
From TiMo to Event-B: Event-Driven Timed Mobility

Gabriel Ciobanu
Romanian Academy,

Inst. of Computer Science,
Iaşi, Romania

Thai Son Hoang
ETH Zürich,

Inst. of Information Security,
Switzerland

Alin Stefanescu
University of Bucharest,

Romania

Abstract—Mobile distributed systems involve specific aspects
such as migration, communication and concurrency, usually
under temporal constraints. In this paper, we deal with formal
modelling of timed migrating and communicating processes,
as provided by the TIMO calculus. In this framework, mobile
processes can move between different locations and communicate
when co-located, all this happening in the presence of local timers.
Our contribution is a general framework for reasoning about
systems specified using TIMO. We use the Event-B modelling
method as the target for translating TIMO specifications. Sub-
sequently, we utilise the supporting Rodin platform of Event-B
to verify system properties using the embedded theorem-provers
and model checkers. The main feature of our encoding include
a generic model capturing the syntax and semantics of TIMO,
together with a concrete model corresponding to each specific
TIMO specification. We illustrate our approach by a non-trivial
example featuring different concepts of TIMO.

I. INTRODUCTION

We consider a process calculus named TIMO (Timed
Mobility), with explicit migration allowing the use of timers
for controlling process mobility and interaction [9]. Migration
involves several explicit locations. Each location has a local
clock; these local clocks attempt to specify distributed systems
in a more accurate way. Timing constraints for migration
allow to specify a temporal timeout after which a mobile
process must move to another location. Two processes may
communicate only if they are present at the same location.
TIMO allows a maximal parallelism of actions. Using all
these features, we can specify and analyse complex timing
systems in a new way, different from traditional ones. In terms
of verification, interesting properties described by TIMO re-
garding process migration, time constraints, bounded liveness
and optimal reachability could be analysed and checked using
model-checking [13].

In this paper, we provide a formal encoding of TIMO in
a framework based on theorem proving, called Event-B [2].
We follow a stepwise modelling approach using several refine-
ments levels, which starts with an abstract model and gradually
introduces the different concepts and rules of TIMO calculus.
The correctness of the stepwise construction of formal Event-
B models is ensured by (automatically or interactively) dis-
charging a set of proof obligations generated by the Rodin
tool set [3]. Moreover, we can encode not only the general
TIMO rules but also a concrete TIMO system and analyse
on it different types of properties, by applying the theorem
proving and model checking technology available in Rodin. We
exemplify this with an extended version of the TIMO model
from the literature [10]. In particular, the parameterised version
of the system is sophisticated and challenging to verify.

The contributions of our work are listed below:

• The most important feature of our Event-B encoding is
its genericity. We do not encode only concrete systems
in Event-B as it is usually done in the literature, but
also the TIMO syntax and operational rules. Thus we
can reason about general properties of TIMO systems,
such as the preservation of well-formedness, showing that
they hold using theorem-proving. This is not possible
using classical model-checking techniques, which need
concrete instantiations in order to generate the state space
for analysing.

• There is a strong mathematical relation between the
concrete encoding and the generic encoding, namely an
Event-B refinement, which we formally proved using
Rodin. Properties proved on the generic model are utilised
to reason about properties of the concrete systems. This is
different from the literature, where either only a concrete
encoding of a (distributed) system is given, see e.g., [17],
or there is a transformation algorithm based on the rules
of the input formalism which converts an input system
into a concrete Event-B model, see e.g., [6], [4].

• We give an Event-B implementation of local clocks and
relative time suited for TIMO. We are not aware of any
other Event-B specifications dealing with similar timing
constraints. The majority of the Event-B approaches adapt
a modelling time pattern based on a global clock and
absolute time [8], [20].

• Through Event-B/Rodin, we make theorem proving tech-
nologies available to TIMO. Until now, only reasoning
through model-checking was possible [13]. In particular,
we are able to reason about parameterised systems, which
is not feasible in the TIMO verification based on model
checking.

The paper is structured as follows. We give a brief overview
of TIMO and of Event-B in Section II and Section III. In
Section IV, we present our approach to encode TIMO specifi-
cations in Event-B. We provide the results of our analysis on
the Event-B encoding and the running example in Section V.
We conclude and discuss related work in Section VI.

II. TIMO: TIMED MOBILITY IN DISTRIBUTED SYSTEMS

Several process calculi are used to model complex dis-
tributed systems in a compositional way. Various features
were introduced in these process calculi, including explicit
locations in distributed ⇡-calculus [16], explicit migration and
timers in timed distributed ⇡-calculus [12]. Most of the papers
assume the existence of a global clock; however, there are

The original publication is available at http://dx.doi.org/10.1109/ICECCS.2014.10
Appeared in Proceedings of the ICECCS 2014 conference © IEEE Computer Society

TABLE I. TIMO SYNTAX.
(LENGTH OF ~u IS THAT OF ~X , AND LENGTH OF ~v IN id(~v) IS mid)

Processes P ::= a�t ! h~vi then P else P 0 p (output)
a�t ? (~u: ~X) then P else P 0 p (input)
go

�t l then P p (move)
P |P 0 p (parallel)
id(~v) p (recursion)
stop p (termination)
sP (stalling)

Networks N ::= l [[P]] p N |N 0

Definition id(u1, . . . , umid
: Xid

1 , . . . , X id
mid

)
df
= Pid (Def)

several applications and systems for which a global clock is
inappropriate. The process calculus TIMO was introduced in
[9] as a formalism for mobile systems in which it is possible
to add local timers to control process mobility and interaction.
Processes are equipped with communication capabilities which
are active up to a predefined time deadline (timer). A local
clock is assigned to each location, and each local clock
determines the timing of actions executed at the corresponding
location [10].

We assume suitable data types together with associated
operations, including a set Loc of locations, a set Chan of
communication channels, and a set Id of process identifiers,
where each id 2 Id has arity mid . We use ~x to denote a finite
tuple of elements (x1, . . . , xk) whenever it does not lead to
confusion. The syntax of TIMO is given in Table I, where P

represents processes and N represents networks. Moreover, for
each id 2 Id , there is a unique process definition Def, where
Pid is a process expression, the ui’s are distinct variables
playing the role of parameters, and the X

id
i ’s are data types.

It is assumed that: (i) a 2 Chan is a channel, and t 2 N
represents a timeout; (ii) each vi is an expression built from
data values and variables; (iii) each ui is a variable, and each
Xi is a data type; (iv) l is a location or a location variable;
and (v) s is a special symbol used to state that a process is
temporarily ‘stalled’.

The only variable binding construct is
a

�t ? (~u: ~X) then P else P

0; it binds the variables ~u

within P , but not within P

0. We denote by fv(P) the free
variables of a process P . For a process definition as in (Def),
we assume that fv(Pid) ✓ {u1, . . . , umid}, and so the free
variables of Pid are parameter bound. Processes are defined
up to alpha-conversion, and {v/u}P is obtained from P by
replacing all free occurrences of a variable u by v, possibly
after alpha-converting P in order to avoid clashes. Moreover,
if ~v and ~u are tuples of the same length then {~v/~u}P denotes
{v1/u1, v2/u2, . . . , vk/uk}P .

A process a

�t ! h~vi then P else P

0 attempts to send a
tuple of values ~v over channel a for t time units. If successful,
it continues as process P ; otherwise, as the alternative process
P

0. A process a

�t ? (~u: ~X) then P else P

0 attempts for t

time units to input a tuple of values of type ~

X and substitute
them for the variables ~u. Mobility is implemented by a process
go

�t
l then P which moves from the current location to

the location l within t time units. Since l can be a variable,
migration actions support a flexible scheme for moving pro-
cesses around a network. Processes are further constructed
from the terminating process stop and parallel composition
P |P 0. Finally, process expressions of the form sP represent a

TABLE II. TIMO OPERATIONAL SEMANTICS.
(IN (PAR) AND (EQUIV) IS AN ACTION, AND IN (TIME) l IS A

LOCATION.)

(EQ1) N |N 0 ⌘ N 0 |N

(EQ2) (N |N 0) |N 00 ⌘ N | (N 0 |N 00)

(EQ3) l [[P |P 0]] ⌘ l [[P]] | l [[P 0]]

(CALL) l [[id(~v)]]
id@l�! l [[s {~v/~u}Pid]]

(MOVE) l [[go�t l0 then P]]
l0@l�! l0 [[sP]]

(COM)

v1 2 X1 . . . vk 2 Xk

l [[a�t ! h~vi then P else Q | a�t0 ? (~u: ~X) then P 0
else Q0]]

ah~vi@l
�������������! l [[sP | s {~v/~u}P 0]]

(PAR) N
 �! N 0

N |N 00 �! N 0 |N 00

(EQUIV) N ⌘ N 0 N 0 �! N 00 N 00 ⌘ N 000

N
 �! N 000

(TIME)
N 6�!l

N
p

l�! �l(N)

technical device used in the structural operational semantics of
TIMO; intuitively, s specifies that a process P is temporarily
stalled (until a clock tick), and so cannot execute any action.
A located process l[[P]] is a process running at location l, and
a network is composed out of its components N |N 0.

A network N is well-formed if: (i) there are no free
variables in N ; (ii) there are no occurrences of the special
symbol s in N ; (iii) assuming that id is as in the equation
(Def), for every id(~v) occurring in N or on the right hand
side of any recursive equation, the expression vi is of type
corresponding to X

id
i .

The first component of the operational semantics of TIMO
is the structural equivalence ⌘ on networks. It is the smallest
congruence such that the equalities (EQ1–EQ3) in Table II
hold. Using (EQ1–EQ3) one can always transform a given
network N into a finite parallel composition of networks of
the form l1 [[P1]] | . . . | ln [[Pn]] such that no process Pi

has the parallel composition operator at its topmost level.
Each subnetwork li [[Pi]] is called a component of N , the
set of all components is denoted by comp(N), and the
parallel composition is called a component decomposition of
the network N . Note that these notions are well defined since
component decomposition is unique up to the permutation of
the components. This follows from the rule (CALL) which
treats recursive definitions as function calls which take a unit
of time. Another consequence of such a treatment is that it
is impossible to execute an infinite sequence of action steps
without executing any local clock ticks.

Table II introduces two kinds of operational semantics
rules: N �! N

0 and N

p
l�! N

0. The former is an execution
of an action by some process, and the latter a unit time
progression at location l. In the rule (TIME), N 6!l means
that the rules (CALL) and (COM) as well as (MOVE) with
�t = �0 cannot be applied to N for this particular location l.
Moreover, �l(N) is obtained by taking the component decom-
position of N and simultaneously replacing all the components

of the form l [[go

�t
l

0
then P]] by l [[go

�t�1
l

0
then P]],

and all components of the form l [[a

�t
! then P else Q]]

(where ! stands for ! h~vi or ? (~u: ~X)) by l [[Q]] if t = 0,
and l [[a

�t�1
! then P else Q]] otherwise. After that, all the

occurrences of the symbol s in N are erased.

A complete computational step is captured by a deriva-
tion of the form N

=) N

0, where = { 1, . . . , m}
(m � 0) is a finite multiset1 of l-actions for some location
l (i.e., actions of the form id@l or l

0
@l or ah~vi@l) such that

N

 1�! N1 · · ·Nm�1
 m�! Nm

p
l�! N

0. That is, a derivation
is a condensed representation of a sequence of individual
actions followed by a clock tick, all happening at the same
location. Intuitively, we capture the cumulative effect of the
concurrent execution of the multiset of actions at location
l. Note that whenever there is only a time progression at
a location, we have N

?
=) N

0. The derivations are well
defined as one cannot execute an unbounded sequence of
action moves without time progress, and the execution is
made up of independent (concurrent) individual executions.
Moreover, derivations preserve well-formedness of networks
[10].

Example: We use an example presented and illustrated
in [10] describing simple e-shops. In this example we consider
two customer processes initially residing in their respective
home locations homeA and homeB , and looking for (the
address of) an e-shop where the same desirable e-item can
be purchased. To find this out, each customer moves to the
location info in order to acquire the relevant address (this
move takes up to 5 time units). After waiting for 2 time
units at location info without getting the desired address, the
e-item loses its importance and the customer is no longer
interested in acquiring it. The location info contains a broker
who knows all about the e-shops stocking the desired e-item.
For up to 5 time units the right e-shop is that at the location
shopA, and after that for up to 7 time units at location shopB
(these changes of availability are cyclical and happen also if
a location is communicated to a customer). We consider the
evolution in which the active customer is initially residing in
location homeB , and then moving to location info to acquire
the address of an e-shop. After receiving such an address from
the broker, the customer moves to the corresponding location
shopA. The essential features of this example are captured by
the following TIMO network whose evolution together with
several results are described in [10]:

homeA [[customer(homeA)]] | homeB [[customer(homeB)]] |

| info [[broker]] ,

where the process identifiers are defined as:

customer(home:Loc)
df
= go

�5
info then

a

�2 ? (shop:Loc)
then go

�2
shop then stop

else go

�5
home then stop

broker

df
= a

�5 ! hshopAi then broker

0
else broker

0

broker

0 df
= a

�7 ! hshopBi then brokerelse broker

1According to Proposition 2 in [10], the result of executing a (multi-)set of
rules is independent of the order of executing them.

context C

sets s
constants c
axioms A(s, c)

sees ���

machine M

variables v
invariants I (v)
events

init
e1 · · · eN

Fig. 1. The general form of an Event-B context and a machine

III. INTRODUCTION TO EVENT-B

The classical B method (B), introduced in the 90’s by
Abrial [1], proved to be successful in industry. Several large
implementations, e.g., in transportation, were based on B.
However, B mainly focused on software development. To
enlarge the scope of formal development to system level,
Event-B [2] was proposed in the 00’s and developed over the
course of several European projects, involving partners from
both academia and industry. The formalism is supported by a
mature platform, Rodin [3], and proved to be very useful in
different practical scenarios as presented in [19]. The tool is
open-source and Eclipse-based, and integrates various plugins
for modelling, theorem proving, simulation, model-checking
and many other features.

An Event-B model contains contexts (capturing its static
behaviour) and machines (capturing its dynamic behaviour).
Fig. 1 gives the general syntax of a context C and a machine
M. Context C contains carrier sets (static types) s and constants
c, constrained by axioms A(s, c). Machine M corresponds to
a transition system, where the states are captured by global
variables v , constrained by invariants I(v), and the transitions
are modelled by events ei. By seeing context C, machine M
can have access to s and c. To simplify our presentation, in the
subsequent, we omit possible references to s and c in machine
M. The general form of an event is:

e b= any u where G(u, v) then v := E (u, v) end ,

where u is a (possibly empty) list of local parameters. The
guard G(u, v) is a (possibly empty) list of predicates describ-
ing the condition under which the event can be executed. The
event e is said to be enabled at a state when the guard G holds
in that particular state. The action v := E(u, v) is a (non-
empty) set of assignments specifying changes to v when the
event is carried out.2The init event is a special event without
parameters and guards.

The execution semantics of an Event-B machine is as
follows. First, the init event is executed. Afterwards, at each
step an enabled event is non-deterministically selected and its
actions are executed simultaneously. If no events are enabled,
then the system deadlocks. The invariants I (v) ensure that
the variables are properly typed and also that the system has
desirable properties. Proof obligations are generated to ensure
that I is established by init and maintained by all events ei.

The Event-B modelling approach is top-down, starting with
an abstract model, which is gradually concretised in a series of
refinement steps. Two mechanisms exist to support this devel-
opment process: context extension and machine refinement. A
(concrete) context D extends an (abstract) context C by having

2We do not consider non-deterministic Event-B actions in this paper.

C0 insts

C0 syntax C0 init M0 TiMo rules

C1 syntax C1 init M1 TiMo locations

C2 syntax C2 init M2 TiMo variables

C3 syntax C3 init M3 TiMo timers

M4 TiMo step semantics

C5 processes C5 concrete M5 TiMo network

modeling of TiMo
calculus (generic)

modeling of a TiMo
network (concrete)

refined by

refined by

refined by

refined by

refined by

sees

sees

sees

sees

sees

sees

Fig. 2. The hierarchy of refinements of our Event-B encoding of TIMO (where a dashed arrow from C to C’ means “C is extended by C”)

additional carrier sets t and constants d with further axioms
relating the two contexts. A (concrete) machine N refines an
(abstract) machine M by replacing abstract variables v by
concrete variables w . The states of M and N are linked by
gluing invariants J (v ,w). Intuitively, M is refined by N if
M can simulate any behaviour of N, taking into account the
gluing invariants J . Reasoning about machine refinement can
be established event-wise. Each abstract event e is refined by a
concrete event f (this one-to-one relationship can be relaxed).
Assume that e and f are as follows:

e b= any u where G(u, v) then v := E (u, v) end
f refines e b= any y where H (y ,w) with W (u, y ,w)

then w := F (y ,w) end

Somewhat simplifying, we say that f refines e if (1) the
concrete guard H is stronger than the abstract guard G
(guard strengthening), and (2) the abstract action simulates the
concrete action (simulation) via gluing invariant J . Notice that
a witness is required in the form of a predicate W (u, y ,w)

linking the abstract parameters u and the concrete parameters
y .

A special form of refinement is when the abstract variables
v are retained in the concrete machine. The proof obligations
for refinement are adapted accordingly. Further details on the
Event-B modelling method can be found in [2].

Event-B is supported by the Rodin platform. Theorem-
proving is the main technology used for verifying the con-
sistency (i.e., invariants preservation) and correctness of re-
finements. Rodin will automatically generate proof obligations
for proving the consistency of machines and their refinements,
which can be discharged either automatically or interactively.
Further properties (e.g., temporal properties) of Event-B mod-
els can be verified using the ProB model checker [18], which
is integrated as a plugin in Rodin.

IV. MODELLING OF TIMO IN EVENT-B

In this section, we show how we can capture the TIMO
concepts and semantics in Event-B. This will be done grad-
ually, using five Event-B refinements, as depicted in Fig. 2.
Note that there are two main parts: a generic part, modelling
the TIMO calculus, and a concrete part, modelling a concrete
TIMO network (see the last row of the figure). We use
refinement to introduce the different features of TIMO such as
locations, variables, timers, into the formal model gradually.
The full model is available at: http://is.gd/eventb timo

For the generic part, at each refinement level, the en-
coding uses two contexts and a machine, each specifying a
different part of TIMO formalism. More precisely, we address
separately the TIMO syntax, the process instances, and the
operational semantic rules. The syntax of TIMO is coded
progressively in the contexts C0 syntax–C3 syntax. The set
of process instances is first defined in C0 insts and further
extended in C0 init–C3 init, which define different functions
that associate to each process instance its initial location, free
variables and so on. Finally, the TIMO operational semantic
rules such as (MOVE) or (COM) are abstractly defined as
events in the M0 TiMo rules and successively refined by
M1 TiMo locations, M2 TiMo variables, M3 TiMo timers,
and M4 TiMo step semantics. These machines and their as-
sociated (’seen’) contexts introduce the notions of locations,
variables, local timers, and the step semantics based on loca-
tions, respectively.

For the concrete part, i.e., to model a concrete TIMO
network (such as the one in the e-shop running exam-
ple), we add an extra refinement layer. More precisely,
C3 syntax and C3 init are extended by C5 processes and
C5 concrete, respectively, in which we instantiate the con-
stants with the concrete processes and the number of
instances in the given TIMO network. Also, we refine

context C0 syntax
sets PROC
constants go proc, . . .
axioms

go proc 2 PROC 7! PROC
. . .

context C0 insts
sets INST

context C0 init
constants insts0 , proc0
axioms

insts0 ✓ INST
proc0 2 insts0 ! PROC

machine M0 TiMo rules
variables insts , proc, blocked
invariants

@inv0 1: insts ✓ INST
@inv0 2: proc 2 insts ! PROC
@inv0 3: blocked ✓ insts

events
init b= begin insts, proc, blocked := insts0 , proc0 ,? end

MOVE b= any i where
i 2 insts
proc(i) 2 dom(go proc)
i /2 blocked

then
proc(i) := go proc(proc(i))
blocked := blocked [{i}

end

TIME b= any s, r , . . . where
s ✓ insts
(8i ·i 2 s) proc(i) 2 dom(sn proc))
r ✓ insts
(8i ·i 2 r) proc(i) 2 dom(rc proc))
. . .

then proc, blocked := . . . ,? end

. . .

Fig. 3. The initial model

M4 TiMo step semantics by M5 TiMo network in which
each step of a TiMo process is mapped to a separate event.
Notice that, given the concrete context C5 processes and
C5 concrete, the behaviour of M4 TiMo step semantics is
the same as that of M5 TiMo network. To be more pre-
cise, we can perform analysis of the concrete network by
having M4 TiMo step semantics seeing C5 processes and
C5 concrete. We chose to tailor M5 TiMo network towards
the concrete TIMO network in order to illustrate the direct
mapping between them with a view for automatic translation.

In the rest of the section, we overview the main data
structures and variables of our model together with the design
decisions made during the refinement process. We focus on the
modelling of ‘go-processes’ (i.e., of the form “MOVE�tlP ”),
and the (MOVE) and (TIME) rules. Other rules (e.g., (CALL),
(COM), (PAR)) are modelled similarly.

Initial model (Fig. 3): In this initial model, we focus on
the TIMO syntax of processes, abstracting away from details
such as locations and timers. Carrier set PROC models the set
of processes. Constant go proc (defined as a partial function)
formalises the link between a go-process and its sub-process.
The other relationships between processes are defined as
partial function constants similarly. Machine M0 TiMo rules
contains three variables: insts represents the set of active

process instances of the network, proc maps each instance to
the corresponding process, and blocked represents the set of
blocked instances. Variables insts and proc are initialised to
some constants defined in C0 init, while initially, there are no
blocked instances.

Event MOVE has a parameter i representing the process
to move. The guard of MOVE ensures that the instance is not
blocked. The action of MOVE updates the pointer proc(i) to
the sub-process, i.e., go proc(proc(i)), and blocks i . The set
of blocked instances is cleared when the TIME event occurs as
specified by the TIMO semantics. Event TIME has parameters
representing the set of process instances that require to update
the process position, namely, the set of send-processes s and
receive-processes r whose timers reached value zero (timed
out). We omit the detail how proc is updated according to
these parameters.

First refinement (Fig. 4): This refinement introduces the
notion of locations for process instances. The set of locations
is defined as a constant LOC , a subset of some carrier set
DATATYPE .

A variable loc is added to M1 TiMo locations to keep
track of the location for each process instance. Event MOVE
now has an additional parameter l specifying the destination of

machine M1 TiMo locations
variables . . . , loc
invariants

@inv1 1: loc 2 insts ! LOC
events

. . .
MOVE b= any i , l where

. . .

l 2 LOC
then . . . , loc(i) := . . . , l end

TIME b= any s, r , l , . . . where
. . .

(8i ·i 2 s) loc(i) = l)
(8i ·i 2 r) loc(i) = l)

then . . . end
. . .

Fig. 4. The first refinement

context C2 syntax
sets VAR, EXP
constants ASGN , Eval , free var exp, free var proc, go loc, . . .
axioms

@axm2 1: ASGN = VAR 7!DATATYPE
@axm2 2: Eval 2 EXP ⇥ ASGN 7!DATATYPE
@axm2 3: free var exp 2 EXP ! P(VAR)

@axm2 4: free var proc 2 PROC ! P(VAR)

@axm2 5: go loc 2 dom(go proc)! EXP
. . .

machine M2 TiMo variables
variables . . . , asgn
invariants

@inv2 1: asgn 2 insts !ASGN
@inv2 2: 8i ·i 2 insts) free var proc(proc(i)) = dom(asgn(i))

events
. . .
MOVE b= any i where

. . .

Eval(go loc(proc(i)) 7! asgn(i)) 2 LOC
with l = Eval(go loc(proc(i)) 7! asgn(i))
then

. . .

loc(i) := Eval(go loc(proc(i)) 7! asgn(i))
end

. . .

Fig. 5. The second refinement

the process instance i . At the moment, l is randomly chosen.
Event TIME has an additional parameter l specifying the
location where the time progresses. The new guard specifies
that the process instances in s (those requires update to their
processes) are at location l .

Second refinement (Fig. 5): Now, we introduce the
notion of variables, variables assignments, expressions, and
their evaluations. Carrier sets VAR and EXP abstractly define
the set of (TIMO-) variables and expressions. Assignments
(ASGN) are partial functions from variables to their values

(@axm2 1). Evaluation of an expression e , given a (valid)
variable assignment a , is a DATATYPE value Eval(e 7! a)3

(see @axm2 2). Expressions and processes are associated with
a set of their free variables (@axm2 3 and @axm2 4). Finally,
for every go-process, its target location is specified by an
expression (@axm2 5).

Machine M2 TiMo variables introduces a new variable
asgn capturing the variable assignments associated with each

3Event-B expression a 7! b denotes the ordered pair (a, b).

context C3 syntax
constants Time , proc timer
axioms

@axm3 1: Time = N
@axm3 2: proc timer 2 PROC ! Time

machine M3 TiMo timers
variables . . . , timer
invariants

@inv3 1: timer 2 insts ! Time
@inv3 2: 8i ·i 2 insts) timer(i)  proc timer(proc(i))

events
. . .
MOVE b= any i where . . . then . . . , timer(i) := . . . , proc timer(go proc(proc(i))) end

TIME b= any s, r , l , o, . . . where
8i ·i 2 insts \ blocked ^ proc(i) 2 dom(go proc) ^ loc(i) = loc) timer(i) 6= 0

s = {i | i 2 insts \ blocked ^ proc(i) 2 dom(sn proc) ^ loc(i) = l ^ timer(i) = 0}
r = {i | i 2 insts \ blocked ^ proc(i) 2 dom(rc proc) ^ loc(i) = l ^ timer(i) = 0}
o = {i | i 2 insts \ blocked ^ ^loc(i) = l ^ timer(i) 6= 0}
. . .

then proc, blocked , timer := . . . ,?, . . . end

. . .

Fig. 6. The third refinement

machine M4 TiMo step semantics
variables . . . , picked , curr
invariants

@inv4 1: curr 2 LOC
@inv4 2: picked = FALSE) blocked = ?

events
. . .
pick b= any l where picked = FALSE ^ (9i ·i 2 insts ^ loc(i) = l) then picked , curr := TRUE, l end

MOVE b= any i where
i 2 insts
proc(i) 2 dom(go proc)
i /2 blocked
Eval(go loc(proc(i)) 7! asgn(i)) 2 LOC
picked = TRUE

loc(i) = curr
then

proc(i) := go proc(proc(i))
blocked := blocked [{i}
loc(i) := Eval(go loc(proc(i)) 7! asgn(i))
timer(i) := proc timer(go proc(proc(i)))

end

. . .

Fig. 7. The fourth refinement

process instance (@inv2 1). Invariant @inv2 2 states that for
every process instance, there are no unassigned free variables.
We refine event MOVE accordingly. The abstract target loca-
tion l is specified by evaluating the target location expression
of the go-process (go loc(proc(i)) using the current variable
assignment of the instance i , i.e., asgn(i). The guard of MOVE
ensures that the evaluation results in a location value. Event
TIME is unchanged in this refinement.

Third refinement (Fig. 6): In this refinement, we in-
troduce the timers and their associated semantics. We rep-
resent time by a natural number (@axm3 1). For each pro-
cess, a default timer value is defined (@axm3 2). Machine
M3 TiMo timers introduces a new variable timer represent-
ing the current timer value for each instance (@inv3 1). When
an instance is switched to a new process, the timer is set
to the default value. For instance, in MOVE, the timer for

context C5 processes
constants cstm1, cstm2, cstm3, cstm4, cstm5, cstm6, . . .

axioms
PROC = {cstm1, cstm2, cstm3, cstm4, cstm5, cstm6, . . .}
LOC = {homeA, homeB , info, shopA, shopB}
EXP = {exp info, exp shop, exp home}
go proc = {cstm1 7! cstm2, cstm3 7! cstm5, cstm4 7! cstm6}
go loc = {cstm1 7! exp info, cstm3 7! exp shop, cstm4 7! exp home}
proc timer = {cstm1 7! 5, cstm2 7! 2, cstm3 7! 2, cstm4 7! 5, . . .}
. . .

machine M5 TiMo network
variables . . .
events
. . .

MOVE customer
1

refines MOVE b= any i where
i 2 insts
proc(i) = cstm1

i /2 blocked
picked = TRUE

loc(i) = curr
then
proc(i) := cstm2

blocked := blocked [{i}
loc(i) := info
timer(i) := 2

end

. . .

Fig. 8. The fifth refinement

the instance i is updated to proc timer(go proc(proc(i))).
For event TIME, we can now specify the condition under
which time can progress at location given by the parameter
l . For example, the first guard of TIME in Fig. 6 specifies
that there cannot be a pending go-process which is timed out.
Furthermore, we can now model precisely the set of instances
that need to be updated by the TIME event: s is the set of
timed out send-process instances, r is the set of timed out
receive-process, and o is the set of instances that has not been
timed out.

Fourth refinement (Fig. 7): Here we introduce the
step semantics of TIMO. We add a Boolean variable picked
to indicate a location has been picked and variable curr
representing the current picked location. A new event pick is
introduced to pick a random location that has some instances.
New guards are added to MOVE to specify that the a location
has been picked the instance i is at the current location curr .
Flag picked is unset in event TIME. Furthermore, parameter
l is refined by variable curr . An important invariant of
this refinement is @inv4 2 stating that there are no blocked
instances when a location is not picked.

Our Event-B model at this stage corresponds to a generic
TIMO network. In particular, the semantics of TIMO rules
has been encoded into the corresponding events. For instance,
event MOVE in Fig. 7 clearly captures the TIMO rule (MOVE)
specified in Table. II. The formal proof of the equivalence
between TIMO’s operation semantics and semantics captured
by our Event-B model is not within the scope of this paper.

Below we discuss how to instantiate the generic model to
any concrete TIMO network.

Fifth refinement - encoding of a concrete TIMO net-
work (Fig. 8): To obtain a model for a concrete TIMO
network, we instantiate the generic constants introduced in
the contexts earlier with concrete values corresponding to
the actual network. For instance, the instantiation correspond-
ing to the e-shop running example can be seen in context
C5 processes in Fig. 8. For instance, constants cstmi represent
different sub-processes of the TIMO Customer process. For
example, cstm1 corresponds to the “go�5 info” process,
cstm2 corresponds to the “a�2 ? (shop:Loc) ” process, cstm3

corresponds to the “go�2 shop” process, cstm4 corresponds
to the “go�5 home” process. Constants exp info, exp shop,
exp home model TIMO constants info and variables shop and
home, accordingly.

Concrete machine M5 TiMo network (Fig. 8) is a refine-
ment of M4 TiMo step semantics, where the generic events
are split according to the actual network. For instance, the
MOVE customer

1

event corresponds to the (MOVE) rule for
process cstm1. The fact that MOVE customer

1

is a refinement
of MOVE is guaranteed by the given instantiation of the carrier
sets and constants.

V. FORMAL ANALYSIS AND VERIFICATION

We used the Rodin platform to verify the correctness
and analyse different properties of the system. First of all,

TABLE III. PROOFS STATISTICS FOR THE EVENT-B MODEL IN FIG. 2

Model Number of Automatically Interactively
proof obligations discharged discharged

C2 syntax 16 16 0
C2 Init 1 1 0
C3 init 1 1 0
M0 TiMo rules 35 34 1
M1 TiMo locations 9 9 0
M2 TiMo variables 19 10 9
M3 TiMo timers 48 45 3
M4 TiMo step semantics 16 16 0
M5 TiMo network 92 48 44

Total 237 180 57

we proved the correctness of different refinement levels by
discharging the proof obligations generated by Rodin. The
proof obligation statistics are presented in Table III. There is
a high percentage of manual proofs for M2 TiMo variables
(due to the complexity in defining variables, assignments
expressions, and evaluation) and M5 TiMo network (due to
the concreteness of instantiated values for constants). Note
that if we consider only the generic model (i.e. without
M5 TiMo network), there are very few manual proof needed
(13 out of 145, i.e., less than one tenth).

Analysis of the generic model: Having a generic en-
coding of the TIMO calculus enables us to verify general
properties of the encoding using theorem proving. This would
not be possible using model checking, which usually needs
concrete instantiations or state enumeration. For instance, one
of the properties that are manually proved in [10] (Proposition
3 in there) is the preservation of network well-formedness by
the TIMO derivations (see Section II for definitions). Basically,
network well-formedness states that there are no network
free variables and that there are no blocked instances when
the location is not picked (i.e., between two derivations).
We capture network well-formedness property as invariants
(@inv2 2, @inv4 2) in our Event-B model (see Fig. 5 and
Fig. 7).

Analysis of the concrete model: Furthermore, we
can analyse the running example, which is modelled in
C5 processes, C5 concrete and M5 TiMo network. We use
the ProB model-checker [18] to verify some properties. Firstly,
since the broker alternates his answer between ‘shopA’ and
‘shopB’, we check that

Property 1 Customers cannot be at the same shop at the
same time.

Moreover, since the broker is always at location ‘info’, we
want to verify that

Property 2 Once a customer left home, s/he will not go
home.

ProB found counterexamples for both properties. In par-
ticular, Property 2 does not hold because in process
“a�2 ? (shop:Loc)”, the waiting time for the customer to
receive an answer from the broker (i.e., 2 ticks) is insufficient.
We emphasise here that fact that formal verification helps us to
discover errors in our specification. To remedy this situation,
we increase the customer waiting time to 3 ticks (instead of 2
ticks). This time ProB confirms that Property 2 holds.

Analysis of the concrete parameterised system: Con-
sider again Property 2. In fact, the customer waiting time
depends on the number of customers in the network. We
consider the system with an arbitrary number of customers,
given as a parameter N to the system.4 To verify Property 2
for the extended parameterised version of the system, we relied
on theorem proving functionality of Rodin instead of ProB.
This is because model checking can only check the property
for a specific value of N , and will not be able to explore the
state space for a large value of N due to the classical state
space explosion. For this verification, several invariants are
invented (this is in constrast with verification using ProB for
the non-parameterised version of the system). There are 306
proof obligations for the concrete machine, among which 117
POs are proved automatically (38%), the other are discharged
interactively. The low percentage of automatic proofs indicates
that Property 2 is indeed a challenging property to prove
for the parameterised system. In particular, the proofs involve
reasoning about arithmetic and cardinality which are known to
be difficult for automated theorem provers.

VI. CONCLUSION AND RELATED WORK

In this paper we provided an Event-B encoding of a
timed mobility process calculus which uses local clocks,
process migration, and local maximal concurrency of actions.
The clocks take care of the relative time of migration and
interaction of the processes residing at the same location.
The modelling followed a formal refinement approach and
enabled us to verify properties of such systems at both generic
(framework properties) and concrete levels (system-specific
properties). In particular, the encoding in Event-B of TIMO
allows us to analyse the systems using both theorem proving
and model checking techniques provided by the supporting
Rodin platform. It is also important to note that our approach of
having both generic model (capturing the syntax and semantics
of the process calculus) and concrete model (corresponding
to specific systems) is general and can be apply to encoding
process calculi other than TIMO.

We formally specified in Event-B the notions of relative
time, mobility and communication using the TIMO semantics.
First, since Event-B does not incorporate a notion of time,
we had to implement ourselves the concept of a local timer
that can be reset. Our time modelling pattern is different from
existing works dealing with time in Event-B. They usually
adapt the time pattern introduced in [8], which simulates a
global clock that can only go forward. This pattern based on a
global clock is further refined to notions of deadlock, delay, or
expiry in [20]. A variation of same time pattern in the presence
of asynchronous communication, not synchronous as in our
case, is given in [7]. Event-B specifications for local commu-
nication are proposed in [4] for web service compositions, and
in [17] for mobile agents communicating via message routing
algorithms. However, no explicit locations, migration or local
timers are present in these works. Finally, [6] defines a method
for encoding a process algebra in Event-B. However, they
follow a very different approach from ours. Firstly, they do
not give a generic encoding of the process algebra rules as we
do, but a methodology based on refinement of constructing

4Strictly speaking, TIMO syntax does not yet support this notion of
parameters.

the concrete Event-B model for a given process instance of
the algebra. Essentially, they capture the algebra’s syntax and
semantics using machines. In our work, the syntax is modelled
in contexts and the semantics is formalised separately using
machines. Secondly, the process algebra exemplified in [6]
includes none of the TIMO operators.

Regarding TIMO, there are several process calculi in
the literature. However, we are not aware of any approach
combining all these aspects regarding mobility with timing
constraints, local clocks, and local maximal concurrency of
actions. Several TIMO variants were developed during the
last years: a probabilistic extension PTIMO [15], a real-time
version RTIMO [5], and access permissions given by a type
system in PERTIMO [14]. A flexible software platform was
introduced in [11] to support agents allowing timed migra-
tion in a scalable distributed environment. Model checking
capabilities are introduced for TIMO and its extensions in
[13], [5], [15]. However, no theorem proving technologies for
TIMO were available until now. In particular, our analysis of
the parameterised e-shop system is out-of-scope for the model
checking technique.

As future work, we plan to cover in our Event-B model
some of the TIMO extensions, e.g., the access permissions
as defined in [14]. This can easily integrated into the current
development as an extra refinement. The model can be then
checked against safe access properties. Moreover, we want
to investigate dynamic aspects of such systems, in which
process instances are created and destroyed on-the-fly, during
the execution of the system. Dealing with dynamic aspects is
usually a strength of theorem proving over model checking
techniques. Finally, we will also plan to generalise our ap-
proach by providing a set of Event-B guidelines for encoding
a process algebra in Event-B (in a similar vein with [6], but
based on our pattern of generic and concrete dimensions).

Acknowledgments:: This work was supported by Ro-
manian National Authority for Scientific Research through
grants PN-II-ID-PCE-2011-3 no. 0688 and 0919.

REFERENCES

[1] Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge
University Press (1996).

[2] Abrial, J.R.: Modeling in Event-B - System and Software Engineering.
Cambridge University Press (2010).

[3] Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin,
L.: Rodin: an open toolset for modelling and reasoning in Event-
B. STTT 12(6) (2010) 447–466. Tool webpage: http://rodin-b-sharp.
sourceforge.net

[4] Aı̈t-Sadoune, I., Ameur, Y.A.: Stepwise development of formal models
for web services compositions: Modelling and property verification. T.
Large-Scale Data- and Knowledge-Centered Systems 10 (2013) 1–33.

[5] Aman, B., Ciobanu, G.: Real-time migration properties of rTiMo
verified in Uppaal. In: Proc. of SEFM’13. Volume 8137 of LNCS,
Springer (2013) 31–45.

[6] Ameur, Y.A., Baron, M., Kamel, N., Mota, J.M.: Encoding a process
algebra using the Event B method. STTT 11(3) (2009) 239–253.

[7] Bryans, J.W., Fitzgerald, J.S., Romanovsky, A., Roth, A.: Patterns for
modelling time and consistency in business information systems. In:
Proc. of ICECCS’10, IEEE Computer Society (2010) 105–114.

[8] Cansell, D., Méry, D., Rehm, J.: Time constraint patterns for Event
B development. In: Proc. of B’07. Volume 4355 of LNCS, Springer
(2007) 140–154.

[9] Ciobanu, G., Koutny, M.: Modelling and Verification of Timed Inter-
action and Migration. In: Proc. of FASE’08. Volume 4961 of LNCS,
Springer (2008) 215–229.

[10] Ciobanu, G., Koutny, M.: Timed mobility in process algebra and Petri
nets. J. Log. Algebr. Program. 80(7) (2011) 377–391.

[11] Ciobanu, G., Juravle, C.: Flexible software architecture and language
for mobile agents. Concurrency and Computation: Prac. and Exper.
24(6) (2012) 559–571.

[12] Ciobanu, G., Prisacariu, C.: Timers for distributed systems. ENTCS
164(3) (2006) 81–99.

[13] Ciobanu, G., Zheng, M.: Automatic analysis of TiMo systems in PAT.
In: Proc. of ICECCS’13, IEEE (2013) 121–124.

[14] Ciobanu, G., Koutny, M.: PerTiMo: A model of spatial migration with
safe access permissions. Computer Journal (2014) to appear.

[15] Ciobanu, G., Rotaru, A.: A probabilistic logic for pTiMo. In: Proc. of
ICTAC’13. Volume 8049 of LNCS, Springer (2013) 141–158.

[16] Hennessy, M.: A Distributed ⇡-calculus. Cambridge University Press
(2007).

[17] Kamali, M., Laibinis, L., Petre, L., Sere, K.: Formal development of
wireless sensor-actor networks. Sci. Comput. Program. 80 (2014) 25–
49.

[18] Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the
B method. Int. J. Softw. Tools Technol. Transf. 10(2) (2008) 185–203.

[19] Romanovsky, A., Thomas, M., eds.: Industrial Deployment of System
Engineering Methods. Springer (2013).

[20] Sarshogh, M.R., Butler, M.J.: Specification and refinement of discrete
timing properties in Event-B. ECEASST 46 (2011) 1–15.

