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Abstract— In this treatise, we investigated the application of
singular value decomposion (SVD) assisted multiuser transmis-
sion in a multicell scenario. The SVD based scheme is capable
of completely removing the cochannel interference, similarly to
the classic zero forcing (ZF) based and block diagonalization
(BD) aided schemes. Two different power allocation schemesare
investigated for both SVD, ZF and BD based multicell transms-
sion. The SVD scheme achieves a suboptimal performance, but
at a reduced complexity. Nonetheless, it always outperforms the
ZF based scheme due to the joint reception of the transmitted
symbols.

I. I NTRODUCTION

Multiple input multiple output (MIMO) systems are capable
of supporting high-rate, high-integrity transmission [1]. Inten-
sive research efforts have been dedicated to single-user MIMO
(SU-MIMO) designs [2], [3]. For multi-user MIMO (MU-
MIMO) systems, spatial division multiple access (SDMA)
has been proposed, where each user’s unique channel state
information (CSI) is used to distiguish them. Furthermore,in
order to simplify the receiver’s design at the mobile station
(MS) in the context of downlink (DL) transmissions, transmit
preprocessing has been proposed to move the part of the
required signal processing from the MS to the base station
(BS) [4]–[7].

In the simple single-cell scenario only intra-cell interference
has been considered [5], [6], but owing to frequency reuse,
inter-cell interference is imposed by the other cells [8].

Recently, multiple base station (BS) aided systems have
attracted substantial attention [9]–[13]. It has been shown
that for a multiple cell system, the achievable system per-
formance can be substantially improved, if cooperative BSs
are invoked [9], [10]. For the DL of cooperative BSs, various
joint transmission schemes have been proposed. The attainable
system capacity was approached by the so-called dirty paper
(DP) precoding [9]. However, due to its complexity, linear
joint transmission schemes may be more preferred, such as
joint zero-forcing (ZF), joint minimum mean square error
(MMSE) based DL processing, joint block diagonalization
(BD), and joint signal to leakage plus noise ratio (SLNR)
based processing [11], [12].

For the cooperative BS aided DL system, each MS may be
able to synchronously receive its own signal from different
BSs. However, the interference is essentially asychronous
and ignoring this asynchronous interference may result in
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a severe performance loss [11], [12]. Furtunately, the joint
ZF and joint BD based transmission schemes are capable of
completely elimitating the interference, which is in contrast
to the residual interference experienced after joint MMSE or
SLNR processing.

However, the joint ZF based transmission results in several
parallel single input single output (SISO) channels, which
results in a performance loss compared to the joint detection
of the transmitted symbols. Joint BD based transmission is
capable of generating several parallel single user multiple
input multiple output (SU-MIMO) systems, facilitating the
joint DL detection of parallel streams in the transmitted MIMO
symbols. However, a specific drawback of the joint BD based
transmission is that the resultant SU-MIMO channel will have
to be estimated by each MS [14], which may impose an
excessive complexity. Recently, singular value decomposition
(SVD) based multiuser transmission has been developed in
the literature for single-cell systems, which is also capable
of decomposing the MU-MIMO system into parallel SU-
MIMO systems, enabling the joint detection of the transmitted
SU-MIMO symbols [15]. Naturally, the effective SU-MIMO
channel is entirely determined by each MS’s own channel,
hence no extra training or overhead is needed compared to
BD based transmssion.

In this paper, we extend the SVD-based MU-MIMO trans-
mission from the single-cell case to the multicell scenario.
Furthermore, the achievable system performance is evaluated
in conjunction with two different power allocation schemes
derived for both the BD, SVD and ZF based multicell trans-
mission schemes.

II. SYSTEM OVERVIEW

Let us assume that there areK cochannel mobile users
arbitrarily distributed in the DL of a multicell system, with
Nk being the number of receive antennas at each MS and
Nb the number of adjacent cochannel BSs in the system,
with Nt being the number of transmit antennas at each BS,
respectively as in Fig. 1 for a scenario associated withNb =
K = 3. Assuming non-dispersive or flat-fading conditions,
let Hj,k(j = 1, · · · , Nb, k = 1, · · · , K) be the small-scale
fading channel matrix characterizing the channel between BS
j to MS k having zero-mean, unit-variance complex-Gaussian
entries, and letaj,k be the corresponding large-scale fading
coefficients including the effect of both path-loss and shadow
fading.



2

BS1

BS2

BS3

MSk

a3,kHHH3,k

a1,kHHH1,k

a2,kHHH2,k

Fig. 1. System overview of multicell cooperation aided transmission.

A. SVD Based Multicell Transmission

Let us assume that theNk-compoment DL transmitted
signal vector destined for thekth MS is given byxxxk and that
in the case of BS cooperation, we preprocessxxxk according to

dddk = PPP kβββkxxxk, (1)

where PPP k is an (M × Nk)-element preprocessing matrix
with M = Nb × Nt, which is responsible for cancelling the
multiuser interference (MUI), hence resulting in an effective
SU-MIMO system. Furthermore,βββ is a (Nk × Nk)-element
diagonal matrix hosting the power control coefficients.

The signal transmitted from allNb BSs to allK MSs can
be expressed as

ddd =

K
∑

k=1

dddk =

K
∑

k=1

PPP kβββkxxxk = PPPβββxxx, (2)

where we have

PPP = [PPP 1,PPP 2, · · · ,PPPK ] , (3)

βββ = diag[βββ1,βββ2, · · · ,βββK ] = diag[β1, β2, · · · , β(
P

K
k=1

Nk)], (4)

and xxx is a
(

∑K
k=1 Nk

)

-component vector containing the
transmitted data, which is given by

xxx =
[

xxxT
1 ,xxxT

2 , . . . ,xxxT
K

]T
. (5)

Now the signal vectoryyyk received at thekth MS from all
Nb BSs can be expressed as

yyyk = HHHkddd + nnnk (6)

= HHHkdddk + HHHk

∑

j 6=k

dddj + nnnk, (7)

where the(Nk ×M)-element channel matrixHHHk is given by

HHHk = [a1,kHHH1,k, a2,kHHH2,k, · · · , aNb,kHHHNb,k] (8)

and nnnk represents theNk-element AWGN vector having a
zero mean and a covariance matrix ofE[nnnknnn

H
k ] = σ2IIINk

,

Furthermore, the all signal vectoryyy received by all theK
MSs from allNb Bs can be expressed as

yyy = [yyy1, yyy2, · · · , yyyK ]T (9)

= [HHHT
1 ,HHHT

2 , · · · ,HHHT
K ]Tddd + nnn. (10)

Let us assume that the rows ofHHHk (k = 1, 2, . . . , K)
have full rank, i.e. we have rank(HHHk) = Nk and thatM ≥
∑K

k=1 Nk is satisfied. Then, upon carrying out the SVD of
HHHk, we arrive at

HHHk = UUUk

[

ΛΛΛ
1/2
k ,000

]

VVV H
k

= UUUk

[

ΛΛΛ
1/2
k ,000

]

[

VVV H
ks

VVV H
kn

]

= UUUkΛΛΛ
1/2
k VVV H

ks, (11)

whereUUUk andVVV k are(Nk ×Nk)-component and(M × M)-
component unitary matrices, respectively. Furthermore,ΛΛΛk

is a (Nk × Nk)-component diagonal matrix contain-
ing the eigenvalues ofHHHkHHH

H
k , i.e. we have ΛΛΛk =

diag{λk1, λk2, · · · , λkNk
}. Finally, VVV ks in (11) is an(M ×

Nk)-component matrix, which is constituted by the eigen-
vectors corresponding to the non-zero eigenvalues ofHHHH

k HHHk.
By contrast,VVV kn in (11) is an(M × (M − Nk))-component
matrix, which is constituted by the eigenvectors corresponding
to the zero eigenvalues ofHHHH

k HHHk. Similarly, UUUk consists of
the eigenvectors ofHHHkHHH

H
k .

Upon substituting (11) into (9), we arrive at

yyy = UUUΛΛΛ1/2VVV H
s PPPβββxxx + nnn, (12)

where we have

UUU = diag[UUU1,UUU2, · · · ,UUUK ],

ΛΛΛ = diag[ΛΛΛ1,ΛΛΛ2, . . . ,ΛΛΛK ],

VVV s = [VVV 1s,VVV 2s, · · · ,VVV Ks] ,

nnn =
[

nnnT
1 ,nnnT

2 , · · · ,nnnT
K

]T
. (13)

In (13) UUU and ΛΛΛ are
(

∑K
k=1 Nk ×

∑K
k=1 Nk

)

-component

matrices,VVV s is a
(

M ×
∑K

k=1 Nk

)

-component matrix and
nnn is an AWGN vector, which is Gaussian distributed with
zero-mean and a covariance matrix ofσ2IIIP

K
k=1

Nk
.

For SVD based preprocessing, the preprocessing matrixPPP
can be set to be [15]

PPP =
[

VVV H
s

]+
= VVV s

[

VVV H
s VVV s

]−1
(14)

where we have

VVV s = [VVV 1s,VVV 2s, · · · ,VVV Ks] (15)

and
[

VVV H
s

]+
denotes the pseudo-inverse of the matrixVVV H

s .
Consequently, the resultant signal received at thekth MS is
given by

yyyk = UUUkΛΛΛ
1/2
k βββkxxxk + nnnk, k = 1, 2, . . . , K. (16)
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III. T HE ACHIEVABLE MAXIMUM TRANSMISSION RATE

The major difference between multi-cell and single-cell
transmission is that the power constraints have to be consid-
ered on a per-BS basis, i.e. the average transmit power of the
jth BS is limited byPj .

For multicell transmission, the preprocessing matrix for the
kth MS can be expressed as

PPP k = [PPPT
k,1,PPP

T
k,2, · · · ,PPPT

k,Nb
], (17)

where the(Nt × Nk)-dimensional matrixPPP k,j is the prepro-
cessing matrix configured for transmission from thejth BS to
the kth MS.

Furthermore, let the(Nt ×
∑K

k=1 Nk)-dimensional matrix
P̄PP

j
denote the preprocessing matrix configured for transmis-

sion from thejth BS to all theK MSs, which is given by

P̄PP j = [PPP 1,j ,PPP 2,j , · · · ,PPPK,j ], (18)

which represents the preprocessing matrix configured for
transmission from thejth BS to all theK MSs.

In order to meet the per-BS power constraints, we have to
satisfy

Trace[P̄PP jβββxxxxxxHβββHP̄PP
H
j ] = Trace[ββββββHP̄PP

H
j P̄PP j ]

=

P

Nk
∑

i=1

β2
i [P̄PP

H
j P̄PP j]i,i ≤ Pj , (19)

where [P̄PP
H
j P̄PP j ]i,i is the ith diagonal element of the matrix

[P̄PP
H
j P̄PP j ] and Trace(·) denotes the trace of the argument.
The maximum achievable average transmission rate per user

per antenna is given by

RSV D = max
1

∑K
k=1 Nk

K
∑

i=1

log2|IIINr
+

1

σ2
UUUkΛΛΛ

1/2
k βββ2

kΛΛΛ
1/2
k UUUH

k |

= max
1

∑K
k=1 Nk

K
∑

i=1

log2|IIINr
+

1

σ2
ΛΛΛ

1/2
k βββ2

kΛΛΛ
1/2
k |

= max
1

∑K
k=1 Nk

K
∑

i=1

log2|IIINr
+

1

σ2
βββ2

kΛΛΛk|

= max
1

∑K
k=1 Nk

K
∑

i=1

Nk
∑

l=1

log2(1 +
1

σ2
λkβ2

kj) (20)

under the constraints of (19).
The above optimization problem may be solved for example,

by the interior-point method as recommended in [13]. How-
ever, since it can be complex to deal with, we resort to a less
complex suboptimal solution in this paper.

A. Scaled Suboptimal Power Allocation

First, the so-called scaled power allocation is considered
[13]. In this case, the power allocation is performed firstlyby
assuming that all BSs can jointly pool their power, i.e. the
maximum achievable average rate is obtained by

RJoint =
1

∑K
k=1 Nk

K
∑

i=1

Nk
∑

l=1

log2(1 +
1

σ2
λkβ2

kj) (21)
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Fig. 2. Average Capacity versus average SNR performance forBD, SVD
and ZF based Multicell Transmission for the case of three BSsand three MSs.

under the constraint of

Trace[ββββββHPPPHPPP ] =
∑

P

Nk

i=1 β2
i [P̄PP

H
P̄PP ]i,i ≤

∑Nb

j=1 Pj . (22)

Then, the power allocation matrix is scaled by a factor ofµ,
which is given by

µ = minj=1,2,··· ,Nb

Pj
P

P

Nk
i=1

β2

i
[P̄PP H

j P̄PP j ]i,i

. (23)

Therefore, the maximum achievable average rate of this
scheme is obtained by

RScaled = 1
P

K
k=1

Nk

∑K
i=1

∑Nk

l=1 log2(1 + µ 1
σ2 λkβ2

kj).(24)

B. Grouped Suboptimal Power Allocation

Another suboptimal power allocation policy is to divide the
transmitted symbol vector intoNb groups, where each symbol
of the same group is assigned the same power coefficientuj,
and the power vectoruuu = [u1, · · · , uNb

]T assigned tp all the
MSs can be expressed as [11].

uuu = QQQ−1PPP , (25)

whereQQQ is an (Nb × Nb)-element matrix given by

QQQ =











TrP H
(1,1)P(1,1) · · · TrP H

(1,Nb)
P(1,Nb)

TrP H
(2,1)P(2,1) · · · TrP H

(2,Nb)
P(2,Nb)

...
. . .

...
TrP H

(Nb,1)P(Nb,1) · · · TrP H
(Nb,Nb)

P((Nb,Nb)











,

(26)

wherePPP (i,j) is the precoding matrix configured for DL trans-
mission atith BS to thejth group of transmitted data. In the
scenario where no feasible solution exists, all the symbolsare
assigned the same powerβ, which is given by [11]

β2 = minj=1,2,··· ,Nb

Pj

∑

P

Nk[P̄PP
H
j P̄PP j ]i,i

i=1

. (27)
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Fig. 3. Average Capacity versus average SNR performance forBD, SVD
and ZF based Multicell Transmission for the case of two BSs and two MSs.

IV. SIMULATION RESULTS

In this section, simulation results are presented to char-
acterize the achievable performance of SVD-based multicell
transmission in conjunction with the different power alloca-
tion schemes considered. The results are also compared to
those of BD and ZF based multicell transmission schemes.
Specifically,the large-scale fading is assumed to bea2

j,k = 1
for j = k, otherwisea2

j,k = 0.5 as in [11], which ignores the
shadow fading. Furthermore, the transmission power of each
BS is assumed to be the same, given byPt and the SNR is
defined asPt/σ2.

In Fig.2, the maximum achievable average capacity of BD,
SVD and ZF based multicell transmission is investigated,
where we assume that there are three BSs and three MSs.
Each of the BSs supports a single MS within its coverage
area. Furthermore, the number of BS transmit antennas is
assumed to beNt = 2 and the number of receive antennas
at the MS isNk = 2. Furthermore, the performance of joint
power allocation scheme of (21) is also plotted as an upper
bound. As we can see from Fig.2, the scaled suboptimal power
allocation scheme of (24) outperforms the grouped power
allocation scheme of (25) for any of the transmission strategies
considered. Furthermore, the BD based scheme achieves the
best performance, since it has a unitary preprocessing matrix
[11], which does not reduce the effective power of each
symbol. However, in order to generate the resultant SU-MIMO
system CSI for each MS, extra trainning or overhead is
invoked for the BD based scheme [14]. Moveover, the SVD
based scheme has an approximately 1dB to 1.5dB performance
gain over the ZF based scheme, since SVD based scheme
results in joint reception of the transmitted SU-MIMO streams,
while the ZF based scheme results in parallel SISO channels.
Similar trends can also be observed in Fig.3, where we assume
that there are two BSs and two MSs, where each of the BSs
has a single MS within its coverage area. Furthermore, the
number of BS transmit antennas is assumed to beNt = 2 and
the number of recieve antennas at the MS isNk = 2.

V. CONCLUSIONS

In this paper, we investigated the extension of SVD based
multiuser transmission from the single cell case to the multi-
cell scenario, where the multiple BSs may cooperate during
their transmissions. We also compared the SVD based BS
cooperation to the corresponding BD and ZF based schemes,
while using different power allocation policies. The BD based
scheme is capable of achieving the best performance, while
the SVD based scheme is suboptimal. However, the BD based
scheme requires extra training for generating the effective
SU-MIMO CSI, while the SVD based scheme avoids this
requirement. Hence, the SVD based scheme is less complex
than the BD based one.
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