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Abstract—In this paper, we propose to reduce the complexity of
both the Approx-Log-MAP algorithm as well as of the Max-Log-
MAP algorithm conceived for generalized PSK/QAM detection,
where only a reduced-size subset of the PSK/QAM constellation
points is taken into account for producing a single soft-bitoutput.
Although the detectors of Gray-labelled low-order PSK/QAM
schemes generally produce near-horizontal EXIT curves, our pro-
posed detectors exploit thea priori LLRs gleaned from a channel
decoder in order to retain the optimum detection capability for
all PSK/QAM constellations. Furthermore, we demonstrate in
this paper that the widely applied MIMO schemes including V-
BLAST and STBC, which invoke the proposed soft PSK/QAM
detectors may also benefit from our reduced-complexity design.
Our simulation results confirm that a near-capacity performance
may be achieved by the proposed detectors at a substantially
reduced detection complexity.

Index Terms—Reduced-complexity, Approx-Log-MAP, Max-
Log-MAP, Turbo detection, Bit metric generation, Gray-labelling,
PSK, Square QAM, Star QAM, Cross QAM, V-BLAST, STBC.

I. I NTRODUCTION

T HE significant technical breakthrough of Turbo Codes
(TCs) was proposed in [1], where a substantial perfor-

mance improvement was achieved by exchanging extrinsic
information between two channel code decoders. Inspired
by the development of TC, the PSK/QAM demodulator was
modified in [2], [3] so that turbo detection may be carried
out by exchanging extrinsic information between the outer
channel decoder and the inner PSK/QAM demodulator. In
order to eliminate the error floor often observed in two-
component concatenated codes, it was proposed in [4] that
a further Unity Rate Code (URC) may be incorporated, so
that an infinitesimally low BER may be achieved by a three-
stage turbo detector. Furthermore, the IRregular Convolutional
Code (IRCC) concept [5], [6] was proposed for replacing the
regular convolutional codes, so that a vanishingly low BER
may be achieved at a near-capacity SNR.

As researchers inch closer and closer to the channel capac-
ity, the complexity of the resultant communication systemsis
also increased. In fact, soft-decision-aided MIMO detection
typically contributes a substantial fraction of the total com-
plexity. In order to circumvent this problem, on one hand,
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often low-complexity linear receivers (e.g. MMSE receiver)
[7]–[9] are employed for multiple-stream MIMO schemes
(e.g. V-BLAST [10]) in order to separate the superimposed
parallel data streams. On the other hand, the parallel streams
of orthogonal STBC schemes [11], [12] may be readily
transformed into an equivalent single-stream form, as a benefit
of the orthogonal space-time code design. Therefore, when the
conventionalLPSK/QAM detector is invoked by the MIMO
receivers, the detection complexity is on the order ofO(L)
instead ofO(LQ), whereQ represents the number of symbols
transmitted together. Moreover, the bit-metric generation meth-
ods introduced in [13]–[15] may further reduce the complexity
order toO(log2 L), where the approxmiated LLR values are
efficiently evaluated on a bit-by-bit basis. However, theseearly
contributions on bit-metric generation did not consider the
a priori LLRs. This is because the detection of the Gray-
labelled low-order PSK/QAM schemes (e.g BPSK/QPSK and
Square 16QAM) generally produces near-horizontal curves in
the EXIT chart [5], which means that exchanging information
between the soft PSK/QAM detector and the channel decoder
may have a negligible benefit.

At the time of writing, high-orderLPSK/QAM schemes
are routinely utilized in commercialized systems. For example,
Square 64QAM and Square 256QAM have been included in
the ITU-R IMT Advanced 4G standards [16] and in IEEE
802.11ac [17], respectively. As the number of modulation
levels L increases, the softLPSK/QAM detectors become
capable of producing an improved iteration gain. Therefore,
a significant performance improvement is attained, once the
a priori LLRs have been taken into account by the soft
PSK/QAM detector. However, how to relate eacha priori LLR
to a reduced-size fraction of the channel’s output signal con-
stellations remains an open problem.Against this background,
the novel contributions of this paper are as follows:

1) We observe that the Max-Log-MAP algorithm aims for
finding the maximum probabilities, which is similar to
the action of hard PSK/QAM detection. Therefore, after
linking each a priori LLR to a reduced-size fraction
of the channel’s output signal constellations, the Max-
Log-MAP algorithm may be operated at a reduced
complexity.

2) Furthermore, the corresponding reduced-complexity
Approx-Log-MAP algorithm is also conceived by com-
pensating for the Max-Log-MAP algorithm’s widely-
used Jacobian approximation relying on a lookup table.

3) We have generalized our detection algorithms for dif-
ferent constellations, includingLPSK, SquareLQAM,
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Star LQAM and CrossLQAM. The symmetry exhibited
by each Gray-labelled constellation diagram is the key
to the detection complexity reduction.

4) Finally, we demonstrate the benefits of our solution
in the context of both channel-coded V-BLAST systems
as well as channel-coded STBC systems. The iteration
gain achieved by the soft QAM detectors results in
a significant performance improvement, while a sub-
stantial complexity reduction is achieved without any
performance loss.

The remainder of this paper is organized as follows. The V-
BLAST system and the STBC system are reviewed in Sec. II.
In Sec. III, our reduced-complexity soft PSK/QAM detection
algorithms are proposed. Our performance results are provided
in Sec. IV, while the application of our reduced-complexity
design is discussed in Sec. V. Our conclusions are offered in
Sec. VI.

II. MIMO S YSTEMS

A. V-BLAST Systems

The architecture of a classic V-BLAST system may be
found in [7]. The encoded source data stream is split into
multiple streams in order to be modulated and transmitted
independently byM transmit antennas. The signal received
at theN receive antennas may be expressed as:

Yn = SnHn + Vn = Sm
n H

m
n + S

m
n H

m
n + Vn, (1)

where Yn ∈ C1×N , Sn ∈ C1×M , Hn ∈ CM×N and
Vn ∈ C1×N refer to the received signal vector, the transmitted
LPSK/QAM symbols vector, the Rayleigh fading channels
matrix and the Additive White Gaussian Noise (AWGN)
vector, which has a zero mean and a variance ofN0 in each
dimension, respectively. Furthermore,Sm

n and H
m
n ∈ C

1×N

denote them-th element inSn and them-th row in Hn,
respectively, whileSm

n ∈ C1×(M−1) and H
m
n ∈ C(M−1)×N

are obtained by removing them-th element inSn and by
removing them-th row in Hn, respectively. It can be seen in
Eq. (1) that whenSm

n is detected, the rest of the transmitted
symbols introduce Inter-Antenna Interference (IAI).

The full-search-based ML detection imposes an excessive
detection complexity. More explicitly, upon obtaining the
a priori LLRs {La(bj)}(M·BPS)

j=1 from the channel decoder,
the a posteriori LLRs produced by the Log-MAP algorithm
conceived for ML V-BLAST detection may be expressed as
[18]:

Lp(bk|Yn) = ln

[∑
Si∈Sbk=1

exp (di)
∑

Si∈Sbk=0
exp (di)

]
= La(bk) + Le(bk),

(2)
where Sbk=1 and Sbk=0 refer to theLPSK/QAM symbol
vector sets, when the specific bitbk is fixed to 1 and 0,
respectively. Given a specificLPSK/QAM symbol vector{
S

i
}(LM)

i=1
, its probability metric{di}(LM)

i=1 in Eq. (2) is defined
as [2]:

di = −‖Yn − S
i
Hn‖2

N0
+

M·BPS∑

j=1

b̃jLa(bj), (3)

where{b̃j}(M·BPS)
j=1 represents the bit mapping corresponding

to the specificSi. It can be seen that Eq. (3) operates on
a vector-by-vector basis, which has a complexity order of
O(LM ). Therefore, linear matched-filtering detectors [7] may
be invoked for detecting theM data streams separately. For
example, the low-complexity Zero-Forcing (ZF) filter produces
the following output:

Z̃n = YnGZF = Sn + Ṽn, (4)

where the ZF filter weight matrix is given byGZF =
H

H
n (HnH

H
n )−1, while the equivalent noise matrix is given

by Ṽn = VnGZF. It can be seen in Eq. (4) that ZF receivers
suffer from noise amplification, hence often the Minimum
Mean Square Error (MMSE) detector [8], [9] is employed
for linear MIMO detection. More explicitly, the MMSE filter
designed for detecting them-th transmitted symbol produces
the following output:

Zm
n = YnG

m
MMSE =Sm

n H
m
n G

m
MMSE

+ S
m
n H

m
n G

m
MMSE + VnG

m
MMSE,

(5)

whereGm
MMSE ∈ CN×1 refers to them-th MMSE filter weight

matrix. The performance of MMSE detection is limited by the
IAI [7], and hence thea priori information is utilized for the
sake of interference cancellation, which may be expressed as
[9]:

Z
m

n = Zm
n − ε{Sm

n }Hm
n G

m
MMSE, (6)

where the estimate of a specific symbol based ona priori
LLRs is given by:

ε{Sm
n } =

L∑

l=1

slPr(Sm
n = sl) =

L∑

l=1

sl·
exp

[∑BPS
j=1 b̃jLa(bj)

]

∏BPS
j=1{1 + exp[La(bj)]}

.

(7)

It was demonstrated in [8], [9] that
∂ε{|Zm

n −Sm
n |2}

∂[(Gm
MMSE)

H ]
=

0 results in the MMSE weight matrix shown in Eq. (8),
where {Em

s }M
m=1 denotes the transmitted signal power of

each antenna, which may be different, if theM transmit
antennas belong toM independent users in the context
of Space-Division Multiplexing (SDM) [19]. When non-
constant modulusLPSK/QAM is employed, the correlation
matrix representing the symbol power is given byRSS =
diag

(
[ε{|S1

n|2}, · · · , ε{|SM
n |2}]

)
, where the estimate of a spe-

cific symbol’s power is given by replacing the constellation
point sl in Eq. (7) by its power|sl|2. Furthermore,Rm

SS ∈
C(M−1)×(M−1) in Eq. (8) is obtained by removing both the
m-th column as well as them-th row in RSS. As a result, the
conventionalLQAM detector may be invoked as:

Lp(bk|Yn) = ln

[∑
sl∈sbk=1

exp (dl)
∑

sl∈sbk=0
exp (dl)

]
, (9)

wheresbk=1 andsbk=0 refer to theLPSK/QAM symbols sets,
when the specific bitbk is fixed to 1 and 0, respectively,
while the symbol-by-symbol-based probability metric{dl}L

l=1
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G
m
MMSE =

{
(Hm

n )H
H

m
n +

(Hm
n )H

Em
s

[
R

m
SS − diag

(
ε{Sm

n }Hε{Sm
n }

)]
H

m
n +

N0

Em
s

IN

}−1

(Hm
n )H . (8)

becomes [2]:

dl = −

∣∣∣Z̃m
n − sl

∣∣∣
2

Ñ0

+
BPS∑

j=1

b̃jLa(bj). (10)

For ZF receivers,̃Zm
n refers to the m-th element of ZF filter

output Z̃n of Eq. (4), while the equivalent noise power is
given by Ñ0 = ‖Gm

ZF‖2N0, whereG
m
ZF refers to the m-th

column of the ZF filter’s weight matrixGZF. For MMSE
receivers, we havẽZm

n = Z
m

n · (h
m

n )
∗
/|hm

n |2 and Ñ0 =
‖Gm

MMSE‖2 · N0/|h
m

n |2, where the equivalent fading factor is
given byh

m

n = H
m
n G

m
MMSE.

B. STBC Detection

For a STBC system, the transmitter firstly encodes the
(Q log2 L) bits to anLPSK/QAM symbols vector ofsn =[
s1

n, · · · , sQ
n

]T
. During T symbol periods, the symbol-matrix

transmitted from theM transmit antennas may be formulated
as:

Sn =
1√
M

GM (sn), (11)

where the (T × M )-element matrixGM (sn) represents the
orthogonal STBC structure. Considering Alamouti’s G2 STBC
as an example, the STBC matrixGM (sn) is given by [11]:

G2(sn) =

[
s1

n s2
n

−(s2
n)

∗
(s1

n)
∗

]
. (12)

The signal received by theN receive antennas may still be
represented by Eq. (1), but the size of the transmitted signal
matrix, the received signal matrix and the AWGN matrix
becomesSn ∈ CT×M , Yn ∈ CT×N and Vn ∈ CT×N ,
respectively. Furthermore, due to the orthogonality offered
by the STBC design, the equivalent received symbol may be
expressed as [11], [12]:

zq
n = sq

n · h̃n + ṽq
n. (13)

More explicitly, the decorrelating variables{zq
n}Q

q=1 for Alam-
outi’s G2 STBC are given by [11]:

z1
n = Y

1
n

(
H

1
n

)H
+ H

2
n

(
Y

2
n

)H
= s1

n · h̃n + ṽ1
n,

z2
n = Y

1
n

(
H

2
n

)H − H
1
n

(
Y

2
n

)H
= s2

n · h̃n + ṽ2
n,

(14)

where the equivalent fading factor is given by
(
h̃n = ‖Hn‖2

√
2

)
,

while the equivalent noise factors{ṽq
n}Q

q=1 have a new vari-
ance of

(
‖Hn‖2 · N0

)
. The (1×N )-element vectors{Yi

n}T
i=1

and{Hi
n}M

i=1 denotes thei-th row in the matricesYn andHn,
respectively.

Based on the new equivalent received signal model of
Eq. (13), theLPSK/QAM symbol probability metric{dl}L

l=1

seen in Eq. (9) may be expressed as:

dl = −|z̃q
n − sl|2

Ñ0

+

BPS∑

j=1

b̃jLa(bj), (15)

where we have
(
z̃q

n = zq
n/h̃n

)
and

(
Ñ0 = 2N0/‖Hn‖2

)
for

the case of Alamouti’s G2 STBC.

III. R EDUCED-COMPLEXITY SOFT PSK/QAM DETECTION

A. Conventional Soft PSK/QAM Detection

In practice the Log-MAP algorithm of Eq. (9) imposes an
unaffordable detection complexity, owing to its high-precious
representation of probabilities. Therefore, when designing a
low-complexity soft detector, the so-called Max-Log-MAP
algorithm [18] may be invoked as:

Lp(bk|Yn) = max
sl∈sbk=1

(dl) − max
sl∈sbk=0

(dl) . (16)

Since only two maximum probability metrics are taken into
account in Eq. (16), the Max-Log-MAP algorithm imposes a
slight performance degradation. In order to compensate for
this performance loss, the Approx-Log-MAP algorithm [20]
was introduced as :

Lp(bk|Yn) = jacsl∈sbk=1
(dl) − jacsl∈sbk=0

(dl) , (17)

where jac denotes the Jacobian algorithm, which may be
expressed as [21]:

jac(d1, d2) = max {d1, d2} + Γ{|d1 − d2|}. (18)

The addional term ofΓ{|d1 − d2|} in Eq. (18) takes into
account the difference betweend1 and d2 according to a
lookup table [21]. Based on the ZF/MMSE aided V-BLAST
estimation of Eq. (10) as well as on the STBC estimation of
Eq. (15), the symbol probability metrics{dl}L

l=1 invoked by
the detection algorithms may be summarized as:

dl = −
∣∣z̃n − sl

∣∣2

Ñ0

+
BPS∑

j=1

b̃jLa(bj). (19)

When SquareLQAM is employed, the real and the imagi-
nary parts of the constellation may be detected separately.As a
result, the SquareLQAM symbol probability metrics{dIm

l }
√

L
l=1

and{dRe
l }

√
L

l=1 are given by:

dIm
l = −

∣∣Im(z̃n) − Im(sl)
∣∣2

Ñ0

+

BPS/2∑

j=1

b̃jLa(bj),

dRe
l = −

∣∣Re(z̃n) − Re(sl)
∣∣2

Ñ0

+

BPS∑

j=BPS/2+1

b̃jLa(bj).

(20)

B. Reduced-Complexity Soft Square QAM Detection

For producing a single soft-bit output, the conventional
Max-Log-MAP algorithm of Eq. (16) as well as the Approx-
Log-MAP algorithm of Eq. (17) have to estimate and compare
all the

√
L probability metrics using Eq. (20) according to the√

LPAM constellation, which forms the real and imaginary
part of a SquareLQAM symbol. In this section, we aim for
reducing the detection complexity by reducing the number of
constellation points that have to be visited.
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Fig. 1. Constellation diagram of Square 16QAM. The real and the imaginary
parts of a SquareLQAM symbol may always be detected separately.

First of all, let us extend the imaginary part probability
metric calculation of Eq. (20) as:

dIm
l = −|Im(z̃n)|2

Ñ0

−|Im(sl)|2

Ñ0

+
2Im(z̃n)Im(sl)

Ñ0

+

BPS/2∑

j=1

b̃jLa(bj),

(21)
where

(
− |Im(ezn)|2

eN0

)
is invariant over the candidate variablesl,

which may be ignored because all the multiplicative constants
may be eliminated by the division operation in the Log-MAP
algorithm of Eq. (9). Therefore, Eq. (21) may be further
simplified as:

dIm
l =

Im(sl)

N0

Im(z̃n) − |Im(sl)|2

Ñ0

+

BPS/2∑

j=1

b̃jLa(bj), (22)

where we have
(
N0 = Ñ0/2

)
. Let us now take the Square

16QAM constellation of Fig. 1 as an example, where the
(
√

L = 4) imaginary metrics of Eq. (22) may be expressed
as:

dIm
1 = 3Im(ezn)√

10·N0
− 9

10 eN0

= tIm2 − 4

5 eN0
+ CIm,

dIm
2 = Im(ezn)√

10·N0
− 1

10 eN0
+ La(b2)

= tIm1 + La(b2) + CIm,

dIm
3 = − 3Im(ezn)√

10·N0
− 9

10 eN0
+ La(b1)

= −tIm2 − 4

5 eN0
+ CIm,

dIm
4 = − Im(ezn)√

10·N0
− 1

10 eN0
+ La(b1) + La(b2)

= −tIm1 + La(b2) + CIm,

(23)

where we relate the imaginary part ofz̃n to the corresponding
soft bit inputLa(b1) as:

tIm1 = Im(ezn)√
10·N0

− La(b1)
2 , tIm2 = 3Im(ezn)√

10·N0
− La(b1)

2 , (24)

while the constant is given by
[
CIm = − 1

10 eN0
+ La(b1)

2

]
. As

a result, the maximum metric found by evaluating all the four
candidates in Eq. (23), which is pursued by the Max-Log-MAP
of Eq. (16), may be obtained by:

dIm
max = max

{
max{dIm

2 , dIm
4 }

max{dIm
1 , dIm

3 }

}

= max

{ |tIm1| + La(b2)
|tIm2| − 4

5 eN0

}
+ CIm.

(25)

Therefore, instead of evaluating and comparing Eq. (22) four
times in Eq. (23) according to the 4PAM constellation points,
Eq. (25) is obtained by comparing two candidates, where the
absolute value calculation eliminates the need for considering
the signs, as portrayed by Fig. 1.

According to the maximum metric search approach demon-
strated in Eq. (25), the first two soft bits produced by the
reduced-complexity Max-Log-MAP algorithm may be ob-
tained as:

Lp(b1) = max{dIm
3 , dIm

4 } − max{dIm
1 , dIm

2 }

= max

{ −tIm1 + La(b2)
−tIm2 − 4

5 eN0

}
− max

{
tIm1 + La(b2)
tIm2 − 4

5 eN0

}
,

Lp(b2) = max{dIm
2 , dIm

4 } − max{dIm
1 , dIm

3 }

= |tIm1| + La(b2) − |tIm2| +
4

5Ñ0

.

(26)

Similarly, the corresponding Approx-Log-MAP algorithm may
be obtained by compensating the error imposed by considering
only the maximum in Eq. (26) as:

Lp(b1) = jac

{ −tIm1 + La(b2)
−tIm2 − 4

5 eN0

}
− jac

{
tIm1 + La(b2)
tIm2 − 4

5 eN0

}
,

Lp(b2) = Λ(|tIm1|) + La(b2) − Λ(|tIm2|) +
4

5Ñ0

,

(27)

where we define the special case of the Jacobian algorithm of
Eq. (18) as:

Λ(|t|) = jac(t,−t) = |t| + Γ{2|t|}. (28)

Based on the example of Square 16QAM detection, we
summarize the Max-Log-MAP algorithm conceived for Square
LQAM detection as follows:

Algorithm 1: Max-Log-MAP Algorithm for Square
LQAM Detection.

1) Define the test-variables, which relate
La

(
bBPS/2+1

)
and La(b1) to the real and

imaginary parts of̃zn as:

tRei
= AiRe(ezn)

N0
− La(bBPS/2+1)

2 ,

tImi
= AiIm(ezn)

N0
− La(b1)

2 ,
(29)

where{Ai}
√

L/2
i=1 are the positive real PAM mag-

nitudes on the x-axis and y-axis of SquareLQAM
constellation diagram.
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2) Calculate the maximum probability metrics,
which relates the rest of thea priori LLRs
{La(bj)}BPS

j=BPS/2+2 and{La(bj)}BPS/2
j=2 to the PAM

magnitude indexi as:

dRei = |tRei | +
∑BPS

j=BPS/2+2 b̃jLa(bj) − A2
i

eN0
,

dImi
= |tImi

| + ∑BPS/2
j=2 b̃jLa(bj) − A2

i

eN0
.

(30)
3) For the first bit and the(BPS/2 + 1)-th bit, which

determine the signs, thea posterioriLLRs are given
by:

Lp(b1) = max
i∈{1,··· ,

√
L/2}

(
db1=1

Imi

)

− max
i∈{1,··· ,

√
L/2}

(
db1=0

Imi

)
,

Lp(bBPS/2+1) = max
i∈{1,··· ,

√
L/2}

(
d

bBPS/2+1=1

Rei

)

− max
i∈{1,··· ,

√
L/2}

(
d

bBPS/2+1=0

Rei

)
,

(31)

where the probability metrics of Eq. (30) have to
be updated when the specific bit is set to be 1 or 0
as:

db1=1
Imi

= −tImi
+

∑BPS/2
j=2 b̃jLa(bj) − A2

i

eN0
,

db1=0
Imi

= tImi +
∑BPS/2

j=2 b̃jLa(bj) − A2
i

eN0
.

(32)

d
bBPS/2+1=1

Rei
= −tRei

+
∑BPS

j=BPS/2+2 b̃jLa(bj) − A2
i

eN0
,

d
bBPS/2+1=0

Rei
= tRei

+
∑BPS

j=BPS/2+2 b̃jLa(bj) − A2
i

eN0
.

(33)
4) For the rest(BPS− 2) bits, which determine the

magnitudes, the Max-Log-MAP algorithm is given
by:

Lp(bk) =max
bk=1

(dImi) − max
bk=0

(dImi) ,

k ∈ {2, · · · , BPS/2},
Lp(bk) =max

bk=1
(dRei

) − max
bk=0

(dRei
) ,

k ∈ {BPS/2 + 2, · · · , BPS},

(34)

where the tentative indices set for(
i ∈ {1, · · · ,

√
L/2}

)
is halved when a specific

bit bk is fixed to 1 or 0.

The corresponding reduced-complexity Approx-Log-MAP
algorithm conceived for SquareLQAM may be obtained by
appropriately modifying the proposed Max-Log-MAP algo-
rithm, where themax operation should be replaced by jac
operation, while the operation(|t|) should be replaced by the
Λ(|t|).

In the design of reduced-complexity soft QAM detec-
tion algorithms, we aim for a reduced-complexity order of
O(log2 L). However, both the real and imaginary part of a
SquareLQAM symbol has(BPS/2 − 1) bits, which encode
the PAM magnitude together, hence they have to be jointly
detected. As a result, when detecting the(BPS−2) bits which

-1

1

-1 1

000

001011

010

110

111 101

100

L=8 constellation points for 8PSK

Without considering
the signs, the size
of the constellation
points set is reduced
to L/4=2

Fig. 2. Constellation diagram of rotated 8PSK. We deliberately rotate all the
LPSK (L ≥ 4) constellation diagrams anti-clockwise by a phase ofπ/L, so
that there are exactlyL/4 constellation points in each quadrant.

determine the magnitudes, the complexity order of Eq. (34) is
given byO(

√
L/2). Furthermore, when detecting the two bits

which determine the signs, the complexity order of Eq. (31)
is given byO(

√
L), because the constellation set has to be

updated twice, when the specific bit is fixed to 1 and 0.

C. Different PSK/QAM Constellations

For SquareLQAM schemes, the signs and the magnitudes
of the real and imaginary parts of a transmitted symbol are
encoded separately. By contrast, a high-orderLPSK scheme
associated with(L > 4) encodes its phase, which means that
the magnitudes of the real and imaginary parts of a transmitted
LPSK symbol are in fact encoded jointly. As a result, the
jointly encoded bits in aLPSK symbol have to be detected
together, which imposes a higher complexity. However, it can
be seen in Algorithm 1 that as long as we have two bits,
which determine the signs of the real and imaginary parts
respectively, a similar reduced-complexity detection algorithm
may be obtained. For the sake of achieving this goal, we
have to rotate all theLPSK constellations (except BPSK)
in [19] anti-clockwise by(π/L), so that there are exactly
L/4 constellation points in each quadrant. The rotated 8PSK
constellation is shown in Fig. 2.

Similarly, a StarLQAM constellation [22], [23] may be
rotated anti-clockwise by a phase angle of(π/LP ), whereLA

and LP refers to the number of constellation rings and the
number of phasors, respectively. More explicitly, a StarLQAM
symbol may be represented bysn = γnσn, where log2 LA

bits are assigned for encoding the radius{γa
n}LA

a=1, while the
following log2 LP bits are assigned for encoding the phase
{σp

n}LP
p=1. If we define the ring ratio of a StarLQAM symbol

as the ratio of the ring radii, we haveβ = { γ(p+1)

γp }LA−1
p=1 .

Then the symbol power normalization factor is given byα =
PLA

p=1 β2(p−1)

LA
. Therefore, the StarLQAM ring radius should be

normalized as{γp = β(p−1)

√
α

}LA
p=1. It was shown in [22], [23]
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that the two-ring Star 16/32QAM associated with(β = 2.0)
and the four-ring Star 64QAM associated with(β = 1.4) have
the optimum performance in Rayleigh fading channels.

In order to operate the Max-Log-MAP algorithm conceived
for different PSK/QAM constellations at a reduced complexity,
we extend thea posterioriprobability metric of Eq. (19) as:

dl = − |z̃n|2

Ñ0

− |sl|2

Ñ0

+
Re(z̃n)Re(sl) + Im(z̃n)Im(sl)

N0

+

BPS∑

j=1

b̃jLa(bj),

(35)

where the constant of
(
− |ezn|2

eN0

)
may be ignored. Let us now

consider the 8PSK constellation of Fig. 2 as an example, where
the eight metrics{dl}8

l=1 of Eq. (35) may be expressed as:

d1 = tRe1 + tIm1 + C8PSK, d3 = −tRe1 + tIm1 + C8PSK,
d5 = tRe1 − tIm1 + C8PSK, d7 = −tRe1 − tIm1 + C8PSK,

(36)
d2 = tRe2 + tIm2 + La(b3) + C8PSK,

d4 = −tRe2 + tIm2 + La(b3) + C8PSK,

d6 = tRe2 − tIm2 + La(b3) + C8PSK,

d8 = −tRe2 − tIm2 + La(b3) + C8PSK,

(37)

where we relate the real and imaginary parts ofz̃n to the
corresponding soft bit inputLa(b2) andLa(b1) as:

tRe1 =
cos( π

8 )Re(ezn)

N0
− La(b2)

2 , tRe2 =
sin( π

8 )Re(ezn)

N0
− La(b2)

2 ,

tIm1 =
sin( π

8 )Im(ezn)

N0
− La(b1)

2 , tIm2 =
cos( π

8 )Im(ezn)

N0
− La(b1)

2 ,
(38)

while the constant C8PSK is given by[
C8PSK = − 1

eN0
+ La(b1)+La(b2)

2

]
. The eight probability

metrics {dl}8
l=1 are arranged into two groups in

Eqs. (36) and (37), where every four metrics are associated
with the same constellation magnitudes. It can be seen that
the four metrics formulated in Eq. (36) all contain three
parts, i.e. they are±tRe1, ±tIm1 and C8PSK. As a result, the
maximum metric over the four candidates in Eq. (36) is given
by maxl={1,3,5,7} dl = |tRe1| + |tIm1| + C8PSK. Similarly, the
maximum metric over the second group in Eq. (37) is given
by maxl={2,4,6,8} dl = |tRe2| + |tIm2| + La(b3) + C8PSK.
Therefore, the maximuma posteriori probability metric
generated by the Max-Log-MAP algorithm is given by:

dmax = max

{
|tRe1| + |tIm1| + C8PSK

|tRe2| + |tIm2| + La(b3) + C8PSK

}
. (39)

Instead of evaluating and comparing Eq. (35) eight times in
Eqs. (36) and (37), Eq. (39) only has to evaluate and compare
two candidates in order to obtaindmax. In other words,dmax

is obtained without visiting all the eight 8PSK constellation
points. In fact, only the two constellation points in the first
quadrant are of interest, as demonstrated by Fig. 2. In more
detail, the reduced-complexity Max-Log-MAP algorithm may
be formulated as:

Lp(b1) = db1=1
max − db1=0

max ,

Lp(b2) = db2=1
max − db2=0

max ,

Lp(b3) = |tRe2| + |tIm2| + La(b3) − |tRe1| − |tIm1|,
(40)

where db1=1
max and db1=0

max may be obtained by replacing
{|tImi|}2

i=1 in Eq. (39) by {−tImi}2
i=1 and {tImi}2

i=1, re-
spectively, whiledb2=1

max and db2=0
max are obtained by replacing

{|tRei|}2
i=1 in Eq. (39) by{−tRei}2

i=1 and{tRei}2
i=1, respec-

tively. The constantC8PSK in Eq. (39) may be omitted.
Based on the example of 8PSK detection, we propose the

reduced-complexity Max-Log-MAP algorithm conceived for
generalLPSK/QAM Detection as follows:

Algorithm 2: Max-Log-MAP Algorithm for General
LPSK/QAM Detection.

1) Define the test-variables, which relates the first two
a priori LLRs La(b2) and La(b1) to the real and
imaginary parts of̃zn as:

tRei
= AiRe(ezn)

N0
− La(b2)

2 ,

tImi
= BiIm(ezn)

N0
− La(b1)

2 ,
(41)

where{(Ai, Bi)}L/4
i=1 denote the coordinates of the

LPSK/QAM constellation points which are located
in the first quadrant.

2) Calculate the maximum probability metrics, which
relates the rest of thea priori LLRs {La(bj)}BPS

j=3

to the magnitude indexi as:

di = |tRei
|+|tImi

|+
BPS∑

j=3

b̃jLa(bj)−
A2

i + B2
i

Ñ0

. (42)

3) For the first two bits, which determine the signs,
the a posterioriLLRs are given by:

Lp(b1) = max
i∈{1,··· ,L/4}

(
db1=1

i

)

− max
i∈{1,··· ,L/4}

(
db1=0

i

)
,

Lp(b2) = max
i∈{1,··· ,L/4}

(
db2=1

i

)

− max
i∈{1,··· ,L/4}

(
db2=0

i

)
,

(43)

where the probability metrics of Eq. (42) have to
be updated as:

db1=1
i = |tRei

| − tImi
+

∑BPS
j=3 b̃jLa(bj) − A2

i +B2
i

eN0
,

db1=0
i = |tRei

| + tImi
+

∑BPS
j=3 b̃jLa(bj) − A2

i +B2
i

eN0
.

(44)
db2=1

i = −tRei
+ |tImi

| + ∑BPS
j=3 b̃jLa(bj) − A2

i +B2
i

eN0
,

db2=0
i = tRei + |tImi | +

∑BPS
j=3 b̃jLa(bj) − A2

i +B2
i

eN0
.

(45)
4) For the following(BPS− 2) bits which determine

the magnitudes, the Max-Log-MAP algorithm is
given by:

Lp(bk) = max
bk=1

(di) − max
bk=0

(di) ,

k ∈ {3, · · · , BPS},
(46)

where the tentative index set for(i ∈ {1, · · · , L/4})
is halved, when a specific bitbk is fixed to 1 or 0.

The corresponding reduced-complexity Approx-Log-MAP
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algorithm may be obtained by replacing themax operation
by the jac operation, and by replacing the operation|t| by the
Λ(|t|).

When detecting the two bits, which determine the signs,
Eq. (43) in Algorithm 2 has a detection complexity order of
O(L/2), while Eq. (46) evaluated for detecting those specific
(BPS−2) bits, which determine the magnitudes has a detection
complexity order ofO(L/4). They exhibit a substantially
reduced complexity compared toO(L), owing to the fact that
the proposed detection algorithms visit a reduced-size fraction
of the constellation points.

In summary, Algorithm 1 introduced in Sec. III-B is
conceived for SquareLQAM detection, while Algorithm 2
introduced in Sec. III-C is conceived for detecting general
LPSK/QAM constellations. We note that when Algorithm 2
is invoked forLPSK detection, the constant(

A2
i +B2

i
eN0

= 1
eN0

)

in Eqs. (42), (44) and (45) may be ignored. Furthermore,
when the number of bits per SquareLQAM symbol is an
odd number, Algorithm 1 may be readily modified, where the
real positivePAM magnitudes have

√
2L/2 candidates, while

the imaginarypositivePAM magnitudes have
√

L/2/2 can-
didates. Furthermore, it was shown in [24] that CrossLQAM
constellations actually have a better performance compared to
SquareLQAM schemes. We note that Algorithm 2 may be
adopted for detecting CrossLQAM constellations.

IV. PERFORMANCERESULTS

We discuss our simulation results in this section. We quan-
tify the complexity in terms of the total number of real-valued
calculations required for producing a single soft bit output.
The complexity reduction achieved by Algorithms 1 and 2 is
portrayed in Fig. 3(a) and Fig. 3(b), respectively. In contrast to
the SquareLQAM results of Fig. 3(a), Algorithm 2 conceived
for generalLPSK/QAM detection achieves a higher complex-
ity reduction, as demonstrated in Fig. 3(b). This is becausethe
conventional SquareLQAM detection presented in Sec. III-A
already has a relatively low detection complexity, owing to
the fact that the real and imaginary parts of a SquareLQAM
symbol are detected separately. Nonetheless, the complexity
reduction seen in both Fig. 3(a) and Fig. 3(b) is substantial
especially, when the soft PSK/QAM detector is invoked several
times in turbo detection applications. Furthermore, as the
number of modulation levelsL increases, the complexity
reduction becomes even more substantial, which is evidenced
by Figs. 3(a) and 3(b).

The EXIT chart [5] of the reduced-complexity SquareL-
QAM detectors invoked by the MIMO receivers is presented
in Fig. 4. Since Alamouti’s G2 STBC does not impose any
correlation, Fig. 4(a) shows that the Square 16QAM detector
has a near-horizontal EXIT curve. However, as the number of
modulation levelsL increases, SquareL-QAM constellations
involve more bits in jointly encoding the symbol magnitudes,
which results in an improved iteration gain, as evidenced by
Fig. 4(a). Moreover, Fig. 4(b) demonstrates that the V-BLAST
MMSE detector further improves the attainable iteration gain,
while performance loss is imposed, when the QAM detectors
do not take into account thea priori LLRs, as in the conven-
tional bit metric generation methods presented in [13]–[15].
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V-BLAST using Square 64QAM
MMSE Detection
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Fig. 5. Decoding trajectory recorded for TC V-BLAST and IRCCURC
V-BLAST. The reduced-complexity Max-Log-MAP algorithm isemployed.

In order to demonstrate the benefit of the soft QAM detec-
tors’ iteration gain, we also applied our detection algorithms in
channel-coded systems. The half-rate TC employed is consti-
tuted by two half-rate Recursive Convolutional Codes (RSCs)
associated with a constraint length ofK = 3 (a octal generator
polynomial of [7,5]) and with the half-rate puncturing of the
parity bits, while the schematic of the IRCC-URC MIMO
system may be found in [25]. We portray the resultant Monte-
Carlo simulation based decoding trajectory in Fig. 5. The BER
performance of channel-coded STBC systems is portrayed
in Fig. 6(a), which shows that a significant performance
improvement is achieved, when the number of outer iterations
is increased (Iout = {1, 2, 3}), when four inner TC iterations
(ITC = 4) are used. Nonetheless, Fig. 6(a) shows that a
similar performance may be obtained by employing a stronger
TC associated with (ITC = 12) and (Iout = 1), while an
even better performance is recorded when the IRCC and URC
schemes of [25] are applied. However, Fig. 6(a) demonstrates
that a significantly improved near-capacity performance is
achieved upon increasing the number of inner iterations to
IURC−MIMO = 2, which would be simply impossible without
considering thea priori LLRs, when a high-throughput QAM
detector is invoked. Moreover, the performance of the V-
BLAST MMSE system seen in Fig. 6(b) further confirms
the performance advantage of our proposed QAM detection
algorithms in the context of different channel-coded scenarios.
The maximum achievable rate indicated in Fig. 6 is calculated
based on the area property of the EXIT chart [5].

The non-Square QAM schemes [22]–[24] are also widely
used in many communication systems. As demonstrated by the
EXIT charts and BER curves of channel-coded STBC using
32QAM in Figs. 7 and 8, Cross 32QAM and Star 32QAM
outperform their Square 32QAM counterpart. However, the
conventional SquareLQAM detection invoking Eqs. (20)
exhibits a substantially lower detection complexity compared
to non-SquareLQAM detection relying on Eq. (19), as demon-
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Fig. 3. Complexity comparison between the conventional soft LPSK/QAM detection algorithms and the reduced-complexity detection algorithms. The
complexity reduction achieved by the proposed detection algorithms is indicated on the figures.
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Fig. 4. EXIT charts of the reduced-complexity detection algorithms when they are invoked to detect G2 STBC as well as the MMSE aided V-BLAST.

strated by Fig. 9. Nonetheless, it can also be seen in Fig. 9
that the complexity difference between the Cross/Star 32QAM
detection and the Square 32QAM detection is significantly
reduced when the proposed reduced-complexity detection al-
gorithms are applied.

V. D ISCUSSIONS

The proposed Algorithms 1 and 2 achieve their substantial
complexity reduction by exploiting the symmetry provided by
each single Gray-labelled constellation diagram. This philoso-

phy cannot be directly applied to ML V-BLAST MIMO detec-
tion invoking Eq. (3), since there is no inherent symmetrybe-
tweenthe different MIMO links’ output signal constellations,
as they are faded completelyindependently. Furthermore, the
non-linear Sphere Decoder (SD) conceived for V-BLAST in
[26] also cannot invoke our proposed algorithm, because the
constellation’s symmetry is ignored, when we only consider
the constellation points falling within the SD’s search radius,
which is explicitly shown in Figs. 2 and 3 of [26].

Nonetheless, the reduced-complexity PSK/QAM detectors
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Fig. 6. BER performance of the TC/IRCC-URC MIMO systems withturbo detection.
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proposed in this paper may benefit a diverse variety of
communication systems. As demonstrated in Sec. II, the linear
MIMO receivers as well as orthogonal STBC detectors may
directly invoke our proposed PSK/QAM detection algorithms.
Furthermore, linear receivers designed for beamforming [27]
or for CDMA Multiple-User Detection (MUD) [8] have a
similar form to the MMSE aided V-BLAST system introduced
in Sec. II-A. Hence our reduced-complexity PSK/QAM detec-
tion algorithms may also be employed by the aforementioned
systems.

VI. CONCLUSIONS

A new method of reducing the complexity of the soft
PSK/QAM detection algorithms was proposed, and its ad-
vantages in V-BLAST system and in Alamouti’s G2 STBC
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Fig. 8. BER performance of TC G2 STBC using different 32QAM
constellations. The number of inner iterations within the TC is set toITC = 4,
while the number of outer iterations between TC and MIMO is set to
Iout = 3.

system were demonstrated. Our simulation results confirmed
that a substantial complexity reduction was achieved both by
the reduced-complexity Approx-Log-MAP algorithm as well
as by the reduced-complexity Max-Log-MAP algorithm, while
no performance degradation was imposed.
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