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Abstract—Pareto optimality is capable of striking the optimal
trade-off amongst the diverse conflicting QoS requirements of
routing in wireless multihop networks. However, this comes at
the cost of increased complexity owing to searching through
the extended multi-objective search-space. We will demonstrate
that the powerful quantum-assisted dynamic programming op-
timization framework is capable of circumventing this problem.
In this context, the so-called Evolutionary Quantum Pareto
Optimization (EQPO) algorithm has been proposed, which is
capable of identifying most of the optimal routes at a near-
polynomial complexity versus the number of nodes. As a benefit,
we improve both the the EQPO algorithm by introducing a
back-tracing process. We also demonstrate that the improved
algorithm, namely the Back-Tracing-Aided EQPO (BTA-EQPO)
algorithm, imposes a negligible complexity overhead, while
substantially improving our performance metrics, namely the
relative frequency of finding all Pareto-optimal solutions and the
probability that the Pareto-optimal solutions are indeed part of
the optimal Pareto front.

Index Terms—Quantum Computing, QoS, Dynamic Program-
ming, Pareto Optimality, Routing, Multi-objective Optimization.

I. INTRODUCTION

ROUTING optimization in Wireless Multihop Net-

works (WMHN) has to strike a trade-off among diverse

and often conflicting Quality-of-Service (QoS) requirements

[1]. For this reason several metrics have been advocated, such

as the Network Lifetime (NL) [2] or the Network Utility (NU)

[3], which are single-objective aggregate functions of multiple

QoS requirements. However, these single-objective metrics

may not be giving justice to all design objectives. This

problem can be circumvented by employing the concept of

Pareto optimality [4], [5]. This comes at the cost of increased

complexity imposed by the extended search-space, which can

be in turn circumvented by utilizing the powerful optimization

framework of quantum computing [6].

In this context, several contributions on quantum-aided

multi-objective routing exist in the literature [7]–[10]. To
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elaborate further, the so-called Non-Dominated Quantum Opti-

mization (NDQO) and the Non-Dominated Quantum Iterative

Optimization (NDQO) algorithms have been proposed in [7]

and [8], respectively, relying on full-search-based database

exploration. As an intermediate step, the so-called Non-

Dominated Quantum Optimization (MODQO) algorithm of

[9] exploited the database correlations emerging from the

formation of Pareto-optimal route-combinations for efficiently

reducing the database size, thus achieving a further complexity

reduction. The database correlation has been exploited in [10],

where the Evolutionary Quantum Pareto Optimization (EQPO)

algorithm has been introduced. More explicitly, the EQPO

algorithm, which is a feed-forward-style algorithm, achieved a

further complexity reduction by exploiting the potential corre-

lations among the individual links constituting Pareto-optimal

routes. Nevertheless, this complexity reduction comes at the

price of reduced heuristic accuracy. Against this background

our contributions are summarized as follows:

1) We propose an improved version of the EQPO, namely

the Back-Tracing-Aided EQPO (BTA-EQPO) algorithm,

by introducing novel Back-Tracing Processes (BTPs)

by extending the quantum-aided dynamic programming

framework of [10].

2) We demonstrate that the BPTs impose an insignificant

complexity overhead, when compared to the complexity

imposed by the EQPO algorithm, hence the BTA-EQPO

imposes the same order of complexity as its predecessor,

namely the EQPO.

3) We also demonstrate that the BTA-EQPO algorithm’s

resultant error floor is an order of magnitude below that

of its predecessor.

The rest of this paper is organized as follows. In Sec-

tion II, we will present the network topology considered.

In Section III, we will elaborate on the novel back-tracing

process of the BTE-EQPO algorithm. We will then evaluate

its performance versus complexity in Section IV.

II. NETWORK SPECIFICATIONS

We have adopted the WMHN model considered in [7],

[8], [10], where the Source Node (SN) and the Destination

Node (DN) are located at the opposite corners of a (100 ×
100) m2 square block. By contrast, the Relay Nodes (RNs)

are mobile, having locations that are uniformly distributed

within this square block. We also assume that the DN acts
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as a cluster-head, which has access to a universal quantum

computer. Each node experiences random interference power,

relying on a normal distribution with its mean set to -90 dBm

and its standard deviation to 10 dB. An example of the network

topology consisting of Nnodes = 5 nodes is shown in Fig. 1. As

Fig. 1. Exemplified WMHN topology associated with Nnodes = 5 nodes [10].

for our optimization metrics, we have jointly considered the

routes’ end-to-end delay D, their total Bit Error Ratio (BER)

Pe as well as their total power dissipation L in a similar

fashion to [7], [8], [10]. More specifically, we have consid-

ered Quadrature Phase Shift Keying (QPSK) transmissions

in an uncorrelated Rayleigh fading environment, where the

packet forwarding has been carried out using the Decode-and-

Forward (DF) scheme [11]. Consequently, the route’s overall

BER Pe(x) can be calculated using the following recursive

formula [7]:

Pe,tot = Pe,1 + Pe,2 − 2Pe,1Pe,2, (1)

where Pe,tot corresponds to the output BER of a two-stage

Binary Symmetric Channel (BSC) [7] with Pe,1 and Pe,2

representing the individual BER of the first and the second

stage, respectively. Additionally, the route’s end-to-end delay

D is quantified in terms of the number of hops composing

the route, while the total power dissipation L is determined

by the sum of the path-losses of each individual link Lij of

the route. Explicitly, each link between the i-th and the j-th

nodes exhibits path-losses quantified in dB as follows [8]:

LdB
ij = 10α log10

(

4πdij
λc

)

, (2)

where α corresponds to the path-loss exponent, which is set

to α = 3, dij denotes the Euclidean distance between the i-

th and the j-th, while λc is the carrier’s wavelength set to

λc = 0.125 m. Therefore, the Utility Vector (UV) f(x) of the

x-th route can be expressed as follows:

f(x) = [Pe(x), L(x), D(x)] . (3)

The concept of Pareto optimality [5] has been adopted for

evaluating the fitness of the UVs. In a nutshell, a specific

route x1 dominates another route x2, i.e. we have f(x1) ≻
f(x2), if all the individual metrics of f(x1) are lower than

the respective components of f(x2). Based on this principle, a

route is considered to be Pareto optimal, if there are no other

routes dominating it. Note that our ultimate goal is to identify

the entire set of Pareto optimal routes, which jointly constitute

the so-called Optimal Pareto Front (OPF) [7].

III. BACK-TRACING-AIDED QUANTUM PARETO

OPTIMIZATION

The BTA-EQPO algorithm, which is presented in Alg. 1,

is constituted by three distinct parts: a stage of the single-

objective optimization followed by the so-called Single-

Objective Back-Tracing Process (SO-BTP), a stage of the

multi-objective optimization process in a similar fashion to

the EQPO algorithm and a stage invoking a Multi-Objective

Back-Tracing Process (MO-BTP).

Algorithm 1 Back-Tracing-Aided Evolutionary Quantum

Pareto Optimization (BTA-EQPO) Algorithm.

1: Set SOPF
(i) ← ∅ and Ssurv

(i) ← ∅ ∀i ∈ {0, .., Nnodes − 1}.
2: Determine the optimal routes Sopt based on each individ-

ual objective based on the optimal framework presented

in [10, Sec. III] and store accordingly the optimal routes

visited in SOPF
(i) , where i is the number of RNs constituting

the visited route.

3: For each route in Sopt perform SO-BTP based on Fig. 2

and store accordingly the surviving routes visited to the

set Ssurv
(i) , where i is the number of RNs constituting the

visited route.

4: Set S
gen

(0) ← {SN → DN}, SOPF
(0) ← S

gen

(0) , Ssurv
(0) ← S

gen

(0) ,

i← 0.

5: repeat

6: Set i← i+ 1.

7: Generate the set of routes S
gen

(i) from the set Ssurv
(i−1)

by appropriately inserting a single RN between two

intermediate nodes.

8: Set S
gen

(i) ← S
gen

(i) ∪ SOPF
(i−1).

9: Invoke the P-NDQIO algorithm of [10, Alg. 2] in the

set S
gen

(i) and initialize the identified OPF to SOPF
(i) ←

SOPF
(i−1) ∪ SOPF

(i) .

10: Set Ssurv
(i) ←

(

SOPF
(i) − SOPF

(i−1)

)

∪ Ssurv
(i) .

11: until

∣

∣

∣
Ssurv
(i)

∣

∣

∣
= 0 or i = Nnodes − 2

12: Set i← i+ 1.

13: For each route in SOPF
(i) perform MO-BTP for n trellis-

stages based on Fig. 2 and store the surviving routes

visited in S
gen

(i) .

14: Invoke the P-NDQIO algorithm of [10, Alg. 2] in the set

S
gen

(i) ← S
gen

(i) ∪ SOPF
(i−1) and initialize the identified OPF to

SOPF
(i) ← SOPF

(i−1).

15: Export the OPF SOPF
(i) and terminate.

As far as the first stage is concerned, we first invoke

in Step 2 of Alg. 1 single-objective dynamic programming

based optimization utilizing the optimal dynamic program-

ming framework of [10, Sec. III] for the sake of identifying the

optimal routes Sopt in terms of each individual objective. These

routes will also be Pareto-optimal [5], when jointly optimizing

the UV of Eq. (3). Therefore, we will appropriately initialize

the set {SOPF
(i) }

Nnodes−2
i=0 of Pareto-optimal routes to the set Sopt
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based on the trellis-stage index i, during which they were iden-

tified. For instance, the optimal route 1 → 2 → 3 → 4 → 5
will be appended to SOPF

(3) , since it consists of 3 RNs and thus

it was identified at the second trellis-stage. We have opted for

this optimal framework, since it guarantees the detection of

these globally optimal routes, while it imposes a complexity1

on the order of O(N3
nodes). Explicitly, there exist precisely

Nnodes surviving routes at each trellis-stage, thus a total of

N2
nodes comparisons are required per trellis-stage, while a total

of O(Nnodes) trellis stages are processed.

Subsequently, the SO-BTP is activated in Step 3 of Alg. 1

for each of the globally optimal routes identified by the

optimization process in Step 2 of Alg. 1. During this process,

starting from a single optimal route we successively trace back

to the direct route by removing the last RN of the route, as

portrayed in the upper sub-figure of Fig. 2. We conceived

utilized this specific strategy, since the routes of a specific

trellis stage are generated by appropriately inserting an RN

between the last RN and the DN at each of the surviving routes

of the previous trellis-stage. Additionally, the surviving routes

w.r.t. an individual objective will be also classified as surviving

[5], when we jointly optimize the entire set of objectives, since

their sub-routes will remain non-dominated by any other route

or sub-route. Using this observation, we will appropriately

initialize the set {Ssurv
(i) }

Nnodes−2
i=0 of surviving routes to the

specific routes visited during each of the SO-BTPs in a similar

fashion to the initialization of {SOPF
(i) }

Nnodes−2
i=0 .

Fig. 2. Single- versus multi-objective back-tracing.

After the initialization of the surviving routes, a multi-

objective optimization process similar to that of the EQPO

algorithm of [10, Alg. 1] is activated in Steps 5-11 of Alg 1.

Their main difference is that both the set of surviving and

Pareto optimal routes have been initialized by the SO-BTP,

as highlighted in Steps 9 and 10 of Alg. 1. Naturally, the

initialization of the surviving routes expands the search-space,

hence rendering the BTA-EQPO capable of identifying a more

1We quantify the complexity in terms of the number of dominance com-
parisons; a single dominance comparison is defined as a single Cost Function

Evaluation (CFE). We further distinguish the complexity into two domains:
the parallel complexity [10], which takes into account the beneficial hardware
parallelism exploited by the NDQIO-based algorithms, and the sequential

complexity [10], which neglects the benefits of hardware parallelism and it is
simply quantified in terms of the number of Pareto-dominance comparisons.
In our application we have utilized quantum Pareto-dominance comparison
operators that are identical to those of [8]. Consequently, assuming a total of
a reference routes and k optimization objectives, a single activation of this
quantum dominance operator results in a parallel and a sequential complexity
of 1/k and a Cost Function Evaluations (CFEs), respectively.

diverse set of Pareto optimal routes. This search-overhead

imposed by the additionally generated routes is on the order

of O(Nnodes) extra cost-function evaluations, when using a

similar approach to that of [10]. Since the number of generated

routes excluding this overhead at the i-th trellis-stage is on the

order of O(NOPFNnodesi) with NOPF representing the number

of Pareto optimal routes, we may deem this overhead to be

low. Quantitatively, the second step imposes the same order

of complexity as the EQPO algorithm, whose parallel and

sequential complexity were shown to be on the order of

O(N
3/2
OPFN

2
nodes) and O(N

5/2
OPFN

2
nodes), respectively. Naturally,

the complexity order of the fist stage can be considered as

negligible compared to that of the second stage.

Finally, the third stage in Steps 13-14 of Alg. 1 is activated,

which invokes the MO-BTP for n trellis stages and it is

invoked for each of the hitherto identified OPF routes. To

further aid its exposition, its employment is visually portrayed

in the bottom sub-figure of Fig. 2. During the MO-BTP, the

inverse of Step 7 of Alg. 1 is carried out, i.e. we move to the

previous trellis stage by removing a single RN from the route

examined. For instance, observe in Fig. 2 that invoking the

MO-BTP for the Pareto optimal route 1 → 2 → 3 → 4 → 5
results in visiting the routes 1→ 2→ 3→ 5, 1→ 2→ 4→ 5
and 1 → 3 → 4 → 5, when back-tracing for n = 1 trellis

stage, and the routes 1 → 2 → 5, 1 → 3 → 5 as well as

1 → 4 → 5, when back-tracing for n = 2 trellis stages.

During this process, we keep track of the visited routes of the

MO-BTP, storing them while we reach the final set S
gen

(i) of

generated routes. We then invoke the Preinitialized NDQIO (P-

NDQIO) algorithm [10, Alg. 2] with its OPF initialized to

the hitherto identified OPF emanating from the second stage

for the sake of finding any further Pareto optimal routes. The

complexity order of the P-NDQIO algorithm is proportional to

O(
√
N) [10]. We have chosen to optimize the routes over the

entire database, since offers a beneficial complexity reduction

against performing the optimization for each backward trellis

transition, since we have
√
∑

i ni <
∑

i

√
ni.

Last but not least, let us quantify the extra complexity im-

posed by this process. The total number of generated routes as

a function of the number n of backward trellis transitions can

be readily shown to be on the order of O(NOPFN
n
nodes). Con-

sequently, the parallel and sequential complexities imposed

by the P-NDQIO algorithms of the MO-BTP may be shown

to be on the orders of O(N
3/2
OPFN

n/2
nodes) and O(N

5/2
OPFN

n/2
nodes),

respectively. Hence, the total complexity imposed by the BTE-

EQPO can be shown to be:

LP
BTA-EQPO = O

[

N
3/2
OPF

(

N2
nodes +N

n/2
nodes

)]

, (4)

LS
BTA-EQPO = O

[

N
5/2
OPF

(

N2
nodes +N

n/2
nodes

)]

. (5)

Hence, the MO-BTP will dominate the complexity orders,

when having more than n = 4 backward-trellis steps. Let us

now proceed by examining the performance versus complexity

trade-off of the BTA-EQPO algorithm.

IV. PERFORMANCE VERSUS COMPLEXITY

In this section we will provide some further insights con-

cerning BTA-EQPO algorithm’s performance versus complex-
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Fig. 3. Parallel (a) and sequential (b) complexities of the BTE-EQPO
algorithm compared to those of the EQPO, NDQIO and NDQIO algorithms.
The results have been averaged over 108 runs.

ity and compare it to the existing quantum assisted algorithms,

namely the EQPO [10], NDQIO [8] and NDQO [7] algorithms.

We will first examine the average complexity imposed by

the aforementioned algorithms as a function of the number

Nnodes of nodes constituting the WMHN. In addition to the

aforementioned algorithms we investigate a hybrid algorithm,

which uses the first two stages of the BTA-EQPO, while the

third stage is replaced by a full-database search carried out

by the P-NDQIO algorithm [10]. The latter will be referred to

as “BTA-EQPO with P-NDQIO” and it is used as the upper

bound of the complexity imposed by MO-BTP, when we have

n = Nnodes − 1.

The average parallel and sequential complexities are shown

in Figs. 3a and 3b. In these figures we vary the number n of

backward trellis stages in the range of {0, 1, 2, 4}. Note that

for n = 0 only the SO-BTP is active, while for n = 4 the

MO-BTP complexity orders match those of the BTA-EQPO

algorithm’s second stage. Observe in both figures that both the

parallel and the sequential complexity imposed by the BTA-

EQPO algorithm approach that of the EQPO algorithm, hence

verifying our theoretical analysis of Sec. III, where we proved

that the extra complexity imposed both by the SO-BTP and

by the MO-BTP is significantly lower than the complexity of

BTA-EQPO algorithm’s second stage. Furhtermore, observe

in Fig. 3a that the BTA-EQPO algorithm imposes almost

the same parallel complexity as BTA-EQPO with P-NDQIO

algorithm. However, a a factor of two sequential complexity

increase is observed in Fig. 3b for 9-node WMHNs. This is

because the square root of the total number of routes is close to

that of the routes created by the MO-BTP for the WMHN sizes

we investigated; however, for larger WMHNs we expect much

higher complexity reduction for our BTA-EQPO algorithm.

Additionally, both a parallel and a sequential complexity

reduction is achieved against the NDQIO algorithm, which

almost is a high as an order of magnitude for 9-node WMHNs.

Continuing with the BTA-EQPO algorithm’s performance

evaluation, we will utilize two metrics: the average Pareto

distance E[Pd] [7], which is defined as the probability of a

route identified as Pareto optimal being truly Pareto optimal,

and the average Pareto completion E[C] [7], defined as

the average fraction of the true OPF being identified by a

heuristic method. Naturally, for E[Pd] = 0 the identified

OPF exclusively consists of true Pareto optimal routes, while

for E[C] = 1 the entire true OPF has been identified. The

average Pareto distance E[Pd] is shown in Figs. 4a and 4b as

a function of the parallel and sequential complexity invested,

respectively. Observe in these figures that the BTA-EQPO

algorithm associated with n = 0, i.e. with the particular case

where SO-BTP is active, has a similar performance to that of

the EQPO algorithm [10]. However, the beneficial effects of

MO-BTP are visible even for n = 1, where E[Pd] is reduced

by a factor of 5 after 2,200 and 28,000 CFEs in the parallel and

sequential complexity domains, respectively, when compared

to the EQPO algorithm, where the latter is portrayed with

the aid of the gray solid lines. This improvement is further

enhanced for n = 2 and n = 4, where E[Pd] is improved by an

order of magnitude compared to that of the EQPO algorithm.

Additionally, observe in Figs. 4a and 4b that beyond n = 2
the BTP-EQPO algorithm exhibits an error floor formation,

hence rendering the application of further backward-trellis

steps redundant. As for the full-search-based methods, observe

in Fig. 4a that the BTA-EQPO with P-NDQIO algorithm

becomes more efficient than both the NDQO and the NDQIO

algorithms beyond a parallel complexity of 3,000 CFEs, while

its E[Pd] decays to infinitesimally low levels beyond 3,500

CFEs. This trend is also present in Fig. 4b; however, observe

that the NDQIO algorithm is more efficient than the BTA-

EQPO with P-NDQIO algorithm. However, we expect this

trend to change following that of Fig. 4a as the number

of nodes increases, where the BTA-EQPO with P-NDQIO

algorithm offers a substantial sequential complexity reduction

compared to the NDQIO algorithm.

As far as the average Pareto completion is concerned,

observe in Figs. 4c and 4d that the BTA-EQPO algorithm

associated with n = 0 succeeds in identifying a larger fraction

of the OPF by improving the complementary Pareto comple-

tion metric by a factor of 3. This happens at a parallel and a

sequential complexity of 3,500 and 49,000 CFEs, respectively,

thus explicitly demonstrating the benefit of the SO-BTP. When

the MO-BTP is activated, this metric is further reduced,
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Fig. 4. Performance versus complexity in terms of the average Pareto distance E[Pd] (a,c) and the average Pareto completion E[C] for 8-node WMHNs. In
(b) and (d) the value 1− E[C] is portrayed facilitating observation of the differences among the algorithms. The results have been averaged over 108 runs.

exhibiting of an order of magnitude total improvement over

EQPO algorithm. Additionally, we can observe that this metric

is slightly improved, as the number n of backward-trellis

steps increases. Explicitly, the Pareto Completion error floor

exhibited stems from the BTA-EQPO and EQPO algorithms’

property of terminating the trellis stages, when no Pareto

optimal routes are detected. Thus, they are incapable of even

examining potential Pareto-optimal routes located at later

trellis stages. This limitation is partially mitigated by the SO-

BTP, which rectifies the deficiency, where a globally optimal

route may be located several stages apart from the rest of

the OPF. Despite this inability, the BTA-EQPO algorithm’s

performance is near-optimal, identifying the Pareto optimal

routes with 0.1% probability of misdetection, while being able

to detect 99.97% of the time the true OPF.

V. CONCLUSIONS

We have further developed the quantum-assisted multi-

objective dynamic programming framework of [10] by in-

troducing the SO-BTP and the MO-BTP for the sake of

enhancing the heuristic accuracy attained. We have shown

that the SO-BTP enables the algorithm to detect almost all

of the Pareto optimal solutions, while the activation of MO-

BTP also increases our confidence in detecting only the true

Pareto-optimal routes. Finally, we have proven that the SO-

BTP’s extra complexity is insignificant. Furthermore, we have

demonstrated for the MO-BTP that its extra complexity is

insignificant as long as we employ less than 5 backward-

trellis steps. Finally, we have demonstrated that with the above

proviso the BTA-EQPO algorithm outperforms the EQPO and

exhibits a near-optimal accuracy.
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