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Fig. 3. (Markers) Simulation and (solid lines) analytic BERs for the GO-MC-
CDM system with four subcarriers per group (full load) using rotated W–H
codes (right).

expression is able to predict phenomena such as the loss of diversity
experienced by symbol 1 when using nonrotated codes. Interestingly,
this diversity loss when using W–H codes is fairly moderate when
compared with the situation where all symbols in the group employ
equal modulation [6] and are received with equal power (e.g., strict
power control is in operation); in the latter case, downlink W–H
spreading results in a very poor BER performance.

V. CONCLUSION

This paper has presented a new analytical BER expression for
GO-MC systems using ML detection. The derived expression, which is
suitable for either uplink or downlink scenarios, generalizes previous
expressions by allowing the different symbols forming a group to come
from different modulation alphabets and to have different received
powers. Both features are likely to occur in situations where users have
distinct QoS requirements and/or when no power control mechanism
is in operation. Simulation results using typical parameters currently
found in WLANs show a good agreement with the derived BER
upper bound for the usually relevant BER range, suggesting that this
analytical expression is a valuable tool for the planning of GO-MC
systems.
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Bit-Interleaved Sphere-Packing-Aided Iteratively
Detected Space-Time Coded Modulation

Ronald Y. S. Tee, Osamah Alamri, Soon Xin Ng, and Lajos Hanzo

Abstract—We design a bit-interleaved space-time coded modulation
scheme using iterative decoding (BI-STCM-ID) combined with a new
multidimensional mapping scheme invoking sphere-packing (SP) modu-
lation, which we refer to as the space-time block-coded sphere-packed
bit-interleaved coded modulation (STBC-SP-BICM) arrangement. The
binary switching algorithm (BSA) is used to optimize the cost function
employed for deriving different mapping strategies, which are designed
with the aid of EXtrinsic Information Transfer (EXIT) charts for the sake
of improving the convergence behavior of the system. The resultant system
is amalgamated with a unity-rate code (URC) as a precoder to enhance
the attainable iterative detection performance. An irregular URC (IrURC)
is invoked to create an open EXIT tunnel at low signal-to-noise ratios
(SNRs). The complexity of employing the multidimensional SP scheme is
also addressed.

Index Terms—Bit-interleaved space-time coded modulation, extrinsic
information transfer (EXIT) charts, iterative detection, set partitioning,
sphere-packing modulation, unity-rate coding.

I. INTRODUCTION

Alamouti’s space-time block codes (STBCs) [1] constitute an ele-
gant way of implementing a simple twin-antenna design for providing
second-order diversity at the transmitter, which was further gener-
alized to an arbitrary number of transmitters by Tarokh et al. [2].
However, no attempt was made to jointly design the multiple antennas’
signals; hence, this joint design is addressed in this paper with the aid
of sphere-packing (SP) modulation [3].
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Fig. 1. STBC-SP-BICM scheme.

Bit-interleaved coded modulation (BICM) was designed by
Zehavi [4] as a joint coding and modulation scheme for increasing the
Hamming distance of the code for transmission over fading channels.
Independent bit interleavers were used in conjunction with Gray
mapping of the bits to constellation points for increasing the achiev-
able time-diversity order and, consequently, enhancing the effective
code length. An iterative BICM detector was introduced by Li and
Ritcey [5] by employing Ungerböck partitioning (UP)-based bit map-
ping to improve the minimum Euclidean distance and achieve an
iteration gain, compared to that of a noniterative BICM. The BICM-ID
UP-based mapping scheme was further improved in [6] and [7].

As further enhancement of the aforementioned schemes, bit-
interleaved space-time coded modulation using iterative decoding
(BI-STCM-ID) was introduced by combining BICM with STBC while
employing separate bit interleavers [8]–[10], where the specific choice
of constellation labeling determines the BICM-ID scheme’s perfor-
mance. A novel SP scheme combined with orthogonal transmit diver-
sity design [11] was introduced by Su et al. [12], which was further
developed by Alamri et al. [3] using an SP- and turbo-detection-aided
concatenated STBC design [12].

Motivated by these substantial performance improvements, in this
treatise, we further develop the SP concept using a BICM scheme to
create an improved orthogonal transmit diversity design, where the
harmonic mean Euclidean distance of space-time symbols defined in
an M -dimensional (M -D) space is maximized by finding the most
meritorious mapping of the bits to the signaling constellation.

Hence, the novelty of this paper is that we propose a new space-time
block-coded sphere-packed bit-interleaved coded modulation (STBC-
SP-BICM) arrangement. In contrast to Alamouti’s scheme, we jointly
design the space-time signal of the two space-time slots. We inves-
tigate its performance in conjunction with various bit-to-SP-symbol
mapping strategies compared with the identical-throughput conven-
tional quadrature phase-shift keying (QPSK) and 16-state quadrature
amplitude modulation (16QAM) schemes. Furthermore, a unity-rate
code (URC) [13] is amalgamated with the SP mapper to improve the
attainable iterative gain. EXtrinsic Information Transfer (EXIT) chart
analysis is employed to investigate the convergence behavior of the
proposed system. An irregular URC (IrURC) is proposed to create
an open EXIT tunnel at low SNRs. We adopt the Euclidean distance
between the different SP constellation points as our cost function (CF),
which is minimized using the binary switching algorithm (BSA) [7].
The constellation points of the four-dimensional (4-D) SP scheme
are categorized into different SP layers according to their Euclidean
distance from the origin [12], and the bit-to-SP-symbol mapping is
optimized by the BSA using our CF.

This paper is organized as follows: In Section II, an overview
of our proposed STBC-SP-BICM scheme is presented, whereas the

various mapping schemes and their complexity are characterized in
Section III. These discussions are followed by our EXIT chart analysis
in Section IV and by the IrURC structure in Section V. Our simulation
results are presented in Section VI. Finally, we conclude our discourse
in Section VII.

II. SYSTEM OVERVIEW

Fig. 1 shows the schematic of the proposed STBC-SP-BICM
arrangement, where a convolutional code (CC) is used as the outer
code. Binary source bit stream u is encoded by the CC, and the
encoded bit stream denoted by v is then bit interleaved by the block π
in Fig. 1. The SP symbol set S is fed to the STBC encoder having two
transmitter antennas.

At the receiver, the received SP symbol set R is fed into the SP
demapper by the STBC decoder. The a posteriori log-likelihood ratios
(LLRs) Lp

M at the output of the SP demapper shown in Fig. 1 are
subtracted from the a priori LLRs La

M to obtain the extrinsic LLRs
Le

M . This extrinsic information is then deinterleaved and fed—as the
a priori LLR La

D—to the CC decoder in Fig. 1. When using iterative
decoding, the a posteriori coded LLRs Lp

D generated by the CC
decoder are used for obtaining the extrinsic LLR Le

D by subtracting the
corresponding a priori LLR La

D in Fig. 1. Again, the useful extrinsic
information is fed through the bit interleaver π and serves as the
a priori LLR La

M input of the SP demapper. The SP mapper assigns the
bits to different SP constellation points using various bit-to-SP-symbol
mapping schemes, as outlined later in Section III.

To reach the point of iterative convergence, additionally, a URC’s
encoder [13] is introduced as a precoder, as shown in the box plotted
in dashed line in Fig. 1. When the URC precoder is introduced, Lp

M

becomes the a posteriori LLR of the URC decoder instead of the
SP demapper. Hence, the extrinsic LLR Le

D in Fig. 1 is fed as the
a priori coded LLR into the URC’s decoder. The decoding iterations
will then be continued by exchanging extrinsic information between
the CC decoder and the URC decoder, as shown by the dashed arrow
in Fig. 1.

To further elaborate on the design of the soft SP demapper,
we first consider the 4-D SP phasor points, which are denoted as
S = (al,1, al,2, al,3, al,4), where we have l = 0, 1, 2, . . . , M − 1 and
M is the number of SP constellation points. Here, we would like to
represent the four individual coordinates of S in the 4-D SP space
representing the space-time slots using real values while satisfying the
D4 SP constraint1 of (a1 + a2 + a3 + a4) = k, where k is an even

1D4 is a 4-D lattice having the best Euclidean distance in the 4-D real
Euclidean space R

4 [14].
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integer constant [14]. The total energy of the signal points is repre-

sented by E
Δ
=

∑M−1

l=0
(|al,1|2 + |al,2|2 + |al,3|2 + |al,4|2) [12].

The joint space-time symbol design of the two antennas entails
that, after SP modulation, the 4-D SP symbol is mapped to two
complex-valued 2-bit symbols of a twin-antenna STBC scheme.
The bit-to-SP-symbol mapping function of the system is denoted as
[3] Γ(ψ(b1, b2, b3, b4)) = {al,1 + jal,2, al,3 + jal,4} = {xl,1, xl,2},
where ψ(.) is the SP function used for mapping the original input
bits to the SP symbols and Γ(.) represents the mapping of the
4-D SP symbols to the complex-valued 2-bit symbols xl,1 and xl,2

after STBC encoding.
The extrinsic LLR of a single bit bk output by the demodulator can

be expressed as [3]

L(bk|R) − La(bk)

= ln

∑
Sl∈Sk

1
exp

[
− (R−α·Sl)(R−α·Sl)T

2σ2
w

+
∑B−1

j=0,j �=k
bjLa(bj)

]
∑

Sl∈Sk
0

exp
[
− (R−α·Sl)(R−α·Sl)T

2σ2
w

+
∑B−1

j=0,j �=k
bjLa(bj)

]

= max
Sl∈Sk

1

[
− 1

2σ2
w

(R− α · Sl)(R− α · Sl)T +

B−1∑
j=0,j �=k

bjLa(bj)

]

− max
Sl∈Sk

0

[
− 1

2σ2
w

(R− α · Sl)(R− α · Sl)T +

B−1∑
j=0,j �=k

bjLa(bj)

]

(1)

where the SP symbols carry B number of bits b = b0, . . . , bB−1 ∈
{0, 1}. Let us furthermore assume that Sk

1 and Sk
0 represent two

specific 2-D subsets of the 4-D SP symbol constellation S, which obey
Sk

1

Δ
= {Sl ∈ S : bk = 1} and Sk

0

Δ
= {Sl ∈ S : bk = 0}, respectively.

The max-log approximation is used to simplify the equation for low-
complexity implementation, as described in Section III-C.

III. MAPPING SCHEME

Again, the legitimate constellation points hosted by D4 are orga-
nized into layers based on their norms or energy, i.e., the distance from
the origin. We investigate the first ten layers of the D4 SP constellation
points [14]. For example, the SP symbol centered at {0, 0, 0, 0} has
24 closest neighbor SP symbols around it since any combination of
{+/ − 1,+/ − 1, 0, 0} is legitimate for layer 1 [14], which are listed
in rows 0–15 of Table I.

Two different STBC-SP-BICM schemes having constellation sizes
of M = 16 and M = 256 are investigated, which are referred to as
SP-16 and SP-256, respectively. First, for a 4-D SP-16 symbol, the
throughput of the STBC-SP arrangement τ using no outer CC encoder
is τ = 1 symbol/(2 time slot) × 4 b/symbol = 2 b/(time slots) =
2 b/(channel use). Hence, uncoded QPSK is the corresponding
equivalent conventional modulation having the same throughput of
τ = 2 symbol/(2 time slot) × 2 b/symbol = 2 b/(channel use).
Since there are 24 immediately adjacent neighbors at layer 1 having
different Euclidean distances from the {0, 0, 0, 0} symbol in the
4-D SP constellation [14], we select the particular 16 points that exhibit
maximum Euclidean distances.

First, the SP signal constellation points D4 having the maximum
Euclidean distance between adjacent or nearest neighbor points at a
given energy level found by an exhaustive search are used. The first
set of labeling based on this constellation space is obtained by an
exhaustive computer search for maintaining the maximum Euclidean
distance between the complementary bits of a specific partitioned
sphere-packing constellation point set (as in classic set partitioning),

TABLE I
BIT MAPPINGS FOR DIFFERENT SCHEMES FOR STBC-SP USING M = 16

as shown in Table I. The BSA [7] is then employed for generating
different SP mapping schemes. First, we propose a specific mapping
CF, which quantifies the reciprocal of the squared Euclidean distance
of each SP symbol with respect to other SP symbols within a specific
partitioned subset. The CF can be formulated as

CF =

m−1∑
i=0

1∑
b=0

∑
Sk∈Γi

b

1

|Sk − Ŝk|2
. (2)

We assume here that the SP demapper has perfect a priori information
and that the SP signal space has M = 2m constellation points. The
notation Γ represents the SP-to-STBC symbol mapping function,
namely, that converting bits b ∈ {0, 1} to symbols Sk. Symbol Ŝk

is the nearest neighbor of Sk in the 4-D SP space, which is mapped
according to Γi

b
, where b denotes the complement of bit b at bit index i.

By minimizing the CF of (2) using the BSA, a special partitioning
is obtained, corresponding to maximizing the harmonic means of the
Euclidean distances of the SP constellation points belonging to the
opposite bit values at the same partitioning level in the whole mapping
scheme. In other words, we search for the specific SP symbol Sk,
where the counterpart symbol Ŝk (k = 0, . . . , 2m − 1) having the
same binary bit label, except for the ith bit, has the maximum total
summed Euclidean distance for all symbol pairs within the particular
set considered.

A. SP-16 Constellation Points

We call this a layer-1 BSA (L1-BSA)-aided mapping, and the
resultant symbol indexes are given in Table I. We then further extend
the constellation by introducing the layer-2 constellation points in the
space to explore a larger variety of SP constellations while maintaining
a fixed total power. There are a total of 24 points in layer 2 [14]. For
example, here, we opt to select the eight highest distances from layer 1
and the eight highest distance points from layer 2 to form a new
constellation. By using (2), we obtain a different bit-to-SP mapping
scheme for this constellation, and we call this the BSA layer-2-aided
(L2-BSA) scheme, which is shown in Table I.
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The index shown in the first column of Table I outlines the selected
constellation points for both layers 1 and 2 after finding the points
that have the maximum Euclidean distance in the D4 search space.
Note that the layer-1 points span from index i = 0 to 15, indicating
the 16 points of layer 1, and that the layer-2 points span from index
i = 16 to 23. The notation Si = j indicates that SP symbol Si is
assigned to the constellation points of each index j, as tabulated.
The index i associated with symbol Si is in increasing order from
“0” to “15.” For example, referring to the L1-BSA mapping scheme
in Table I, the first three rows are 0, 5, and 2, which indicate
the SP symbols of S0, S1, and S2. These symbols are associated
with the indexes of 0, 5, and 2, which correspond to the constel-
lation points of {−1,−1, 0, 0}, {0, 0,−1,+1}, and {0,−1 + 1, 0},
respectively.

B. SP-256 Constellation Points

For a 4-D SP symbol having a total constellation size of M = 256
(SP-256), the throughput of the STBC-SP arrangement τ operat-
ing without an outer CC encoder is τ = 1 symbol/(2 time slot) ×
8 b/symbol = 4 b/(time slot) = 4 b/(channel use). The throughput
of this STBC-SP SP-256 scheme corresponds to that of a classic
16QAM STBC scheme.

We further investigate this SP-256 scheme by selecting 256 constel-
lation points from a single layer of the SP signal space, which is consti-
tuted by M constellation points, where we have M ≥ 256. The layer-9
SP D4 space has a total of N = 312 ≥ 256 constellation points [14]
and, hence, satisfies our selection constraint. Then, upon applying the
BSA for optimizing the CF of (2), we arrive at the optimized mapping,
which we call the L9-BSA scheme. As an alternative second approach,
let us now select the SP constellation points from different layers of the
D4 SP space, ranging from layers 1 to 5. This scheme has a total of
312 constellation points [14]. Employing the CF of (2) again, we
generate the bit-to-SP mapping scheme having the minimum CF by
applying the BSA. The second mapping scheme is called the BSA-
multilayer arrangement.

For the sake of convenience, we summarize the various schemes in
Table II. Observe in Table II that we refer to the systems using SP-16-
aided mapping schemes as System 1 and System 2, whereas we refer
to the systems using SP-256-aided mapping schemes as System 3 and
System 4.

C. Complexity Issues

The SP-16 and SP-256 constellation schemes impose a different
implementational complexity. The M -D SP constellation outperforms
classic 16QAM having the same overall system throughput in the
STBC-SP-BICM scheme, at the cost of higher complexity, as ad-
dressed here for comparison. From (1), we can determine the number
of Add, Compare, and Select (ACS) arithmetic operations, when these
operations are carried out in the logarithmic domain while using a
lookup table to implement the Jacobian approximation used in the
max-log-MAP algorithm. The terms OSP−16

ACS and OSP−256
ACS denote the

ACS operations per source bit imposed by the log-MAP decoder of
the SP-16 and SP-256 schemes, respectively.

From these computations, we infer the number of ACS operations
given by OSP−16

ACS = 130.18 and OSP−256
ACS = 2850.72 for our novel

SP mapper. Note that the classic 16QAM scheme having the same
throughput as SP-256 would exhibit a similar ACS complexity, i.e.,
O16QAM

ACS = 130.18, when employing the max-log-MAP algorithm.
Therefore, the cost of achieving the improved performance shown in
Fig. 5 would impose an ACS complexity that is approximately 20 times
higher than a classic 16QAM scheme.

TABLE II
SYSTEM PARAMETERS

IV. STBC-SP-BICM WITH EXIT CHART ANALYSIS

The concept of EXIT charts was proposed in [15] for the semian-
alytic investigation of the convergence of iterative decoders, where
the exchange of mutual information between two component codes is
visualized. In our STBC-SP-BICM scheme, the output of the outer CC
code is interleaved for providing an independent source of extrinsic
information for the iterative receiver. Typical EXIT curves are gener-
ated under the assumptions that a high interleaver length is used and
that the probability density function of the a priori LLRs is Gaussian
distributed.

The a priori LLR information La
D of the outer CC code of Fig. 1

can be modeled by an independent zero-mean Gaussian random vari-
able. The EXIT characteristic of the outer CC decoder is indepen-
dent of the channel’s Eb/N0 value and, hence, can be formulated
as IE,CC = TCC(IA,CC), where IA,CC = I(V ;La

D) is the mutual
information between the outer CC’s encoded bits V and the LLR
value La

D .
As for the inner SP demapper operating without a precoder, the

a priori LLRs La
M can be modeled by a Gaussian distribution,

and the corresponding mutual information IA,SP = I(V ;La
M ) is a

function of V and La
M . By contrast, the demapper’s EXIT charac-

teristic depends on Eb/N0 and hence can be formulated as IE,SP =
TSP(IA,SP , Eb/N0). Following the introduction of the URC pre-
coder, the a priori information La

M is generated at the input of
the URC decoder, as shown by the arrow drawn in dashed line in
Fig. 1. The corresponding modified EXIT characteristic IE,SP must
be computed with the aid of Le

M gleaned from the URC decoder’s
output. The precoded mapping schemes are summarized in Table II as
System 5–System 7.

V. IrURC STRUCTURE

Based on the EXIT chart analysis in Fig. 2, we further improved our
precoded STBC-SP-BICM scheme with the aid of an IrURC precoder
structure to create an EXIT tunnel at a reduced SNR. With the aid
of the IrURC, we may use a weaker CC to achieve a given bit error
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Fig. 2. Comparison of the convergence behavior of the precoded systems
using the STBC-SP-BICM demapper employing a URC precoder. The EXIT
charts shown are based on the parameters outlined in Table II when operating
at both Eb/N0 = 4 dB and 6 dB, respectively.

rate (BER) at a reduced overall complexity. An exhaustive computer
search is carried out for URC generator polynomials having memories
of 1, 2, and 3. We plotted all the possible EXIT curves of all of
these URCs, and the two specific URCs were selected for System 5
employing a Gray mapping, which had very differently shaped EXIT
curves, because they allowed the combined URC-SP module to have as
flexible an EXIT-curve shape as possible. This facilitated the creation
of a marginally open EXIT tunnel and, hence, near-capacity operation.
Then, we replaced the URC by the proposed IrURC.

These two different URCs had memories of 1 and 3, respectively,
and their generator polynomials were defined in the form of (G1, G2),
where G1 and G2 denote the feedforward and feedback polynomials
in octal format. We refer to these URCs as URC1 and URC2, which
are represented by (28, 38) and (168, 178), respectively.

The EXIT chart-matching algorithm in [16] can be used to create
a near-capacity irregular scheme, where a certain fraction of the bits
is encoded by one of the constituent URCs. By exploiting that the
open area of the EXIT tunnel is characteristic of how close the system
operates to the capacity, we can adjust the weighting coefficient β of
each URC subcode to create a marginally open EXIT tunnel, which
guarantees convergence to the (1, 1) point.

VI. RESULTS AND DISCUSSION

In this section, we employ a 1/2-rate outer CC, whereas the rest
of the parameters are summarized in Table II. A total of 5000 frames
containing 2560 CC-encoded bits were transmitted for the sake of our
BER evaluations. The effective system throughput of our SP-16 system
is (2 b/channel use) × 1/2 = 1 b/channel use, whereas that of our
SP-256 system becomes (4 b/channel use) × 1/2 = 2 b/channel use.

We focus our attention on two main schemes: First, the precoded
scheme based on SP-16 constellations is considered, which invokes a
URC precoder for improving the iterative convergence performance.
Second, the SP-256 STBC-SP-BICM scheme dispensing with the
URC precoder is used for comparison with the classic 4-b/symbol
16QAM scheme. Note from Fig. 2 that the EXIT characteristic of
the precoded-SP mapper reaches the point of perfect convergence at
(1, 1). However, at Eb/N0 = 4 dB, the EXIT characteristic of both
the precoded L1-BSA and L2-BSA schemes of Table I dips below the
outer CC’s EXIT curve; thus, the iterations are curtailed at Eb/N0 =

Fig. 3. Comparison of the convergence behavior of the precoded systems
using the STBC-SP-BICM demapper employing an IrURC precoder, i.e.,
URC1 and URC2, as detailed in Section V. The EXIT charts shown are based
on the parameters outlined in Table II when operating at Eb/N0 = 2 dB.

6 dB. Nonetheless, beyond Eb/N0 = 6 dB, the precoded-SP EXIT
curves create an open EXIT tunnel, allowing the iterative decoding
trajectory to reach the point of perfect convergence. We also observe
that the precoded-Gray SP mapper in Table I exhibits the highest
IE,SP starting point in Fig. 2 and allows a faster convergence by
providing a wider EXIT tunnel. This demonstrates that the precoded-
Gray mapping potentially results in an improved performance gain for
our STBC-SP-BICM scheme.

Based on the EXIT chart analysis in Fig. 2, to achieve an infinites-
imally low BER with the advent of a relatively long interleaver, we
do not require a strong outer memory-4 CC. Fig. 2 also characterizes
the memory-1 1/2-rate CC, which exhibits a more diagonally oriented
EXIT curve shape with a lower IE starting point. Note that we can
achieve convergence to the (1, 1) point at a much lower SNR when
employing precoded Gray mapping. We further enhance the system
with a flexible IrURC substituting the memory-1 URC component. We
invoke the IrURC to obtain an open EXIT tunnel at a low Eb/N0 value.

Fig. 3 shows the EXIT characteristics of both URC1 and URC2.
Observe that none of the EXIT functions guarantees an open EXIT
tunnel. However, with the aid of the IrURC, we can create an open
EXIT tunnel when using the weighting coefficient βi for URCi. Here,
we invoke {β1, β2} = {0.5, 0.5}. This corresponds to encoding half of
bit stream v in Fig. 1 by URC1 and URC2, respectively. The resultant
inner EXIT function shown as a dotted line in Fig. 3 now provides an
open tunnel for iterative convergence to the (1, 1) point.

Our identical-throughput benchmarker is based on a STBC-QPSK-
BICM structure, which is constituted by the direct serial concatenation
of STBC and CC with conventional QPSK modulation, where the outer
CC maps the output symbols to a 2-D QPSK UP-based modulator.
The CC coding rate for this STBC-QPSK-BICM benchmarker is also
1/2, giving an effective system throughput of 2 b/channel use × 1/2 =
1 b/channel use. Fig. 4 compares the BER performance of the precoded
Gray mapping to that of the sphere-packing constellation point set
mapping scheme for the STBC-SP-BICM system. The precoded Gray
scheme’s BER curve dips further below 10−5 at Eb/N0 = 4 dB than
that of the sphere-packing constellation point set mapping, which
exhibits an error floor. Our other benchmarker constituted by a conven-
tional BI-STCM-ID scheme employing QPSK and UP reaches BER =
10−5 at Eb/N0 = 6.5 dB after nine iterations. It is worth noting
that the introduction of the URC precoder imposes only moderate

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 30, 2009 at 19:51 from IEEE Xplore.  Restrictions apply.



498 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 1, JANUARY 2009

Fig. 4. Performance comparison of the BER performance for our STBC-SP-
BICM system employing SP in conjunction with M = 16 invoking sphere-
packing constellation point set mapping and a precoded Gray SP demapper.
A benchmarker of BI-STCM-ID employing Ungerböck’s partitioning is shown
with conventional QPSK modulation.

Fig. 5. EXIT chart of an STBC-SP-BICM scheme employing M = 256
SP demapper with different mapping strategies. A comparison is made with
MSP mapping [6] and improved 16QAM labeling [8] when operating at an
Eb/N0 = 8 dB.

complexity increase since it employs a simple URC encoder while
achieving significant BER improvement.

The EXIT chart in Fig. 5 is plotted to demonstrate the attainable
performance improvement of our STBC-SP-BICM scheme employ-
ing our novel SP-256 arrangement, which uses M = 256 SP signal
constellation points, as detailed in Section IV. A comparison with the
modified set partitioning (MSP) scheme in [6] and with the improved
16QAM labeling of [8] used in the context of the existing BI-STCM-
ID system [9] is also beneficial. The EXIT characteristics of the
L9-BSA and BSA-multilayer mapping schemes outlined in Section IV
are shown in Fig. 5. We employ a 1/2-rate CC for both the classic
16QAM and SP-256 schemes, which have an effective throughput of
4 b/(channel use) × 1/2 = 2 b/(channel use).

Observe in Fig. 5 that, at Eb/N0 = 8 dB, the SP-256 scheme using
the L9-BSA mapper emerges from a lower IE,SP value, but it reaches
a higher point of convergence compared to both the MSP and the
improved 16QAM labeling detailed in [6] and [8]. By mapping the
bits to SP constellation points across different SP layers, the BSA-
multilayer mapper becomes capable of commencing from a higher

EXIT chart starting point, compared to the single-layer L9-BSA map-
per. This also demonstrates that our proposed BSA-multilayer scheme
becomes capable of outperforming the other mappers, provided that
a sufficiently high number of iterations are affordable. The EXIT
function of the memory-1 CC is shown in Fig. 5, demonstrating
that our System 5 and System 6 are capable of achieving iterative
convergence as a benefit of having an open EXIT tunnel. The 2-D
16QAM using the improved labeling, however, fails to provide an open
tunnel, although its crossover point is beyond IA ≈ 0.95, which is
indicative of a good BER performance. This is particularly beneficial
when we are able to use a low-complexity outer CC of memory 1,
which has only two-trellis decoding states.

VII. CONCLUSION

Novel STBC-SP-BICM schemes that are capable of exploiting both
the spatial diversity of STBC and the joint-space-time symbol design
of two time slots have been proposed. The proposed schemes benefit
from a substantial diversity gain with the advent of different map-
ping strategies for M = 16. Precoded mapping was designed for our
STBC-SP-BICM system, with the objective of exploiting the resultant
recursive nature of our SP demapper for the sake of approaching the
point of perfect convergence at (1, 1). An irregular structure of IrURC
has been introduced to obtain a flexible open EXIT funnel for effec-
tive iterative convergence. We further extended our design to an SP
scheme using M = 256 and two different mappers. We compared our
scheme’s convergence behavior with that of the identical-throughput
MSP [6] and with the improved 16QAM labeling in [8], with the aid
of EXIT chart analysis. The results show the presence of a wider EXIT
tunnel, leading to an increased iteration gain for our new scheme.
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Maximum-Likelihood Sequence Detection in Time- and
Frequency-Selective MIMO Channels

With Unknown Order

Manuel A. Vázquez and Joaquín Míguez, Member, IEEE

Abstract—In the equalization of frequency-selective multiple-input–
multiple-output (MIMO) channels, it is usually assumed that the length
of the channel impulse response (CIR), which is also referred to as the
channel order, is known. However, this is not true in most practical
situations, and it is a common approach to overestimate the channel order
to avoid the serious performance degradation that occurs when the CIR
length is underestimated. Unfortunately, the computational complexity of
maximum-likelihood sequence detection (MLSD) in frequency-selective
channels exponentially grows with the channel order; hence, overesti-
mation can actually be undesirable because it leads to more expensive
and inefficient receivers. In this paper, we introduce an algorithm for
MLSD that incorporates the full estimation of the MIMO CIR parameters,
including its order. The proposed technique is based on the per-survivor
processing (PSP) methodology; it admits both blind and semiblind imple-
mentations, depending on the availability of pilot data, and is designed to
work with time-selective channels. In addition to the analytical derivation
of the algorithm, we provide computer simulation results that illustrate the
effectiveness of the resulting receiver.

Index Terms—Channel order estimation, joint channel and data
estimation, multiple-input–multiple-output (MIMO), per-survivor pro-
cessing (PSP).

I. INTRODUCTION

Maximum-likelihood sequence detection (MLSD) in multiple-
input–multiple-output (MIMO) channels is a computationally hard
task. The complexity of conventional MLSD receivers exponentially
grows with the number of input streams for the case of flat-fading
channels [1]. If the channel is frequency selective, then the received
signal suffers from intersymbol interference (ISI), and the detector
complexity also exponentially grows with the length of the symbol-rate
channel impulse response (CIR) [2]. We hereafter refer to this length
as the channel order.
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When perfect channel state information is available at the receiver,
MLSD is carried out by means of the Viterbi algorithm (VA) [2]. When
the CIR is not known, per-survivor processing (PSP) techniques [3],
[4] have been suggested as a means to jointly handle sequence detec-
tion and channel estimation. The term PSP refers to a family of trellis
search methods that extended the VA by combining data detection and
channel estimation. The key idea is to maintain a set of survivor paths
(i.e., sequences of symbols) arriving at each trellis node instead of
a single path, as in the conventional VA. For each survivor path, a
CIR estimate is computed, and a likelihood is assigned, conditional on
the symbols and the resulting channel estimate. Detection reduces to
selecting the most likely survivor, which, therefore, yields a sequence
of symbols and an explicit CIR estimate.

However, CIR estimation is almost invariably carried out based on
an assumed length, which is selected prior to the detection/estimation
process. Since accurate channel-order estimation can be hard, and it is
known that underestimation severely degrades receiver performance,
it is common practice to overestimate the order [5]. Unfortunately,
the choice of a CIR length larger than actually needed implies an
exponential increase in computational complexity, more uncertainty
in the channel estimation procedure (since more parameters need to be
estimated) and, consequently, performance degradation.

Information-theoretical methods, such as the minimum description
length (MDL) [6] or the Akaike information criteria [7], have been pro-
posed for channel order estimation, but such techniques tend to over-
estimate for high signal-to-noise ratios (SNRs) [8], [9]. In [10], a novel
approach for the model order selection problem is proposed based
on the theory of sufficient statistics, and superior reliability compared
with MDL is claimed. This method, which is known as the conditional
model order estimation (CME), has been applied to MIMO commu-
nication channels in [11]. However, CME is based on the assumption
that the CIR is fixed for the duration of a complete data frame, and the
processing of the block of available observations is performed offline,
in batch mode. A different approximation to the problem can be found
in [12], where a method for the estimation of the effective channel
order is introduced based on the minimization of a combination
of cost functions. However, this technique is designed for single-
input–multiple-output channels, as well as under the assumption that
the channel is fixed during the transmission of a symbol frame.
Finally, particle filtering methods have also been proposed for the
equalization of frequency-selective channels with unknown order [13].
Although such algorithms are effective, their complexity can be pro-
hibitive, even for the single-input–single-output case shown in [13].
A similar technique for orthogonal frequency-division multiplexing
(OFDM) MIMO systems is presented in [14].

In this paper, we introduce a method based on the PSP principle
for the equalization of frequency- and time-selective MIMO channels
with unknown order. Compared to conventional PSP receivers, the
key features of the new technique are as follows: 1) the computation
of a maximum a posteriori (MAP) estimate of the channel order for
each survivor path and 2) the selection of survivors, which is globally
performed instead of per arrival state. Compared with existing channel
order estimation methods, the proposed algorithm enables optimal a
posteriori estimation of the channel order and the resulting CIR, condi-
tional on the received signals and the symbols in the survivor path, and
is specifically designed for time-selective environments. Suboptimal
versions of the method are also discussed and numerically assessed.

The remainder of this paper is organized as follows: In Section II,
the discrete-time signal model of a MIMO transmission system with
frequency- and time-selective channels is described. The proposed
algorithms are introduced in Section III. Computer simulation results

0018-9545/$25.00 © 2009 IEEE
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