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Abstract—In this paper, we propose a comprehensive reduced-
complexity detector both for hard-decision-aided as well as for
the soft-decision-assisted Spatial Modulation (SM)/Space-Time
Shift Keying (STSK). More explicitly, the detection of the SM
scheme, which activates a single one out of M antennas to
transmit a single LPSK/QAM symbol, may be carried out by
detecting the antenna activation index m and the LPSK/QAM
symbol sl separately, so that the detection complexity may be
reduced from the order of O(M · L) to the lower bound of
O(M + log2 L). However, the QAM aided STSK hard detection
proposed in [1] results in a performance loss. Furthermore, the
Max-Log-MAP algorithm proposed for soft STSK detection in [2]
only takes into account the maximum a posteriori probabilities,
which also imposed a performance degradation. Therefore, in
this paper, we propose a novel solution for hard-decision-aided
SM/STSK detection, which retains its optimal performance,
despite its reduced detection complexity, when either LPSK
or LQAM is employed. Furthermore, we propose the reduced-
complexity Approx-Log-MAP algorithm conceived for the soft-
decision-aided SM/STSK detector, in order to replace the sub-
optimal Max-Log-MAP algorithm.

Index Terms—Spatial modulation, space-time shift keying,
reduced complexity design, turbo detection.

I. INTRODUCTION

MULTIPLE-Input Multiple-Output (MIMO) schemes are
capable of providing wireless communication systems

either with an increased capacity as in V-BLAST [3] and/or
with an improved diversity gain [4]. However, full-search-
based Maximum Likelihood (ML) MIMO detection may im-
pose an excessive complexity in turbo detected schemes [5],
[6]. As a remedy, Spatial Modulation (SM) was proposed
in [7], where a single one out of M transmit antennas is
activated to transmit a single LPSK/QAM symbol, so that a
single-antenna-based detector may be invoked at the receiver.
Furthermore, in order to benefit from a diversity gain, Space-
Time Shift Keying (STSK) was proposed in [8], where one
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out of Q dispersion matrices was activated to disperse a single
LPSK/QAM symbol to multiple antennas and time-slots. It
was demonstrated in [8] that a low-complexity SM detector
may be invoked for STSK detection.

Although the antenna activation index and the LPSK/QAM
symbol are encoded independently in SM schemes, these two
signals fade together. Hence, the attempt of detecting the two
terms completely independently results in a significant perfor-
mance loss [7], except when the Channel State Information
(CSI) is known at the transmitter [9]. As a remedy, Space-
Shift Keying (SSK) was proposed in [10], where simply the
antenna activation index conveys the source information.

Recently, the reduced-complexity hard-decision PSK aided
SM detection was proposed in the context of Differential
STSK (DSTSK) [11], where the optimal performance was
retained by taking into account the correlation between the
antenna activation index and the LPSK symbol. Reduced-
complexity hard-decision QAM aided STSK detection was
proposed in [1], but a performance loss was imposed. Fur-
thermore, the reduced-complexity Max-Log-MAP algorithm
conceived for soft STSK detection was proposed in [2].
However, the Max-Log-MAP algorithm only considers the
maximum a posteriori probabilities, which results in a sub-
optimal performance. Against this background, the novel con-
tributions of this paper are as follows:

(1) Both PSK as well as QAM based reduced-complexity
SM/STSK hard-decision-aided detection is proposed.

(2) For soft-decision-aided detection, a reduced-complexity
Approx-Log-MAP algorithm is conceived for SM/STSK
detection.

(3) Both the hard and the soft-decision-aided SM/STSK de-
tectors proposed are generalized for different PSK/QAM
constellations, which retain their optimal unimpaired
detection capabilities, despite their reduced complexity.

The remainder of this paper is organized as follows. The
hard-decision aided SM detector is proposed in Section II,
while the soft-decision-aided SM detector is conceived in
Section III. The STSK scheme, which may invoke the SM
detector is reviewed in Section IV. Our performance results
are provided in Section V, while our conclusions are offered
in Section VI.

The following notations are used throughout the pa-
per. SM(M ,N )-LPSK/QAM as well as V-BLAST(M ,N )-
LPSK/QAM denote the SM scheme and the V-BLAST scheme
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equipped with M transmit antennas and N receive antennas.
Furthermore, a STSK scheme is denoted by the acronym of
STSK(M ,N ,T ,Q)-LPSK/QAM, where T and Q represent the
number of symbol periods per transmission block and the total
number of dispersion matrices employed, respectively.

II. HARD-DECISION-AIDED SM DETECTION

A. Conventional Hard-Decision-Aided SM Detection

For a SM scheme, the transmit vector is given by [7]:

Si = [0 · · · 0︸ ︷︷ ︸
m−1

, sl, 0 · · · 0︸ ︷︷ ︸
M−m

], (1)

where (log2 L) bits are assigned to modulate an LPSK/QAM
symbol, while (log2 M) bits are assigned to activate a single
one out of a total of M transmit antennas.

The signal received by the N receive antennas may be
modelled as:

Yn = SnHn +Vn, (2)

where Yn ∈ C1×N and Vn ∈ C1×N refer to the re-
ceived signal vector, and the Additive White Gaussian Noise
(AWGN) vector, which has a zero mean and a variance of N0,
respectively, while Hn ∈ CM×N models the Rayleigh fading
channel.

Based on Eq. (2), the conventional MIMO detector, which
operates on a matrix-by-matrix basis, may be expressed as:

Ŝn = arg min
Si∈S

‖Yn − SiHn‖2, (3)

where S stores all the SM codewords. Let us further extend
the decision variable in Eq. (3) as:

‖Yn − SiHn‖2 = tr
{
(Yn − SiHn)(Yn − SiHn)

H
}

= ‖Yn‖2 + µ2
m|sl|2 − 2Re

{
s∗lYn (Hm

n )H
}
,

(4)

where the variable {μm}Mm=1 is given by (μm = ‖Hm
n ‖),

while {Hm
n }Mm=1 denotes the m-th row in Hn. Eq. (4) leads

to a decorrelating variable of:

Zn = Yn

(
Hn

)H
, (5)

where each row in the normalized fading matrix Hn ∈ CM×N

is given by {Hm

n = Hm
n /μm}Mm=1. It is well known that the

decorrelating detector of V-BLAST imposes a performance
loss. However, due to the fact that only a single transmit
antenna was activated in our SM scheme, Eq. (4) now becomes
equivalent to the vector-by-vector based detection metric of:

‖Zn−μmSi‖2 = ‖Zn‖2+μ2
m|sl|2−2Re{μmZn (Si)

H}, (6)

where we have μmZn (Si)
H

= s∗lYn (H
m
n )

H according to
Eq. (5), while both ‖Yn‖2 in Eq. (4) and ‖Zn‖2 in Eq. (6)
are constants. Hence minimizing Eq. (4) and Eq. (6) are
equivalent.

In conclusion, the vector-by-vector based SM detection may
be formulated as:

Ŝn = arg min
Si∈S

‖Zn − μmSi‖2, (7)

where μm may be found according to the antenna activation
index m that corresponds to the tentative candidate Si.

B. Reduced-Complexity Hard-Decision-Aided SM Detection

Both the matrix-by-matrix based detection of Eq. (3) and the
vector-by-vector based detection of Eq. (7) have a complexity
order of O(M · L). In this section, we proceed further by
detecting the antenna activation index m and the LPSK/QAM
symbol index l separately, so that the detection complexity
may be further reduced to the lower bound of O(M+log2 L).

First of all, we further extend the vector-by-vector based
detection metric of Eq. (7) as:

‖Zn − μmSi‖2 =‖Zn‖2 + μ2
m|sl|2 − 2μmRe(Zm

n )Re(sl)

− 2μmIm(Zm
n )Im(sl),

(8)

where {Zm
n }Mm=1 denotes the m-th element in the decorre-

lating vector Zn. As a result, the LPSK/QAM aided SM
detection of Eq. (7) may be simplifed to:

{m̂, l̂} = arg max
m∈m̄,l∈l̄

Re(Z̃m
n )Re(sl) + Im(Z̃m

n )Im(sl)

− μ2
m|sl|2.

(9)

where we have {Z̃m
n = 2μmZm

n }Mm=1, while m̄ and l̄
store the antenna activation indices and LPSK/QAM symbol
indices, respectively. The constant of ‖Zn‖2 seen in Eq. (8)
is discarded.

In order to detect m and l separately, we have to drop the
LPSK/QAM index l in Eq. (9), when detecting the antenna
activation index m. Let us consider QPSK aided SM detection
as an example, which has a PSK constellation set of {± 1√

2
±

j 1√
2
}1. For a specific antenna index m, the maximum metric

over all QPSK constellations is given by:

dm = max
l∈l̄

{
±Re(Z̃m

n )√
2

± Im(Z̃m
n )√
2

− μ2
m

}

=

∣∣∣∣∣Re(Z̃m
n )√
2

∣∣∣∣∣+
∣∣∣∣∣ Im(Z̃m

n )√
2

∣∣∣∣∣− μ2
m,

(10)

which is evaluated by a single equation instead of comparing
all the (L = 4) QPSK constellations. As a result, the optimum
antenna activation index m̂ may be found by searching for
the maximum metric over all the M candidates {dm}Mm=1,
regardless of which particular QPSK symbol was transmitted,
which may be expressed as:

m̂ = arg max
m∈m̄

dm, (11)

and then the corresponding (log2 M) bits {b̂k}log2 I
k=log2 L+1

assigned to activate m̂ may be obtained accordingly, where
(I = M ·L) denotes the total number of SM codewords. Hav-
ing determined the optimum m̂, the (log2 L) bits {b̂k}log2 L

k=1

assigned to modulate the QPSK symbol may be detected as:

b̂1 =

{
1, if Im(Z̃m̂

n ) < 0
0, otherwise

,

b̂2 =

{
1, if Re(Z̃m̂

n ) < 0
0, otherwise

.

(12)

1We deliberately rotated all the constellations of LPSK (L ≥ 4) in [12]
anti-clockwise by a phase of π

L
, so that there are exactly L/4 constellation

points in each quadrant. This feature will be beneficial for reducing the
complexity of the soft PSK aided SM/STSK detection.
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It can be seen that Eqs. (11) and (12) reduces the QPSK
aided SM detection complexity from the order of O(M · 4)
to O(M + 2) by detecting the antenna index and the QPSK
symbol separately.

Similarly, when Square 16QAM was employed, the max-
imum metrics {dm}Mm=1 seen in Eq. (11) may be obtained
by testing the real and the imaginary parts of the LQAM
constellation separately, which may be expressed as:

dRe1
m = max

{
± 1√

10
Re(Z̃m

n )− 1

10
μ2
m

}
=

∣∣∣∣ 1√
10

Re(Z̃m
n )

∣∣∣∣− 1

10
μ2
m,

dRe2
m = max

{
± 3√

10
Re(Z̃m

n )− 9

10
μ2
m

}
=

∣∣∣∣ 3√
10

Re(Z̃m
n )

∣∣∣∣− 9

10
μ2
m,

dIm1
m = max

{
± 1√

10
Im(Z̃m

n )− 1

10
μ2
m

}
=

∣∣∣∣ 1√
10

Im(Z̃m
n )

∣∣∣∣− 1

10
μ2
m,

dIm2
m = max

{
± 3√

10
Im(Z̃m

n )− 9

10
μ2
m

}
=

∣∣∣∣ 3√
10

Im(Z̃m
n )

∣∣∣∣− 9

10
μ2
m,

(13)

where each one of them only has to be evaluated once.
Furthermore, for a specific antenna index m, the maximum
metric is given by:

dm = max
i∈{1,2}

dRei
m + max

j∈{1,2}
dImj
m . (14)

Then the antenna activation index detection of Eq. (11) may
be invoked, and a streamlined Square 16QAM detection may
be carried out as follows:

b̂1 =

{
1, if Im(Z̃m̂

n ) < 0
0, otherwise

,

b̂2 =

{
1, if ĵ = 1 for dm̂
0, otherwise

,

b̂3 =

{
1, if Re(Z̃m̂

n ) < 0
0, otherwise

,

b̂4 =

{
1, if î = 1 for dm̂
0, otherwise

,

(15)

where the optimum 16QAM magnitude indices î and ĵ have
been obtained in Eq. (14).

We summarize the hard-decision Square LQAM aided SM
detection in Table I. Furthermore, when either a high-order
LPSK (L > 4) or a Star L-QAM constellation [13], [14] is
employed, the real and imaginary parts of the decorrelating
variable Z̃m

n cannot be detected separately. However, as long
as we have two bits, which determine the signs of the real
and imaginary parts of the transmitted symbol, a similar
detection algorithm may be conceived, which is summarized
in Table II2.

2We deliberately rotate all the Star L-QAM constellations of [13], [14]
anti-clockwise by a phase angle of (π/LP ), where LA and LP refers to the
number of constellation rings and the number of phasors, respectively.

We note that the low-complexity SM detection proposed
in [7] always achieves the complexity lower bound of
O(M + log2 L), because it detects the antenna index as
m̂ = arg maxm∈m̄ |Zm

n |2, which may result in an erroneous
decision and hence the LPSK/QAM demodulator may be mis-
led into detecting the wrong symbol. By contrast, our proposed
SM detection characterized in this section retains the same
detection capability as the full-search-based MIMO detection
of Eq. (3), because the proposed antenna index detection
takes into account which particular LPSK/QAM scheme was
employed. As a result, only the family of 1PSK3/BPSK/QPSK
aided SM detection arrangements may achieve the complexity
lower bounds of O(M), O(M+1) and O(M+2), respectively,
where the special case of hard-decision 1PSK/BPSK aided
SM detection is summarized in the Appendix. The high-order
Square LQAM aided SM detection presented in Table I has a
complexity order of O(

√
L ·M +4), where a total number of√

L comparisons have been made for estimating {dm}Mm=1,
while the streamlined Square LQAM demodulator detects the
log2 L bits by simply testing the two variables of Re(Z̃m̂

n )
and Im(Z̃m̂

n ), as well as the two magnitude indices î and
ĵ. Similarly, the generalized LPSK/QAM aided SM detection
complexity order of Table II is given by O(L4 ·M +3), which
is higher than that of Table I.

When the number of bits per Square LQAM symbol is
an odd number, the Algorithm 1 shown in Table I may be
readily modified, where the real positive PAM magnitudes
have

√
2L/2 candidates, while the imaginary positive PAM

magnitudes have
√
L/2/2 candidates. Furthermore, it was

shown in [15] that Cross L-QAM constellations actually have
a better performance compared to Square L-QAM schemes.
We note that the Algorithm 2 of Table II may be adopted for
detecting the family of Cross LQAM aided SM schemes.

III. SOFT-DECISION-AIDED SM DETECTION

A. Conventional Soft-Decision-Aided SM Detection

For the soft-decision-aided detection, the classic Log-MAP
algorithm is given by [16]:

Lp(bk) = ln

[∑
Si∈Sbk=1

exp (di)∑
Si∈Sbk=0

exp (di)

]
, (16)

where Lp(bk) refers to the a posteriori LLRs, while Sbk=1

and Sbk=0 denote the SM codeword sets, when the specific
bit bk is fixed to 1 and 0, respectively. The probability metric
{di}Ii=1 in Eq. (16) is given by:

di = −‖Yn − SiHn‖2
N0

+

log2 I∑
j=1

bjLa(bj), (17)

where {La(bj)}log2 I
j=1 refers to the a priori LLRs gleaned

from a channel decoder. Similar to Eq. (7), Eq. (17) may be
calculated on a vector-by-vector basis as:

di = −‖Zn − μmSi‖2
N0

+

log2 I∑
j=1

bjLa(bj). (18)

3We note that the 1PSK aided SM detection refers to the SSK scheme of
[10], where no source information was assigned to the L-PSK modulation.
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TABLE I
ALGORITHM 1: REDUCED-COMPLEXITY HARD-DECISION SQUARE LQAM AIDED SM DETECTION.

(1) Define the metrics that tests the real and imaginary parts separately as:

dRei
m =

∣∣∣AiRe(Z̃m
n )

∣∣∣ −A2
i μ

2
m, dImi

m =
∣∣∣AiIm(Z̃m

n )
∣∣∣− A2

iμ
2
m,

where {Ai}
√

L/2
i=1 are the positive real PAM magnitudes on the x-axis and y-axis of Square LQAM constellation diagram.

(2) For a specific m, the maximum metric over all Square LQAM constellations is given by testing the real and imaginary parts separately as:

dm = maxi∈{1,··· ,√L/2} d
Rei
m +maxj∈{1,··· ,√L/2} d

Imj
m ,

where the optimum PAM magnitudes indices î and ĵ obtained for each {dm}Mm=1 may be recorded.
(3) The optimum antenna activation index may be found by:

m̂ = arg maxm∈m̄ dm,

and then the corresponding (log2 M) bits {b̂k}log2 I
k=log2 L+1 assigned to activate m̂ may be obtained accordingly.

(4) The first bit and the (
log2 L

2
+ 1)-th bit which determine the signs may be demodulated as:

b̂1 =

{
1, if Im(Z̃m̂

n ) < 0
0, otherwise

, b̂(log2 L)/2+1 =

{
1, if Re(Z̃m̂

n ) < 0
0, otherwise

.

(5) For the (log2 L− 2) bits {b̂k}(log2 L)/2
k=2 and {b̂k}log2 L

(log2 L)/2+2
which determine the magnitudes, the optimum bit mapping is correspond-

ing to the imaginary and real magnitude indices ĵ and î, respectively, which were obtained when estimating dm̂ in Step (2).

TABLE II
ALGORITHM 2: REDUCED-COMPLEXITY HARD-DECISION GENERAL LPSK/QAM AIDED SM DETECTION.

(1) Define the new testing metrics as:

dim =
∣∣∣AiRe(Z̃m

n )
∣∣∣ + ∣∣∣BiIm(Z̃m

n )
∣∣∣− (A2

i +B2
i )μ

2
m,

where {(Ai, Bi)}L/4
i=1 denote the coordinates of the LPSK/QAM constellation points in the first quadrant, and (A2

i +B2
i = 1) is a const-

ant when LPSK is emploed.
(2) For a specific m, the maximum metric over all LPSK/QAM constellations is given by:

dm = maxi∈{1,··· ,L/4} dim,
where the optimum constellation index î obtained for each {dm}Mm=1 may be recorded.

(3) The optimum antenna activation index may be found by:
m̂ = arg maxm∈m̄ dm,

and then the corresponding (log2 M) bits {b̂k}log2 I
k=log2 L+1 assigned to activate m̂ may be obtained accordingly.

(4) The first bit and the second bit which determine the signs may be demodulated as:

b̂1 =

{
1, if Im(Z̃m̂

n ) < 0
0, otherwise

, b̂2 =

{
1, if Re(Z̃m̂

n ) < 0
0, otherwise

.

(5) For the rest (log2 L− 2) bits {b̂k}log2 L
k=3 which determine the magnitudes, the optimum bit mapping arrangement is corresponding to the

optimum constellation index î, which were obtained when estimating dm̂ in Step (2).

According to our previous results in Eqs. (4) and (6), the
differences between Eq. (17) and Eq. (18) are all constants,
which are eliminated by the division operation in Eq. (16).

The Log-MAP algorithm may be simplified by the Max-
Log-MAP algorithm as [16]:

Lp(bk) = max
Si∈Sbk=1

(di)− max
Si∈Sbk=0

(di) . (19)

Since only the pair of maximum a posteriori probabilities
are taken into account in Eq. (19), the Max-Log-MAP algo-
rithm imposes a slight performance degradation. In order to
compensate for this performance loss, the Approx-Log-MAP
algorithm was introduced as [17]:

Lp(bk) = jacSi∈Sbk=1
(di)− jacSi∈Sbk=0

(di) , (20)

where jac denotes the Jacobian algorithm, which may be
expressed as [6]:

jac(d1, d2) = max {d1, d2}+ Γ{|d1 − d2|}, (21)

where the additional term of Γ{|d1 − d2|} takes into ac-
count the difference between d1 and d2 according to a
lookup table [6]. When comparing two variables, which have
the same magnitudes but are associated with the opposite
signs, the maximization operation gives the simple result of
(max{t,−t} = |t|). Similarly, we define the special case for
the Jacobian algorithm as:

Λ(|t|) = jac(t,−t) = |t|+ Γ{2|t|}. (22)

In the following section, we aim for invoking Eq. (22) for a
streamlined algorithm.

B. Reduced-Complexity Soft-Decision-Aided SM Detection

For producing a single soft-bit output, the conventional SM
detectors have to estimate a total number of (I = M · L)
a posteriori probability metrics {di}Ii=1. In this section, we
once again aim for detecting m and l separately. For the
(log2 M) bits which are assigned to the antenna index, the
detection complexity order of the Approx-Log-MAP algorithm
of Eq. (20) may be lower bounded by O(M), where ideally
the antenna activation index detector does not have to visit the
L-element PSK/QAM constellations set. Meanwhile, for the
(log2 L) bits which are assigned to an LPSK/QAM symbol,
the detection complexity may be lower bounded by O(2M),
where ideally the antenna activation index detector only has
to be invoked twice according to the updated LPSK/QAM
subsets, when a specific bit bk is set to 1 and 0, respectively.

Similar to Eq. (8), the a posteriori probability evaluation of
Eq. (18) may be extended as:

dm,l =
Re(Z̃m

n )Re(sl)
N0

+
Im(Z̃m

n )Im(sl)

N0
− μ2

m|sl|2
N0

+

log2 I∑
j=1

bjLa(bj),

(23)

where a constant of
(
− ‖Zn‖2

N0

)
is discarded from Eq. (18).
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For the (log2 M) bits which are assigned to the antenna in-
dex, the soft decisions produced by Eq. (20) may be expressed
as:

Lp(bk) = jacm∈m̄bk=1
(dm)− jacm∈m̄bk=0

(dm) , (24)

where m̄bk=1 and m̄bk=0 refer to the index set for m, when
the specific bit {bk}log2 I

k=log2 L+1 is fixed to 1 and 0, respectively.
For a specific antenna index m seen in Eq. (24), we have to ob-
tain the probability of dm = jacl∈l̄ (dm,l). Considering QPSK
as an example, the a posteriori probability for each antenna
index is given by Eq. (25), where the a priori probability of the
antenna index m is given by

[
Prm =

∑log2 I
j=log2 L+1 bjLa(bj)

]
.

Let us define two variables to test the real and the imaginary
part separately as:

tRe
m =

Re(Z̃m
n )√

2N0
− La(b2)

2 , tImm =
Im(Z̃m

n )√
2N0

− La(b1)
2 , (26)

so that Eq. (25) may be further expressed as:

dm = Λ(|tRe
m |) + Λ(|tImm |)− μ2

m

N0
+ Prm, (27)

where a constant of La(b1)+La(b2)
2 is discarded from Eq. (25).

Therefore, the Approx-Log-MAP algorithm of Eq. (24) may
be invoked by using the a posteriori probabilities {dm}Mm=1

of Eq. (27) in order to detect the last (log2 M) bits
{Lp(bk)}log2 I

k=log2 L+1.
When the Max-Log-MAP algorithm is invoked, the a pos-

teriori probability of Eq. (27) may be further simplified as:

dm = |tRe
m |+ |tImm | − μ2

m

N0
+ Prm, (28)

while the (log2 M) soft bit decisions may be made without
invoking the Jacobian algorithms as:

Lp(bk) = max
m∈m̄bk=1

(dm)− max
m∈m̄bk=0

(dm) . (29)

It can be seen that the detection algorithms of
Eqs. (24) and (29) only have to estimate and compare the
M a posteriori probabilities {dm}Mm=1 of Eqs. (27) and (28),
respectively. Therefore the complexity order has been reduced
from O(M · L) to O(M).

For the first (log2 L) bits, when a specific bit is set to 1 or
0 as seen in Eq. (20), the LPSK constellation set has to be
updated. For the sake of producing the first soft bit decision,
the Approx-Log-MAP algorithm of Eq. (20) is formulated as:

Lp(b1) = jacm∈m̄

[
jacl∈l̄b1=1

(dm,l)
]

− jacm∈m̄

[
jacl∈l̄b1=0

(dm,l)
]

= jacm∈m̄

[
Λ(|tRe

m |)− tImm − μ2
m

N0
+ Prm

]
− jacm∈m̄

[
Λ(|tRe

m |) + tImm − μ2
m

N0
+ Prm

]
,

(30)

where the imaginary term of Λ(|tImm |) in Eq. (27) is replaced
by (−tImm ) and (tImm ), when b1 is fixed to 1 and 0, respectively.

Similarly, the second soft bit decision is given by:

Lp(b2) = jacm∈m̄

[
−tRe

m + Λ(|tImm |)− μ2
m

N0
+ Prm

]
− jacm∈m̄

[
tRe
m + Λ(|tImm |)− μ2

m

N0
+ Prm

]
.

(31)

The corresponding Max-Log-MAP algorithm may be ob-
tained by replacing all the Jacobian operations of jac by the
maximization operation of max, while the special case of
Λ(|t|) may be replaced by |t|.

The complexity order of Eqs. (30) and (31) is O(2M),
where the antenna index detector is invoked twice according
to the updated symbol set, when the specific bit is fixed to 1
and 0.

Let us further consider the example of Square 16QAM aided
SM detection, where the a posteriori probability of a specific
antenna index is given by:

dm = jacl∈l̄ (dm,l) = dRe
m + dImm + Prm, (32)

where we aim for testing the real and the imaginary part
separately. The real part dRe

m in Eq. (32) may be further
extended as:

dRe
m = jac

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Re(Z̃m
n )√

10N0
+ La(b4)− µ2

m

10N0
,

−Re(Z̃m
n )√

10N0
+ La(b3) + La(b4)− µ2

m

10N0
,

3Re(Z̃m
n )√

10N0
− 9µ2

m

10N0
,

−3Re(Z̃m
n )√

10N0
+ La(b3)− 9µ2

m

10N0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= jac

{
Λ(|tRe1

m |) + La(b4)− µ2
m

10N0
,

Λ(|tRe2
m |)− 9µ2

m

10N0

}
+

La(b3)

2

= jac
{
dRe1
m , dRe2

m

}
+

La(b3)

2
,

(33)

where the constant of La(b3)
2 may be deleted, while the two

test-variables are defined as:

tRe1
m =

Re(Z̃m
n )√

10N0
− La(b3)

2 , tRe2
m =

3Re(Z̃m
n )√

10N0
− La(b3)

2 .
(34)

Similarly, the imaginary term dImm in Eq. (32) may be formu-
lated as:

dImm = jac

{
Λ(|tIm1

m |) + La(b2)− µ2
m

10N0
,

Λ(|tIm2
m |)− 9µ2

m

10N0

}
= jac

{
dIm1
m , dIm2

m

}
,

(35)

where the constant of La(b1)
2 is discarded, while the two test-

variables are defined as:

tIm1
m =

Im(Z̃m
n )√

10N0
− La(b1)

2 , tIm2
m =

3Im(Z̃m
n )√

10N0
− La(b1)

2 .
(36)

Therefore, for the Approx-Log-MAP algorithm, the antenna
index detector of Eq. (24) may be invoked by utiliz-
ing the M a posteriori probabilities {dm}Mm=1 defined in
Eq. (32), in order to produce the (log2 M) soft bit decisions
{Lp(bk)}log2 I

k=log2 L+1. The complexity order is reduced from
O(M · 16) to O(M · 4), where four comparison operations
have been made in Eqs. (33) and (35).
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dm = jacl∈l̄

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Re(Z̃m
n )√

2N0
+

Im(Z̃m
n )√

2N0
− µ2

m

N0
+ Prm

−Re(Z̃m
n )√

2N0
+

Im(Z̃m
n )√

2N0
+ La(b2)− µ2

m

N0
+ Prm

Re(Z̃m
n )√

2N0
− Im(Z̃m

n )√
2N0

+ La(b1)− µ2
m

N0
+ Prm

−Re(Z̃m
n )√

2N0
− Im(Z̃m

n )√
2N0

+ La(b1) + La(b2)− µ2
m

N0
+ Prm

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (25)

Lp(b1) = jacm∈m̄

(
db1=1
m

)− jacm∈m̄

(
db1=0
m

)
= jacm∈m̄

{
dRe
m + jac

[ −tIm1
m + La(b2)− 1

10μ
2
m, −tIm2

m − 9
10μ

2
m

]
+ Prm

}
− jacm∈m̄

{
dRe
m + jac

[
tIm1
m + La(b2)− 1

10μ
2
m, tIm2

m − 9
10μ

2
m

]
+ Prm

}
.

(37)

When the first bit b1 which determines the sign of the
imaginary part of a Square 16QAM symbol is fixed to 1
or 0, {Λ(|tImi

m |)}2i=1 seen in Eq. (35) may be replaced by
{−tImi

m }2i=1 and {tImi
m }2i=1, respectively. More explicitly, the

Approx-Log-MAP produces the first soft bit as Eq. (37), where
dRe
m does not have to be estimated again. The complexity order

of detecting La(b1) is given by O(M · 4).
When the second bit b2 which determines the magnitude of

the imaginary part of a Square 16QAM symbol is fixed to 1 or
0, Eq. (35) should be updated as dImm = dIm1

m or dImm = dIm2
m ,

respectively. As a result, the second soft bit decision is given
by:

Lp(b2) = jacm∈m̄ (dRe
m + dIm1

m + Prm)

− jacm∈m̄ (dRe
m + dIm2

m + Prm),
(38)

where there is no new variable to evaluate, i.e. only additions
and comparisons are made in Eq. (38). Therefore, the com-
plexity order of detecting the second bit is given by O(M ·2).

Similarly, the third bit which determines the sign of the
real part of a Square 16QAM symbol may be detected by the
Approx-Log-MAP algorithm as:

Lp(b3) = jacm∈m̄

(
db3=1
m

)− jacm∈m̄

(
db3=0
m

)
, (39)

where db3=1
m and db3=0

m are obtained by replacing
{Λ(|tRei

m |)}2i=1 seen in dRe
m of Eq. (33) by {−tRei

m }2i=1

and {tRei
m }2i=1, respectively.

Furthermore, the fourth bit, which modulates the magnitude
of the real part of a Square 16QAM symbol may be detected
as:

Lp(b4) = jacm∈m̄ (dRe1
m + dImm + Prm)

− jacm∈m̄ (dRe2
m + dImm + Prm).

(40)

We have summarized the Approx-Log-MAP conceived for
Square LQAM aided SM detection in Table III, while the
general LPSK/QAM aided SM detection is summarized in
Table IV. The special case of 1PSK/BPSK aided SM detection
is detailed in the Appendix. As discussed right after Eq. (31),
the reduced-complexity Max-Log-MAP may be obtained ac-
cordingly.

For the (log2 M) bits assigned to the antenna index, the
1PSK/BPSK/QPSK aided SM detection achieves the complex-
ity order lower bound of O(M), while the Square LQAM
aided SM detection of Table III and the LPSK/QAM aided
SM detection of Table IV have the complexity order of
O(

√
L ·M) and O(L4 ·M), respectively. For the two specific

bits, which determine the sign of the transmitted LPSK/QAM

symbol, the BPSK/QPSK aided SM detection complexity is
lower bounded by the order of O(2M), while the Square
LQAM aided SM detection complexity order and the general
LPSK/QAM aided SM detection complexity order are given
by O(

√
L ·M) and O(L2 ·M), respectively. For the remaining

(log2 L − 2) bits, which determine the specific magnitudes
of the LPSK/QAM symbols, the complexity order of the
Square LQAM aided SM detection and that of the general
LPSK/QAM aided SM detection are given by O(

√
L
2 ·M) and

O(L4 ·M), respectively. In summary, the Square LQAM aided
SM detection of Algorithm 3 has a lower complexity compared
to Algorithm 4, where the latter applies to high-order LPSK,
Star LQAM and Cross LQAM aided SM schemes.

IV. SPACE-TIME SHIFT KEYING

It was demonstrated in [8] that the SM detector may be
invoked for STSK detection. In fact, a SM scheme may be
seen as a special case of STSK in conjunction with (T = 1)
and (Q = M) [18]. In this section, we summarize the STSK
schemes having different parameters in three cases, so that
our proposed reduced-complexity SM detector may be invoked
accordingly.

A. STSK Encoding

For a STSK scheme, the (T × M )-element transmission
matrix is obtained by the so-called dispersion process [8] of(
Sn = Ãqsl

)
, where log2 L bits are assigned to modulate

a single LPSK/QAM symbol {sl}Ll=1, while log2 Q bits are
assigned to activate one out of a total number of Q dispersion
matrices {Ãq}Qq=1.

In order to obtain the optimum dispersion matrix set, (T ×
T ) full-rank unitary matrices are randomly generated, where
we have

(
T = max{M,T }). The set of dispersion matrices

is obtained by taking the first T rows or the first M columns
of the unitary matrices, for the case of (M > T ) and (M <

T ), respectively. A constant of (
√

T
M ) should be used for

multiplying all the dispersion matrices, when we have (M <

T ), so that the power constraint of
[
tr(Ãq · ÃH

q ) = T
]

may be
satisfied. The optimum dispersion matrices may be obtained by
maximizing the minimum distance between STSK codewords
as

(
max {det [(Sf − Sg)]}min

)
[8].

B. STSK Detection

The received signal model of STSK may also be represented
by Eq. (2), where the STSK transmission matrix Sn has (T ×
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TABLE III
ALGORITHM 3: REDUCED-COMPLEXITY APPROX-LOG-MAP ALGORITHM CONCEIVED FOR SQUARE LQAM AIDED SM DETECTION.

(1) Define the variables testing the real and imaginary parts of the decorrelating variable Z̃m
n separately as:

t
Rei
m =

AiRe(Z̃m
n )

N0
− La

(
b(log2 L)/2+1

)
2

, t
Imi
m =

AiIm(Z̃m
n )

N0
− La(b1)

2
,

where {Ai}
√

L/2
i=1 are the positive real PAM magnitudes on the x-axis and y-axis of Square LQAM constellation diagram.

(2) The a posteriori probability of a specific antenna index m is given by:
dm = dRe

m + dImm + Prm,

where the a priori probability of the antenna index m is given by Prm =
∑log2 I

j=log2 L+1 bjLa(bj), while the real and imaginary terms of
the decision metric are given by:

dRe
m = jaci∈{1,··· ,√L/2}

(
dRei
m

)
, dImm = jaci∈{1,··· ,√L/2}

(
dImi
m

)
.

The
√
L/2 candidates of {dRei

m }
√

L/2
i=1 and {dImi

m }
√

L/2
i=1 may be evaluated by:

d
Rei
m = Λ(|tRei

m |) +∑log2 L

j=(log2 L)/2+2
bjLa(bj) − A2

iμ
2
m

N0
,

dImi
m = Λ(|tImi

m |) +∑(log2 L)/2
j=2 bjLa(bj)− A2

iμ
2
m

N0
.

(3) The (log2 M) bits which determine the antenna activation index may be detected as:
Lp(bk) = jacm∈m̄bk=1

(dm)− jacm∈m̄bk=0
(dm) , k ∈ {log2 L+ 1, · · · , log2 I}.

(4) The first bit and the
(

log2 L
2

+ 1
)

-th bit which determine the signs may be detected as:

Lp(b1) = jacm∈m̄

(
dRe
m + dIm,b1=1

m + Prm
)
− jacm∈m̄

(
dRe
m + dIm,b1=0

m + Prm
)

,

Lp

(
b(log2 L)/2+1

)
= jacm∈m̄

(
d
Re,b(log2 L)/2+1=1
m + dImm + Prm

)
−jacm∈m̄

(
d
Re,b(log2 L)/2+1=0
m + dImm + Prm

)
,

where dIm,b1=1
m and dIm,b1=0

m may be obtained by replacing {Λ(|tImi
m |)}

√
L/2

i=1 in Step (2) by {−tImi
m }

√
L/2

i=1 and {tImi
m }

√
L/2

i=1 , respect-

ively, while d
Re,b(log2 L)/2+1=1
m and d

Re,b(log2 L)/2+1=0
m may be obtained by replacing {Λ(|tRei

m |)}
√

L/2
i=1 in Step (2) by {−tRei

m }
√

L/2
i=1

and {tRei
m }

√
L/2

i=1 , respectively.
(5) The rest (log2 L− 2) bits which determine the real PAM magnitudes may be detected as:

Lp(bk) = jacm∈m̄

[
dRe
m + jacbk=1 (dImi

m ) + Prm
]

−jacm∈m̄

[
dRe
m + jacbk=0 (d

Imi
m ) + Prm

]
, k ∈ {2, · · · , (log2 L)/2},

Lp(bk) = jacm∈m̄

[
jacbk=1 (dRei

m ) + dImm + Prm
]

−jacm∈m̄

[
jacbk=0 (d

Rei
m ) + dImm + Prm

]
, k ∈ {(log2 L)/2 + 2, · · · , log2 L}.

TABLE IV
ALGORITHM 4: REDUCED-COMPLEXITY APPROX-LOG-MAP ALGORITHM CONCEIVED FOR GENERAL LPSK/QAM AIDED SM DETECTION.

(1) Define the test-variables as:

tRei
m =

AiRe(Z̃m
n )

N0
− La(b2)

2
, tImi

m =
BiIm(Z̃m

n )

N0
− La(b1)

2
,

where {(Ai, Bi)}L/4
i=1 denote the coordinates of the LPSK/QAM constellation points in the first quadrant.

(2) The a posteriori probability of a specific antenna index m is given by:
dm = jaci∈{1,··· ,L/4} (dim) + Prm,

where the L/4 candidates of {dim}L/4
i=1 are evaluated by:

dim = Λ(|tRei
m |) + Λ(|tImi

m |) +∑log2 L
j=3 bjLa(bj)− (A2

i+B2
i )μ

2
m

N0
.

(3) The (log2 M) bits which determine the antenna activation index may be detected as:
Lp(bk) = jacm∈m̄bk=1

(dm)− jacm∈m̄bk=0
(dm) , k ∈ {log2 L+ 1, · · · , log2 I}.

(4) The first two bits which determine the signs may be detected as:
Lp(b1) = jacm∈m̄ (di,b1=1

m )− jacm∈m̄ (di,b1=0
m ),

Lp(b2) = jacm∈m̄ (di,b2=1
m )− jacm∈m̄ (di,b2=0

m ),

where di,b1=1
m and di,b1=0

m may be obtained by replacing {Λ(|tImi
m |)}L/4

i=1 in Step (2) by {−tImi
m }L/4

i=1 and {tImi
m }L/4

i=1 , respectively,

while di,b2=1
m and di,b2=0

m may be obtained by replacing {Λ(|tRei
m |)}L/4

i=1 in Step (2) by {−tRei
m }L/4

i=1 and {tRei
m }L/4

i=1 , respectively.
(5) The rest (log2 L− 2) bits which determine the magnitude of the transmitted LPSK/QAM symbol may be detected as:

Lp(bk) = jacm∈m̄

[
jacbk=1 (dim)

]
− jacm∈m̄

[
jacbk=0 (dim)

]
, k ∈ {3, · · · , log2 L}.

M) elements, while the received signal matrix Yn and the
AWGN matrix Vn are of size (T ×N). Therefore, the hard-
decision matrix-by-matrix-based STSK detection is also given
by Eq. (3), while the soft STSK detection algorithms may
invoke the matrix-by-matrix-based a posteriori probability of
Eq. (17). In order to operate STSK detection on a vector-by-
vector basis, Eq. (2) may be formulated as [8]:

Yn = KnHn +Vn, (41)

where the notations are given by:

Yn = [rvec(Yn)]
T , Hn = χ(IT ⊗Hn),

Kn = [0 · · · 0︸ ︷︷ ︸
q−1

, sl, 0 · · · 0︸ ︷︷ ︸
Q−q

], Vn = [rvec(Vn)]
T
,

χ =
[
rvec(Ã1), · · · , rvec(ÃQ)

]T
,

(42)
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Fig. 1. BER performance and detection complexity comparison between the reduced-complexity hard STSK detectors conceived in Sec. IV and the STSK
detectors proposed by Sugiura et al. in [1].

while ⊗ denotes the Kronecker product. As a result, the new
decision metric becomes:∥∥Yn −KiHn

∥∥2 =
∥∥Yn

∥∥2+|sl|2
∥∥∥Hq

n

∥∥∥2−2Re(YnH
H

n KH
i ),

(43)

where
{
H

q

n

}Q

q=1
denotes the q-th row in Hn, and we have(∥∥∥Hq

n

∥∥∥2 =
∥∥∥ÃqHn

∥∥∥2). We note that detecting the antenna

index m for SM is equivalent to detecting the dispersion
matrix index q for STSK. Therefore, the decision metrics seen
in Eqs. (7) and (18) should be expressed in the following form
for STSK detection:

‖Zn − μqKi‖2 = ‖Zn‖2 + |sl|2μ2
q − 2Re(μqZnK

H
i ), (44)

which is equivalent to Eq. (43). In order to arrive at the
appropriate decorrelating vector Zn and at the normalization
variables {μq}Qq=1, we further consider STSK in three scenar-
ios:

(1) When we have (M ≤ T ) and LPSK is employed for
STSK, the fading channel’s output power in Eq. (43)

is given by

(∥∥∥Hq

n

∥∥∥2 = tr{HnH
H
n ÃH

q Ãq} = ‖Hn‖2
)

,

which is a constant. In such a case, the decorrelating
vector is given by

(
Zn = YnH

H

n

)
, while the normal-

ization variables are given by a constant of {μq =
1}Qq=1.

(2) When we have (M ≤ T ) and LQAM is employed
for STSK, the symbol-power (|sl|2) is no longer a
constant. Therefore, the decorrelating vector may be
obtained by

(
Zn = YnH̃

H
n

)
, where the fading chan-

nel should be normalized by (H̃n = Hn/μ), while
the normalization variables are given by a constant of
{μq = μ = ‖Hn‖}Qq=1.

(3) When we have (M > T ), the fading channel power

of (
∥∥∥Hq

n

∥∥∥2) is no longer a constant. As a result, we

may have the decorrelating vector as
(
Zn = YnH̃

H
n

)
,

where each row in H̃n should be normalized as{
H̃q

n = H
q

n

}Q

q=1
, while the normalization variables are

given by {μq =
∥∥∥Hq

n

∥∥∥}Qq=1.

We note that among all the Generalized STSK schemes of
[18], only STSK detection may proceed from Eq. (43) to
Eq. (44), which allows us to invoke our proposed reduced-
complexity SM detector.

V. PERFORMANCE RESULTS

We provide our simulation results in this section. Our com-
parison between the reduced-complexity hard STSK detection
conceived in Sec. IV and the STSK detection proposed in [1]
is portrayed in Fig. 1. The STSK detectors of [1] can only
achieve the ML performance when Star LQAM is employed,
while the Square LQAM aided STSK detectors impose a
performance loss, which is evidenced by Fig. 1(a). By contrast,
Fig. 1(a) shows that the new STSK detectors proposed in this
work retain their optimal detection capability, despite their
substantially reduced complexity. Moreover, in Fig. 1(b) we
quantify the complexity imposed in terms of the total number
of real-valued calculations required for producing a single-bit
decision. Explicitly, the complexity comparison of Fig. 1(b)
demonstrates that the proposed STSK detector’s complexity
is lower than that of its counterparts conceived in [1]. This
is a benefit of the fact that the LQAM demodulators were
streamlined in the proposed Algorithms 1 and 2. It is also
demonstrated in Fig. 1 that although the Star LQAM aided
STSK detector using Algorithm 2 has a slightly better BER
performance, the Square LQAM aided STSK detection using
Algorithm 1 exhibits the lowest detection complexity.
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Fig. 3. Complexity comparison between soft SM detection arrangments when
different number of antennas are equipped. Square 16QAM was employed
for SM(M,N) scheme, while the Approx-Log-MAP algorithm was invoked
for soft SM detection.

Fig. 2 demonstrates our performance comparison between
a range of MIMO schemes associated with the same rate,
where the transmission rates of the SM, V-BLAST, STSK
and STBC schemes are given by log2(L · M), log2(L

M ),
log2(L·Q)/T and log2(L

Q)/T , respectively. When no receive
diversity is achieved owing to (N = 1), the SM scheme
performs slightly worse than its V-BLAST counterpart, and the
STSK scheme has an improved performance as a benefit of its
diversity gain, while STBC G2 exhibits the best performance,
which is evidenced by Fig. 2. However, Fig. 2 also shows that
as N increases, the SM scheme and the V-BLAST scheme
perform better at low SNRs because the STSK scheme and the
G2 STBC scheme have to employ high-order QAM in order
to compensate for their thoughput loss owing to utilizing T
symbol periods for the sake of achieving full diversity.

Our complexity comparisons made for different soft SM
detection arrangements are portrayed in Figs. 3 and 4. It can
be seen in Fig. 3(b) that following the decorrelating process of
Eq. (5), the complexity of both the vector-by-vector based SM
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Fig. 4. Complexity comparison between soft SM detection arrangments when
different LPSK/QAM scheme was employed for SM(4,1) scheme. The Square
LQAM aided SM detection invokes Algorithm 3 with a lower detection
complexity, while high-order LPSK, Star LQAM or Cross LQAM aided SM
detection invokes Algorithm 4.

detection and of the proposed SM detection no longer grows
significantly as N increases. Furthermore, Figs. 3(a) and 4
show that the complexity reduction provided by our proposed
soft SM detectors becomes even more substantial as M and L
increases. For the SM(4,1)-Square 64QAM scheme, a factor
14 and a factor 19 complexity reduction are achieved by the
Approx-Log-MAP and by the Max-Log-MAP, respectively,
which is evidenced by Fig 4. Furthermore, as expected,
Fig. 4 shows that Square LQAM aided SM detection using
Algorithm 3 has a lower detection complexity compared to
high-order LPSK, Star LQAM or Cross LQAM aided SM
detection using Algorithm 4. Fig. 4 also confirms that Approx-
Log-MAP generally has a higher detection complexity than
Max-Log-MAP. However, it is widely recognized that Approx-
Log-MAP outperforms Max-Log-MAP, and a performance
comparison between these two algorithms invoked for STSK
detection may be found in [2]. We invoke Approx-Log-MAP
for all the soft MIMO detectors in the rest of this section.

The EXIT curves of Fig. 5 demonstrate that both the SM
and the STSK exhibit an increased iteration gain. Furthermore,
Fig. 5 also predicts that the SM scheme and the V-BLAST
scheme employing low-level QPSK may perform better with
the aid of channel coding, when (N = 2) receive antennas are
used. We applied our proposed design in a Turbo Coded (TC)
system [19]. Four inner TC iterations (Iinner = 4) were used,
while (Iouter = 5) outer iterations were employed for the
TC-STSK and TC-V-BLAST systems. Since the SM scheme
has a high iteration gain, while the G2 STBC scheme has
a near-horizontal EXIT curve in Fig. 5, (Iouter = 10) and
(Iouter = 2) were used by the TC-SM system and the TC-G2
STBC system, respectively. The BER performance of Fig. 6
confirmed our EXIT chart based predictions of Fig. 5.

VI. CONCLUSIONS

We have conceived both hard-decision and soft-decision
LPSK/QAM aided SM detection. The antenna index and the
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LPSK/QAM symbol are detected separately, while their cor-
relation is taken into account, so that the optimal performance
is retained. Furthermore, our simulation results demonstrate
that although the SM/STSK schemes performed slightly worse
than the V-BLAST/STBC schemes, they have a substantially
reduced detection complexity, which offers them an appealing
advantage in realistic MIMO systems.

VII. APPENDIX

A. Reduced-Complexity Hard-Decision-Aided SSK Detection

The optimum antenna activation index is given by m̂ =
arg maxm∈m̄ Re(Z̃m

n )− μ2
m.

B. Reduced-Complexity Hard-Decision-Aided BPSK Based
SM Detection

The antenna activation index may be found by evaluating
m̂ = arg maxm∈m̄

∣∣∣Re(Z̃m
n )

∣∣∣ − μ2
m. Then the BPSK de-

modulator may be invoked for detecting the sign of Re(Z̃m̂
n ).

C. Reduced-Complexity Approx-Log-MAP Algorithm Con-
ceived for SSK Detection

The Approx-Log-MAP algorithm conceived for SSK detec-
tion is given by Eq. (24), where we have k ∈ {1, · · · , log2 M}.
The a posteriori probability metric of Eq. (24) is given by

dm =
Re(Z̃m

n )
N0

− µ2
m

N0
+ Prm.

D. Reduced-Complexity Approx-Log-MAP Algorithm Con-
ceived for BPSK Aided SM Detection

The (log2 M) bits {Lp(bk)}log2 M+1
k=2 which determine the

antenna activation index may be detected by Eq. (24). The a
posteriori probability metric of Eq. (24) is given by dm =

Λ(|tRe
m |) − µ2

m

N0
+ Prm, while the test-variable is defined as

tRe
m =

Re(Z̃m
n )

N0
− La(b1)

2 . Furthermore, the first bit, which is
assigned to the BPSK symbol may be detected as:

Lp(b1) = jacm∈m̄

(
−tRe

m − μ2
m

N0
+ Prm

)
− jacm∈m̄

(
tRe
m − μ2

m

N0
+ Prm

)
.

(45)
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