where
the number of successive blocks 𝜁 per frame was varied from 𝜁 = 5 to 100.

of the CSTSK scheme. Furthermore, we generalized the
previous PAM- or PSK-aided DSTSK concept to conceive its
more bandwidth-efficient QAM-aided counterpart. Then, the
proposed reduced-complexity CSTSK detector was applied to
the QAM-aided DSTSK scheme, which enabled us to carry
out low-complexity non-coherent detection, while dispensing
with any channel estimation as well as eliminating the pilot
overhead. Moreover, it was found from our theoretical and
numerical analysis that the star-QAM assisted STSK scheme
tends to outperform its square-QAM counterpart, especially
for high-𝑄 scenarios.

The proposed detector designed for the class of co-located
STSK schemes readily lends itself to cooperative communica-
tions [27], [28] as well as relying on semi-blind joint channel
estimation and data detection [12].

APPENDIX

The complexity of the proposed MF-based Detectors I
and II is represented by Eqs. (35) and (36), respectively.
This appendix provides more detailed information for this
assessment.

A. The Complexity of Detector I

Firstly, we assume that the receiver stores the power of each
constellation point ∣𝑠𝑙∣2 (𝑙 = 1, ⋅ ⋅ ⋅ ,ℒ). After estimating the
channels H, the equivalent channels H̄ = (I𝑇 ⊗H)𝜒 of Eq.
(4) are calculated. The associated complexity is given by

comp[(I𝑇 ⊗H)𝜒] = 4𝑀𝑁𝑇𝑄, (54)

where ‘comp[⋅]’ represents the number of real-valued multipli-
cations, which is required for calculating ‘⋅’. Then, the norm of
each column of H̄, namely ∥h̄𝑞∥ (𝑞 = 1, ⋅ ⋅ ⋅ , 𝑄), is computed
at a complexity of

comp
[∥h̄𝑞∥ (𝑞 = 1, ⋅ ⋅ ⋅ , 𝑄)

]
= 2𝑁𝑇𝑄. (55)

Then the calculation of H′ = [h̄1/∥h̄1∥ ⋅ ⋅ ⋅ h̄𝑄/∥h̄𝑄∥] in
Eq. (13) imposes a complexity of

comp [H′] = 2𝑁𝑇𝑄. (56)
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Since Eqs. (54), (55) and (56) only have to be updated at
intervals determined by the channel’s coherence time 𝜏 , the
average complexity may be expressed as

4𝑀𝑁𝑇𝑄+ 4𝑁𝑇𝑄

𝜏
. (57)

Furthermore, the MF operation of Eq. (14) imposes a com-
plexity of

comp
[
H′𝐻Ȳ

]
= 4𝑁𝑇𝑄, (58)

while the (𝑙.𝑞) detection of Eq. (21) has a complexity of
Eqs. (59) and (60). Finally, considering that each block of
the STSK scheme carries log2(𝑄 ⋅ ℒ) bits, the total per-bit
complexity of the proposed Detector I is given by Eq. (35),
also taking into account Eqs. (57), (58), (59) and (60). See
Eqs. (59) and (60) at the top of the next page.

B. The Complexity of Detector II

By contrast, in the proposed Detector II the detection of
dispersion-matrix 𝑞, as formulated in Eq. (21), is replaced by
the approximated version of Eq. (26), whose complexity is
given by

comp

[
argmax

𝑞,∀𝑣
[∣ℜ(𝑧𝑞)∣𝑥𝑣,𝐼 + ∣ℑ(𝑧𝑞)∣𝑥𝑣,𝑄]

]
= 2𝑉 𝑄. (61)

Hence, based on Eqs. (57), (58), (60) and (61), we arrive at
the complexity of Detector II as in Eq. (36).
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comp

[
argmax

𝑞,∀𝑙′
[
2∥h̄𝑞∥ {∣ℜ(𝑧𝑞)∣ ∣ℜ(𝑠′𝑙′)∣+ ∣ℑ(𝑧𝑞)∣ ∣ℑ(𝑠′𝑙′)∣} − ∥h̄𝑞∥2∣𝑠′𝑙′ ∣2

]]
= 3𝑄ℒ′ +

𝑄ℒ′

𝜏
, (59)

comp

[
argmin

𝑙

∣∣𝑧𝑞 − ∥h̄𝑞∥𝑠𝑙
∣∣] = 4ℒ (60)
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