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Abstract— Low-complexity non-coherently detected Differential
Amplitude and Phase-Shift Keying (DAPSK) schemes constitute
an ideal candidate for wireless communications. In this paper,
we derive the soft-output probability formulas required for the
soft-decision based demodulation of DAPSK, which are then
invoked for Turbo Coded (TC) transmissions. Furthermore, the
achievable throughput characteristics of the family of M-ary
DAPSK schemes are provided. It is shown that the proposed 4-
ring based TC assisted 64-ary DAPSK scheme achieves a coding
gain of about 4.2 dBs in comparison to the identical-throughput
TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK)
scheme at a bit error ratio of 10

−5.

Index Terms— Soft-decision, Iterative detection, DAPSK, TC,
Correlated Rayleigh fading channel, Near-capacity transceivers

I. I NTRODUCTION

Coherent detection aided square-constellation based Quadra-
ture Amplitude Modulation (QAM) requires accurate Channel
State Information (CSI) in order to avoid false phase-locking of
the carrier-recovery scheme, especially when communicating
over Rayleigh fading channels [1]–[5]. As a remedy,
Differential Amplitude and Phase-Shift Keying (DAPSK)
was conceived for dispensing with CSI, albeit naturally at the
cost of a performance loss. This scheme was termed as Star-
QAM in [6]. Non-coherent schemes are particularly beneficial
in cooperative communications, where it is unrealistic to
estimate all mobile-to-mobile channels [7], [8]. Let us define
the notation M-DAPSK (Ma,Mp) representingMa amplitudes
andMp different phases, which may also be denoted asMa-
DASK/Mp-DPSK or Star-QAM. The authors of [9], [10] have
further improved the performance of M-DAPSK (Ma,Mp)
schemes. However, despite its attractive performance versus
complexity characteristics, surprisingly soft-decisionbased
demodulation has not been conceived for these M-DAPSK
(Ma,Mp) schemes. This also implies that without soft-decision
based demodulation, the full potential of sophisticated channel
coding or coded modulation schemes cannot be entirely
exploited. Hence, when channel coding is incorporated into
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M-DAPSK (Ma,Mp) as in [6], its performance is far from
the channel capacity due to the employment of hard-decision
based demodulation. The twin-ring based soft-decision assisted
Star-QAM scheme was proposed for Iteratively Detected Bit-
Interleaved Coded Modulation (BICM-ID) in [11]. As a further
improvement, in this contribution Turbo Coding (TC) [12] is
employed because its Extrinsic Information Transfer (EXIT)
curve shape was found to have a better match with that of the
M-DAPSK (Ma,Mp) demapper. Which is beneficial, because
the smaller the area between these two EXIT curves, the
closer this scheme operates to the achievable capacity [8],
[14]. Our novel contributions are:

• we will first solve the open problem of deriving the
soft-decision demodulation probability formulas for M-
DAPSK (Ma,Mp) schemes, which have more than two
concentric PSK constellations;

• Secondly, the performance benefits of using the new
formulas will be quantified in the context of TC schemes
invoked for communications over correlated Rayleigh
fading channels at a normalised Doppler frequency of
0.01;

• Finally, the channel capacity of M-DAPSK (Ma,Mp)
will be quantified for the the sake of demonstrating that
our proposed scheme constitutes a near-capacity design.

This paper is organised as follows. In Section II, the soft-
decision demodulation of M-DAPSK (Ma,Mp) aided TC will
be presented. Our results will be discussed in Section III and
our conclusions are offered in Section IV.

II. SYSTEM MODEL AND ANALYSIS

Fig. 1 shows the simplified schematic of the near-capacity
TC aided M-DAPSK (Ma,Mp) scheme, where the number
of constellation points is M =Ma ∗ Mp = 2m, while the
number of amplitudes isMa = 2ma and the number of
phases per amplitude circle isMp = 2mp . More explicitly,
m, ma and mp denotes the total number of modulated
bits/symbol, the number of bits assigned to the amplitude
rings and that assigned select the phases, respectively. A
sequence of information symbols is encoded by a rate-1/2
TC encoder for generating a sequence of coded symbols. Out
of the total of m bits,ma bits will be used for selecting
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Fig. 1: The schematic of the M-DPSK (Ma,Mp) aided TC scheme, where the interleavers and de-interleavers between the
encoder/decoder and mapper/de-mapper are not shown for simplicity.

the amplitude of the Phase-Shift-Keying (PSK) ring, while
the remaining(m − ma) bits will be used for selecting the
phase of the complex-valued M-DPASK (Ma,Mp) symbolxk,
where the subscriptk denotes the symbol index. As shown
in Fig. 1, the TC-encoded M-DPASK symbol is corrupted by
both the complex-valued Rayleigh fading channel coefficient
hk and the Additive White Gaussian Noise (AWGN)nk,
when it is transmitted to the receiver. Iterative detectionis
then carried out by exchanging extrinsic information between
the M-DAPSK soft demapper and TC decoder based on the
received sequence{yk} without exploiting any CSI.

A. M-DAPSK Mapper

As seen in Fig. 1, the M-DAPSK (Ma,Mp) mapper consists
of three components, namely the amplitude selector, theMp-
PSK mapper and a differential encoder. TheMp-PSK mapper
and the differential encoder jointly form a conventional
Mp-level DPSK (Mp-DPSK) mapper. Thema bits of the
TC-encoded symbol are used for selecting one of theMa

possible amplitude circles. The remaining(m− ma) bits are
used by theMp-DPSK mapper. Note that similar to any
DPSK scheme, we insert a reference symbol at the beginning
of each differentially encoded transmission frame before the
M-DAPSK (Ma,Mp) mapper. We use the 64-DAPSK (4,16)
scheme as an example for illustrating the philosophy of our
proposed soft-decision based demapper.

1) Amplitude Selection: ma = 2 bits are used for selecting
the amplitude of the PSK ring,ak. The four possible amplitude
values are denoted asa(1), a(2), a(3) and a(4), respectively.
Table I illustrates the procedure of amplitude selection. Note
that the classic Set Partitioning (SP) [13] method is employed
in the mapper. This amplitude selection mechanism may be

ak ma-bits (b5 and b4)
00 01 10 11

a(1) a(1) a(2) a(3) a(4)

ak−1 a
(2)

a
(2)

a
(3)

a
(4)

a
(1)

a
(3)

a
(3)

a
(4)

a
(1)

a
(2)

a(4) a(4) a(1) a(2) a(3)

TABLE I: Table to generate the amplitudeak.

referred to asMa-level Differential Amplitude Shift Keying
(Ma-DASK). After normalisation to a symbol energy of
unity, we havea(1) = 1/

√
3.58, a(2) = 1.4/

√
3.58, a(3) =

(1.4)2/
√

3.58 anda(4) = (1.4)3/
√

3.58. The amplitude value
of the reference symbol is given bya0 = a(1). Fig. 2 shows

the constellation diagrams of 8-DAPSK (4,2), 16-DAPSK
(4,4), 32-DAPSK (4,8) and 64-DAPSK (4,16).
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Fig. 2: Constellation diagrams of the M-DAPSK (4,Mp)
modulation schemes.

2) Phase Selection: When we considermp = 4, the kth
differentially encoded symbolvk can be expressed as:

vk = vk−1wk, (1)

wherexk = µ(b3 b2 b1 b0) is the kth 16-PSK symbol based
on the 16-PSK mapping function ofµ(.), while vk−1 is the
(k − 1)st 16-DPSK symbol and|vk|2 = 1. The reference
symbol of the 16-DPSK part of the constellation is given by
v0 = µ(0 0 0 0).

The kth 64-DAPSK symbol is then given by:

xk = akvk, (2)

where we haveak ∈ {a(1), a(2), a(3), a(4)}.

B. M-DAPSK Soft Demapper

As in all transceivers, the soft-decision based M-DAPSK
(Ma,Mp) block is placed before the TC decoder, as shown in
Fig. 1. Thekth received symbol may then be written as:

yk = hkxk + nk = hkakvk + nk , (3)
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wherehk is the Rayleigh fading channel’s coefficient, while
nk represents the AWGN having a variance ofN0/2 per
dimension. Assuming a slowly Rayleigh fading channel,
where we havehk ≈ hk−1, we can rewrite (3) using (1) as:

yk = hk−1akvk−1wk + nk ,

=
ak

ak−1
(yk−1 − nk−1) wk + nk ,

= pkyk−1wk + ñk , (4)

where pk = ak

ak−1
is the ratio of thekth and (k − 1)st

amplitudes, whilẽnk = − ak

ak−1
nk−1wk + nk is the effective

noise.

1) Amplitude Detection: (2 ·Ma − 1) amplitude ratios can
be derived from theMa-PSK ring amplitudes of M-DAPSK
(Ma,Mp). It may be readily shown that for 64-DAPSK (4,16),
we have:

pk =

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

R−3 = a(1)/a(4)

R−2 = a(1)/a(3) = a(2)/a(4)

R−1 = a(1)/a(2) = a(2)/a(3) = a(3)/a(4)

R0 = a(1)/a(1) = a(2)/a(2)

= a(3)/a(3) = a(4)/a(4)

R1 = a(2)/a(1) = a(3)/a(2) = a(4)/a(3)

R2 = a(3)/a(1) = a(4)/a(2)

R3 = a(4)/a(1) .

(5)

When the noise power is low, the amplitude ratiopk may be
approximated as:

|yk|
|yk−1|

=
|hkakvk + nk|

|hk−1ak−1vk−1 + nk−1|
, (6)

≈ |ak|
|ak−1|

,

≈ pk . (7)

2) Probability Computation: The effective noise variance
of ñk in (4) depends on the amplitude ratio used at time
instantk, which can be computed as:

eN0 = N0 + |pk|2|wk|2N0 = N0(1 + |pk|2) , (8)

where eN0 = (1 + R2
q)N0 = N

(q)
0 , q ∈

{−3,−2,−1, 0, 1, 2, 1, 3}. Based on (4) we can express the
probability of receivingyk conditioned on the transmission of
b0, b1, b2, b3, b4 and b5 as in (9). The bit-probabilities can
then be then can be converted to the Log-Likelihood Ratio
(LLR) [14] based representations ofbi, i ∈ {0, 1, 2, 3, 4, 5}
where we havew(m) = µ(b3b2b1b0) andµ is the conventional

16-PSK mapper function.

P (yk|w(m), b5b4 = 00) =
1

πN
(0)
0

e

−|yk−yk−1R0w(m)|2
N

(0)
0 ,

P (yk|w(m), b5b4 = 01) =
1

πN
(1)
0

e

−|yk−yk−1R1w(m)|2
N

(1)
0

+
1

πN
(−3)
0

e

−|yk−yk−1R
−3w(m)|2

N
(−3)
0 ,

P (yk|w(m), b5b4 = 10) =
1

πN
(2)
0

e

−|yk−yk−1R2w(m)|2
N

(2)
0

+
1

πN
(−2)
0

e

−|yk−yk−1R
−2w(m)|2

N
(−2)
0 ,

P (yk|w(m), b5b4 = 11) =
1

πN
(3)
0

e

−|yk−yk−1R3w(m)|2
N

(3)
0

+
1

πN
(−1)
0

e

−|yk−yk−1R
−1w(m)|2

N
(−1)
0 .(9)

III. S IMULATION RESULTS

Computer simulations have been performed for charac-
terising the proposed soft-decision based M-DAPSK (4,Mp)
demodulation technique in the context of TC coding schemes.
In order to benchmark our proposed method, the classic
square-constellation 64-QAM and 64-DPSK schemes were
employed. The simulation parameters are shown in Table II.

Modulation 64-DAPSK(4,16), 32-DAPSK(4,8), 16-DAPSK(4,4)
8-DAPSK(4,2), 64-QAM, 64-DPSK

Mapping Set Partitioning (SP)
Coding TC
Constituent Half-rate Recursive Systematic Convolutional (RSC) code
Code Code Polynomial G=[15 17]
Code
Memory

3

Outer iter-
ations

4

Inner TC
iterations

2

Decoder Approximate Log-MAP
Symbols
per 64-
DAPSK
block

400, 4000

Number
of 64-
DAPSK
blocks per
TC block

1, 10

Number of
TC blocks

5000

Channel Correlated Rayleigh fading channel
having a normalised Doppler frequency of 0.01

TABLE II: System parameters.

Firstly, the EXIT Charts of the proposed system is presented
for analysing the 64-DAPSK (4,16) scheme. Fig. 3 illustrates
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Fig. 3: EXIT Charts of the 64-QAM, 64-DAPSK (4,16)
and 64-DPSK aided TC schemes when communicating over
a correlated Rayleigh channel at SNR=17.5 dB. The SNR-
independent EXIT curve of the outer TC decoder is also
shown. The corresponding simulation parameters are presented
in Table. II

three inner decoder1 EXIT curves, namely those of the
64-QAM, 64-DAPSK (4,16) and 64-DPSK schemes, together
with the EXIT curve of the outer TC decoder. It is worth
noting that the area under the EXIT curve of the inner
decoder is approximately equal to the channel capacity [7],
[15], [16]. It is then clear from Fig. 3 that the area under the
square-constellation 64-QAM scheme’s EXIT curve is larger
than that under the 64-DAPSK (4,16) scheme’s curve, which
is in turn higher than that of the 64-DPSK arrangement. It
was also demonstrated in [7], [8] that an open EXIT chart
tunnel implies having an infinitesimally low BER. Hence we
may argue based on Fig. 3 that a vanishingly low BER may
be achieved by the TC aided 64-DAPSK (4,16) scheme for
SNR values in excess of 17.5 dB. By contrast, no open EXIT
chart tunnel is maintained for the same SNR value in the case
of the 64-DPSK benchmark scheme.

The corresponding BER versus SNR performance is
depicted in Fig. 4, which compares the performance of
the 64-QAM, 64-DAPSK (4,16) and 64-DPSK aided TC
schemes, when communicating over correlated Rayleigh fading
channels using different transmission block lengths and turbo-
interleaved block lengths. More explicitly, as seen in Table II,
each block consists of 400 or 4000 modulated symbols.
The TC block length is given by the number of modulated
symbols per 64-DAPSK transmission block times the number
of transmission blocks per TC block. When the number of 64-
DAPSK modulated transmission blocks per TC block is one,
which corresponds to the curve marked by circles in Fig. 4,
the SNR difference between the classic coherently detected

1In serially concatenated and turbo-detected schemes the soft-
output demodulator is often referred to as the inner terminology
decoder, for the sake of a unified.
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Fig. 4: BER versus SNR(dB) performance comparison of
the 64-QAM, 64-DAPSK (4,16) and 64-QAM schemes for
transmission over correlated Rayleigh fading channels. The
corresponding system parameters are summarized in Table. II.
A TC block-length of 400 modulated symbols corresponds to
one 64-DAPSK block-length, while a 4000-modulated-symbol
TC block corresponds to ten 64-DAPSK block-length.
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symbols.

square-constellation 64-QAM and our low-complexity 64-
DAPSK dispensing with power-thirsty channel-estimation is 5
dB. As a substantial further benefit, our scheme outperforms
64-DPSK by about 4.2 dB. When the number of 64-DAPSK
blocks per TC block is increased to ten (the curve marked
by filled circles), all the BER performances are improved, but
the SNR differences remain similar. In general, the longer the
TC block-length, the better the BER performance becomes
gradually approaching channel capacity.

Finally, the achievable throughput of the M-DAPSK (4,
Mp) modem family is characterised in Fig. 5, where the
curves were generated by evaluating the area under the
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corresponding EXIT curves, as detailed in [8], [14]. The large
crosses represent the SNR required for the corresponding
modulation schemes to achieve an identical throughput to
each other at a target BER of10−5. The horizontal grey
dotted lines represent the throughput values of the different
modulation schemes considered. For example, 1.5 is that of TC
aided 8-DAPSK (4,2). Fig. 5 also shows the SNR discrepancy
between the various schemes and the corresponding channel
capacity. More specifically, the TC aided 64-DAPSK (4,16)
scheme is capable of reliably operating approximately 3.83
dB away from its capacity, while the TC aided 32-DAPSK
(4,8) arrangement operates approximately 2.99 dB away from
its capacity.

IV. CONCLUSIONS

The symbol-to-bit soft-demapper probability formulas of
the 64-DAPSK (4,16) scheme were derived and its soft-
decision aided performance was investigated in the contextof
a TC scheme. The 64-DAPSK-TC scheme outperforms the
identical-throughput 64-DPSK-TC scheme by about 4.2 dB at
a BER of10−5, when communicating over correlated Rayleigh
fading channels having a normalised Doppler frequency of
0.01. Finally, the achievable throughput characteristicsof
the M-DAPSK (4,Mp) modem-family were presented. Our
future research will improve the resilience of these schemes
against high Doppler frequencies with the aid of multiple-
symbol differential detection (MSDD) [8]. We will also
conceive low-complexity MSDD schemes with the aid of
sphere decoding [8].
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