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Abstract Event-B has given developers the opportunity to
construct models of complex systems that are correct by con-
struction. However, there is no systematic approach, espe-
cially in terms of reuse, which could help with the construc-
tion of these models. We introduce the notion of design pat-
terns within the framework of Event-B to shorten this gap.
Our approach preserves the correctness of the models, which
is critical in formal methods and also reduces the proving ef-
fort. Within our approach, an Event-B design pattern is just
another model devoted to the formalisation of a typical sub-
problem. As a result, we can use patterns to construct a model
which can subsequently be used as a pattern to construct a
larger model. We also present the interaction between devel-
opers and the tool support within the associated RODIN Plat-
form of Event-B. The approach has been applied successfully

to some medium-size industrial case studies.
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1 Introduction

The purpose of our investigation here is to study the possi-
bility of reusing models in formal modelling. Currently, for-
mal methods are applicable to various domains for construct-
ing models of complex systems. However, often they lack
some systematic methodological approaches, in particular in
reusing existing models, for helping the development process.
The objective in introducing design patterns within formal
methods in general, and in Event-B in particular, is to over-
come this limitation.

The idea of design patterns in software engineering is to
have a general and reusable solution to commonly occurring
problems. In general, a design pattern is not necessarily a fin-
ished product, but rather a template on how to solve a problem
which can be used in many different situations. Design pat-

terns are further populated in object-oriented programming
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[14]. The idea is to have some predefined solutions, and in-
corporate them into the development with some modification
and/or instantiation. We want to bring this idea into formal
methods and in particular to Event-B. Moreover, the typical
elements that we want to reuse are not only the models them-
selves, but also (more importantly) their correctness in terms
of proofs associated with the models. In our earlier investiga-
tions [5,11,16], [10, Section 5.4.1], we have already worked
on several examples to understand the usefulness and appli-
cability of the approach. We summarise this work and its for-
malisation in this paper.

Our contribution here is the methodology for reusing ex-
isting models in Event-B. Our approach allows developers to
reuse any existing models (which we call “design patterns”)
in a way that preserves the correctness of models, hence we
can save effort on not only modelling but also on proving
these models correct.

The examples that we used in this paper are models for
communication protocols [23]. Note that, however, the ap-
proach is general and its applicability is not limited to this
domain.

The structure of the paper is as follows. Section 2 gives a
short introduction to Event-B. Section 3 presents a case study
to illustrate the motivation for our approach. Section 4 gives
an overview of the formalisation of the approach in Event-
B. The list of patterns which are used in our industrial case
studies is presented in Section 5. Section 6 describes our pro-
totype tool supporting the approach. Finally, in Section 7 we

review related work and point out future directions.
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2 The Event-B Modelling Method

Event-B [2] represents a further evolution of the B-method
[1], which has been simplified and is now centered around
the general notion of events, also found in Action Systems
[6] and TLA [17].

An Event-B [2] model is a collection of modelling ele-
ments that are stored in a repository. When presenting our
models, we will do so in a pretty-print form, e.g. adding key-
words and following a certain layout conventions to aid pars-
ing. We proceed like this to improve legibility and help the
reader to remember the different constructs of Event-B. The
syntax should be understood as a convention for presenting
Event-B models in textual form rather than defining a lan-
guage.

Event-B models are described in terms of the two ba-
sic constructs: contexts and machines. Contexts contain the
static part of a model whereas machines contain the dynamic
part. Contexts may contain carrier sets, constants and ax-
ioms, where carrier sets are similar to types [4]. In this article,
we simply assume that there is some context and do not men-
tion it explicitly. Machines are presented in Section 2.1, and

machine refinement in Section 2.2.

2.1 Machines

Machines provide behavioural properties of Event-B mod-

els. Machines may contain variables, invariants, and events 1

! Machine can also contain a variant for proving convergence

properties, but it is not of our interests in this paper.
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Variables v define the state of a machine. They are constrained
by invariants [ (v). Possible state changes are described by
means of events. Each event is composed of a guard G(v) and
an action S(v)?. The guard states the necessary condition un-
der which an event may occur, and the action describes how
the state variables evolve when the event occurs. An event

can be represented by the following form
evt = when G(v) then S(v) end (1)
The short form
evt = begin S(v) end 2)

is used if the guard always holds. A dedicated event of the
form (2) is used for initialisation.
The action of an event is composed of several assign-

ments of the form

x := E(v) (3)
xz :€ E(v) 4)
x| Qv,a) 5)

where x are some variables, E(v) expressions, and Q (v, z’)
a predicate. Assignment form (3) is deterministic, the other
two forms are non-deterministic. Form (4) assigns x to an
element of a set, and form (5) assigns to x a value x’ satis-
fying a predicate. The effect of each assignment can also be

described by a before-after predicate BAP:
BAP(z := E(v)) = 2 = E(v) (6)
BAP(z :€ E(v)) =

BAP(z :| Q(v,z')) = Q(v,a) . (8)

% For simplicity, we do not treat events with parameters.

A before-after predicate describes the relationship between
the state just before an assignment has occurred (represented
by unprimed variable names ) and the state just after the as-
signment has occurred (represented by primed variable names
x'). All assignments of an action S(v) occur simultaneously
which is expressed by conjoining their before-after predicates,
yielding a predicate A(v,z’). Variables y that do not appear
on the left-hand side of an assignment of an action are not
changed by the action. Formally, this is achieved by conjoin-
ing A(v,2") with y' = y, yielding the before-after predicate

of the action:

BAP(S(v)) = A@wa) Ay =y . )

Later, in proof obligations, we represent the before-after pred-

icate BAP(S(v)) of an action S(v) directly by the predicate

S(v,v")

Proof obligations serve to verify certain properties of a
machine. Here a proof obligation is presented in the form of
a sequent: “hypotheses” - “goal”. The intuitive meaning of
this sequent is that under the assumption of the hypotheses,
the goal holds.

For each event of a machine, the following proof obliga-

tion which guarantees feasibility must be proved.

FIS




By proving feasibility, we achieve that S(v,v’) provides an
after state whenever G(v) holds. This means that the guard
indeed represents the enabling condition of the event.
Invariants are supposed to hold whenever variable values
change. Obviously, this does not hold a priori for any combi-
nation of events and invariants and, thus, needs to be proved.
The corresponding proof obligation is called invariant preser-

vation:

S(v, ') INV

Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that the invariant
and guard do not appear in the antecedent of the proof obli-

gations (FIS) and (INV).

2.2 Machine Refinement

Machine refinement provides a mean to introduce more de-
tails about the dynamic properties of a model [4]. For more
on the well-known theory of refinement, we refer to the Ac-
tion System formalism [6] that has inspired the development
of Event-B. We present some important proof obligations for
machine refinement.

A machine CM can refine at most one other machine
AM. We call AM the abstract machine and C M the con-
crete machine. The state of the abstract machine is related

to the state of the concrete machine by a gluing invariant
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J(v,w), where v are the variables of the abstract machine

and w the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or
more concrete events ec. Let abstract event ea and concrete

event ec be:

ea = when G(v) then S(v) end

ec = when H(w) then T'(w) end

Somewhat simplified, we can say that ec refines ea if the

following conditions hold.

1. The concrete event is feasible. This is formalised by the

following proof obligation.

1(v)

FIS_REF

Jw’ - T(w, w")

2. The guard of ec is stronger than the guard of ea. This is

formalised by the following proof obligation.

I(v)
J(v,w)

GRD

3. The abstract event can always “simulate” the concrete
event and preserve the gluing (concrete) invariant. This

is formalised by the following proof obligation.
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SIM

' - S(v,v") AT w')

For the initialisation, the corresponding proof obligations
are analogue. The proofs of these above obligations ensure
the correctness of the refinement model with respect to the
abstract model and the gluing invariant between them.

In the course of refinement, often new events ec are intro-
duced into a model. New events must be proved to refine the

implicit abstract event skip that does nothing.

skip = begin SKIP end

Moreover, it may be proved that new events do not collec-
tively diverge, but this is not relevant here. The new events
allow us to observe the system with a finer time grain. This
is an analogue of the stuttering principle in TLA [17]: a step

that leaves the abstract variables unchanged.

3 Question/Response Protocol

In this section, we look at the development of a protocol,
namely Question/Response in order to understand what we
mean by design patterns and how to apply them in system de-
velopment. Section 3.1 first gives an informal description of
the protocol together with its formal specification in Event-
B, then identifies similar fragments of the formal model that

leads to the idea of using patterns. In Section 3.2 we for-

mally present a pattern, namely synchronous multiple mes-
sage communication, including its specification and refine-
ment. Finally, we illustrate how the pattern is reused (twice)
in our development of the actual Question/Response protocol

in Section 3.3.

3.1 Description and Formal Specification

There are two parties participating in this protocol namely
the Questioner and the Responder. The protocol consists of
an unbounded number of rounds. For each round, there are

two steps as follows.

1. The Questioner sends a question to the Responder.
2. After receiving this question, the Responder sends a re-

sponse back to the Questioner.

Formally, we can use two variables to represent the state
of the protocol: quest to denote the number of questions that
have been asked, and resp to indicate the number of responses
that have been given. The first invariant QuestResp_0_1 spec-
ifies that the number of responses is a natural number and the
second invariant, i.e. QuestResp_0_2 specifies that the com-
munication is synchronous: either the number of questions is
the same as the number of responses or it is greater than the
number of responses by 1 — in the case where a response is

expected before another question can be created.

variables: quest, resp

invariants:
QuestResp 0_1: resp € N

QuestResp_0_2: quest = resp V quest = resp + 1




Initially, there are no questions or responses hence both vari-

ables are initialised to 0.

quest, resp := 0,0
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Fig. 1 Question/Response protocol with two rounds

The dynamic system can be seen in Figure 1. For each
round, the “questioning” phase starts when the number of
questions and the number of responses are identical and in-
creases the number of questions by 1. The “responding” phase
starts after the “questioning” phase of the same round (when
the number of questions and responses are different) and in-
creases the number of responses by 1. This is formalised by
the following two events, namely questions and responds,

representing the two phases accordingly.
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questions responds

when when

quest = resp quest 7 resp

then then
quest := quest + 1 resp = resp + 1

end end

The specification of the above two events are very simi-
lar, except for their guards. The two events both correspond
to transferring some information from one side to another
and can be repeated, however, the communication is syn-
chronous: a new message can be sent only when the last mes-
sage has been received. We call this kind of communication
synchronous multiple message communication. Hence if we
have a development for this type of communication (to be for-
malised in the next section), we can instantiate it twice: once
for the “questioning” phase and once for the “responding”

phase.

3.2 Synchronous Multiple Message Communication

This section presents the development of a communication
between two parties A and B for transferring some informa-
tion repeatedly and synchronously from A to B.

The specification of this protocol contains only one natu-
ral number variable trans, to denote the number of messages

that has been transferred.

variables: trans

invariants:

SynchMultiCom 0_1: ¢rans € N
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There is only one event in this model to increase the value
of variable trans denoting the fact that a message has been

transferred from A to B.

transfers
begin
trans := trans + 1

end

This synchronous multiple message communication is illus-

trated in Figure 2.

transfers transfers

Fig. 2 Synchronous Multiple Message Communication

However this is only the abstraction of this protocol (it
might be even too abstract in the sense that it does not spec-
ify how communication happens, e.g. synchronous vs. asyn-
chronous). In reality, the message needs to be sent via some
channel between the two parties. This is illustrated in Fig-
ure 3. Here the diagram is about different parties (not states)

and messages sent between them.

sends receives

Fig. 3 Communication via a channel

We use three variables to represent the state of the refine-

ment.

— snds: the number of messages having been sent by A.

— rcvs: the number of messages having been received by B.

— chan: since there is at most one message on the channel,
we use a Boolean value to denote the existence of a mes-

sage on the channel.

At this point, we have a decision to make about refine-
ment of the abstract event transfers. It could be refined by
the event corresponding to “sends” or it could be refined by
the event corresponding to “receives”. We presented here the
refinement of event transfers when sending, but the other al-
ternative is also possible. As a result of this choice, we have

the following gluing invariant.

invariants:

SynchMultiCom_1_1: trans = snds

We also have additional technical invariants about the proper-
ties of the protocol. Firstly, if there is no message on the chan-
nel, the number of sent and received messages are the same.
Secondly, if there is a message on the channel, then the num-
ber of sent messages is greater than the number of received
messages by exactly 1. These two invariants correspond to the
“synchronous” communication behaviour. Finally, the num-

ber of received messages must be a natural number.

invariants:
SynchMultiCom_12: chan = F' = snds = rcvs
SynchMultiCom_1.3: chan =T = snds = rcvs + 1

SynchMultiCom_1.4: rcvs € N

Initially, there are no messages that have been sent, re-

ceived or are in the channel.



init
begin
snds :=0
rcvs =0
chan := F
end

Events sends and receives are straightforward as follows.

sends
receives
refines transfers
when
when
chan =T
chan = F
then
then
chan := F
chan :=T
rcvs 1= rcvs + 1
snds := snds + 1
end
end

Event sends is enabled if there is no message in the channel.
The action of the event specifies that A now sent one more
message and the message is in the channel. Event receives is
enabled when there is a message in the channel. The action
of the event removes the message from the channel and indi-
cates that B has received one more message. Note that event

receives here is a new event (i.e. it refines skip).

3.3 Using the Pattern for the Protocol

In this section, we see how the pattern developed in Sec-
tion 3.2 is used for developing the Question/Response pro-

tocol of Section 3.1. There are four steps as follows.

1. We need to “match” the specification of the pattern with

the problem.
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2. We need to “syntactically check” the matching to see if
the pattern is applicable.

3. We have to “rename” those variables and events in the
pattern refinement that would lead to a name clash (since
we can instantiate the same pattern many times). We can
also “rename” non-conflicting variables and events if we
like to.

4. Lastly, we “incorporate” the renamed refinement of the

pattern to create a refinement of the problem.

As mentioned before, we can instantiate the synchronous
multiple message communication pattern twice for the Ques-
tion/Response protocol: once for the “questioning” phase and

a second time for the “responding” phase.

3.3.1 Pattern for “Questioning” Phase We follow the dif-
ferent steps to incorporate a synchronous multiple message

communication pattern for the “questioning” phase as fol-

lows.

1. As a first step we need to identify the “matching” be-
tween the specification of the pattern and the problem.
The matching here is straightforward with variable trans
and event transfers of the pattern matched with variable

quest and event questions of the problem accordingly.

pattern ~> problem

trans — ~> quest

transfers ~» questions

2. The second step is to syntactically check the validity of
the pattern. For example, we need to check that given the

variable matching trans ~» quest, the action of event
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transfers is “matched” with the action of questions. This -
should be done automatically by a tool. At the moment, begin
we can assure ourselves that this step is valid. More in- resp =0
formation about this step can be seen in Section 6.2 when Q2RQuestChan := F
we discuss about tool support. RQuestRcvs := 0
3. The third step is to rename the variables and events of the QQuestSnds := 0
pattern refinement according to the following rules. end
original ~- renamed as Q_sends_question

refines questions

snds — ~> QQuestSnds

when
chan ~~  Q2RQuestChan
QQuestSnds = resp
recy  ~> RQuestRcuvs

Q2RQuestChan = F

sends ~» Q_sends_question
then

receives ~- R_receives_question

QR2RQuestChan :=T

. tSnds = tSnds + 1
4. In the last step, we incorporate the renamed refinement QQuestSnds = QQuestSnds +

end

of the pattern to create a refinement of the problem. The

result is the following model. . .
R_receives_question

variables: resp, when
QQuestSnds, Q2RQuestChan =T
RQuestRcus, then
Q2RQuestChan Q2RQuestChan := F
RQuestRcvs := RQuestRcus + 1
invariants: end

QuestResp_1_1: quest = QQuestSnds
QuestResp_1.2: Q2RQuestChan = F =

QQuestSnds = RQuestRcuvs

QuestResp_1.3: Q2RQuestChan =T =

QQuestSnds = RQuestRcvs + 1

QuestResp_1.4: RQuestRcvs € N




There are a number of important aspects of the pattern

which we want to draw the readers’ attention.

— The matching between event transfers and event questions

is not exact.

responds
refines responds
when
QQuestSnds # resp
then
resp := resp + 1

end

Taking into account the matching of the variables, i.e.
trans becomes quest, only the actions of those events are

matched. The guard of event questions does not corre-

questions
transfers when
begin
trans := trans + 1 then
end
end

quest = resp

quest := quest + 1

spond to any guard of event transfers.

— The additional guard of event questions, i.e. quest =
resp is transformed into the guard QQuestSnds = resp
of event Q_sends_question in the resulting refinement, be-
cause variable quest is matched with variable trans of
the pattern and this variable is subsequently refined to

QQuestSnds, according to the invariant QuestResp_1_1.

QuestResp_1_1:

quest = QQuestSnds
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— Similarly, the guard of event responds, i.e. quest # resp,
needs to take into account the fact that variable quest now
becomes QQuestSnds.

— The rewriting of these additional guards is done automat-

ically by the tool support.

3.3.2 Pattern for “Responding” Phase ~We now follow sim-
ilar steps to use the synchronous multiple message communi-

cation pattern for the “responding” phase.

1. The matching is as follows

pattern ~» problem

trans — ~> resp

transfers ~~ responds

2. Similarly, we assure that the syntax checking for the given
matching is successful.
3. We rename the refinement of the pattern according to the

following rules.

original ~- renamed as

snds — ~ RRespSnds
chan  ~>  R2QRespChan

revs o~ QRespRcus

sends ~» R_sends_response

receives ~~ Q_receives_response

4. We incorporate the renamed pattern refinement with the

problem to obtain the following model.
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variables: QQuestSnds, Q_sends_question

RQuestRcus, refines Q_sends_question
Q2RQuestChan, when

RRespSnds, QQuestSnds = RRespSnds
QRespRcuvs, Q2RQuestChan = F
R2QRespChan then

invariants:

QuestResp_2_1: resp = RRespSnds

QuestResp_2.2: R2QRespChan = F =

RRespSnds = QRespRcuvs

QuestResp 2.3: R2QRespChan =T =

RRespSnds = QRespRcvs + 1

QuestResp 2. 4: QRespRcvs € N

Q2RQuestChan :=T
QQuestSnds = QQuestSnds + 1

end

R_receives_question
refines R_receives_question

when

Q2RQuestChan =T

then
init Q2RQuestChan := F
begin RQuestRcvs := RQuestRcus + 1

Q2RQuestChan := F
RQuestRcvs := 0
QQuestSnds := 0
R2QRespChan := F
QRespRcvs := 0
RRespSnds := 0

end

end

R_sends_response

refines responds

when
QQuestSnds # RRespSnds
R2QRespChan = F

then
R2QRespChan :=T
RRespSnds := RRespSnds + 1

end
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known as local enforceability [9]. Roughly speaking, on the
Q_receives_response

when abstraction level, the global interactions between partners are

R2QRespChan = T specified in a way that it might not be enforced during real

then local implementation without having more additional interac-
R2QRespChan := F tions between the different partners. In our case, it is not pos-
QRespRcvs := QRespRcus + 1 sible for the Questioner to have access to the information be-
end longing to the Responder: currently event Q_sends_question

Again, we highlight some important aspects of our pattern has access to variable RRespSnds of the Responder. In this
application at this step. section, we fix this problem by adding more information on

how the two partners interact with each other.
— Similar to the previous pattern application in Section 3.3.1,

The cheating guards, i.e.
the matching between event transfers and event responds

are not exact: there is an additional guard in event responds. QQuestSnds 7# RRespSnds

— This guard of event responds, i.e. QQuestSnds 7 resp for event R_sends_response can be replaced by the following

needs to take into account the fact that variable resp is guard which uses only variables of the Responder:

matched with variable ¢rans of the pattern specification
RQuestRcvs # RRespSnds .

and this variable is later refined to R RespSnds. This guard

. ) The proof for the guard strengthening obligation (GRD) is
is transformed into the guard QQuestSnds # RRespSnds

. o based on the following invariant QuestResp_3_1 (which we
of the resulting event R_sends_response. Similarly for the

need to add to the model).
guard of Q_sends_question. )

. . - invariants:
— These guards are in fact “cheats” in the model. Event

QuestResp_3_.1: RQuestRcvs > RRespSnds

Q-sends_question supposes to be an event of the Ques-

The reasoning is as follows:
tioner, however its guard refers to variable RRespSnds

of the Responder. The same analysis applies for event — From the new guard RQuestRcvs # RRespSnds and the

R_sends_response and variable (QQuestSnds. This prob- new invariant RQuestfcvs > RRespSnds, we have
lem will be handled by a standard refinement step in the RQuestRcvs > RRespSnds . (10)

next section. o
— We conclude from the existing invariants QuestResp_1_2

and QuestResp_1_3 that
3.3.3 Removing the “Cheating” Guards The problem that

we mentioned earlier about the “cheating” guards is better QQuestSnds > RQuestRcvs . (11)
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— From (10) and (11), we conclude that QQuestSnds >
RRespSnds, which ensures QQQuestSnds # RRespSnds,

as required.

This step is a standard refinement in Event-B. Intuitively,
the new invariant links the questioning and responding phases
together and is the core of the Question/Response protocol.

Similarly, the guard QQuestSnds = RRespSnds of event

Q_sends_question is replaced by QQuestSnds = QRespRcus.

The refined events Q_sends_question and R_sends_response

at their final form are as follows.

Q_sends_question
refines Q_sends_question

when
QQuestSnds = QRespRcuvs
Q2RQuestChan = F

then
Q2RQuestChan : =T
QQuestSnds = QQuestSnds + 1

end

R_sends_response
refines R_sends_response
when
RQuestRcvs # RRespSnds
R2QRespChan = F
then
R2QRespChan :=T

RRespSnds := RRespSnds + 1

end

Note that we can consider also the guard referring to the

channels, i.e. R2QRespChan = F and Q2RQuestChan =

13

F as not locally enforceable, hence should be removed. How-
ever, this is not of our interest here.

Overall, this (standard) refinement step where we impose
the policy for local enforceability cannot be done automati-
cally by a tool: this corresponds to how the protocol is con-

structed and is usually protocol dependent.

4 Pattern Incorporation in Event-B

In this section, we summarise the idea of incorporating pat-
terns into Event-B developments. The process can be seen in

Figure 4.

’Initial model (mo) ‘

I

refines
Ref. 1 (mq)
refines
matching
Pattern Spec. (po) — Ref. n (my)
syntax checking
refines refines
renaming ‘
Pattern Ref. (p1) —»{ Ref.n 4+ 1 (mnt1) ‘
incorporating

Fig. 4 Using patterns in Event-B

First of all, in our notion, a pattern is just a development
in Event-B including specification py and a refinement p;°.

During a normal development in Event-B, at refinement m,,,

3 In general, this can be extended to multiple refinement level.
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developers can match part of the model with the pattern speci-
fication pg. As a result of this matching, the refinement p; can
be incorporated to create the refinement m,, 4 of m,, (with
possible “renaming” to avoid name clashes).

Moreover, we have presented here the incorporation of
each synchronous multiple message communication pattern
separately. However, it is possible that they could be incor-
porated at the same time. In other words, there can be more
than one pattern that can be matched at the same time with
the problem at hand. There are side conditions to guarantee
that the patterns do not interfere with each other, e.g. there

should be no matching to the same variable.

4.1 Formalisation of the Approach

We assume that we have the following patterns containing
a specification py and its refinement p;. We further assume
that the pattern specification py has some variables v with
invariant J(v). We consider a particular event p with guard

L(v) and some actions v :| T'(v,v").

invariants:
variables: v

J(v)

p = when L(v) thenv :| T'(v,v’) end

In the refinement p; of pg, variable v is data refined by
variable w with gluing invariant separated into v = X (w)
and K (v, w). Here we make the assumption that the gluing
invariant can be functionally expressed as v = X (w) with
some other extra invariants K (v, w). This assumption is valid

for all our examples so far and could be relaxed later. Event
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p is refined by event q with concrete guard M (w) and some

actions w :| U(w, w’).

invariants:

variables: w v=X(w)

K(v,w)

q = when M (w) then w :| U(w,w’) end

We assume that we have arrived at a refinement level in a
particular development which we call problem specification
m,,. The machine has some variables b which we intend to
match with the above pattern. Moreover, this problem spec-
ification could have some other variables ¢ which we have
to keep when incorporating the pattern into the development.
We do not need to consider the invariant for this machine

hence this is left out.

variables: b, c

e
when f
H(b) when
N (b, c) G(b,c)
then then
b:| R(b,b") c:| P(b,c,c)
c:| S(b,c, ) end
end

Without loss of generality, we consider two events of the
problem specification: event e which is going to be matched
with event p of the pattern specification, and event f which is
not going to be matched. Event e is separated into the parts
which are matched with event p of the pattern specification,

taken into account the decision that variable b is matched with
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variable v of the pattern specification. Here we say that every
variable in the pattern need to be matched with some vari-
able in the problem. However, this condition can be relaxed
to make the approach more flexible (see future work in Sec-
tion 7.3). Hence the guards of the event are separated into
H(b) and N (b, c) where H (b) is matched with guard L(v) of
event p. Similarly, the action is separated into b :| R(b,b") —
which is a match of v :| T'(v,v") —and ¢ :| S(b,¢c,c’). The
validity of this matching can be syntactically checked and/or
even be “discovered” by a tool. For the unmatched event f,
we require that it must not change variable b, hence its action
is of the form ¢ :| P(b,c,c"). However, it can refer to b in
the guard and in the action (only as reference to the before
state). The preservation of this restriction will be checked by
the supporting tool (more information in Section 6.2). The
matching and the extraction from the gluing invariant can be

summarised as follows.

pattern ~>  problem
v ~ b
P ~ €
L(v) ~ H(b)
v:| T(v,v") ~ b:| R(bb)

The refinement m,,; of m,, is generated by combining
the problem specification and the pattern refinement as fol-

lows.

invariants:

b= X(w)
variables: w,c

K(b,w)

J(b)
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e
when f
M (w) when
N(X(w),c) G(X(w),c)
then then
w:| Uw,w') ¢:] P(X(w),c,c)
c:| S(X(w),c,c) end
end

We must guarantee that the constructed machine m,, 1
is indeed a refinement of the specification m,,. The detailed
proofs are in [11, Section 4.5]. Intuitively, the proofs assume
the correctness of the problem specification m,,, the pattern
specification pg and the pattern refinement p; in order to prove
the correctness of the problem refinement m,, 4. The obliga-
tion list includes feasibility, guard strengthening and simula-

tion for both events e and f.

As an example, we sketch the proof for guard strengthen-

ing obligation of event e which is stated as follows.

H(b) AN(b,c)

The proof of the above sequent can be split into two parts

since the goal is a conjunction.



b= X(w) b= X(w)
K(b,w) K(b,w)
J(b) J(b)
M (w) (12) | M(w) (13)
N(X(w),c) N(X(w),c)

- -
H(b) N(b,c)

The second part of the proof (13) for proving N (b, c¢) fol-
lows from the assumptions b = X (w) and N (X (w), ¢). The
first part (12) of the proof relies on the fact that event q is a
refinement of event p in the pattern, hence we have proof the

guard strengthening obligation for ¢, namely.

J(v)
v=X(w)

K(v,w)

Moreover, from the matching information v is matched with b
and guard H () is matched with L(v) (i.e. H and L are syn-
tactically the same), we can derive (with renaming variable

from v to b) the following.

and from there we can conclude the proof for (12).
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4.2 What We Gain with the Pattern Approach

So far, it seems that we have to do more work in order to
apply patterns: we have to develop the pattern separately and
incorporate it into the main development. But we do have the

following advantages.

— We do not need to prove that m,, is a refinement of m,,.
This is because we have already done this proof when
developing patterns.

— Moreover, we can reuse the pattern more than once. For
example, in the development of the Question/Response
protocol, we use the synchronous multiple message com-
munication pattern twice, so we save doing proofs for one
pattern.

— Since the pattern is just a normal Event-B development,
the meaning of the pattern is also intuitive. Moreover, we

can use any development as pattern in our approach.

The proof statistics related to the synchronous multiple
message communication and Question/Response protocol is
given in Table 1. As we can see, by developing the synchronous
multiple message communication pattern separately, we have
to prove 15 obligations. However, we do not need to prove
the model “Question/Response 17 and “Question/Response
2” (which has a total of 32 obligations) since it is correct
by construction. Hence in total we save 32 — 15, that is 17
proofs. Note that the number of proof obligations for each
model “Question/Response 17 and “Question/Response 2” is

roughly the same as that of “Synch. Multi. Com. 17, since in
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each model we apply the pattern once. The development of

the two protocols is available on-line [13].

Models Total | Auto. (%) | Man. (%)
Synch. Multi. Com. 0 2 2 (100%) 0 (0%)
Synch. Multi. Com. 1 13 12 (92%) 1 (8%)
Question/Response 0 6 5 (83%) 1(17%)
Question/Response 1 16 15 (94%) 1 (6%)
Question/Response 2 16 15 (94%) 1 (6%)
Question/Response 3 5 4 (80%) 1 (20%)

Table 1 Proof Statistics

5 Patterns Used in Industrial Case Studies

Our approach has been applied to formalise communication
protocols from SAP. The examples are Buyer/Seller B2B as
described in [23] and Ordering/Supply Chain A2A Communi-
cations as described in [10, Section 5.3.3]. Table 2 shows the
proof statistics comparing the developments without patterns
and with patterns for the two case studies. More importantly,
our approach save on average of the two case studies 33% of
the manual proofs (those that need interactive efforts to dis-
charge).

In this section, we give the description of other patterns

that have been used in these protocols.

— Section 5.1 presents the Single Message Communication
pattern.
— Section 5.2 presents the Request/Confirm pattern.

— Section 5.3 presents the Request/Confirm/Reject pattern.

17

Models/Savings Total | Auto. (%) | Man. (%)
A2A (without pattern) | 281 | 249 (89%) | 32 (11%)
A2A (with pattern) 184 | 164 (89%) | 20 (11%)
Savings 97 85(88%) | 12 (12%)
Savings percentage 35% 34% 38%
B2B (without pattern) | 498 | 427 (86%) | 71 (14%)
B2B (with pattern) 342 | 291 (85%) | 51 (15%)
Savings 156 | 136 (87%) | 20 (13%)
Savings percentage 31% 32% 28%

Table 2 Case studies’ proof statistics (with vs. without pattern)

— Section 5.4 presents the Asynchronous Multiple Message
Communication pattern.
— Section 5.5 presents the Asynchronous Multiple Message

Communication with Repetition pattern.

5.1 Single Message Communication

The description of the pattern is as follows. There are two
parties involved in the protocol, namely Sender and Receiver.
There is a message sent from the Sender to the Receiver. If we
denote the status of the protocol by a single variable trans,
the (abstract) protocol can be seen in Figure 5. In the refine-
ment, the message is transferred via a channel between the

Sender and the Receiver.

transfers

Fig. 5 Single Message Communication



18

5.2 Request/Confirm Pattern

The description of the protocol is as follows. There are two
parties involved in the protocol, namely Sender and Receiver.

The protocol contains two phases:

1. In the first phase, the Sender sends a request to the Re-
ceiver.
2. In the second phase, upon receiving the request, the Re-

ceiver sends a confirmation back to the Sender.

Using two Boolean variables req and conf to represent

the state, the protocol can be illustrated as in Figure 6. The

requests

confirms

Fig. 6 Request/Confirm protocol

development of this pattern used the single message commu-
nication pattern (described in Section 5.1) twice. These two
patterns are used as illustrative examples in our earlier re-

port [16].

5.3 Request/Confirm/Reject Pattern

The description of the protocol is as follows. There are two
parties involved in the protocol, namely Sender and Receiver.

The protocol also contains two phases:

1. In the first phase, the Sender sends a request to the Re-

ceiver.

Thai Son Hoang et al.

2. In the second phase, after receiving this request, the Re-
ceiver can either send a “confirmation” back to the Sender
if he agrees; or the Receiver sends a “rejection” back to

the Sender if he does not agree.

Using three Boolean variables req, conf and rej to repre-

sent the state, the protocol can be seen in Figure 7.

Fig. 7 Request/Confirm/Reject protocol

The development of this pattern used the single message

communication pattern (described in Section 5.1) three times.

5.4 Asynchronous Multiple Message Communication Pattern

The description of the protocol is as follows. There are two

parties involved in this protocol, namely Sender and Receiver.

1. The Sender can send many messages (multiple message)
to the Receiver.

2. The messages are different, in other words, there is no
resend.

3. To distinguish the freshness of the message, each message
is stamped with a sequence number.

4. The Receiver can only receive new messages.

5. The Receiver can discard any message.
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5.5 Asynchronous Multiple Message with Repetition

Communication Pattern

The description of the protocol is as follows. There are two

parties involved in this protocol, namely Sender and Receiver.

1. The Sender can send many messages (multiple message)
to the Receiver.

2. The messages can be the same, in other words, messages
could be resent.

3. To distinguish the freshness of the message, each message
is stamped with a sequence number.

4. The Receiver can receive any message which is not old.

5. The Receiver can discard any message.

The only difference compared to the asynchronous mul-
tiple message communication (no repetition) pattern is that

here messages can be resent.

6 Tool Support

We have implemented our prototype for supporting our ap-
proach as a plug-in for the RODIN Platform [3] which is an
open source platform based on Eclipse. The plug-in provides
a wizard taking users through different steps of applying pat-
terns, namely, matching, syntax checking, renaming and in-

corporating.

6.1 Matching

The tool assists developers in inputting the matching between

the problem and the specification. This includes a dialog for
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the developers to choose the matching between variables and
events. Moreover, in some cases, we need to also match the
context information, i.e. carrier sets and constants which can
also be chosen through the wizard page (in fact, this “match-
ing context” is better known as generic instantiation in Event-
B [4]). Information about this matching can be persistently
saved for reuse later. A screen-shot of the wizard page for

this step is in Figure 8.

8,00

Event-B Pattern. Step 1

This step is for developer to choose the matching of variables and
events

Pattern machine Prablem machine

Project | pattern_8 SynchMu... |5} Project | pattern_9_Question... | &
Machine | synchMulti_0 o8 Machine | synch_gquestion res... |%

Matching context

Matching variable

' = ' 3
trans --> quest Remove

Matching event

1 | 3

P 4 INITIALISATION --> INITIALISATION

. Remove
> 4 transfers ——> questions -

Double click on matching to enter/change submatchings

Options
@ All elements of the pattern have to be matched.

Matching file

Save Matching Load Matching

@ " < Back ( Next= ) ( Cancel

Fig. 8 First step. Matching



20

6.2 Syntax Checking

In this step, the tool needs to check the consistency of the
matching provided by the user in the previous steps. The con-

sistency checking at this step includes:

— For events matched with some events in the pattern, we
need to check the signature of these events against the
corresponding pattern events.

— For remaining (unmatched) events, we need to check that
they do not modify the matched variables (as mentioned

earlier in Section 4.1).

A screen-shot of the relevant wizard page is in Figure 9.

8,00

Event-EB Pattern. Step 2

This step is to verify the input in the matching step.

¥ 4 INITIALISATION --> INITIALISATION
& trans = 0 --> quest =0
¥ % transfers --> questions
4 trans = trans +1 --> quest = quest + 1

Confirmation

E‘I The above stated guard and action matchings are syntactically the same

(@) ( <Back ) (C Next> ) ( Cancel sh

Fig. 9 Second step. Syntax Checking

6.3 Renaming

The tool assists developers in inputting renaming patterns.
This includes a dialog for the developers to give renaming
pattern of variables and events. Consistency (e.g. name clash)
for this renaming is verified at this step. A screen-shot of the

renaming wizard page is in Figure 10.
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8,060

Event-B Pattern. Step 3

This step is for developers to choose the renaming before
incorporating the pattern.

Renaming of the variables

snds QQuestSnds
revs RQuestRcvs
chan Q2RQuestChan

Renaming of the events
INITIALISATION (INITIALISATION)

sends (guestions)
receives

INITIALISATION
Q_sends_guestion
R_receives_guestion

'/‘3 ( < Back ( Next > \ _ Cancel

Fig. 10 Third step. Renaming

6.4 Incorporating

Finally, the tool generates the refinement of the problem ac-
cording to the input in the previous steps. In order to incor-
porate the refinement of the pattern into the development, the
tool needs to extract information from the gluing invariant on
how the abstract variables v in the pattern are refined. Usu-
ally, the information is of the form v = X (w). At the mo-
ment this information is also entered manually by the user in
the wizard. A screen-shot of the wizard page for the incorpo-

rating step is in Figure 11.

7 Conclusion

We have presented an approach for reusing formal models as
patterns in Event-B. During a development, patterns can be
discovered by either identifying the part of the model matched
by existing patterns, or by recognising similar elements of the
model which could be developed separately as a new pattern

themselves.
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8,006

Event=-B Pattern. Step 4

This step incorporate the pattern and the problem.

New machine's name | synch_guestion_response
Overview of the invariants

trans = snds

Replacement for the disappeared variables

trans snds

Replacement for the disappeared parameters

Optiens
W generate Proof Obligations

@ copy Invariants of the pattern refinement (no gluing invariants are copied)

—a  ——— )
w) < Back Cancel ( Finish 3

£

Fig. 11 Fifth step. Incorporating

Even though we presented in Section 4.1 a formalisation
of our approach when there is only a single refinement step
in the pattern development, the approach is also valid when
there are multiple refinement steps. This is the same as apply-
ing patterns step by step for each level of refinement. Since
refinement is monotonic, the final resulting model will be a
refinement of the original model. Practically, only the last re-
finement model of the pattern’s refinement-chain is incorpo-
rated in the development. This is already supported by our
tool presented in Section 6. This feature allows us to reuse our
formal models more flexibly, for example, using the Ques-
tion/Response protocol in the development of the A2A Com-

munications [10, Section 5.3.3].
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7.1 Scalability

We have applied our approach to two medium-size case stud-
ies from SAP, namely the Buyer/Seller B2B [23] and Order-
ing/Supply Chain A2A Communications [10, Section 5.3.3].
However, our approach is general and is not restricted to this
specific domain. The efforts on modelling and proving are
replaced by specifying how patterns are identified and incor-
porated into the development. Our experiments show that this
process is scalable. In particular, the patterns can be nested,
i.e., a pattern can be used to develop another pattern, which
then can be reused in a larger development.

So far, our patterns are quite specific since they arose
from some domain specific problems that we are trying to
solve. More general patterns can be “parameterised” by some
carrier sets and constants, which can be “instantiated” upon
application to a problem (see our discussion on future work
in Section 7.3). This makes the patterns more reusable in dis-
tinct problems within different contexts.

Finally, tool support is important for making our approach
scalable. Our aim is to have as less interaction from the user
as possible by providing different assistances for users when
using the tool. Our initial experiments with the implemented

tool support is encouraging.

7.2 Related Work

Design patterns are well-known concepts in object-oriented
programming, in particular in the work of the Gang-of-Four

(GoF) [14]. In their work, each pattern is usually represented
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by some informal description and some diagram in UML.
There is no formal semantics associated with patterns, hence
the meanings of these patterns are imprecise. There is some
work on formalising these classic software design patterns in
different formal notations, e.g., using predicate logic [7], us-
ing TLA+ [22], using DisCo [18]. In these papers, the first
step is to give some formal meaning to the pattern before
the verification of its correctness can take place. This also
needs to be done for any newly defined pattern. To overcome
this problem, one needs to give some formal semantics to the
diagrams used to define patterns. LePUS3 [15] is designed
precisely for this purpose. However, verification in LePUS3
emphasises on the consistency between a specification (dia-
gram) and a program. In our opinion, this is quite different

from using patterns consistently to design the future system.

Our approach is related to decomposition [8,4] where de-
velopers can separate a model into sub-models and can sub-
sequently refine these sub-models independently. The simi-
larity with our approach is when some of the sub-models al-
ready exist as some off-the-shelve components (patterns). In
this case the advantage of reusing is similar, however decom-

position is not intended for reusing.

Another related work to ours is the “automatic refinement
tool” [19]. Our patterns are just formal models which encode
some design decisions about refining some abstract models.
However, the automatic refinement tool still requires proofs
in order to make sure that the proposed refinement is correct.

This approach does not necessarily preserve correctness.
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Comparing with classical B [1], reusing of components is
facilitated by the INCLUDES clause in the specification level
and IMPORTS clause at the implementation level to compose
different components. In order to reuse the same components
several times, classical B supports a renaming mechanism by
prefixing the name of the included/imported components with
some certain identifier. In our approach, we allow the user
to specify the renaming of the pattern, but it could also be
done systematically with a prefixing mechanism. The main
difference between our approach and the including/importing
mechanism is that the including/importing mechanism does
not support incorporation refinement, i.e. only reuse of the
specification of the pattern is possible.

In Z [21], schemas can be reused conveniently by com-
bining together using operators of the schema calculus. More-
over, instances of schema can be created by schema refer-
encing mechanisms which include both generic constructions
and renaming. Similar to classical B, this technique allows

reusing of a single specification component only.

7.3 Future Work

As for future work, we intend to implement the missing fea-
tures from the current prototype plug-in for the RODIN Plat-
form, e.g. syntax checking and support for extracting infor-
mation from the pattern refinement. The current documenta-
tion for tool support is at the Event-B wiki documentation
system [12]. At the same time, we are going to investigate
more examples in other domains that could benefit from our

approach.
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Furthermore, we also need to “instantiate” the context of
the pattern development. In our examples so far, the contexts
of the pattern and the problem are the same. However, we
would like to use the patterns in a more general context. For
example, the model of the communication for transferring a
certain (abstract) message should be instantiated for any kind
of (concrete) message, e.g., if the message is just a Boolean
value, or if the message contains some numbers or some com-
plicated data structure. This requires the context of the pattern
to be instantiated accordingly. Generic instantiation [4] is a
more general concept and could be used in association with
other applications, for example with shared-event composi-

tion as shown in [20].

As mentioned before, it is not necessarily the case that
all the variables of the pattern need to be matched with some
variables in the problem. It could be the case that only a part
of the variables needs to be matched or even none of them,
which corresponds to the case where we do superposition re-

finement [4]. This makes the approach more flexible.

Moreover, we have specifically chosen to have the “syn-
tax checking” rather than raising proof obligations when ap-
plying patterns. In the future, if this turns out to be too re-
strictive, we can choose to generate the corresponding proof
obligations, again for more flexibility. Note that if a pattern
matching can be syntactically checked successfully, the proof

obligations generated should be trivial to be discharged.
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