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Abstract

Decomposition is a technique to separate the design of a complex system into
smaller sub-models, which improves scalability and team development. In the
shared-variable decomposition approach for Event-B, sub-models share exter-
nal variables and communicate through external events which cannot be easily
refined.

Our first contribution hence is a proposal for a new construct called interface
that encapsulates the external variables, along with a mechanism for interface
instantiation. Using the new construct and mechanism, external variables can
be refined consistently. Our second contribution is an approach for verifying
the correctness of Event-B extensions using the supporting Rodin tool. We
illustrate our approach by proving the correctness of interface instantiation.
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1. Introduction

When decomposing a model into sub-models we intend to continue refining
the sub-models independently of each other while preserving the properties of
the full model. A suitable decomposition method for Event-B has been proposed
by Abrial [1]. It partitions events of a model between its sub-models. Variables
of the model are split correspondingly into external variables shared by the
sub-models and internal variables private to each sub-model. For all external
variables of a sub-model, external events that mimic the e↵ect of corresponding
(internal) events of other sub-models have to be added. If we want to refine
external variables, we have to provide a gluing invariant that is functional, say,
v = h(w) where v are the abstract variables and w the concrete variables.
Abrial [1] also proposes to rewrite the external events with v := h(w) so that
concrete and abstract events are equivalent. Internal variables and internal
events are refined as usual in Event-B [2].
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We propose a practical method for external event refinement that aids in
structuring and understanding complex models. This requires a trade-o↵ be-
tween generality and practicality. We believe that it would be di�cult to gener-
alise the method that we propose without sacrificing its practicality. The theory
of the method is not di�cult. Our aim is to make using a di�cult technique,
the refinement of external variables and external events in Event-B, as easy as
possible.

We call a collection of external variables with the external invariants an
interface. Modelling interfaces “manually” by marking the corresponding vari-
ables as being external and refining them by specifying functional invariants
makes it di�cult to decompose and refine a model repeatedly. Fig. 1 illustrates
the problem where a model M is decomposed three times and the resulting sub-
models are refined. We are interested in the two sub-models M1 and M2 at the
bottom. How do we find the shared external invariants?
The lists of variables w1, w2, v1 and v2 are not necessarily disjoint. Let w be

M

decomposes

refines

M1

v1 = h1(w1)

M2

v2 = h2(w2)

Figure 1: Maintaining the external invariants of several sub-models “manually”

the list of variables occurring in w1 or w2 and v be the list of variables occurring
in v1 or v2. We need to find one suitable external invariant v = h(w) to be
used in the sub-models M1 and M2. What is the shape of h? Furthermore,
when refining M2 we have to think about the necessary changes to M1. As a
consequence of the current situation, interfaces are refined to implementation
level before decomposition. This complicates the use of decomposition on higher
levels of abstraction. We would prefer a method where the necessary reasoning
can be restricted to one place. The functional invariant h should be evident and
easily maintainable also in the face of potential changes to the sub-models and
the interfaces.

Using our approach of interface instantiation this can be done. Because
we are treating instantiation as a special form of refinement, we can combine
interface instantiation steps with refinement steps. This gives us some liberty
in arranging complex refinements. We also encourage a decomposition style
where a separate theory of interface instantiation is maintained. We think that
this contributes substantially to obtain models that are easier to understand
and to modify. Interface instantiation supports a more incremental approach to
decomposition because modifications that concern several components can be
confined to only one place: the interface.

We call the very specific form of interface refinement that we use interface
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instantiation. To be useful, it should
(i) be more liberal than [1] while not increasing the proof e↵ort,
(ii) help to structure complex mixtures of decomposition and refinement,
(iii) work seamlessly with Event-B as it is. (It should not depend on transla-

tions.)
We argue by means of a case study that we have achieved this. The case study
addresses a di�culty of relating Event-B refinement to Problem Frames elabo-
ration [12] discussed in [7]. It has been composed from [7] and [15]. We have
down-sized it in order to focus on the problem of the refinement of external
variables, that is, the interfaces. We have a tool for decomposition [18] but
we do not have implemented a software tool for interface instantiation. Instan-
tiation of carrier sets has been implemented similarly internally in the ProB
tool [14], in order to achieve better performance when model checking and con-
straint checking [7]. The case study as presented in [15] uses Problem Frames to
achieve traceability of requirements. We have not used Problem Frames in this
article because they are not required to explain interface instantiation. This
also permits us to cast the problem entirely in Event-B terminology. However,
the proposed method of instantiation could be used with Problem Frames as
employed in [7, 15]. This work extends prior work presented in [9] by allowing
instantiations in a lattice of interfaces.

In the modularisation approach for Event-B presented in [11], the notion of
interface has been used to capture software specifications using some interface
variables and operations acting on these variables. The intention behind the use
of interfaces is to separate specifications from their implementations. Our notion
of interface is intended to provide e�cient support for refining external variables
following Abrial’s decomposition method for system models. There was an ear-
lier attempt at external variable refinement that is hinted at in the specification
of the proof obligation generator for the Rodin tool [8]. This was considered
too complicated and not feasible for large systems that are decomposed and
refined repeatedly. We think, that our approach solves the problem. Popple-
ton [16] discusses external refinement based on Abrial’s approach but also does
not provide a practicable technique for doing so. The approach of modelling
extensible records [6] also permits a form interface instantiation. A di�culty
with using this approach is caused by the explicit mathematical model used for
record representations and the need to specify always values for all fields of a
record. However, extensible records could be used with our approach where it
would appear useful. Behavioural interface refinement such as discussed in [17]
addresses changing traces sub-models can exhibit, usually adding new events.
It does not consider refinement of shared variables.

2. Event-B

Event-B models are described in terms of the two basic constructs: contexts
and machines. Contexts contain the static part of a model whereas machines
contain the dynamic part. Contexts may contain carrier sets, constants, ax-
ioms, and theorems, where carrier sets are similar to types [2]. A context D
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may extend a collection of contexts D1, . . . ,Dn. In this relationship we call D
the concrete context and D1, . . . ,Dn the abstract contexts. Machines provide
behavioural properties of Event-B models. Machines may contain variables, in-
variants, theorems, and events. Variables v describe the state of a machine.
They are constrained by invariants I (v). Theorems L(v) describe consequences
of the invariants, i.e., we have to prove I (v)) L(v).

Events. Possible state changes (from v to v 0) are described by means of events.
Each event is composed of a guard G(t , v) and an action x :| S (t , x , v 0), where
t are parameters the event may contain and x are some variables (a subset of
v). We denote an event e by

e b= any t where G(t , v) then x :| S (t , v , x 0) end .

Nondeterministic action assigning x to be an element of a set E (t , v) is denoted
by x :2 E (t , v). Deterministic actions are denoted by x := E (t , v). We denote
an event without parameters by

e b= when G(v) then x :| S (v , x 0) end ,

and an event without parameters and guard by

e b= begin x :| S (v , x 0) end .

A special init event without parameters and guard is used for the initialisation.

Example 1 (Model). We specify a system where a sender sends a set of mes-
sages to a receiver. In our model the sender keeps its messages in a variable s
and the receiver keeps the received messages in a variable r . To guarantee that
only messages can be received that could have been sent, we require r ✓ s. The
messages are described abstractly in context msg0. The set of all messages in
partioned into proper messages MSG and acknowledgements ACK :

context msg0
constants MSG ,ACK ,S
sets M
axioms
MSG 6= ? ^ACK 6= ? ^M = MSG [ ACK ^MSG \ ACK = ?
S ✓ MSG

end ,

and the behaviour of the system is described by machine sere0,

machine sere0 sees msg0
variables s, r
invariants s ✓ MSG ^ r ✓ s
events
event init b= begin s, r := S ,? end
event trans b= any x where x 2 s \ r then r := r [ {x} end

end .
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Message transfer is captured in one-shot with event trans. It is common in
Event-B to start with a model as simple as this one and gradually add more
detail to it by refinement [2].

Refinement. A machine N can refine another machine M. We call M the ab-
stract machine and N the concrete machine. The state of the abstract machine
is related to the state of the concrete machine by a gluing invariant J (v ,w)
associated with the concrete machine N, where v are the variables of the ab-
stract machine and w the variables of the concrete machine. Each event e of
the abstract machine is refined by one or more concrete events f.

Example 2 (Refinement). We prepare the decomposition of the model into a
sender and a receiver by refining machine sere0 such that sender snd and receiver
rec exchange messages by means of a channel m. In the refined model the sender
deletes messages from its bu↵er u after they have been sent. The sender and
the receiver implement a simple hand-shaking protocol based on the two kinds
of messages MSG and ACK . We extend msg0 with two constants a and ma,

context msg1 extends msg0
constants a,ma
axioms
ma 2 MSG !ACK
a 2 ACK

end .

Later, after decomposing the system into the sender and the receiver, these
constants will allow us to refine behaviour that was underspecified in the ab-
straction. E↵ectively, we have moved the corresponding nondeterminism into a
context. As a result, we can share their instantiation among the components
and refine them consistently. (Incidentally, we already have follwed this ap-
proach when introducing S in msg0.) The behaviour of the refined system is
described by machine sere1,

machine sere1 refines sere0 sees msg1
variables u, r ,m
invariants u ✓ s ^ ({m} \ MSG) ✓ s ^ u ✓ MSG ^ r ✓ MSG ^m 2 M
events
event init b= begin u, r ,m := S ,?, a end
event snd b= any x where x 2 u ^m 2 ACK then m, u := x , u \ {x} end
event rec refines trans b= when m /2 r [ ACK

then r ,m := r [ {m},ma(m) end
end .

We have introduced the redundant invariants u ✓ MSG , r ✓ MSG and m 2 M
to show where di↵erent invariants go when decomposing a machine. It may also
be seen as a preparatory step for the decomposition permitting us to distribute
some invariants of sere1 across the components after decomposing the machine.
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Decomposition. The idea of decomposition [1, 4, 10] is to split a large model
into smaller sub-models which can be handled more comfortably than the whole:
one should be able to refine these sub-models independently. For the purpose
of this article we limit the discussion to decomposition into two machines. De-
composition of a model M separates this model into sub-models M1 and M5.
These sub-models can then be refined independently into machines N1 and N5.
The correctness of the decomposition technique guarantees that the model N,
obtained by recomposing N1 and N5, is a refinement of the original model M.
Decomposition and recomposition are illustrated by Fig. 2. Note that recom-
position is never explicitly carried out. It is only in principle possible. The
central concern during modelling is to decompose an abstract machine and,
subsequently, refine the di↵erent sub-models separately.

M1 M5

M

N1 N5

N

Figure 2: Decomposition and Recomposition

Let M be a machine with variables x1, x3, x5 and invariants I (x1, x3, x5),
I1(x1, x3), I3(x3) and I5(x3, x5). Furthermore, let e1, e2, e4 and e5 be events
of M, accessing di↵erent sets of variables as follows. Let

e1 b= any u1 where E1(u1, x1) then x1 :| P1(u1, x1, x 0
1) end ,

e2 b= any u2 where E2(u2, x1, x3) then x1, x3 :| P2(u2, x1, x3, x 0
1, x

0
3) end ,

e4 b= any u4 where E4(u4, x3, x5) then x3, x5 :| P4(u4, x3, x5, x 0
3, x

0
5) end ,

e5 b= any u5 where E5(u5, x5) then x5 :| P(u5, x5, x 0
5) end .

Machine M can be decomposed into two separate machines: M1 with events e1
and e2; and M5 with events e4 and e5. This is illustrated in Fig. 3. As a result of

e1x1, x3

e2

e4⇤

M1 x3, x5

e2⇤
refines

e4
refines

e5

M5

Figure 3: Maintaining the external invariant of several sub-models

the decomposition, M1 has private variables x1 and shared variables x3. Invari-
ants I1(x1, x3) and I3(x3) can be attached to M1. The resulting sub-machine M1
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has two internal events e1 and e2 and one external event e4⇤ which abstracts1 e4
projected on the state containing only x1 and x3, that is, e4⇤ abstracts the event
any u4, x5 where E4(u4, x3, x5) then x3 :| 9x 0

5 ·P4(u4, x3, x5, x 0
3, x

0
5) end. Machine

M5 is similar to M1, with the two internal events e4 and e5 and an external event
e2⇤ that abstracts e2 projected on x3 and x5. It has the private variables x5 and
the shared variables x3. Machines M1 and M5 can be developed independently
with the syntactical constraints that the shared variables cannot be removed
and the external events can only be refined in a restricted way.

Note that invariant I (x1, x3, x5) is not copied to either M1 or M5. A possibil-
ity to use this invariant in one of the sub-models is to project also this invariant
on the corresponding state using existential quantifier. Thus, 9x5 ·I (x1, x3, x5)
could be added as an invariant to M1.

Example 3 (Decomposition). We decompose the machine sere1 into two ma-
chines sender1a and receiver1a. The sender has an internal event snd and an
external event rec. We mark external events with an asterisk “⇤”.

machine sender1a sees msg1
variables u,m
invariants u ✓ MSG ^m 2 M
events
event init b= begin u,m := S , a end
event snd b= any x where x 2 u ^m 2 ACK then m, u := x , u \ {x} end
event rec⇤ b= when m /2 ACK then m := ma(m) end

end .

The event snd is a textual copy of the corresponding event from sere1, whereas
rec⇤ is an abstraction of the corresponding event rec from sere1. (Variable r has
been abstracted away. See the aside at the end of this example.) Thanks to the
function ma event rec⇤ is deterministic and assigns an identical value to m as
does the internal event rec of the receiver below.

machine receiver1a sees msg1
variables r m
invariants r ✓ MSG ^m 2 M
events
event init b= begin r ,m := ?, a end
event snd⇤ b= when m 2 ACK then m :2 MSG end
event rec b= when m /2 r [ ACK then r ,m := r [ {m},ma(a) end

end .

Note that the assignment to m in the external event snd⇤ has become nonde-
terministic as a consequence of the abstraction from u.
Aside. In principle, decomposition can be done by a decomposition tool such
as [18]. The external event rec⇤ as produced by the decomposition tool would

1“e⇤ abstracts e” is the same as “e refines e⇤”.
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have the following shape:

rec⇤ b= any r where r ✓ M ^m /2 r [ ACK then m := ma(m) end .

The tool automatically quantifies over the variables that are internal to another
machine, in this case r . Manual decomposition usually leads to clearer models,
however, at the cost of having to “invent” suitable abstractions.

3. Instantiation

Carrier set and constant instantiation. Contexts can be extended as usual in
Event-B but we allow additionally to specify expressions to instantiate con-
stants and carriers sets. Abstract carriers sets s must be instantiated by type
expressions e(t) and constants c can be instantiated by expressions f (t , d), i.e.,

context C
sets s
constants c
axioms A(s, c)
end

context D extends C with s = e(t) , c = f (t , d)
sets t
constants d
axioms B(t , d)
end .

The equalities specifying the instantiation are treated similarly to axioms. The
abstract constants and carriers sets that are instantiated remain visible. By
contrast, the instantiation proposed in [2] replaces constants and carrier sets
in the instantiating context. Still, they are similar to [2]: The equations of the
extends-clause are used to rewrite the abstract axioms. If this changes an axiom,
that axiom must be proved to hold in the instantiating context. Otherwise,
nothing needs to be proved. This ensures that instantiation itself does not
introduce new facts. The instantiation proof obligation is

B(t , d) ) A(e(t), f (t , d)) .

In summary, conventional Event-B context extension is instantiation with iden-
tity. Only abstract axioms of C with instantiated constants need to be proved
as theorems in D. The other axioms are preserved by extension.

Connecting machines to interfaces. Interfaces are declared in contexts and used
in machines by connecting a machine to the interface. The machines must see
the corresponding context:

context C
interface U
fields m
constraints P(m)...

end

machine M
sees C
connects U...
end .

The constraints of an interface can refer to all constants and carrier sets of the
surrounding context. In machine M the fields m are treated like variables and
the constraints P(m) like external invariants.
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Example 4 (Interface). The two machines sender1a and receiver1a share the
external variable m. This variable plus the constraint m 2 M constitutes the
interface bwetween the machines. We state this formally in a context msg2 that
extends the context msg1,

context msg2 extends msg1
interface itf2
fields m
constraints m 2 M

end .

Instead of sharing the variable m, the two machines are connected by interface
itf2 replacing the variable m and invariant m 2 M in each machine,

machine sender1b sees msg2
connects itf2
variables u
invariants u ✓ MSG...
end

machine receiver1b sees msg2
connects itf2
variables r
invariants r ✓ MSG...
end .

Modifications to the interface of the two machines can now be carried out in
one place, namely, the interface itf2.

Interface instantiation. Interfaces can be instantiated by specifying equalities
m = h(n) for replacing fields of an abstract interface m by fields of a concrete
interface n. The names on the right-hand side of the equation must not occur
in the abstract interface. Let interface V be given by

context D extends C
interface V instantiates U with m = h(n)
fields n
constraints Q(n)

end .

The expression h is often composed of pair-expressions “ · 7! · ”. Interface in-
stantiations must be bijective: we have to prove that h�1 is a function. The
constraints P(m) of U are contained in interface V as specified by the instanti-
ation m = h(n), that is, they become P(h(n)). Similarly to machine variables,
field names of interfaces cannot be reintroduced. Similarly to machine invari-
ants, constraints are accumulated in by instantiation: the constraints of interface
V are Q(n)^P(h(n)). Fig. 4 illustrates the interaction between decomposition,
interface instantiation and refinement.

Example 5 (Instantiation). The implementation of the sender-receiver sys-
tem distinguishes proper messages from acknowledgements by a Boolean value.
Messages are thus composed of an ID, the Boolean value indicating whether the
message is proper or an acknowledgement, and the message contents. Formally,
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M1U M5 U

M

N1V N5 V

N

Figure 4: Interface instantiation

the set of messages M is instantiated by ID ⇥ B ⇥ C and the other constants
accordingly,

context msg3 extends msg2 with
M = ID ⇥ B⇥ C
MSG = ID ⇥ {F}⇥ C
ACK = ID ⇥ {T}⇥ C
a = b 7! T 7! h
ma = (�j , f , d · j 2 ID ^ f = F ^ d 2 C | j 7! T 7! d)

sets ID ,C
constants b, h
axioms b 2 ID ^ h 2 C
interface itf3 instantiates itf2 with m = i 7! t 7! c
fields i , t , c
constraints i 2 ID ^ t 2 B ^ c 2 C

end .

Note that the constant S is not instantiated. It is not required that all carrier
sets and constants be instantiated. The need for instantiation is usually deter-
mined by the refinement proofs in the connected machines. We have to prove
that the instantiation of the carrier sets and constants M , MSG , ACK , a and
ma is consistent, that is

(ID ⇥ {F}⇥ C ) [ (ID ⇥ {T}⇥ C ) = ID ⇥ B⇥ C ,

(ID ⇥ {F}⇥ C ) \ (ID ⇥ {T}⇥ C ) = ? ,

(�j , f , d · j 2 ID ^ f = F ^ d 2 C | j 7! T 7! d) 2 (ID ⇥ {F}⇥ C )! (ID ⇥ {T}⇥ C ) ,

b 7! T 7! h 2 ID ⇥ {T}⇥ C .

Constraints of interfaces are only accumulated, hence, nothing needs to be
proved about the instantiated interface.

Interface instantiation lattice. An interface V may also instantiate several inter-
faces U1, . . . ,Uk. This is only possible under the following condition that must
be satisfied in V for all fields m of V or some abstract interface: The fields in-
stantiated in distinct interfaces U` and Ur are distinct or have been instantiated
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in a common abstract interface. (A similar restriction is used in Event-B for
context extension to ensure that carrier sets and constants have unique decla-
rations.) As a consequence of the instantiation condition we only need to verify
the following for all fields m instantiated in V with m = h0(n) and in U` with
m = h`(n): h0(n) = h`(n).

M1

N1

O1

T(m1,m2)

U1(n1,m2) U2(m1,n2)

V(n1,n2)

M2

N2

O2

Figure 5: A lattice of interfaces

A development using interfaces may have di↵erent branches of sub-models
with distinct interfaces that are joined ultimately so that all machines of a
model agree on their interfaces. We illustrate this by way of the small example
shown in Fig. 5. In the figure, an abstract interface T containing two abstract
fields m1 and m2 is used by M1 and M2. The development of sub-models M1

and M2 instantiates the fields of the interfaces in di↵erent order. Interface T is
instantiated by U1 where m1 is replaced by n1 and m2 is retained while M1 is
refined into N1 using U1. Similarly, M2 is refined by N2 using U2 that replaces
m2 by n2 and retains m1. Finally, V instantiates the two interfaces U1 and U2.
The new interface V is used to refine N1 and N2 into O1 and O2.

Such a lattice of interfaces allows us to vary the order in which di↵erent
fields are instantiated in di↵erent branches of a development. In the course of
this, we temporarily abandon the compositionality of the intermediate machines
(here N1 and N2), only to reestablish it later for the final machines O1 and O2,
by connecting them to the same interface V.

External event refinement. Using interface instantiation we permit refinement
of external events. Consider the following external event e operating on the
external variables x and its refinement f operating on the external variables y .
The refinement of external variables is captured by the relationship of the form
x = h(y). Note that external events do not refer to any internal variables: they
can only refer to external variables of the corresponding model. Let

e b= any u when E(u, x ) then x :| P(u, x , x 0
) end ,

f b= any v when F (v , y) with W (u, v , x , y , y 0
) ^ x 0

= h(y 0
) then y :| Q(v , y , y 0

) end ,

where W (u, v , x , y , y 0) ^ x 0 = h(y 0) is the witness for the refinement of e by f.
The witness incorporates the refinement of external variables with function h.

Beside the proof obligations to prove that f is a refinement of e, we also need
to prove that f is refined by e. The latter is proved using the same given witnesses
by the following proof obligations. We abbreviate the hypothesis common to
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proof obligations by

L(x , y , u, x , x 0) = I (x ) ^ J (x , y) ^ x = h(y) ^ E (u, x ) ^ P(u, x , x 0) .

We have to prove witness feasibility,

L(x , y , u, x , x 0)) (9v , y 0 ·W (u, v , x , y , y 0) ^ x 0 = h(y 0)) .

Because h is bijective, the existence of y 0 is trivial, and the proof obligation can
be simplified to L(x , y , u, x , x 0) ^ x 0 = h(y 0) ) (9v ·W (u, v , x , y , y 0)). We have
to show that concrete external events display the same behaviour as abstract
events, that is, that nondeterminism is not reduced. We prove guard weakening,

L(x , y , u, x , x 0) ^W (u, v , x , y , y 0) ^ x 0 = h(y 0)) F (v , y) ,

and (co-)simulation,

L(x , y , u, x , x 0) ^W (u, v , x , y , y 0) ^ x 0 = h(y 0))Q(v , y , y 0) .

Note that invariant preservation for the refinement of f by e can be derived
from the invariant preservation for the refinement of e by f and the fact that
we use the same witnesses.

Example 6 (Instantiation and refinement). The instantiated interface itf3 is
incorporated into the model by refining the machines sender1b and receiver1b
connecting the refinements to the instantiated interfaces. In the refinement
proof all equalities specified in msg3 and itf3 can be used. The sender is refined
by the machine

machine sender2b refines sender1b sees msg3
connects itf3
variables u
events
event init b= begin u, i , t , c := S , b,T, h end
event snd b= any j , f , d where j 7! f 7! d 2 u ^ t = T

then i , t , c, u := j , f , d , u \ {j 7! f 7! d} end
event rec⇤ b= when t = F then t := T end

end ,

and the receiver by the machine

machine receiver2b refines receiver1b sees msg3
connects itf3
variables r
events
event init b= begin r , i , t , c := ?, b,T, h end
event snd⇤ b= when t = T then i 7! t 7! c :2 MSG end
event rec b= when i 7! t 7! c /2 r ^ t = F

then r , t := r [ {i 7! t 7! c},T end
end .
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We must prove the simulation relationships between the events of sender2b and
receiver2b and those of sender1b and receiver1b. Concerning the interface itf3,
we have to show that its constraints are preserved by all events. Because the
constraints of itf3 are equivalent to true, the proof is trivial.

Example 7 (Emulation of instantiation using bijections). Two tools are avail-
able for decomposition [18] and instantiation [5]. However, they transform
Event-B machines syntactically producing component machines and instanti-
aed machines that do not have a relationship to their abstractions or among
each other. This approach makes it di�cult to maintain complex models. Our
approach improves the situation by o↵ering interfaces and instantiation sup-
ported by the modelling formalism. Not having dedicated tool support for the
instantiation method yet, we emulate the method by specifying bijections that
model the equations between instantiated terms,

context msg2x extends msg1
sets ID ,C
constants U ,na, b, h, ◆
axioms
◆ 2 ID ⇥ B⇥ C ⇢⇣M
◆

�1[MSG ] = ID ⇥ {F}⇥ C
◆

�1[ACK ] = ID ⇥ {T}⇥ C
U = ◆

�1[S ]
na = (�j , f , d · j 2 ID ^ f = F ^ d 2 C | j 7! T 7! d)
ma = ◆

�1;na;◆
b 7! T 7! h = ◆

�1(a)
end .

The most elaborate proof of this development using the emulation occurs when
instantiating function ma. With instantiation support in place this would have
been trivial using the fact that ma = . . . as specified in context msg3. The
di�culty in the proof of refinement emulating instantiation is caused by the
need to use the bijection ◆ so that the equation for the instantiation becomes
ma = ◆

�1;na;◆. Similar complications occur for all other abstract constants x

(and sets X) where the equations have the form x = ◆(y) (and X = ◆[Y ]). In the
refined machines the instantiation equations need to be stated in the invariants
for the sender

machine sender2a refines sender1a sees msg2x
variables v , i , t , c
invariants u = ◆[v ] ^m = ◆(i 7! t 7! c)
events
event init b= begin v , i , t , c := U , b,T, h end
event snd b= any j , f , d where j 7! f 7! d 2 v ^ t = T

then i , t , c, v := j , f , d , v \ {j 7! f 7! d} end
event rec⇤ b= when t = F then t := T end

end

13



and the receiver

machine receiver2a refines receiver1a sees msg2x
variables q , i , t , c
invariants r = ◆[q ] ^m = ◆(i 7! t 7! c)
events
event init b= begin q , i , t , c := ?, b,T, h end
event snd⇤ b= when t = T then i 7! t 7! c :2 MSG end
event rec b= when i 7! t 7! c /2 q ^ t = F

then q , t := q [ {i 7! t 7! c},T end
end .

Finally, we want to point out that in context msg2x consistency between the
di↵erent axioms is not assured. It is easily possible to specify a collection of
inconsistent axioms and techniques are required to validate them as can be done,
for instance, with the ProB tool [14].

4. Case study: modelling of a cruise control system

We present interface instantiation by means of a model of a cruise control
system. The cruise control system permits the driver of a car to select a tar-
get speed that the vehicle should attain. The system will try to maintain the
vehicle speed as close as possible to the target speed. Since our main interest
is to discuss interface instantiation, we will only discuss the functionality of the
cruise control system as far as necessary for that discussion. We have modelled
the system using the Rodin tool [3], emulating instantiation similarly to the
approach of [7]: interfaces are represented syntactically by a lexical convention
and carrier set instantiation is modelled by suitable bijections. The purpose of
this model is to check the consistency of our cruise control model by way of a
similar model verified using the Rodin tool. It is di�cult to draw conclusions
about the power or ease of the proof method based on that formal model. The
reason for this is a mismatch of the proof obligations between our approach and
what can be done with the tool currently. For this case study this is acceptable
because as with many industrial applications of formal methods the challenge
of the original problem is in the size of the model and not in the di�culty of
the specified formal properties.

4.1. Development strategy

We want to implement a cruise control system sy0 by three sub-models: the
controller cr5, the engine en5 and the exterior ae1. Fig. 6 shows the sub-models
and their interfaces. The implementations of the controller and the engine are
connected by means of two interfaces: concrete speed and acceleration, psa,
and concrete pedal signals translated and passed on from the exterior, psi. The
interface to the exterior, aes, is kept abstract in the implementation. More
abstract system models should not be forced to use the interfaces psa and psi
but permit abstractions thereof as shown in Fig. 7. The details of the interfaces
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sy0

..

.
refinement and decomposition

...

ae1 aes aes en5 psa, psi psa, psi cr5

Figure 6: Architecture of the system in terms of sub-models and interfaces

ev0 asa, asi asa, asi cr0

Figure 7: Abstract sub-models and their abstract interfaces

should be introduced step by step, introducing the abstract interfaces asa and
asi first. We prefer to refine the controller and the engine but keep the exterior
abstract at first. We do not want to decide on all interfaces before decomposing
system sy0: we have not decided yet on the shape of the implementation of
sub-model ae1 and of interface aes. Interface aes could be used to implement an
interface to the exterior or it could be used for animation and visualisation [13],
for instance. The problem we face is to fit the abstract sub-models of Fig. 7
between sy0 and the implementation in Fig. 6.

4.2. The full model: refinement, decomposition and instantiation

We present an overview of the full model and discuss specific issues in sub-
sequent sections. Fig. 8 shows the details of the development outlined in Fig. 6
with the abstract decomposed model of Fig. 7 incorporated at the top of the
figure. The contexts ctx0, ctx1, ctx2 and ctx3 specify the interface instantiations
as indicated on the right-hand side of the figure and accompanying instantia-
tions of carrier sets and constants. Context extension is shown on the left-hand
side of the figure. Machines that see a context are depicted in the box of the
corresponding context. For instance, the abstract model sy0 of the cruise control
is shown in the box of context ctx0. Most of the development e↵ort focuses in
the two columns en1 to en5 (on the engine) and cr1 to cr5 (on the controller).

We do not discuss all aspects of the development but focus on the following
four aspects of the engine and the controller development.
i. Interface introduction (Section 4.3): In order to decompose a machine some

variables private to that machine become shared among the sub-machines.
For these variables interfaces are specified and the sub-machines are con-
nected to them.

ii. Mixing instantiation and refinement (Section 4.4): Usually, a change of the
representation of shared variables needs to be accompanied by refinements
of private variables. Furthermore, carrier set and constant instantiation can
be used to support refinement of private variables.
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Figure 8: Overview of the cruise control system model

iii. Repeated instantiation (Section 4.5): Details about interfaces are intro-
duced incrementally. Hence, it is important that the process of instantiation
can be repeated without di�culty.

iv. Instantiation branching (Section 4.6): If two branches in a development
instantiate interface fields in di↵erent order, then there must be a common
instantiation that permits recomposition of the sub-models.

4.3. Interface introduction

The abstract model. The model sy0 from which we start the development de-
clares variables sig , cs, vs, md , ts, va modelling external signals sig , internal
control signals cs, vehicle speed vs, control mode md , target speed ts and ac-
celeration va. It does not connect to any interfaces. This means we can refine
this model in the usual way. Context ctx0 declares constants ES , CS , VS , VA,
VRA, etc., modelling external signals ES , control signals CS , vehicle speed VS ,
vehicle acceleration VA, restricted vehicle acceleration VRA. It postulates the
axiom

VRA ✓ VA . (1)

We have invented constant VRA to make the invariant more interesting. The
constants determine the possible values of the variables by means of the invariant
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of sy0:

sig 2 ES ^ cs 2 CS ^ . . . ^md 2 {C ,AC ,NC} ^ (md = C ) va 2 VRA) .

The constant C models “cruise control active”; AC models “manual change of
vehicle speed”; NC models “cruise control not active”. Constants CS and VS
are declared to be contained in carrier sets, for example, carrier set K contains
CS and carrier set S contains VS . The carrier sets themselves are not used in
the machine. The reason for this is that they can only be instantiated by type
expressions. However, the more common case is that we need to instantiate by
some more constrained set. See, for example, the instantiations of C , AC and
NC in Section 4.4.

Events of the abstract model. We discuss three events of machine sy0: event
chm (“change mode”) models an internal state change of the controller,

event chm b= begin md :| md 0 2 {C ,AC ,NC} ^ (md 0=C ) va 2 VRA) end ;

event chaac (“change acceleration in mode AC”) models output to the engine,

event chaac b= when md = AC then va :2 VA end ;

event chcs (“change control signals”) models input from the engine,

event chcs b= begin cs := fcs(sig) end .

It would be tempting to specify in the abstract event chcs the assignment cs :=
sig . However, this asserts that cs and sig have the same type. Once the system
is decomposed, we would have to refine them in the same way. To avoid this,
we have introduced function fcs mapping from the type of sig to the type of
cs. Models always need to be prepared for decomposition. Our method of
instantiation does not change this.

Decomposition of the abstract model. Decomposing sy0 into ev0 and cr0 we have
to introduce interfaces asa and asi:

interface asi
fields cs
constraints cs 2 CS

interface asa
fields vs, va
constraints vs 2 VS ^ va 2 VA .

Machine ev0 has one internal variable sig and connects to the two interfaces
asa and asi. Machine cr0 connects to the same interfaces and has two internal
variables ts and md . We split the events in the usual way depending on which
variables and fields the events refer to. Except for the use of interfaces the
decomposition method of [1] works as before.
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Mode Submode Description

NC

OFF Ignition is on, cruise control initialised and switched o↵

ERR An irreversible error has occurred

REC A reversible error has occurred

C
CRS Cruise control is maintaining the target speed

RES Target speed is approached from above or from below

AC
ACC Cruise control is accelerating the car

DEC Cruise control is decelerating the car

Table 1: Modes and submodes of the cruise control system.2

4.4. Mixing instantiation and refinement

Instantiation. We refine cr0 to cr1 by instantiating interface asa by csa while
refining variable md by variable nd . The constraints and instantiation equalities
of csa become part of the gluing invariant of cr1. The abstract constants VS , VA
and VRA are instantiated by integer ranges: VS = mS ..MS , VA = mA ..MA
and VRA = mRA ..MRA constrained by axioms

. . . ^ 0 2 mRA ..MRA ^mA  mRA ^mRA  MRA ^MRA  MA ^ . . . (2)

To satisfy the instantiation proof obligation we have to verify that (2) implies
(1).

For clarity we introduce a new name for the interface containing the instan-
tiated constants: interface csa instantiates asa. Machine cr1 and ev1 now both
need to be connected to interface csa replacing asa. The machine also need to
see the extended context ctx1.

Refinement. Variable md is refined by instantiating the constants C , AC and
NC , using the gluing invariant nd 2 md , and constant instantiations C =
{CRS ,RES}, AC = {ACC ,DEC}, NC = {OFF ,ERR,REC}. Table 1 gives
an overview of the operation modes and submodes of the model of the cruise
control system. Note, how closely constant instantiation and refinement are
linked in the refinement of md . The type of the abstract variable md has been
instantiated such that the gluing invariant simply becomes nd 2 md .

4.5. Repeated instantiation

First instantiation. Continuing the development from cr1 and ev1, we first in-
stantiate interface asi by csi

interface csi instantiates asi with cs = (ps 7! cis 7! is)
fields ps, cis, is
constraints ps 2 PS ^ cis 2 CIS ^ is 2 IS

2Table adapted from [7].
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Pedal Signal Description

pbp The brake pedal has been hit

pbe An error has occured in the brake subsystem

pcp The clutch pedal has been hit

pce An error has occured in the clutch subsystem

pae An error has occurred in the accelerator subsystem

Table 2: Concrete pedal signals of the cruise control system.

where PS , for “pedal signals”, is a constant of context ctx2. The context also
declares two constants PSE and PSS , for “pedal signals error” and “pedal
signals success”, such that PSE ✓ PS ^ PSS ✓ PS ^ PSE \ PSS = ?. This is
used for a first refinement of event chm into two events chme and chmn:

event chme refines chm b=
when ps 2 PSS [ PSE then nd :2 {ERR,REC} end

event chmn refines chm b=
when ps 62 PSS [ PSE
then nd :| nd 0 2 {CRS ,RES}) va 2 mRA ..MRA end .

Second instantiation. Subsequently we instantiate the interface csi by psi

interface psi instantiates csi with ps = (pbp 7! pbe 7! pcp 7! pce 7! pae)
fields pbp, pbe, pcp, pce, pae, cis, is
constraints pbp 2 B ^ pbe 2 B ^ pcp 2 B ^ pce 2 B ^ pae 2 B

representing the abstract pedal signals ps by a bit vector of concrete pedal
signals pbp 7! pbe 7! pcp 7! pce 7! pae. Table 2 gives an overview of the
di↵erent concrete pedal signals. We instantiate the constants PSE and PSS

PSE = {bp 7! be 7! cp 7! ce 7! ae|T 2 {be, ce, ae}} ,

PSS = {bp 7! be 7! cp 7! ce 7! ae|T 62 {be, ce, ae} ^T 2 {bp, cp}} .

by and prove PSE \ PSS = ? as postulated above.
Event chme is split (that is, refined into several events) according to di↵erent

signal combinations.

event chmrb refines chme b=
when T 62 {pbe, pce, pae} ^T = pbp then nd := REC end

event chmrc refines chme b=
when T 62 {pbe, pce, pae} ^T = pcp then nd := REC end

event chmbe refines chme b= when T = pbe then nd := ERR end
event chmce refines chme b= when T = pce then nd := ERR end
event chmae refines chme b= when T = pae then nd := ERR end .

This last instantiation is much more concise than the refinement suggested
in [7]. We can avoid a lot of the overhead that is usually incurred by using
refinement emulating instantiation.
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4.6. Instantiation branching

In machine en3 event chvs is refined by replacing the abstract nondetermin-
istic assignment vs :2 mS ..MS by a deterministic assignment using a function
sf that describes engine acceleration and deceleration,

event chvs refines chvs b= begin vs := sf (va 7! vs) end .

Field va of interface csa is instantiated as the di↵erence between two fields vap
and van in en4. The two fields model acceleration and decelaration explicitly
by non-negative values. It is easy to verify that the new representation of the
vehicle acceleration is unique. This is the corresponding interface instantiation:

interface psa instantiates csa with va = vap�van
fields vs, vap, van
constraints vap 2 0 ..MA ^ van 2 0..�mA ^ 0 2 {vap, van} .

Event chvs needs to be refined in en4. The simplest refinement possible is
obtained by replacing va by the di↵erence vap�van:

event chvs refines chvs b= begin vs := sf (vap�van 7! vs) end .

The two machines en4 and cr4 have di↵erent interfaces and cannot be composed.
Both are instantiated in one more development step so that their interfaces
coincide again and they are composable. The method of instantiation permits
to apply instantiations in di↵erent orders or instantiate fields the same interface
in di↵erent orders. Both approaches are based on the same theory. In this case
study we have used the more explicit way of applying interfaces in di↵erent
orders. It could easily be recasted into the second form of instantiation by
combing the two interfaces asi and asa.

5. Correctness

We have used the Rodin tool [3] to verify the correctness of interface re-
finement. First we present a technique for verifying extensions of Event-B. We
believe that it is useful beyond the use in this article for verifying the correctness
of interface instantiation.

5.1. A technique for proving correctness of Event-B extensions

The general idea is to encode a generic model using the Rodin tool, and illus-
trating the extended method using the generic model. Typically, the correctness
of an extension can be stated as follows: assume the consistency of some input
model, then prove the consistency of the extended output model. The approach
is illustrated in Fig. 9 and contains four steps as follows.

1. Encode the generic input model.

2. Encode the generic output model.
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proof

Figure 9: Approach for proving correctness of Event-B extensions

3. Gather the consistency conditions of the input model. The consistency of
a model is described by the associated proof obligations. To turn them
into assumptions, we make these proof obligations axioms.

4. Prove the consistency of the output model using these axioms.

To illustrate the approach, we prove that restricted superposition refine-
ment preserves invariance. Our input model is an abstract machine M and its
refinement N as illustrated in Fig. 10. Variables x is retained through the (su-
perposition) refinement. Abstract event e and concrete event f have the same
parameters u. Our output model is a flattened copy of N (without the refines
clause) with an additional invariant I (x ).

machine M
variables x
invariants I (x)
events

event e b=
any u where

E(u, x)
then

x :| P(u, x , x 0)
end

end

machine N
refines M
variables x
events

event f refines e b=
any u where

F (u, x)
then

x :| Q(u, x , x 0)
end

end

Figure 10: Generic machines M and its refinement N

To encode the generic machine M, we first model the type of variables x and
parameters u using some carrier sets X and U . Subsequently, I , E and P can be
declared as constants with appropriate type, i.e. I 2 P(X ), E 2 P(U ⇥X ), and
P 2 P(U ⇥X ⇥X ) as illustrated with context M ctx in Fig. 11. The machine M
is encoded accordingly using the above context, where predicates are translated
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using the set membership operator (2).3 For example, the invariant I (x ) is
translated to x 2 I . The encoded machine M mch is in Fig. 11. Other machines

context M ctx
sets X ,U
constants I ,E ,P
axioms

I 2 P(X )
E 2 P(U ⇥X )
P 2 P(U ⇥X ⇥X )

end

machine M mch
sees M ctx

variables x
invariants x 2 I
events

event e b=
any u where

u 7! x 2 E
then

x :| u 7! x 7! x 0 2 P
end

end

Figure 11: Rodin encoding of M

are encoded in Rodin similarly.
We assume that the input machines M and N have been proved, including

the proof obligation stating that event e maintains invariant I (x ). To turn it
into an assumption, we encode the obligation, i.e.,

I (x ) ^ E (u, x ) ^ P(u, x , x 0)) I (x 0) (e/INV)

as axiom e/INV in the extended context M po (Fig. 12).

context M po
extends M ctx
axioms

e/INV : 8x , u, x 0 · x 2 I ^ u 7! x 2 E ^ u 7! x 7! x 0 2 P ) x 0 2 I
. . .

end

Figure 12: Encoding proof obligations as axioms

Similarly, the fact that f is a correct refinement of e is captured by the
guard strengthening and simulation proof obligations which are encoded as the
following axioms:

8u, x · x 2 I ^ u 7! x 2 F ) x 2 E , (f/GRD)

and

8u, x , x 0 ·x 2 I ^ u 7! x 2 E ^ u 7! x 7! x 0 2 Q ) u 7! x 7! x 0 2 P . (f/SIM)

We prove the consistency of the output machine (a flattened copy of N
with invariant I ), from the axioms collected previously. For example, the proof

3This is a common technique to model predicate constants or variables in Event-B using
first-order logic.
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obligation stating that I is maintained by the concrete event f is as follows:

x 2 I ^ u 7! x 2 F ^ u 7! x 7! x 0 2 Q ) x 0 2 I . (f/INV)

It is easy to see that f/INV is a consequence of e/INV, f/GRD and f/SIM.

5.2. Correctness of interface instantiation

Using the above proof method, we prove the correctness of interface instan-
tiation as follows. For clarity, we present our proofs in this section in its generic
form instead of its Rodin encoding.

5.2.1. The input model

The first component of our input model is a machine M with variables x1, x2,
x3, and x4. Furthermore, let e1, e2, e4 and e4 be events of M, accessing di↵erent
sets of variables as follows,

e1 b= any u1 where E1(u1, x1) then x1 :| P1(u1, x1, x 0
1) end ,

e2 b= any u2 where E2(u2, x1, x2, x3) then
x1, x2, x3 :| P2(u2, x1, x2, x3, x 0

1, x
0
2, x

0
3)

end ,

e3 b= any u3 where E3(u3, x2, x3, x4) then
x2, x3, x4 :| P3(u3, x2, x3, x4, x 0

2, x
0
3, x

0
4)

end ,

e4 b= any u4 where E4(u4, x4) then x4 :| P(u4, x4, x 0
4) end .

We assume that the invariants of M can be separated into: I (x1, x2, x3, x4),
I123(x1, x2, x3), I23(x2, x3), I234(x2, x3, x4).

Decomposition. We decompose M into M12 and M34, sharing the interface U.
The abstract interface U encapsulates the shared variables x2 and x3 with in-
variant I23(x2, x3),

interface U
fields x2, x3
constraints I23(x2, x3) .

Besides connecting to interface U, sub-machine M12 has a private variable x1
and invariant I123(x1, x2, x3). Furthermore, original events e1 and e2 are copied
as internal event of M12. An external event a3 is generated from the original
event e3 as follows:

a3 b= any u3, x4 where E3(u3, x2, x3, x4) then
x2, x3 :| 9x 0

4 ·P3(u3, x2, x3, x4, x 0
2, x

0
3, x

0
4)

end .

Machine M34 has a similar structure to M12.
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Interface Instantiation and Refinement. Assume that we develop M12 and M34,
by instantiating the shared interface U according to Fig. 13, where the interfaces
are developed as follows.

interface V12

instantiates
U with x2 = h2(y2)

fields y2, x3
constraints J12(y2, x3) ,

interface V34

instantiates
U with x3 = h3(y3)

fields x2, y3
constraints J34(x2, y3) ,

interface V
instantiates
V12 with x3 = h3(y3)
V34 with x2 = h2(y2)

fields y2, y3
constraints J23(y2, y3) .

M12

N12

O12

U(x2, x3)

V12(y2, x3) V34(x2, y3)

V(y1, y2)

M34

N34

O34

Figure 13: A lattice of interfaces

In developing M12, x2 is first instantiated by h2(y2) (i.e., V12 instantiates U),
subsequently x3 is instantiated by h3(y3) (i.e., V instantiates V12). The develop-
ment of M34 is similar, with an instantiation of x3 followed by an instantiation
of x2. Note that this instantiation lattice satisfies the condition, mentioned ear-
lier in Section 3, that the fields x2 and x3 are instantiated in distinct interfaces.
Moreover, in the final interface V, the values given for x2 and x3 are consistent
with the values used for instantiation in V12 and V34.

At the same time, M12 and M34 are refined into O12 and O34, relying on the
interface instantiations. To be more precise, M12(x1, x2, x3)4 is first refined to
N12(y1, y2, x3), relying on interface instantiation from U to V12, and refinement
of private variable x1 to y1. The refinement relationship between N12 and M12

is captured by the gluing invariant J123(x1, x2, y1, y2, x3). In N12, internal event
e1 and e2 are refined by f1 and f2, respectively. Furthermore, external event a3
is refined equivalently (see Section 3) to d3.

Subsequently, N12(y1, y2, x3) is refined to O12(y1, y2, y3), relying on interface
instantiation from V12 to V. In particular, in O12 internal events f1 and f2 are
refined by g1 and g2, respectively. Furthermore, external event d3 is refined

4We use the notation M(v) to denote that v are the variables of machine M.
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equivalently to c3. Similarly, machine N34(x2, y3, y4) refines M34(x2, x3, x4) with
the gluing invariant J234(x3, x4, x2, y3, y4). In particular, f3 and f4 are the re-
finement of internal events e3 and e4, respectively, and d2 is the refinement of
external event a2. Subsequently, N34(x2, y3, y4) is refined by O(y2, y3, y4), with
internal events f3 and f4 refined by g3 and g4, and external event d2 refined by
c2. The refinement relationships between the events are depicted in Fig. 14.

e1

e2

a3

M12

f1

f2

d3

N12

g1

g2

c3

O12

a2
refines

e3
refines

e4

M34

d2

f3

f4

N34

c2

g3

g4

O34

Figure 14: Maintaining the external invariant of several sub-models

5.2.2. The output model

Our output model is the composition machine O of O12 and O34 consists of
internal events g1, g2 from O12, and g3 and g4 from O34. The correctness of
our technique is guaranteed by proving that the composition O is a refinement
of the original model M. In particular, the gluing invariants between O and M
are the conjunctions of the gluing invariants that are used for refining the sub-
machines M12 and M34, i.e., J123, J234, together with the interface instantiation,
i.e., x2 = h2(y2) and x3 = h3(y3).

In the subsequent, we focus on extracting assumptions and proving that g2
is a refinement of e2. Proofs related to other events are similar and omitted
here.

5.2.3. Extracting assumptions

The assumption in proving the correctness of the output model is that the
input model has been fully proved, i.e., the initial machine M, the interface
instantiation and refinements N12, N34, O12, O34.5 We focus on proving that g2
is a refinement of e2. Event e2 is first refined into f2 in N12 and subsequently
into g2 in O12 as follows:

event f2 refines e2 b= any v2 where F2(v2, y1, y2, x3) then
y1, y2, x3 :| Q2(v2, y1, y2, x3, y 0

1, y
0
2, x

0
3)

end ,

event g2 refines f2 b= any w2 where G2(w2, y1, y2, y3) then
y1, y2, y3 :| R2(w2, y1, y2, y3, y

0
1, y

0
2, y

0
3)

end .

5The development is available at http://deploy-eprints.ecs.soton.ac.uk/364/
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The fact that f2 is a refinement of e2 with invariant J123 ^ x2 = h2(y2) and g2
is a refinement of f2 with invariant x3 = h3(y3) is captured by the following
conditions.

I123(x1, x2, x3) ^ I23(x2, x3) ^ J123(x1, x2, y1, y2, x3) ^
F2(v2, y1, y2, x3) ^Q2(v2, y1, y2, x3, y 0

1, y
0
2, x

0
3)

) (9u2, x 0
1, x

0
2 ·

E2(u2, x1, x2, x3) ^ P2(u2, x1, x2, x3, x 0
1, x

0
2, x

0
3) ^

J123(x 0
1, x

0
2, y

0
1, y

0
2, x

0
3) ^ x 0

2 = h2(y 0
2)) ,

(FE2)

I123(x1, x2, x3) ^ I23(x2, x3) ^ J123(x1, x2, y1, y2, x3)^
x3 = h3(y3) ^
G2(w2, y1, y2, y3) ^ R2(w2, y1, y2, y3, y

0
1, y

0
2, y

0
3)

) (9v2, x 0
3 ·

F2(v2, y1, y2, x3) ^ Q2(v2, y1, y2, x3, y 0
1, y

0
2, x

0
3) ^

x 0
3 = h3(y 0

3)) .

(GF2)

On the other hand, the key aspect for the correctness of our approach is that
external events are refined equivalently. To be more precise, e2 is projected as
a2 in M34 and is subsequently refined equivalently into d2 in N34.

event a2 b= any u2, x1 where E2(u2, x1, x2, x3) then
x2, x3 :| 9x 0

1 ·P2(u2, x1, x2, x3, x 0
1, x

0
2, x

0
3)

end ,

event d2 refines a2 b= any t2 where D2(t2, x2, y3, y4) then
x2, y3 :| O2(t2, x2, y3, y4, x 0

2, y
0
3)

end .

The fact that a2 is a refinement of d2 (“equivalently” refined) is captured by the
following condition

I23(x2, x3) ^ I234(x2, x3, x4) ^ J234(x3, x4, x2, y3, y4)^
x3 = h3(y3) ^
E2(u2, x1, x2, x3) ^ (9x 0

1 ·P2(u2, x1, x2, x3, x 0
1, x

0
2, x

0
3))

) (9t2, y 0
3 ·

D2(t2, x2, y3, y4) ^ O2(t2, x2, y3, y4, x 0
2, y

0
3) ^

J234(x 0
3, x4, x

0
2, y

0
3, y4) ^ x 0

3 = h3(y 0
3)) .

(AD2)

In particular, given that h3 is a bijection, we have x 0
3 = h3(y 0

3) is equivalent to
y 0
3 = h�1

3 (x 0
3), which allows us to apply the one-point rule to simplify (AD2),

I23(x2, x3) ^ I234(x2, x3, x4) ^ J234(x3, x4, x2, y3, y4)^
x3 = h3(y3) ^
E2(u2, x1, x2, x3) ^ (9x 0

1 ·P2(u2, x1, x2, x3, x 0
1, x

0
2, x

0
3))

) J234(x 0
3, x4, x

0
2, h

�1
3 (x 0

3), y4) .

(AD2-SIMP)
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5.2.4. Proving consistency

We focus on proving that g2 is a refinement of e2 using the gluing invariants
J123, J234 and x2 = h2(y2) and x3 = h3(y3), i.e.,

I123(x1, x2, x3) ^ I23(x2, x3) ^ I234(x2, x3, x4) ^
J123(x1, x2, y1, y2, x3) ^ J234(x3, x4, x2, y3, y4) ^
x2 = h2(y2) ^ x3 = h3(y3) ^
G2(w2, y1, y2, y3) ^ R2(w2, y1, y2, y3, y

0
1, y

0
2, y

0
3)

) (9u2, x 0
1, x

0
2, x

0
3 ·

E2(u2, x1, x2, x3) ^ P2(u2, x1, x2, x3, x 0
1, x

0
2, x

0
3) ^

J123(x 0
1, x

0
2, y

0
1, y

0
2, x

0
3) ^ J234(x 0

3, x4, x
0
2, y

0
3, y4) ^

x 0
2 = h2(y 0

2) ^ x 0
3 = h3(y 0

3)) .

(GE2)

Assuming I123, I23, I234, J123, J234, x2 = h2(y2), and x3 = h3(y3), we prove:

G2(w2, y1, y2, y3) ^ R2(w2, y1, y2, y3, y
0
1, y

0
2, y

0
3)

) (GF2)

(9v2, x 0
3 ·F2(v2, y1, y2, x3) ^Q2(v2, y1, y2, x3, y 0

1, y
0
2, x

0
3) ^ x 0

3 = h3(y 0
3))

) (FE2)

(9u2, x 0
1, x

0
2, x

0
3 ·E2(u2, x1, x2, x3) ^ P2(u2, x1, x2, x3, x 0

1, x
0
2, x

0
3) ^

J123(x 0
1, x

0
2, y

0
1, y

0
2, x

0
3) ^ x 0

2 = h2(y 0
2) ^ x 0

3 = h3(y 0
3))

) (AD2-SIMP)

(9u2, x 0
1, x

0
2, x

0
3 ·E2(u2, x1, x2, x3) ^ P2(u2, x1, x2, x3, x 0

1, x
0
2, x

0
3) ^

J123(x 0
1, x

0
2, y

0
1, y

0
2, x

0
3) ^ x 0

2 = h2(y 0
2) ^ x 0

3 = h3(y 0
3) ^

J234(x 0
3, x4, x

0
2, h

�1
3 (x 0

3), y4))
, Equality x 0

3 = h3(y
0
3) and h3 bijective

(9u2, x 0
1, x

0
2, x

0
3 ·E2(u2, x1, x2, x3) ^ P2(u2, x1, x2, x3, x 0

1, x
0
2, x

0
3) ^

J123(x 0
1, x

0
2, y

0
1, y

0
2, x

0
3) ^ x 0

2 = h2(y 0
2) ^ x 0

3 = h3(y 0
3) ^

J234(x 0
3, x4, x

0
2, y

0
3, y4)) .

The proof obligations presented in Section 3 are derived from the condi-
tion that external events are refined equivalently, i.e., the concrete event is a
refinement of the abstract event and vice versa. The newly proposed proof obli-
gations, i.e., witness feasibility, guard weakening, and co-simulation, are to prove
that the abstract event is a refinement of the concrete event. They correspond
to the standard proof obligations, i.e., witness feasibility, guard strengthening,
and simulation in Event-B switching the roles of abstract and concrete ma-
chine. In particular, by making use of the same witness for proving equivalence
between the abstract and concrete events, the proof obligations for invariance
preservation are the same in both refinement directions.

6. Conclusion

We propose in this paper the notion of interface and interface instantiation
for shared-variable decomposition in Event-B. An interface is a collection of ex-
ternal variables and their properties which can be shared between di↵erent sub-
models after a decomposition. Interface instantiation combines instantiation of
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carrier sets and constants with functional refinement of external variables. The
encapsulation of external variables using interface o↵ers us some flexibility in
structuring the development using complex refinement and decomposition. In
particular, we provide a practical method for refining external variables which
is currently quite cumbersome [1].

The novelty of our approach is in the refinement of external events: we de-
fine additional proof obligations to ensure that the external events are refined
equivalently. By contrast, in [1] equivalence is achieved by syntactical means
replacing occurrences of abstract variables v by concrete terms h(w). The proof
obligations of our approach are similar to the standard proof obligations, even
using the same refinement witnesses for proving the equivalence. We have pre-
sented a general technique for proving correctness of Event-B extensions, and
showed how this is used to demonstrate the soundness of our approach. We
illustrated the method by an industrial case study modelling a cruise control
system.

The simple schema of contexts and instantiations shown in Fig. 8 is essen-
tial for comprehensibility. When extending our approach as presented in this
article one should make sure that the simplicity is preserved. Complex schemas
of instantiations of decomposed models could easily become incomprehensible.
A strong methodology is needed to master interface instantiation or any gen-
eralisation of it. Keeping track of the changes to interfaces becomes quickly
challenging in multiply decomposed and refined models.

Finally, we are looking at extending the Rodin tool [3] to support the notion
of interface and interface instantiation.
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research project DEPLOY (Industrial deployment of advanced system engi-
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Appendix A. Summary of Event-B Symbols

Symbols Meaning
S \ T Set di↵erence
r[S] Relational image
(�x·P | E) Lambda expression
x 7! y Ordered pair
r

�1 Inverse relation
r ; s Forward composition
m .. n Integer range
P(S) Power set
S ⇥ T Cartesian product
x :| P Non-deterministic assignment (becomes such that)
x :2 S Non-deterministic assignment (becomes in set)
x := E Deterministic assignment

Table A.3: Summary of Event-B Symbols
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