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Abstract

We present a formal modelling approach using Abstract Data Types (ADTs) for large-
scale system development in Event-B. The novelty of our approach is the combination
of refinement and instantiation techniques to manage the complexity of systems under
development. With ADTs, we model system components on an abstract level, specify-
ing just their necessary properties, and we postpone the introduction of their concrete
definitions to later development steps. As the ADTs are incrementally instantiated and
become more concrete, behavioural details of systems are expanded via refinement in a
manner consistent with the ADTs’ transformation. We evaluate this approach using a
large-scale case study in train control systems. The results show that our approach helps
reduce system details during early development stages and leads to simpler and more
automated proofs.
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1. Introduction

Event-B [1] is a well-established formalism for developing systems whose components
can be modelled as discrete transition systems. An Event-B model contains two parts:
a dynamic part (called machines) modelled by a transition system and a static part
(called contexts) capturing the model’s parameters and assumptions about them. Event-
B’s main technique to cope with system complexity is stepwise refinement, where design
details are gradually introduced into the formal models. Refinement enables the abstrac-
tion of machines, and since abstract machines contain fewer details than concrete ones,
they are usually easier to verify.

When developing large, complex systems, refinement alone is often insu�cient. Ma-
chines containing su�cient details to state and prove relevant safety properties may lead
to proofs of unmanageable complexity. We observed this limitation while developing a
large-scale train control system by refinement in Event-B. To specify and reason about
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the system’s collision-freeness and non-derailment properties, we needed to provide de-
tailed models, for example formalising the network on which the trains operate and the
trains’ position and movement. As a consequence, we had to state numerous complex
invariants which resulted in many complicated manual proofs. This motivated an alter-
native approach to abstract away additional details from the system model to reduce the
complexity and increase the automation of the resulting proofs.

Approach. To increase system abstraction and reuse during modelling, we introduce
Abstract Data Types (ADTs) [2] in Event-B. An ADT is a mathematical model of a class
of data structures. It is typically defined by a set of operations that can be performed on
the ADT, along with a specification of their e↵ect. By using Event-B contexts to formalise
ADTs, we can subsequently utilise the ADTs to model the system’s dynamic behaviour
in the machines. We use generic instantiation [3] to further concretise and thereby
implement the ADTs. As the ADTs evolve, the machines are also refined accordingly.

We evaluate our approach by using it in a pilot project to formalise a part of a
CBTC software system developed by Hitachi Ltd., and measuring how the use of ADTs
reduces the size and increases the automation of the developments. Given an informal
specification of a train control system, we incrementally develop a formal model of the
overall system. This includes modelling the trains, the interlocking system, and the train
controller. The complexity of the case study is comparable with that of real train control
systems such as CBTC [4] or ETCS Level 3 [5]. We develop the controller all the way to a
concrete implementation that runs on specialised hardware. To our knowledge, this is the
first published development of a train control system on the system level, i.e., modelling
the train controller together with its environment, that is correct-by-construction.

Contribution. Our contribution is to introduce ADTs into a refinement formalism and
show how they can be used to manage development complexity. In this paper, we use
Event-B [1] to illustrate our approach, but other refinement formalisms such as ASMs [6],
Action Systems [7], or TLA [8] could be used instead. We show that reasoning using
ADTs can be done purely based on the properties of the ADTs’ operations, regardless of
how they are implemented. As a result, systems specified with ADTs are more abstract
and hence easier to verify than systems developed directly without them. In fact, ADTs
encapsulate part of the system’s dynamic behaviour in the static context of Event-B,
while the machine merely “calls” the ADTs’ operations. This is novel as traditionally
Event-B contexts are only used to specify static parameters of a system’s model and all
dynamic behaviour is modelled as a transition system in the Event-B machines. Fur-
thermore, our use of generic instantiation is novel as this technique has so far only been
applied to reuse developments, for example in [9]. Using generic instantiation, we e↵ec-
tively perform data refinement for the ADTs within contexts. In contrast, we use generic
instantiation to gradually introduce details into the formal models similar to refinement.

The way we use ADTs allows them to be used alongside refinement. Hence, one
can combine these two di↵erent abstraction techniques during development and apply
whichever fits better at a particular development stage and results in simpler proofs. In
contrast to development strategies that use refinement or ADTs exclusively, our approach
is more flexible and thereby appears better suited for developing large-scale industrial
systems. More details on related work can be found in Section 5.
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Structure. The rest of this paper is structured as follows. In Section 2, we briefly review
Event-B, including refinement and instantiation techniques. We motivate and present
our approach in Section 3. We evaluate it on an industrial case study in Section 4.
Finally, we discuss related work in Section 5 and conclude in Section 6.

2. The Event-B Modelling Method

We use Event-B [1] for our developments. Event-B represents a further evolution of
the classical-B method [10], which has been simplified and focused around the notion
of events. Event-B has a semantics based on transition systems and simulation between
such systems. We will not describe in detail Event-B’s semantics here; full details are
provided in [1, 11]. Instead, we will describe those modelling concepts that are important
for our subsequent presentation.

Event-B models are organised in terms of two constructs: contexts and machines.

Contexts. Contexts specify the static part of a model and may contain carrier sets,
constants, axioms, and theorems. Carrier sets are similar to types. Axioms constrain
carrier sets and constants, whereas theorems express properties derivable from axioms.
The role of a context is to isolate the parameters of a formal model (carrier sets and
constants) and their properties, which are intended to hold for all instances.

Machines. Machines specify behavioural properties of Event-B models. Machines may
contain variables, invariants, theorems, and events. Variables v define the state of a
machine.2 They are constrained by invariants I (v). Theorems are properties derivable
from the invariants. Possible state changes are described by events. An event e can be
represented by the term

e b= any t where G(t , v) then S (t , v) end ,

where t is the event’s parameters, G(t , v) is the event’s guard (the conjunction of one or
more predicates), and S (t , v) is the event’s action. The guard states the condition under
which an event may occur, and the action describes how the state variables evolve when
the event occurs. The event’s action is composed of one or more assignments of the form
x := E (t , v), where x is a variable in v . Assignments may also be nondeterministic, but
we omit this additional complexity here as it is not used in this paper. All assignments
of an action S (t , v) occur simultaneously. A dedicated event without any parameters or
guard is used for initialisation.

Refinement. Refinement provides a means to gradually introduce details about the sys-
tem’s dynamic behaviour into formal models [1]. A machine CM can refine another
machine AM. We call AM the abstract machine and CM the concrete machine. The
abstract machine’s states are related to the concrete machine’s states by a gluing invari-
ant J (v ,w), where v are the variables of the abstract machine and w are the variables
of the concrete machine. A special case of refinement (called superposition refinement)

2When referring to variables v , parameters t , carrier sets s, or constants c, we usually allow for
multiple variables, parameters, carrier sets, or constants, and we abuse the notation and treat them as
sets of the corresponding objects.
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is when v is kept in the refinement, i.e., v ✓ w . Intuitively, any behaviour of CM can
be simulated by a behaviour of AM with respect to the gluing invariant J (v ,w).

Refinement can be reasoned about on a per-event basis. Each event e of the abstract
machine is refined by one or more concrete events f. Simplifying somewhat, we can say
that f refines e if f’s guard is stronger than e’s guard (guard strengthening), and the
gluing invariant J (v ,w) establish a simulation of f by e (simulation).

Instantiation. Instantiation is a technique for reusing models by providing values for
their parameters. Since an Event-B model is parameterised by the carrier sets and
constants, instantiation in Event-B [3, 9] amounts to instantiating the contexts.

Suppose we have a generic development with machines M1, . . . ,Mn building a chain
of refinements with carrier sets s and constants c, constrained by axioms A(s, c). Suppose
too that we want to reuse the development within another context, specified by (concrete)
carrier sets t and constants d , constrained by axioms B(t , d). Let T (t), which must be an
Event-B type expression, and E(t , d) be the instantiated values for s and c respectively.
Given that the instantiation is correct, i.e.,

B(t , d)) A(T (t), E(t , d)) ,

the instantiated development where s and c are replaced by their corresponding instan-
tiated values is correct-by-construction.

For more details on instantiation in Event-B and its tool support see [3] and [9]. All
instantiation steps described in this paper were performed using the generic instantiation
plug-in [12] for the Rodin platform [13]. The plug-in is jointly developed by Hitachi
and ETH Zurich. An example of generic instantiation can be found in Section 3.2 for
implementing ADTs.

3. Abstract Data Types in Event-B

We now describe how to specify and implement ADTs in Event-B. Our approach is
based on refinement and generic instantiation. An ADT is typically defined in terms of
a set of operations that can be performed on the ADT, along with a specification of the
operations’ e↵ect. Let us start with the standard example: a stack is a last-in first-out
data type that contains a collection of elements and is characterised by three operations:

• push: takes a stack S and an item e and returns a new stack, where e is added to
the top of S .

• pop: takes a (non-empty) stack S and returns a new stack, where S ’s top element
is removed.

• top: takes a (non-empty) stack S and returns S ’s top element.

A special stack is the empty stack that contains no elements. Three important constraints
on the stack operations are: Given a stack S and an element e, push(S , e) 6= empty ,
pop(push(S , e)) = S , and top(push(S , e)) = e.

ADTs and their operations can be modelled using carrier sets, constants, and axioms
in Event-B. Instantiation can be used to “implement” an ADT using other ADTs. The
instantiation proofs ensure that the implementations satisfy their specification.
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3.1. Specifying ADTs in Event-B

Each ADT A is modelled as follows:

• A carrier set A TYPE defines the type of the A objects.

• An associated set constant A ✓ A TYPE represents all valid A objects.3

• Each operation is modelled as a constant.

• The constraints on the operations are specified using axioms.

Consider the stack ADT for elements of type ELEM . It can be modelled in Event-B
as follows.

sets : STACK TYPE

constants : STACK , empty , push, pop, top

axioms :
axm0 1 : STACK ✓ STACK TYPE
axm0 2 : empty 2 STACK
axm0 3 : push 2 STACK ⇥ ELEM ! STACK
axm0 4 : pop 2 STACK \ {empty}! STACK
axm0 5 : top 2 STACK \ {empty}! ELEM
axm0 6 : 8S , e ·S 2 STACK ) push(S 7! e) 6= empty
axm0 7 : 8S , e ·S 2 STACK ) pop(push(S 7! e)) = S
axm0 8 : 8S , e ·S 2 STACK ) top(push(S 7! e)) = e

In the above, the notation S ⇥ T corresponds to the Cartesian product of S and T ,
f 2 S!T specifies that f is a total function from S to T , and a 7! b denotes the ordered
pair (a, b). The axioms axm0 6–axm0 8 specify the relationship between the pop, top,
and push operations and the constant stack empty . Note that there is no need to fully
specify an ADT. For example, additional operations and axioms are required to support
inductive reasoning about stacks. In subsequent examples, we define as many axioms as
are needed to prove the stated properties.

3.2. Implementing ADTs by Instantiation

A possible implementation of the stack ADT is one where a stack is represented as
an array, where arrays are defined by an array ADT. Specifically, a stack is represented
by a pair (f, n), where n is the stack’s size and f is an array of size n representing its
content. Operations of the array ADT are as follows:

3Note that we do not currently support the definition of parameterised ADTs, which would allow one
to specify a generic stack ADT independent of its elements’ type.
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• append : takes an array A and an element e and returns a new array where e is
appended to the end of A.

• front : takes an array A and returns a new array where A’s last element is removed.

• last : takes an array A and returns A’s last element.

The array datatype is specified in Event-B as follows.

constants : ARRAY , append , front , last

axioms :
axm1 1 : ARRAY = {f 7! n | n 2 N ^ f 2 0 .. n� 1! ELEM }
axm1 2 : append = (� (f 7! n) 7! e·f 7! n 2 ARRAY ^ e 2 ELEM

| (f C� {n 7! e}) 7! n+ 1)

axm1 3 : front = (� f 7! n·f 7! n 2 ARRAY ^ n 6= 0
| (({n� 1}C� f) 7! n� 1))

axm1 4 : last = (� f 7! n·f 7! n 2 ARRAY ^ n 6= 0 | f(n� 1))

In the above, f C� {x 7! E} denotes the function identical to f except the entry at
x is assigned E, and {x} C� f denotes the function where the entry for x is removed
from f . Notice that at this point all the constants are concretely defined using lambda
abstractions. Note that, (�X ·P | E) denotes a lambda abstraction where the pattern
expression X specifies the domain of the function. More specifically, (�X ·P | E) is
defined to be the set comprehension {x·P | X 7! E}, where x is the list of variables that
appears in X.

To prove that the array datatype implements the stack ADT, we instantiate the stack
ADT as follows.

STACK TYPE  � P(Z⇥ ELEM )⇥ Z
STACK  � ARRAY

push  � append

pop  � front

top  � last

empty  � ? 7! 0

We must prove that the instantiated abstract axioms axm0 1–axm0 8 are derivable from
the concrete axioms axm1 1–axm1 4. The following theorems thm0 1–thm0 8 are the
instantiated versions of the corresponding abstract axioms, where the carrier sets and
constants are syntactically replaced according to the specified instantiation.
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thm0 1 : ARRAY ✓ P(Z⇥ ELEM )⇥ Z
thm0 2 : ? 7! 0 2 ARRAY
thm0 3 : append 2 ARRAY ⇥ ELEM !ARRAY
thm0 4 : front 2 ARRAY \ {? 7! 0}!ARRAY
thm0 5 : last 2 ARRAY \ {? 7! 0}! ELEM
thm0 6 : 8S , e ·S 2 ARRAY ) append(S 7! e) 6= ? 7! 0
thm0 7 : 8S , e ·S 2 ARRAY ) front(append(S 7! e)) = S
thm0 8 : 8S , e ·S 2 ARRAY ) last(append(S 7! e)) = e

The proofs that thm0 1–thm0 8 are derivable from axm1 1–axm1 4 can be constructed
by expanding the definitions of the concrete constants, i.e., ARRAY , append , front , and
last , accordingly. For instance, the proof of thm0 2 gives rise the following sub-goals:

0 2 N, and

? 2 0 ..�1! ELEM ,

which are trivial to prove. The proof of thm0 6 eventually requires proving that n+1 6= 0
for any natural number n, which is again trivial. The Rodin platform archive of the
development can be found online.4

4. Developing a Train Control System Using ADTs

In this section, we illustrate our approach on an industrial case study. We first briefly
describe the system and explain the di�culties in developing such a complex system
without ADTs. We then present part of the development where we used ADTs. Finally,
we evaluate our approach by giving an overview of the entire development together with
statistics that document our approach’s e↵ectiveness.

4.1. System Description

In our case study, we develop part of a modern train control system. The system
is intended to keep all trains in a railway network at a safe distance apart to prevent
collisions. The network consists of tracks divided into sections, and of points connecting
these tracks. An interlocking system switches the points to connect di↵erent tracks
together, and results in a dynamically changing track layout. Instead of light signals,
the train control system uses radio communication to send the trains the permission to
move or stop.

Many train control systems use trackside hardware to detect whether a section is
occupied by a train. By contrast, our system determines this information from the
trains’ position and length. An overview of the interacting system components is given
in Figure 1. The trains themselves determine their positions and send them to the train
control system by radio. Based on information about which parts of the network are
occupied, the controller calculates for each train the area in which it can safely move
without collisions. This area is called the Movement Authority (MA) and represents the

4URL: http://sourceforge.net/projects/gen-inst/files/Examples/
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Figure 1: Train control system with the interlocking system as its environment

permission for a train to move as long as it does not leave this area. The calculated MAs
are then directly sent to the trains where an onboard unit interprets them to calculate
the location where the permission to drive ends, called the Limit of Authority (LoA). To
prevent driving over the LoA, the onboard unit continuously determines a speed limit
and applies the train’s emergency brakes if necessary.

The most important properties of the train system are collision-freeness and non-
derailment.

REQ 1

There must be no collision
between any two (di↵erent) trains in the system.

REQ 2

Every train in the system must stay on the tracks of
the network.

Collision-freeness between trains, i.e., (REQ 1), is guaranteed by the overall system
and relies on two conditions: (C1) The trains are always within their assigned movement
authorities, and (C2) the controller ensures that the MAs issued to the trains do not
overlap. In fact, (C1) is implementable only if the MAs issued by the controller are never
reduced at the front of the trains. Non-derailment, i.e., (REQ 2), is ensured by condition
(C1) mentioned before, and condition (C3) stating that the controller only grants MAs
over the active network.

4.2. The Need for Abstraction

In this section, we review our initial failed attempt to model the train control sys-
tem using Event-B refinement without ADTs. This motivates the development of our
approach using ADTs, described in Section 4.3. Our first challenge in developing the
train control system is formalising the trains in the network. Figure 2 depicts a train
occupying a part of the network. It illustrates a sequence of sections with fully occupied
sections in the middle and partially occupied sections at each end of the train.

In our first attempt at modelling this system, we used di↵erent variables to denote
how trains occupy the network. Let ids be the set of active trains in the network. We
modelled the di↵erent aspects of the trains, such as their head, rear, middle, connections,
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sequence&of&sec2ons&Figure 2: A train occupying a sequence of sections

etc., by total functions as follows. For clarity, we omit from the presentation other aspects
of the trains, such as the head- and rear-position within a section.

variables : ids , head , rear ,middle, connection, . . .

invariants :
inv0 1 : head 2 ids ! SECTION
inv0 2 : rear 2 ids ! SECTION
inv0 3 : middle 2 ids ! P(SECTION )
inv0 4 : connection 2 ids ! (SECTION 7⇢ SECTION )
inv0 5 : 8t ·t 2 ids ) head(t) /2 middle(t)
inv0 6 : 8t ·t 2 ids ) rear(t) /2 middle(t)
inv0 7 : 8t ·t 2 ids ^ connection(t) = ? ) head(t) = rear(t)
inv0 8 : 8t , s ·t 2 ids ^ s 2 ran(connection(t)) )

head(t) 7! s 2 cl(connection(t))
inv0 9 : 8t , s ·t 2 ids ^ s 2 dom(connection(t)) )

s 7! rear(t) 2 cl(connection(t))

In the above, f 2 S 7⇢ T specifies that f is a partial injective function from S to T ,
dom(r) and ran(r) represent the domain and range of a relation r, respectively, and cl
denotes the irreflexive transitive closure as defined in [1]. The invariants inv0 5–inv0 9

specify several properties of trains. For example, inv0 7 specifies that if a train occupies
only a single section, its head and rear are in the same section. Furthermore, inv0 8 and
inv0 9 state that every train is connected from its head and its rear.

To motivate the need for additional abstraction during modelling, we focus on the
events train extend and train reduce.

train extend :
any t , s where

t 2 ids
s /2 dom(connection(t))
head(t) /2 ran(connection(t))

then

head(t) := s
middle(t) := (middle(t) [ {head(t)}) \ {rear(t)}
connection(t) := connection(t) [ {s 7! head(t)}

end
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train reduce :
any t where

t 2 ids
rear(t) 2 ran(connection(t))

then

rear(t) := connection(t)�1(rear(t))
connection(t) := connection(t) \ {connection(t)�1(rear(t)) 7! rear(t)}

end

In the above, r�1 denotes the inverse relation of r.
The event train extend extends a train, denoted by t , to a section, denoted by s.

Namely, train extend prepends s to the train’s head and s becomes the new head. This
event is used whenever the train reaches the end of the current head section and moves
to the beginning of the next section in front of it. The event’s guard ensures that
t ’s connection remains a partial injective function (inv0 4). When updating middle(t),
we remove rear(t) to guarantee that when the train occupies only one section (i.e.,
connection(t) = ?, and hence head(t) = rear(t) by inv0 7), the train’s middle is still
empty afterwards.

The event train reduce reduces a train t by removing its rear. The event’s guard
guarantees that the train spans at least two sections. Its action updates t ’s rear and
connection accordingly.

Proving that train extend and train reduce maintain the invariants, e.g., inv0 5 and
inv0 6, requires additional invariants that relate the di↵erent aspects of trains, i.e., head,
rear, middle, and connection. Two examples of this are the following invariants, inv0 10

and inv0 11.

inv0 10 : 8t ·middle(t) = dom(connection(t)) \ {head(t)}
inv0 11 : 8t ·middle(t) = ran(connection(t)) \ {rear(t)}

Table 1 shows the proof statistics for the incomplete development using Rodin 2.3
(the latest version available at the time of development) with the Atelier-B provers.
After 14 refinement steps and 45 di�cult manual proofs, we stopped our development
with numerous undischarged proof obligations remaining due to missing invariants. We
would have needed additional invariants that are complex to express and would lead to
even more complex proofs. Considering the proof e↵ort needed up to this point, and the
additional e↵ort anticipated to complete the development, we concluded that continuing
this way would be infeasible. Hence it was necessary to adapt our development strategy
and incorporate additional abstraction techniques to simplify the proofs. In what follows,

Obligations Auto. Manual Undischarged
14 Refinements 666 497 (75%) 45 (7%) 124 (18%)

Table 1: Statistics from incomplete development without ADTs (Rodin 2.3, with the Atelier-B provers)

we discuss several problems with the current train system model and indicate how further
modelling abstractions using ADTs could help to overcome these di�culties.
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Encapsulation. The invariants inv0 5–inv0 11 describe that the trains’ layouts change
independently of each other. As a result, the preservation of the invariants should be
proven on a per train basis and by hiding the rest of the model. In Event-B, however,
invariants are global and all other parts of the system are taken into account during
their proofs, which substantially increases their complexity. This suggests that some
encapsulation for the trains’ models will help simplify our proofs.

High-level Properties of Low-level Details. An attempt to specify and prove properties
such as collision-freeness (REQ 1) at a concrete level, like that described above, leads to
complicated models and di�cult proofs. In particular, expressing relationships between
sequences, such as “containment” (e.g., a train is always within its movement authority)
and “being disjoint” (e.g., the movement authorities of two di↵erent trains do not overlap)
using information about the sequences’ head, rear, middle and connections, is far from
trivial. This suggests that we should start modelling the system at an even more abstract
level by omitting the detailed aspects of the sequences.

Modelling Using Transitive Closure. Establishing invariants involving transitive closure,
i.e., inv0 8 and inv0 9, is extremely complicated. In the end, we did not manage to prove
all of the resulting proof obligations. One reason for this is that additional invariants
were missing. However, this suggests that the decision to model using transitive closure
was not a good one. In particular, if we can model at a more abstract level, we can delay
the decision of which data type is used to model trains until we have more complete
requirements for the data type. In fact, the formal model described in Section 4.3 does
not use transitive closure.

Reuse. In addition to the above problems, another motivation for using ADTs in our
development is that modelling the trains’ movement authorities is similar to modelling
the trains. In fact, both trains and their MAs can be modelled using the same ADT,
which allows reuse of proofs.

4.3. Development using Abstract Data Types

In our development of the train control system, we develop the ADTs used for mod-
elling the trains and MAs, as follow.

• We start with an ADT that represents regions within the network.

• We subsequently instantiate the region ADT with an ADT representing sequences
of sections.

• Finally, we instantiate the sequence ADT with the ADT corresponding to arbitrary-
based arrays.

Another entity of the system that we model using ADTs is the active network that is
controlled by the interlocking system.

• We start with an ADT representing the network.

• We subsequently instantiate the network ADT with an ADT representing graphs,
where nodes are sections and edges correspond to connections between sections.
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These ADTs allow us to encapsulate the concepts useful for modelling, such as a
region within a network. Moreover, we used the same ADT to model di↵erent aspects
of the system. For example, both trains and MAs are represented abstractly by the
Region ADT. Finally, important high-level properties of the system can be specified and
reasoned about easily using the ADTs.

In the following, we describe the ADTs with their usage in our formal model in the
order that we defined them.

4.3.1. The Network ADT
The network ADT abstractly represents the interlocking system, which controls the

active network on which the trains operate. The network ADT has two operations.

• enlarge: takes a network N , a relation between sections g (which must be a partial
injective function), a set of sections s, and returns a new network where g and s
become active, i.e., trains can operate on these connections and sections.

• contract : takes a network N , a relation between sections g (which must be a partial
injective function), a set of sections s, and returns a new network where g and s
become inactive.

In Event-B, the network ADT is modelled as follows.

sets : NETWORK TYPE

constants : NETWORK , enlarge, contract

axioms :
axm0 1 : NETWORK ✓ NETWORK TYPE

axm0 2 : enlarge 2

0

@
NETWORK

⇥ (SECTION 7⇢ SECTION )
⇥ P(SECTION )

1

A 7! NETWORK

axm0 3 : contract 2

0

@
NETWORK

⇥ (SECTION 7⇢ SECTION )
⇥ P(SECTION )

1

A 7! NETWORK

The axioms axm0 1–axm0 3 specify “typing” information of the operations. Additional
axioms stating the consistency of the network ADT’s operations are related to the region
ADT introduced in Section 4.3.2.

Using this network ADT, the interlocking system can be abstractly modelled as fol-
lows, where network represents the current active network.

variables : network
invariants :
inv0 1 : network 2 NETWORK
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network enlarge :
any g , s where

network 7! g 7! s 2 dom(enlarge)
then

network := enlarge(network 7! g 7! s)
end

network contract :
any g , s where

network 7! g 7! s 2 dom(contract)
then

network := contract(network 7! g 7! s)
end

4.3.2. The Region ADT
Abstracting away the details of trains, such as head, rear, middle, and connections,

we start our modelling with an ADT corresponding to network regions. The region ADT
focuses on relationships between regions such as “contained” and “disjoint” and includes
operations such as “extend”.

• contained : a binary relation associating a region R1 with every region R2 that
contains R1.

• disjoint : a binary relation associating two regions R1 and R2 with each other if
they do not overlap.

• extend : takes a region R and a section s, and returns a new region where s is added
to R.

Note that there are other operations of the region ADT that we omit for clarity. The
region ADT is formalised as follows.

sets : REGION TYPE

constants : REGION , contained , disjoint , extend

axioms :
axm1 1 : REGION ✓ REGION TYPE
axm1 2 : contained 2 REGION $ REGION
axm1 3 : disjoint 2 REGION $ REGION
axm1 4 : extend 2 REGION ⇥ SECTION 7! REGION
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Constraints on the operations of the region ADT are modelled as axioms. For ex-
ample, contained is transitive (axm1 5), disjoint is symmetric (axm1 6), and extend is
strengthening with respect to contained (axm1 7). Note that in the following, we use
R1 b R2 to denote R1 7! R2 2 contained , and R1 6e R2 to denote R1 7! R2 2 disjoint .

axm1 5 : 8R1,R2,R3 ·R1 b R2 ^ R2 b R3 ) R1 b R3

axm1 6 : 8R1,R2 ·R1 6e R2 ) R2 6e R1

axm1 7 : 8R, s ·R 7! s 2 dom(extend) ) R b extend(R 7! s)
axm1 8 : 8R1,R2,R3 ·R1 b R2 ^ R2 6e R3 ) R1 6e R3

Note that our axiomatisation simplifies the construction of correctness proofs for the
system, where the role of the axioms is similar to that of lemmas in a complex proof.
During generic instantiation, these axioms become theorem statements that must be
proven.

To express the non-derailment property (REQ 2), we must link the region ADT with
the network ADT defined in Section 4.3.1. The following “inside” operation captures the
relationship between them.

• inside: a binary relation associating a region R with a network N if R is inside N .
In the following, R v N denotes R 7! N 2 inside.

constants : inside

axm1 9 : inside 2 REGION $NETWORK
axm1 10 : 8R1,R2 ·R1 b R2 ^ R2 v N ) R1 v N
axm1 11 : 8R,N , g , s ·R v N ^ N 7! g 7! s 2 dom(enlarge) )

R v enlarge(N 7! g 7! s)

The current states of the active trains and their associated movement authorities are
represented by two mappings (train and ma) from trains’ identifiers ids to the set of
possible regions REGION . The invariant inv1 3 states that the trains always stay within
their movement authorities. The invariant inv1 4 states that the movement authorities
of any two trains are disjoint. The invariant inv1 5 states that the movement authorities
are always inside the active network.

variables : ids , train,ma

invariants :
inv1 1 : train 2 ids ! REGION
inv1 2 : ma 2 ids ! REGION
inv1 3 : 8t ·t 2 ids ) train(t)bma(t)
inv1 4 : 8t1, t2 ·t1 2 ids ^ t2 2 ids ^ t1 6= t2 ) ma(t1) 6ema(t2)
inv1 5 : 8t ·t 2 ids ) ma(t)v network
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Properties such as collision-freeness (REQ 1) and non-derailment (REQ 2) are theorems
derivable from the invariants inv1 3, inv1 4, and inv1 5, and the property relating b, 6e,
and v, e.g., axm1 6, axm1 8, and axm1 10.

thm1 1 : 8t1, t2 ·t1 2 ids ^ t2 2 ids ^ t1 6= t2 ) train(t1) 6e train(t2)
thm1 2 : 8t ·t 2 ids ) train(t)v network

For example, the proof of thm1 1 is as follows. For all t1 and t2, we prove that if
t1 2 ids ^ t2 2 ids ^ t1 6= t2 then train(t1) 6e train(t2).

train(t1) 6e train(t2)
( {axm1 8}

train(t1)bma(t1) ^ ma(t1) 6e train(t2)
( {inv1 3}

ma(t1) 6e train(t2)
( {axm1 6}

train(t2) 6ema(t1)
( {axm1 8}

train(t2)bma(t2) ^ ma(t2) 6ema(t1)
( {inv1 3 and inv1 4}
>

This proof corresponds to the informal reasoning mentioned in Section 4.1. It illustrates
that by introducing the region ADT we can abstractly state and prove central system
properties such as collision-freeness and non-derailment early in the development. This
leads to simple and understandable proofs.

The event network enlarge maintains inv1 5 trivially (with axm1 11). For the event
network contract, we must strengthen the guard accordingly.

network contract :
any g , s where

network 7! g 7! s 2 dom(contract)
8t ·t 2 ids ) ma(t)v contract(network 7! g 7! s)

then

network := contract(network 7! g 7! s)
end

The event train extend can be specified abstractly as follows. The last predicate of its
guard ensures that the extended train never exceeds its assigned movement authority,
and hence maintains inv1 3.
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train extend :
any t , s where

t 2 dom(train)
train(t) 7! s 2 dom(extend)
extend(train(t) 7! s)bma(t)

then

train(t) := extend(train(t) 7! s)
end

4.3.3. The Sequence ADT
The model at this stage is abstract in two ways: (1) its dynamic behaviour is not

fully described by the machine and (2) it uses the region and network ADTs, which
are not fully “implemented”. For (2), we utilise generic instantiation to introduce more
details on how the region and network ADTs and their operations are realised. Similar
to refinement, this realisation can be split into multiple instantiation steps.

In our development, we first replace the region ADT by the sequence ADT. The
sequence ADT includes the following operations:

• prepend : takes a sequence S and a section s and returns a new sequence where s
is added to the head of S .

• head : takes a sequence S and returns the head section of S .

• rear : takes a sequence S and returns the rear section of S .

• middle: takes a sequence S and returns the middle sections of S .

• link : takes a sequence S and returns the link between sections from the head to
the rear of S .

sets : SEQUENCE TYPE

constants : SEQUENCE , prepend , head , rear ,middle, link

axioms :
axm2 1 : SEQUENCE ✓ SEQUENCE TYPE
axm2 2 : prepend 2 SEQUENCE ⇥ SECTION 7! SEQUENCE
axm2 3 : head 2 SEQUENCE ! SECTION
axm2 4 : rear 2 SEQUENCE ! SECTION
axm2 5 : middle 2 SEQUENCE ! P(SECTION )
axm2 6 : link 2 SEQUENCE ! (SECTION 7⇢ SECTION )
axm2 7 : 8S ·S 2 SEQUENCE ) head(S ) /2 middle(S )
axm2 8 : 8S ·S 2 SEQUENCE ) rear(S ) /2 middle(S )
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Note that our sequence ADT formalizes some domain-specific aspects, such as the
axioms axm2 7 and axm2 8; as such, it di↵ers from the sequence data type, for example,
in [10]. As mentioned before, we have omitted additional operations, such as the head
and rear positions within a section, and their corresponding axioms, for brevity.

We prove that the sequence ADT is a valid representation of the region ADT with
the following instantiation.

REGION TYPE  � SEQUENCE TYPE

REGION  � SEQUENCE

extend  � prepend

We replace (instantiate) the operations contained and disjoint using head , rear , middle,
and link . For example, contained is instantiated as

contained =

8
>><

>>:
S 1 7! S 2 |

S 1 2 SEQUENCE ^ S 2 2 SEQUENCE ^
link(S 1) ✓ link(S 2) ^
members(S 1) ✓ members(S 2) ^
. . .

9
>>=

>>;
,

where members(S ) = {head(S )} [ middle(S ) [ {rear(S )}. Note that we omit from our
presentation additional conditions related to the exact position of the head and rear
within the section.

At this point, the sequence ADT is still abstract. In particular, we have not given the
exact definition for sequences and we still rely on operators such as head , rear , middle,
and link and the relationships between them.

Given the instantiation, we subsequently refine the dynamic behaviour of the system
(i.e., the machines). For the event train extend, the refinement removes the reference to
contained in the guard.

train extend :
any t , s where

t 2 dom(train)
head(train(t)) 6= head(ma(t))
. . . // other guards related to head/rear positions

then

train(t) := prepend(train(t) 7! s)
end

4.3.4. The Graph ADT
Similar to how the region ADT is replaced with the sequence ADT, we also transform

the network ADT into the graph ADT, where sections represent nodes and connections
between sections are modelled as edges. The graph ADT has the following operations:

• edges: take a graph G and returns its edges (a partial injective function between
sections).

• nodes: take a graph G and returns its nodes (a set of SEQUENCE ).
17



• add : takes a network G , a relation between sections g (a partial injective function),
a set of sections s, and returns a new graph where G and s are added.

• remove: takes a network G , a relation between sections g (a partial injective func-
tion), a set of sections s, and returns a new graph where g and s are removed.

The formalisation of the graph ADT is as follows. The axioms axm3 6 and axm3 7

specify that a graph’s edges connect only the nodes of the graph. The axioms axm3 8–
axm3 11 express how graphs’ edges and nodes change with the operations add and
remove.

sets : GRAPH TYPE

constants : GRAPH , edges,nodes, add , remove

axioms :
axm3 1 : GRAPH ✓ GRAPH TYPE
axm3 2 : edges 2 GRAPH ! (SECTION 7⇢ SECTION )
axm3 3 : nodes 2 GRAPH ! P(SECTION )

axm3 4 : add 2

0

@
GRAPH

⇥ (SECTION 7⇢ SECTION )
⇥ P(SECTION )

1

A 7!GRAPH

axm3 5 : remove 2

0

@
GRAPH

⇥ (SECTION 7⇢ SECTION )
⇥ P(SECTION )

1

A 7!GRAPH

axm3 6 : 8G ·G 2 GRAPH ) dom(edges(G)) ✓ nodes(G)
axm3 7 : 8G ·G 2 GRAPH ) ran(edges(G)) ✓ nodes(G)
axm3 8 : 8G , g , s ·G 7! g 7! s 2 dom(add) )

edges(add(G 7! g 7! s)) = edges(G) [ g
axm3 9 : 8G , g , s ·G 7! g 7! s 2 dom(add) )

nodes(add(G 7! g 7! s)) = nodes(G) [ s
axm3 10 : 8G , g , s ·G 7! g 7! s 2 dom(remove) )

edges(remove(G 7! g 7! s)) = edges(G) \ g
axm3 11 : 8G , g , s ·G 7! g 7! s 2 dom(remove) )

nodes(remove(G 7! g 7! s)) = nodes(G) \ s

The graph ADT is a trivial realisation of the network ADT, where the operations add
and remove implement enlarge and contract .

NETWORK TYPE  � GRAPH TYPE

NETWORK  � GRAPH

enlarge  � add

contract  � remove
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The operation inside that connects the network ADT and region ADT is realised by
linking the graph ADT and the sequence ADT’s operations as follows:

inside =

8
<

:S 7! G |
S 2 SEQUENCE ^G 2 GRAPH ^
link(S ) ✓ edges(G) ^
members(S ) ✓ nodes(G)

9
=

; .

A sequence S is within a graph G if S ’s links are edges of G , and the members (head,
middle, and rear) of S are nodes of G . This realisation of inside leads to the following
refinement of the event network contract.

network contract :
any g , s where

network 7! g 7! s 2 dom(contract)
8t ·t 2 ids ) link(ma(t)) \ g = ?
8t ·t 2 ids ) members(ma(t)) \ s = ?

then

network := contract(network 7! g 7! s)
end

The event network contract specifies that when the interlocking system disables a part of
the active network, represented by (g , s), there is no overlap between this part and the
MAs of any active train.

4.3.5. The Arbitrarily-based Array Data Type
The model based on the sequence ADT is abstract. To ensure that the model of

the software controller is implementable, we must give a representation for the sequence
ADT. In our development, we use an arbitrarily-based array data type to implement the
sequence ADT. An arbitrarily-based array is an array that starts from an arbitrary index,
in contrast to the common zero-based array that always starts from 0. More formally,
each arbitrarily-based array can be represented by a tuple a 7! b 7! f , where a and b are
the starting and ending indices and f represents the array’s content. The operations of
the arbitrarily-based array such as head , rear , middle, and link are defined accordingly.
For example, the head operation is defined as follows.

head = (� a 7! b 7! f ·a 7! b 7! f 2 ARRAY | f(a))

The advantage of using arbitrarily-based arrays compared to standard (zero-based)
arrays is that there is no need to shift indices when extending or reducing the arrays.
For example, the prepend operation is defined as follows.
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prepend =

0

BBBBBB@

� (a 7! b 7! f) 7! s ·
a 7! b 7! f 2 ARRAY ^
s 2 SECTION^
. . .

|
(a� 1) 7! b 7! (f C� {a� 1 7! s})

1

CCCCCCA

This simplifies the proof that the sequence ADT is correctly implemented by the array
data type.

4.4. Development Summary and Comparison

In our development of the train control system, the transformation of the region ADT
into the sequence ADT is carried out in several instantiation steps. The benefit of having
steps with small changes in the ADTs is that the machines that are specified using ADTs
can also be incrementally transformed in small steps. This also serves to decompose the
proof of correctness of the systems into small, simple instantiation and refinement steps.

Our development contains five di↵erent stages (numbered 0–4), connected by instan-
tiation relationships, where Stages 1–4 start as an instantiation of the previous stage.
Each stage contains several refinement steps, developing the system’s main functionality.

Stage 0 We formalise the system at the most abstract, generic level, using the region
ADT and the network ADT. In the refinement steps, we gradually introduce the
active network, the active trains, the trains’ movement authorities, the movement
authorities calculated by the controller, and the relationships between them.

Stage 1–3 We carry out the transformation from the region and network ADTs to
the sequence and graph ADTs in three di↵erent instantiations. In Stage 1 we
instantiate the contained operation (other operations such as inside and disjoint
are axiomatically defined as before). In Stage 2 we instantiate the inside operation
between the region ADT and the network ADT. Finally, in Stage 3 we instantiate
the disjoint operation. The refinement steps in these stages have two purposes: (1)
they transform the events to use the new data types, and (2) they introduce the
system’s design details, including notions like train ahead, train behind, and last
train within a section.

Stage 4 We instantiate the sequence ADT by the arbitrarily-based array data type.
We also incrementally introduce details on the calculation of the trains’ MAs.

Overall, our model using ADTs contains 67 refinements. The last machine contains
25 variables (6 that model the environment, 15 that model the state of the controller,
and 4 that model the communication channels); 30 events (11 that model the behaviour
of the environment, 13 that specify how the controller calculate MAs, and 6 that model
the communication between the trains and the controller). There are 107 invariants and
56 theorems within these 67 refinements.

Table 2 shows the proof statistics for our development using ADTs (for Rodin 3.0,
with the Atelier-B provers). We distinguish between proofs related to instantiation and
proofs related to refinement. Overall, 14% of the proofs are related to instantiation,
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and the other 86% are related to refinement. As expected, proofs for the machines at
the more abstract and generic levels are more automated. Most of the manual proofs
originating from instantiation (in particular of Stage 4) have a similar structure that
includes manually expanding the instantiation definitions. These proof steps could be
automated with a dedicated proof strategy, which would further increase the amount of
proof automation. Overall, the instantiation proofs have a better automation rate (82%)
than the refinement proofs (62%).

Obligations Auto. Manual
Stage 0 8 Refinements 267 267 0
Stage 1 Instantiation 34 24 10

14 Refinements 632 493 139
Stage 2 Instantiation 165 161 4

1 Refinement 57 48 9
Stage 3 Instantiation 175 172 3

16 Refinements 761 441 320
Stage 4 Instantiation 174 90 84

28 Refinements 1590 794 796

Total 3855 2490 (65%) 1365 (35%)
Instantiation 548 (14%) 447 (82%) 101 (18%)
Refinement 3307 (86%) 2043 (62%) 1264 (38%)

Table 2: Development with ADTs (Rodin 3.0 with the Atelier-B provers)

The number of refinement steps as well as the total number of discharged proof
obligations indicate that the size and complexity of our case study is significantly higher
than typical academic examples. Moreover, the level of detail in our models, which stems
from realistic requirements, supports our claims about the relevance of our approach for
large and complex real-world systems.

5. Related Work

5.1. Instantiation and Data Types

In our approach to introducing ADTs into formal development, generic instantia-
tion [3] is the key technique for realising the ADTs. This di↵ers from [9] where in-
stantiation provides a means to reuse formal models in combination with a composition
technique. In particular, to guarantee the correctness of an instantiated model, carrier
sets (which are assumed to be non-empty and maximal) must be instantiated by type
expressions. This has been overlooked in [3] and [9].

Part of our approach was previously published in [14]. The current paper is an
extended version of our conference paper [15]. In [14], our main motivation for using
ADTs was to encapsulate data and to split the development process into two parts that
can be handled by a domain expert and a formal methods expert, respectively. In this
paper, we focus more on the need for alternative forms of abstraction when developing
large, complex systems. We not only use ADTs to abstract away implementation details
for the domain expert, we also use them as an integral part of our development from the
start to abstractly specify the system’s properties and to simplify the proofs.
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The development of the Theory Plug-in [16] for Rodin allows users to extend the
mathematical language of Event-B, for example, by defining new data types, including
polymorphic ones. Theorems about new data types can be stated and later used by a
dedicated tactic associated with the plug-in. There is also a clear distinction between the
theory modules (capturing data structures and their properties) and the Event-B models
using the newly defined data structures. The main di↵erence between the Theory Plug-in
and our approach is that the data types in the Theory Plug-in are concrete. One must
give the complete definitions for the data types and prove theorems about them before
using these data types for modelling. This bottom-up approach is in contrast with our
top-down approach where the choice of implementations for ADTs can be delayed, and we
can have di↵erent implementations for the ADTs. For example, instead of implementing
the sequence ADT using arbitrarily-based arrays, we can use standard, zero-based arrays
for the same purpose. In fact, we experimented with both implementations and decided
to use arbitrarily-based arrays as they resulted in simpler proofs.

A recent release of the Theory plug-in includes the capability to define types and
operators axiomatically. However, polymorphism is not yet supported. As a result, it
is similar to our approach of using contexts to define ADTs. A notable di↵erence is
that operators defined axiomatically require the users to specify their well-definedness
conditions when the operators are partial. Specifying these conditions for an operator
at the abstract level can be challenging since not all necessary details about the data
type are available. In our approach, an operator is defined by a partial function and
the operator’s well-definedness condition is abstracted by the function’s domain. We
can delay the exact specification of the well-definedness condition until the data type is
concrete enough for that purpose. Using the Theory plug-in, additional operations must
be added to capture the “abstract” well-definedness conditions of the abstract operators.

Our approach of using ADTs in Event-B is similar to work on algebraic specifica-
tions [17]. In this domain, a specification contains a collection of sorts, operations,
and axioms constraining the operations. Specifications can be enriched by additional
sorts, operations, and axioms. Furthermore, to develop programs from specifications,
the specifications are transformed by a sequence of small “refinement” steps. During
these steps, the operations are coded until the specification becomes a concrete descrip-
tion of a program. For each such refinement step, one must prove that the operations’
code satisfies the axioms constraining them. An algebraic specification therefore corre-
sponds to an Event-B context, while refinement in algebraic specifications is similar to
generic instantiation in Event-B. In contrast to algebraic specifications [18], where the
entire functionality of a system is modelled as ADTs (in the form of many-sorted alge-
bras) [17], we use ADTs to abstract only part of our system’s functionality. Modelling
every aspect of a complex system like our example as an algebraic specification would
be very challenging. In addition to the data types, the transition systems must also be
encoded as ADTs in the specification. This would require a large number of axioms to
describe the transitions.

5.2. Formal Development of Railway Systems

Bjørner gives in [19] a comprehensive overview of formal techniques and tools used for
developing software for transportation systems. Beside techniques like model checking
and model-based test case generation, he mentions approaches using refinement. We
discuss the most relevant approaches below.
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The development of Metro line 14 in Paris [20, 21] is one of the better known industrial
applications of formal methods. In particular, the safety critical part of the software was
developed using the (classical) B Method [10]. The formal reasoning there was only at
the software-level, i.e., reasoning about the correctness of the software in isolation. In
contrast, we model not only the train control system, but also its environment, including
the trains and their movement behaviour. Hence, we can reason on the system-level
covering the overall structure of the system, its components, and their relationship [22].

In [23], James et. al. present an approach using the CSP || B formalism to model and
verify railway interlockings. In particular, they consider the tracking of train lengths
for trains spanning over several section. This is similar to our model of the head and
rear positions of the trains (which is omitted in this paper for brevity). However, since
they ultimately rely on model checkers as their verification tools, their model is already
“concrete”. Properties such as collision-freeness are checked at this concrete level. In
our development, we initially abstracted this information away using ADTs when prov-
ing these system properties. Subsequently, when we instantiated our ADTs with more
concrete representations, the system properties are automatically preserved. Moreover,
in [23], the properties are verified for two concrete network layouts, whereas we make no
assumptions regarding the actual network.

Platzer and Quesel verify parts of a similar train control system in [24] using their
own verification tool KeYmaera. While we developed the functionality of the controller,
their development focuses on the onboard unit. In their development, the controller
belongs to the environment of the onboard unit and they assume that the controller does
not issue MAs that are physically impossible for the trains. Our development fulfils this
assumption by guaranteeing that the MAs are never reduced.

6. Conclusion

In this paper we presented an approach to building formal models using ADTs and
refinement. The ADTs allow us to hide details that are unimportant for proving abstract
properties. One can therefore focus on building and refining abstract models of the
system’s core functionality. The way we introduce ADTs in our approach allows us to
utilise generic instantiation. This handles both the instantiation of an ADT by the chosen
data structure as well as the generation of the required proof obligations to guarantee that
the chosen structure is a valid instance of the ADT. As a large scale case study we have
successfully applied our approach to the development of a realistic train control system.
We identified the limitations of only using refinement for this system and used ADTs to
overcome this problem. In the subsequent work [25], we took the current development
and generated code for the train controller. Furthermore, we developed a framework
for simulating the generated code with a given network topology. For this purpose, we
instantiated the network with tracks and points in a realistic way.

As future work we would like to overcome some of the current limitations of our
work. As previously mentioned, we cannot presently specify parameterised ADTs. To
handle this, we would need to extend the semantics of Event-B contexts and adapt the
generic instantiation technique accordingly. We are also investigating the possibility of
incorporating the notion of data type instantiation within the Theory plug-in.
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