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Abstract

We propose an approach for proving that a system guarantees to establish a given
property eventually with probability one. Using Event-B as our modelling lan-
guage, our correctness reasoning is a combination of termination proofs (in terms
of probabilistic convergence), deadlock-freedom and invariant techniques. We il-
lustrate the approach by formalising some non-trivial algorithms, including the
duelling cowboys, Herman’s probabilistic self-stabilization and Rabin’s choice
coordination. We extend the supporting Rodin Platform (Rodin) of Event-B to
generate appropriate proof obligations for our reasoning, then subsequently (au-
tomatically/interactively) discharge the obligations using the built-in provers of
Rodin.
Keywords: Event-B, formal modelling, probabilistic termination, almost-certain
convergence, tool support, Herman’s probabilistic self-stabilization, Rabin’s
choice coordination.

1. Introduction

Reasoning about the correctness of probabilistic systems is a non-trivial chal-
lenge. Paper-and-pencil proofs are error-prone, whereas formal proofs are often
too complicated to be manageable. In spite of these difficulties, probability is
still used in many systems, since it provides much better efficiency over non-
probabilistic implementations [3, 4, 5, 6, 7].

IThis is an extended version of our earlier work [1].
IIA more detailed version of this paper is available as a technical report [2].
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In some probabilistic systems, we cannot be certain that a property will be
eventually achieved. Instead, a slightly weaker form of assurance is more appro-
priate: it is established eventually with probability one. As an example, consider
tossing a fair coin until heads come up. It cannot be certain that eventually heads
will come up, however, the probability that the coin turns up heads eventually is
indeed 1. This analogy has been used widely in various applications, in particular
in distributed systems for symmetry-breaking protocols [4, 5, 6].

This paper presents an approach based on the Event-B modelling method [8]
for formalising and reasoning about systems with qualitative probabilistic prop-
erties. Qualitative probabilistic reasoning has been introduced into Event-B [9].
A new notion of events’ convergence properties is introduced: convergence with
probability one. An advantage of the proposal in [9] is that the entire reasoning
stays within the standard Event-B logic.

Despite its simplicity, the technique described in [9] left an open question
about the interaction between refinement and qualitative probability reasoning.
This makes the integration of qualitative probability reasoning with a refinement-
based method such as Event-B incomplete and unsatisfactory. In this paper, we
show how this reasoning can be embedded into Event-B developments without
too many restrictions. Furthermore, we want to lift the reasoning about events’
convergence properties into proving a certain class of system properties which we
call almost-certain convergence properties, i.e., of the form “eventually a property
holds with probability one”. Our approach combines reasoning about qualitative
probability and deadlock-freedom, and is based on the experience of [10].

We extend the Rodin Platform (Rodin) [11] in order to generate the appropri-
ate proof obligations supporting our reasoning. Using the extended platform, we
formalise several algorithms, namely, the duelling cowboys [12, 13], Herman’s
probabilistic self-stabilization [6] and Rabin’s choice coordination [5]. Whereas
the reasoning about the first example is straightforward, it is certainly non-trivial
for the latter two examples. It involves constructing a lexicographic variant which
needs to be carefully formalised and mechanically proved to have adequate assur-
ance of the correctness of the algorithm. The case studies illustrate the scalability
of the approach for reasoning qualitatively in Event-B: it can be applied to more
complex systems other than “coin tossing” examples. Within our knowledge, the
work presented here provides the first tool-supported method for proving almost-
certain convergence properties of discrete transition systems, including distributed
algorithms.

The rest of the paper is structured as follows. In Section 2, we give an overview
of the Event-B modelling method, together with convergence and qualitative prob-
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ability reasoning. We present our contributions in Section 3. Section 4 is dedi-
cated to illustrating our approach using the aforementioned examples. Section 5
discusses some related work. Finally, we draw conclusions and propose some
future research directions in Section 6.

2. Event-B and Qualitative Reasoning

Event-B [8] is a modelling method for formalising and developing systems
whose components can be modelled as discrete transition systems. An evolution
of the (classical) B-method [14], Event-B is centred around the general notion of
events, which is also found in other formal methods such as Action Systems [15],
TLA [16] and UNITY [17]. The semantics of Event-B, based on transition sys-
tems and simulation between such systems, is described in [8]. We will not de-
scribe in detail the semantics of Event-B here. Instead we just show some proof
obligations that are important for our reasoning in the later examples.

Event-B models are organised in terms of the two basic constructs: contexts
and machines. Contexts specify the static part of a model whereas machines spec-
ify the dynamic part. Contexts may contain carrier sets, constants, axioms, and
theorems. Carrier sets are similar to types. Axioms constrain carrier sets and
constants, whereas theorems are additional properties derived from axioms. The
role of a context is to isolate the parameters of a formal model (carrier sets and
constants) and their properties, which are intended to hold for all instances. For
simplification, we omit references to constants, carrier sets, and the properties of
them in the presentation of proof obligations.

We give an overview about machines in Section 2.1, then about machine re-
finement in Section 2.2, and finally about event convergence and qualitative rea-
soning in Section 2.3.

2.1. Machines
Machines specify behavioural properties of Event-B models. Machines may

contain variables, invariants (and theorems), events, and a variant. Variables v
define the state of a machine and are constrained by invariants I(v). Theorems
are additional properties of v derivable from I(v). Possible state changes are
described by events.

Events. An event evt can be represented by the term

evt b= any t where G(t, v) then S(t, v) end ,
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where t stands for the event’s parameters1, G(t, v) is the guard (the conjunc-
tion of one or more predicates) and S(t, v) is the action. The guard states the
necessary condition under which an event may occur, and the action describes
how the state variables evolve when the event occurs. We use the short form
“ evt b= when G(v) then S(v) end ” when the event does not have any parame-
ters, and we write “ evt b= begin S(v) end ” when, in addition, the event’s guard
equals true. A dedicated event without parameters and guard is used for the ini-
tialisation event (usually represented as init). Note that events may be annotated
with their convergence status, witnesses, and the names of the events that they
refine. We will say more about these annotations later.

The action of an event is composed of one or more assignments of the form

x := E(t, v) , or (1)
x :2 E(t, v) , or (2)
x :| Q(t, v, x0) , (3)

where x are some of the variables contained in v, E(t, v) is an expression, and
Q(t, v, x0) is a predicate. Note that the variables on the left-hand side of the assign-
ments contained in an action must be disjoint. In (1) and (2), x must be a single
variable. Assignments of the form (1) are deterministic, whereas the other forms
are nondeterministic. In (2), x is assigned an element of a set E(t, v). (3) refers
to Q which is a before-after predicate relating the values v (before the action) and
x0 (afterwards). (3) is also the most general form of assignment and nondetermin-
istically selects an after-state x0 satisfying Q and assigns it to x. Note that the
before-after predicates for the other forms are as expected; namely, x0 = E(t, v)
and x0 2 E(t, v), respectively. All assignments of an action S(t, v) occur simul-
taneously, which is expressed by conjoining their before-after predicates. Hence
each event corresponds to a before-after predicate S(t, v, v0) established by con-
joining all before-after predicates associated with each assignment and y = y0,
where y are unchanged variables.

Proof Obligations. Event-B defines proof obligations, which must be proved to
show that machines meet their specified properties. We describe below the proof

1 When referring to variables v and parameters t, we usually allow for multiple variables and
parameters, i.e., they may be “vectors”. When we later write expressions like x := E(t, v) we
mean that if x contains n > 0 variables, then E must also be a vector of expressions, one for each
of the n variables.
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obligations for invariant preservation, feasibility and deadlock-freedom. Formal
definitions of all proof obligations are given in [8].

Invariant preservation states that invariants are maintained whenever variables
change their values. Obviously, this does not hold a priori for any combination
of events and invariants and therefore must be proved. For each event, we must
prove that the invariants I are re-established after the event is carried out. More
precisely, under the assumption of the invariants I and the event’s guard G, we
must prove that the invariants still hold in any possible state after the event’s ex-
ecution given by the before-after predicate S(t, v, v0). The proof obligation is as
follows:

I(v), G(t, v), S(t, v, v0) ` I(v0) . (INV)

Similar proof obligations are associated with a machine’s initialisation event. The
only difference is that there is no assumption that the invariants hold. For brevity,
we do not treat initialisation differently from ordinary machine events. The re-
quired modifications of the associated proof obligations are straightforward. Note
that in practice, we prove the preservation of each invariant separately.

Feasibility states that the action of an event is always feasible whenever the
event is enabled. In other words, there is always a possible after value for the
variables, satisfying the before-after predicate. In practice, we prove feasibility
for individual assignment of the action of an event. For deterministic assignments,
feasibility holds trivially. The feasibility proof obligation generated for a non-
deterministic assignment of the form x :| Q(t, v, x0) is as follows:

I(v), G(t, v) ` 9x0 ·Q(t, v, x0) . (FIS)

Deadlock-freedom states that there are always some enabled events during the
execution of the system. The proof obligation is as follows (where Gi(ti, v) are
guards of the events of the system):

I(v) ` (9t1 ·G1(t1, v)) _ . . . _ (9tn ·Gn(tn, v)) . (DLK)

2.2. Machine Refinement
Machine refinement is a mechanism for introducing details about the dynamic

properties of a model [8]. For more details on the theory of refinement, we refer
the reader to the Action System formalism [15], which has inspired the devel-
opment of Event-B. Here we sketch some central proof obligations for machine
refinement which are related to our examples in Section 4.

When proving that a machine CM refines another machine AM, we refer
to AM as the abstract machine and CM as the concrete machine. The states
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of the abstract machine are related to the states of the concrete machine by gluing
invariants J(v, w), where v are the variables of the abstract machine and w are the
variables of the concrete machine. Typically, the gluing invariants are declared as
invariants of CM and also contain the local concrete invariants constraining only
w.

Each event ea of the abstract machine is refined by a concrete event ec (later
we will relax this one-to-one constraint). Let the abstract event ea and concrete
event ec be as follows:

ea b= any t where G(t, v) then S(t, v) end (4)
ec b= any u where H(u, w) then T (u, w) end . (5)

Somewhat simplifying, we can say that ec refines ea if the guard of ec is stronger
than the guard of ea (guard strengthening), and the gluing invariants J(v, w) es-
tablish a simulation of ec by ea (simulation). This condition is captured by the
following proof obligation:

I(v), J(v, w), H(u,w),T(u,w,w0
) ` 9t, v0 ·G(t, v) ^ S(t, v, v0) ^ J(v0, w0

) . (REF)

In order to simplify and split the above proof obligation, Event-B introduces the
notion of “witnesses” for the abstract parameters t and the after value of the
abstract variables v0. The witnesses for t and v0 are in the form of predicates
W1(t, u, v, w) and W2(v0, u, w, w0), respectively. The witnesses are required to
be feasible. The refinement proof obligation (REF) is replaced by three different
proof obligations as follows:

I(v), J(v, w), H(u,w),W1(t, u, v, w) ` G(t, v) , (GRD)

I(v), J(v, w), H(t, w),T(t, w, w0
),W1(t, u, v, w),W2(v

0, u, w,w0
) ` S(t, v, v0) , (SIM)

I(v), J(v, w), H(t, w),T(t, w, w0
),W1(t, u, v, w),W2(v

0, u, w,w0
) ` J(v0, w0

) . (INV REF)

In the case where t or v are retained in the concrete machine, the corresponding
witnesses can be omitted. The witnesses are denoted by the keyword with.

The action of the concrete event is required to be feasible. The corresponding
proof obligation FIS is similar to the one presented for the abstract machine, with
the exception that both abstract invariants I(v) and gluing invariants J(v, w) can
be assumed.

A special case of refinement (called superposition refinement) is when v are
kept in the refinement, i.e., v ✓ w. In particular, if the action of an abstract event
is retained in the concrete event, the proof obligation SIM is trivial, hence we only
need to consider INV REF for proving that the gluing invariants are re-established.
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Our reasoning in the later sections will often use this fact. With respect to FIS, we
only need to prove the feasibility of additional assignments in the concrete event.

In the course of refinement, new events are often introduced into a model.
New events must be proved to refine the implicit abstract event SKIP, which does
nothing, i.e., does not modify abstract variable v.

The one-to-one correspondence between the abstract and concrete events can
be relaxed. When an abstract event ea is refined by more than one concrete event
ec, we say that the abstract event ea is split and prove that each concrete ec is
a valid refinement of the abstract event. Conversely, several abstract events ea

can be refined by one concrete ec. We say that these abstract events are merged
together. A requirement for merging events is that the abstract events must have
identical actions. We need to prove that the guard of the concrete event is stronger
than the disjunction of the guards of the abstract events.

2.3. Convergence and Qualitative Reasoning
At any stage, it may be stated that a set of events does not collectively diverge;

we then call these events convergent events. In other words, convergent events
cannot take control forever and hence allow other events to occur. To prove this,
one gives a variant V , which maps a state to a finite set. One then proves that
each convergent event strictly decreases V , w.r.t the strict-subset order ⇢. Since
the variant maps a state to a finite set, (V,⇢) induces a well-founded ordering on
system states. The corresponding proof obligation is as follows:

I(v), G(t, v), S(t, v, v0) ` V (v0) ⇢ V (v) . (VAR)

The above proof obligation is applied when the variant is a set expression. In
Event-B, a variant can also be a natural number expression with the standard “<”-
order. Later we will use both types of variants for our development.

In the case where the convergence of some events cannot be immediately
shown, but only in a later refinement, their convergence is anticipated and we
must prove that V (v0) ✓ V (v), i.e., these anticipated events do not enlarge the
variant. Proof obligation VAR is adapted accordingly. The convergence attribute
of an event is denoted by the keyword status with three possible values: conver-
gent, anticipated, or ordinary (for events which are not necessarily convergent).

Combining convergent and anticipated reasoning, we can construct a proof of
convergence property using a lexicographic variant. As an example, consider two
events e1, e2 which are proved to be convergent in two refinements: an abstract
and a concrete level. At the abstract level, using variant V1, e1 is proved to be
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convergent, whereas e2 is anticipated. At the concrete refinement, e2 is proved to
be convergent using variant V2. What we have proved is that e1, e2 are convergent
using a lexicographic variant V = (V1, V2) with V1 having a higher precedent. The
correctness of constructing a lexicographic variant relies on the fact that standard
convergence arguments are maintained by refinement [18].

In some cases, termination is not definite but almost certain, i.e., the proba-
bility of convergence is 1. An example is when flipping a coin, heads will even-
tually appear with probability one. This type of reasoning has been introduced
into Event-B in [9]. According to this work, the action of an event can be either
probabilistic or non-deterministic (but not both). With respect to most proof obli-
gations, a probabilistic action is treated identically as a non-deterministic action.
However, it behaves angelically with respect to VAR: an event with a probabilis-
tic action may (as in contrast to must) decrease the variant V (v). The new proof
obligation rule for probabilistic events is as follows:

I(v), G(t, v) ` 9v0 ·S(t, v, v0) ^ V (v0) ⇢ V (v) . (PRV)

The above rule is for an abstract convergent event. For a concrete event, the
corresponding proof obligation rule is similar, with the exception that one can
assume that both abstract and gluing invariants hold. Note that proof obligation
VAR can be given in the following similar form to PRV:

I(v), G(t, v) ` 8v0 ·S(t, v, v0)) V (v0) ⇢ V (v) . (VAR)

Even though probabilistically convergent events can increase the variant V (v),
it is required that V (v) is bounded above [9]. The upper bound B is a finite
constant2 and the proof obligation BND, which needs to be discharged for all
anticipated events and convergent events (both standard and probabilistic), is

I(v), G(t, v) ` V (v) ✓ B . (BND)

It is required that the concrete probability associated with the probabilistic ac-
tion S(t, v, v0) must be bounded away from zero (proper) [19]. This imposes a
constraint on the probabilistic action S(t, v, v0) stating that the possible alterna-
tives for v0 are finite:

I(v), G(t, v) ` finite({v0 | S(t, v, v0)}) . (FINACT)

2In general, this could be a finite non-increasing function on the state.
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Note that in practice we prove FINACT for individual assignments.
Since events with a probabilistic action behave almost identically to standard

non-deterministic events (with the exception of convergence proof obligations),
we do not introduce additional syntax to Event-B. Instead, we have an additional
value for the convergence attribute of an event, namely probabilistic and treat such
events differently when generating proof obligations.

A very important point is that in the same refinement, there could be some an-
ticipated events, some convergent events, and some probabilistic events. However,
regardless of their status, they have to use the same variant.

3. Contribution

Our contribution is an approach for proving that a system establishes a certain
(state-)property eventually with probability one. We model the system in Event-B,
augmented with arguments about convergence properties of events and deadlock-
freeness proofs. We first introduce two important conditions for the soundness
of the approach, before introducing the main result captured by Theorem 2. The
conditions are related to the preservation of probabilistic convergence during re-
finement and probabilistic lexicographic variant.

Probabilistic convergence and standard refinement. The earlier work in [9] does
not address the refinement of probabilistic events. Whereas the standard conver-
gence argument is preserved by (standard) refinement [18, Chapter 3], the prob-
abilistic convergence argument is not necessarily maintained. Refinement allows
non-determinism to be reduced and as a result, a “good” choice leading to conver-
gence could be accidentally removed. Consider the coin tossing example earlier
(until “head” comes up), standard refinement allows us to replace a fair coin by an
unfair coin that always turns up “tail”, then termination will never be achieved. As
a result, we have to restrict refinement of a probabilistic event such that it cannot
remove any possible outcome of its action. A straightforward solution (which we
will take) is to require that the concrete action syntactically contains the abstract
action3. This restriction can be easily statically checked.

COND1 Probabilistic events can be refined only by (probabilistic) events retain-
ing their action.

3Intuitively, strengthening the guard is no problem since it only constrains possible alternatives
of event parameters, rather than affects the choice of variables’ after-value.
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Note that this condition COND1 subsumes SIM and simplifies FIS as explained
in Section 2.2.

Theorem 1. Given an abstract event ea and a concrete event ec as follows.

ea

status probabilistic
any t where

G(t, v)
then

v :| S(t, v, v0)
end

ec

status probabilistic
refines ea
any t, u where

H(t, u, v, w)
then

v :| S(t, v, v0)
w :| T (t, u, v, w,w0

)

end

Assume that ea is probabilistic convergent with variant V (v), i.e., satisfying PRV;
ec is feasible, i.e., satisfying FIS; and ec is a refinement of ea, i.e., satisfying GRD

and INV REF. Then ec is probabilistic convergent with variant V (v).

Proof. The corresponding proof obligation PRV is as follows:

I(v), J(v, w), H(t, u, v, w) ` 9v0, w0 ·S(t, v, v0)^T (t, u, v, w, w0)^V (v0) ⇢ V (v) .
(6)

It is easy to see that (6) can be derived from the fact that H(t, u, v, w) is stronger
than G(t, v) (GRD of ec); ea may decrease V (v) (ea satisfies PRV); and feasibility
of action w :| T (t, u, v, w, w0) (ec satisfies FIS).

Note that we still need to prove that the additional assignment to w is finite,
i.e., satisfying FINACT.

Probabilistic lexicographic variant. Typically, we reason about convergence prop-
erties of events gradually, spread over several refinements, combining convergent,
probabilistic and anticipated events, using different variants at different levels of
refinement. Without loss of generality, we assume that we have a set of events
e1, . . . , en, which we prove to be either convergent or probabilistic, using variants
V1, . . . , Vn, accordingly. Altogether, the set of events terminates probabilistically
with a lexicographic variant formed by combining individual variants at differ-
ent refinements V = (V1, . . . , Vn). A condition for the variant for probabilistic
termination is that it must be bounded above, and our constructed lexicographic
variant V is no different from that. As a result, we require that not only those
variants in V1, . . . , Vn concerning probabilistic events, but all variants need to be
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bounded above. This constraint can be relaxed for variants that are used before a
probabilistic event is introduced. The reason is that only probabilistic events can
increase the variant, and if the variant is not increased then it is bounded above by
its initial value.

COND2 All variants of a machine containing a probabilistic event must be bounded
above.

Proving almost-certain convergence properties. To prove that a system eventually
establishes certain conditions P with probability one, we follow the approach in
[10] for reasoning about liveness properties, with the correctness argument com-
bining appropriate proofs of event convergence (both standard and probabilistic)
and deadlock freedom.

We develop the system (taking into account COND1 and COND2) such that
in the last refinement, we have a machine of the following shape.

1. There is a unique ordinary event (which will be referred to as the “observer”
event) of the following form.

obs b= when P then SKIP end

This event does not change the state of the machine, and has the guard the
same as the condition of interest. When this event is enabled the condition
P holds.

2. There is a set of convergent events CE.
3. There is a set of probabilistic (convergent) events PE.
4. The machine is deadlock-free.

Theorem 2. Given a development of a system satisfying conditions COND1 and
COND2 and having the last refinement satisfying conditions (1)–(4), eventually
condition P is established by the system with probability one (almost certainly).

Proof. From conditions (2) and (3), we conclude that with probability one, even-
tually all events in CE and PE are disabled. When this is the case, since the
system is deadlock-free (condition (4)), the only enabled event is obs, i.e., condi-
tion P must hold at the same time (condition (1)). Hence the system guarantees
that P holds eventually with probability one.

11



Tool support. We have used Rodin [11] for our formal development. This is a
supporting tool for creating and analysing Event-B models. It includes a proof-
obligation generator and support for interactive and semi-automated theorem prov-
ing. We have extended the tool for specifying probabilistically convergent events
and generating appropriate proof obligations. More detailed discussions on the
tool support are in [18].

4. Examples

In this section, we illustrate our approach by developing three examples: the
duelling cowboys [13, 12], Herman’s probabilistic self-stabilization [6] and Ra-
bin’s choice coordination [5, 13]. The first and the second examples illustrate dif-
ferent orders of proving events’ convergence properties. The last example shows
a more complicated construction of a lexicographic variant, where the correctness
proof stretches over several refinements. For each example, we present some in-
formal requirements describing the example. In particular, we use some prefixes
ASM to denote assumptions, FUN to denote functional requirements, and ALG
to denote algorithmic descriptions.

4.1. The Duelling Cowboys
The duelling cowboys is a puzzle where some cowboys taking turn to shoot

at each other [20]. Each cowboy has some probability of hitting the target. The
original puzzle is concerned with the survival probability of each cowboy, given
the individual hitting probability, and the rule of the game, e.g., the order for the
cowboys’ shooting. Quantitative analysis of the duelling cowboys puzzle can be
seen in [12, 13].

Here we are concerned with the qualitative side of the puzzle, i.e., proving that
eventually there is exactly a single surviving cowboy, with probability one. Our
assumptions here are that there is a finite number of cowboys and each of them
has a “proper” probability –bounded away from 0 and 1– of hitting his target.

ASM 1 There is a finite set of cowboys.

ASM 2 Each cowboy has some proper probability of hitting his opponent

FUN 3 Eventually, there is a single surviving cowboy.
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While there is more than one surviving cowboy, they take turn to shoot at each
other according the following rule.

ALG 4 First, a random surviving cowboy is chosen to shoot. Second, the chosen
cowboy fires at a surviving cowboy other than himself.

4.1.1. Formal Development
Refinement Strategy. The development contains two machines. The initial model
describes the problem including requirements ASM 1, ASM 2, ALG 4. We use
the refinement to complete the proofs for event convergence properties, and sub-
sequently the proof for FUN 3.

The Context. The context of the development4 contains a set of cowboys (C ),
which is required to be finite, i.e., finite(C ) (ASM 1).

Initial Model. Our initial model has a single variable s to model the set of alive
cowboys. Initially, s is set to C , i.e., all cowboys are alive. There are two events,
namely survives and shoots. The former acts as our observer event which is en-
abled when there is exactly one surviving cowboy. The latter models the case
where an existing cowboy x may probabilistically get hit. The guard of shoots
also states that there must be a surviving cowboy y other than x.

survives

status ordinary
when

9w ·s = {w}
then

SKIP
end

shoots

status probabilistic
any x where

x 2 s

(9y ·y 2 s ^ x 6= y)
then

s :2 {s, s \ {x}}
end

Finally, we use variant V0 = s to prove that shoots probabilistically con-
verges. The upper bound of the variant is the set of all cowboys C , which is finite
(BND). Moreover, FINACT is guaranteed since we have exactly two alternatives
associated with the action of shoots. Finally, shoots has some chance of decreas-
ing V0, in the case a surviving cowboy is hit and removed from s . The associated
obligation PRV is as follows:

. . . ` 9s 0 ·s 0 2 {s , s \ {x}} ^ s

0 ⇢ s ,

4 Available on-line at http://deploy-eprints.ecs.soton.ac.uk/333/.
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which can be easily discharged by choosing the witness for s 0 as s \ {x}.

First Refinement. In this refinement, we introduce a new event for choosing the
next cowboy to shoot. A variable t is used to keep the cowboy who has the turn
to shoot next and a Boolean variable b is used to indicate whether the choice has
been made, with invariant b = TRUE ) t 2 s .

The observer event survives stays unchanged. We have a new convergent event
chooses for selecting the next cowboy to shoot as follows.

chooses

status convergent
when

b = FALSE

9x, y ·x 2 s ^ y 2 s ^ x 6= y
then

b := TRUE

t :2 s

end

We refine the original event shoots as follows.

(abstract )shoots

status probabilistic
any x where

x 2 s

(9y ·y 2 s ^ x 6= y)
then

s :2 {s, s \ {x}}
end

(concrete )shoots

status probabilistic
any x where

x 2 s
b = TRUE

x 6= t
then

s :2 {s, s \ {x}}
b := FALSE

end

Under the condition that a cowboy t has been chosen, a cowboy x (different from
t) may be hit by a shot from t . Note that the concrete shoots satisfies our condi-
tion COND1 for refining a probabilistic event, i.e., including the abstract action.
Refinement proof obligation, i.e., GRD and SIM are trivially satisfied.

At this point, our model corresponds to the algorithm described in ALG 4.
We prove that chooses converges using the variant V1 = {b,TRUE}, which is
trivially decreased by chooses.

At this stage, we have the observer event survives, the convergent event chooses,
and the probabilistic event shoots. Furthermore, we prove that our system is
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deadlock-free (encoded as a theorem in the model), we can conclude that with
probability one, event survives is enabled, i.e., there is a single surviving cowboy
(FUN 3), according to Theorem 2.

4.2. Herman’s Probabilistic Self-Stabilization
As our second example, we consider a leader election protocol on a ring-

shaped network. The distributed algorithm that we use is Herman’s probabilistic
self-stabilisation [6].

The purpose of the algorithm is to elect a single node to be the leader of a
directed ring-shaped network.

ASM 5 A finite set of nodes is connected in a directed ring-shaped network.

FUN 6 Eventually, a single node is elected as the leader of the network.

The algorithm for electing the leader is as follows. Initially, each node is given
a single token. At any time, each node is either holding a token or not. At each
step, the nodes act synchronously to perform the following actions.

ALG 7 Any node holding a token makes a (proper) probabilistic choice of ei-
ther to keep its token or pass it on to the next node in the ring. When, a
node already holding a token receives another token, the receiving token is
discarded.

4.2.1. Formal Model
Refinement Strategy. The development contains two machines to accommodate
our reasoning about event convergence properties. The initial model corresponds
to requirements ASM 5 and ALG 7. The refinement completes the proof for
FUN 6.

The Context. The context of the development5 provides a finite set of nodes (N )
and a constant r formalising a directed ring-shaped network on N . The formali-
sation of the ring-shaped network, i.e., axm0 2–axm0 4, is similar to those from
[8]. More precisely, axm0 3 states that the ring does not contain any self-loop and
axm0 4 formalises the fact that the ring is connected. The context corresponds
to ASM 5.

5 Available on-line at http://deploy-eprints.ecs.soton.ac.uk/334/.
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axioms :

axm0 1 : finite(N )

axm0 2 : r 2 N ⇢⇣N

axm0 3 : r \ id = ?
axm0 4 : 8S ·S 6= ? ^ r[S] ✓ S )N ✓ S

Initial Model. Our initial model contains three variables:

• b: a Boolean flag indicating if the protocol has finished or not;

• l : the node which has been elected as the leader of the ring when the algo-
rithm finished; and

• t : a set of nodes holding some token.

The relationship between variables is captured by an invariant stating that
when the algorithm finishes, l is the only node holding a token, i.e., b = TRUE)
t = {l}. Initially, every node holds a token.

We model the case where a node is elected as the leader by the following event.

elect

status convergent
any x where

b = FALSE

t = {x}
then

b := TRUE

l := x
end

Event elect specifies that when there is no leader elected and there is a single node
x holding a token then x is elected as the leader of the network.

In the case where there are two distinct nodes holding some tokens, we ab-
stractly model how the ring (more precisely the set of nodes holding some token)
evolves by the following event6.

6P1(N ) denotes the set of all non-empty subsets of N .
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progress

status anticipated
when

9x, y ·x 2 t ^ y 2 t ^ x 6= y
then

t :2 P1(N )

end

Finally, we have an observer event final capturing the intended purpose of
the algorithm, i.e., eventually the algorithm finishes. (And as a consequence of
invariant inv0 2, there is a single node holding a token elected as the leader of the
network.)

final b= when b = TRUE then SKIP end

Using the variant V0 = {b,TRUE}, we prove that elect is convergent (which
is trivial). Note that progress is anticipated, since it does not modify b hence does
not change V0.

First refinement. In this model, we refine progress correspondingly to the algo-
rithm described in ALG 7.

progress

status probabilistic
when

9x, y ·x 2 t ^ y 2 t ^ x 6= y
then

t :| 9p·p ✓ t ^ t

0
= (t \ p) [ r [p]

end

The explanation for the action of progress is as follows. Bound variable p repre-
sents the set of nodes that are about to pass their tokens to the next neighbour. The
status of the ring is updated by first removing the tokens of p and passing these
tokens to their next neighbours represented by r [p]7. The fact that a node currently
holding a token will discard any receiving token is captured by the effect of set
union operator [.

We are going to reason using the notion of intervals (set of consecutive nodes)
on a ring [8] which is defined inductively as follows, where i(x)(y) represents the
intervals from node x to node y on ring r

8.

7
r [p] is the relational image of relation r with respect to the set p.

8
r

⇠ denotes the inverse relation of r

17



axioms :

axm1 1 : i 2 N ! (N ! P(N ))

axm1 2 : 8x, y ·x 2 N ^ x 6= y ) i(x)(y) = i(x)(r⇠(y)) [ {y}
axm1 3 : 8x·x 2 N ) i(x)(x) = {x}

In order to formalise the necessary variant proving that progress probabilistically
converges, we added an auxiliary variable that will not appear in the guard of the
existing events.

Consider any fixed node A of the ring (i.e., a constant), and the first node after
A holding a token, say B , which will be updated accordingly during the execution
of the algorithm (i.e., a variable).

inv1 1 : B 2 t

inv1 2 : 8n·n 2 i(r(A))(B) ^ n 6= B ) n /2 t

Invariant inv1 1 states that B is holding a token. Invariant inv1 2 states that any
node in the interval from r(A) (the next node after A) to B excluding B does not
hold any token.

In order to maintain invariant inv1 2, we update B accordingly in progress as
follows. The updated value of B (denoted as B

0) depends on the final value of
t (denoted as t

0), as captured by the following before-after predicate, which is
added to the action of progress.

(r(A) 2 t

0 ) B

0
= r(A)) ^

(r(A) /2 t

0 ^ B 2 t

0 ) B

0
= B) ^

(r(A) /2 t

0 ^ B /2 t

0 ) B

0
= r(B))

The variant that we use to prove that progress converges probabilistically is
the set of nodes outside the interval from r(A) to B , i.e., V1 = N \ i(r(A))(B).
Event progress has some chance of extending i(r(A))(B) (hence may decrease
V1, i.e., satisfying PRV) by having A keep its token (if it is holding one) and B

pass on its token as illustrated in Figure 1.
Finally, our variant V1 is clearly bounded above by the finite set of nodes N

(satisfying BND). Moreover, the possible alternatives of the action of progress is
finite (it is the possible alternatives for selecting a set of nodes passing on their
tokens) (hence progress satisfies FINACT).

At this stage, our first refinement has the observer event final, the convergent
event elect, and the probabilistic event progress. Furthermore, the first refinement
is also deadlock-free (proved as a theorem). As a result, we can apply Theorem 2
and conclude that eventually a node is elected as the leader of the network with
probability one.
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A

r(A)

B

Figure 1: Increasing interval from r(A) to B

4.3. Rabin’s Choice Coordination Algorithm
Rabin’s choice coordination algorithm as explained in [5] is an example of us-

ing probability for symmetry breaking. The choice coordination is a problem
where processes P1, ..., Pn must reach a common choice out of k alternatives
A1, ..., Ak. It does not matter which alternative will be chosen eventually. The
protocol uses k shared variables v1, ..., vk, one for each alternative. A process Pj

arriving at Ai can access and modify vi in one step without any interruption from
other processes. The algorithm proposed by Rabin terminates with probability
one.

4.3.1. Description of the Problem and Algorithm
We will look at a simplified version of the problem and the corresponding

algorithm as described by Morgan and McIver [13]. Instead of n processes and
k alternatives we have n tourists and 2 destinations (which we call LEFT and
RIGHT accordingly). We also distinguish the inside and outside for each desti-
nation.

ENV 8 Each tourist can be in one of the following locations: inside-left, inside-
right, outside-left, and outside-right.

Each tourist can move between the two outside locations, i.e., from outside-
left to outside-right and vice versa. Furthermore, a tourist can move from the
outside to the inside of the same place, e.g., from outside-left to inside-left.

ENV 9 A tourist can move between the two outside locations.
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ENV 10 A tourist can move from the outside to the inside of the same place.

Other movements of the tourists are forbidden. In particular if a tourist enters an
inside place, he can no longer change his location.

ENV 11 A tourist in an inside place cannot change his location

The purpose of the algorithm is to have all tourists to reach a common decision
of entering the same place, without communicating directly with each other.

FUN 12 Eventually, all tourists enter the same place

Rabin’s choice coordination algorithm as described by Morgan and McIver in
[13] is as follows. Each tourist carries a notepad and he can write a number on it.
Moreover, there are two noticeboards at the outside-left and outside-right. In the
beginning, number 0 is written on all tourist notepads and on the two noticeboards.

ALG 13 Each tourist has a notepad on which he can write a number. Initially
each tourist writes 0 on his notepad.

ALG 14 There are noticeboards at the outside-left and outside-right. Initially, 0
is written on both noticeboards.

Initially, each tourist independently chooses the LEFT- or RIGHT-place and
goes to the outside location of that place (i.e., outside-left or outside-right). After-
wards, tourists at outside locations can asynchronously alternate between different
locations according to the following algorithm.

ALG 15 An outside tourist alternates between different locations as follows.

• If there is any tourist inside, he enters this place.
• Otherwise, he compares the number n on his notepad with the number
N on the notice board.

– If N < n, the tourist goes inside.
– If N > n, the tourist replaces n with N on his notepad and goes

to the outside of other place.
– If N = n, the tourist tosses a coin. If the coin comes up head, the

tourist sets N 0 to N + 2. Otherwise, he sets N 0 to the conjugate9

of N +2. Then, he writes N 0 on the notice board and his notepad
and goes to the outside of the other place.
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We are going to formalise this version of the problem, algorithm, and proofs
from Morgan and McIver [13] in the next section. Note that we make an assump-
tion about the tourist capability: from an outside location, he can “look” inside of
the same place (he still cannot see the other place, neither inside nor outside). A
more realistic implementation as described in [13] is to have the first tourist enter-
ing an inside location to write some special note e.g. “Here”, on the notice board.
However, this will complicate our reasoning unnecessarily; hence we make this
simplification.

4.3.2. Formal Development
Refinement Strategy. The development contains several levels of refinements. In
the first couple of refinements, the focus is on safety properties of the algo-
rithm. Subsequent refinements are devoted to the proof of the main liveness prop-
erty FUN 12. We give some important highlights of our formal development10.
We give a summary of the first few refinements (mostly concerning safety) as
follows.

Initial Model We introduce the sets of tourists inside the LEFT and the RIGHT
(li and ri ) (requirement ENV 11).

First refinement We introduce the sets of tourists outside the LEFT and the
RIGHT (lo and ro) (requirements ENV 8, ENV 9, ENV 10)

Second refinement We introduce the two notice boards and Rabin’s algorithm
(requirements ALG 13, ALG 14, ALG 15).

From Refinement 3 to Refinement 6, we prove the convergence property of
different events. In Refinement 7, we prove the deadlock-freeness property, hence
complete the proof of FUN 12. In the following, we focus on highlighting the
proof of this liveness property.

Summary of the model at Refinement 2. Some essential information about the
model at the end of the second refinement is as follows. Because of symmetry,
we only show here events for when a tourist moves from the outside left to the
inside left (L IN), for when a tourist moves from left to right in two different

9The conjugate of a number n (denoted by n) is defined to be n+ 1 if n is even and n� 1 if n
is odd.

10Available on-line at http://deploy-eprints.ecs.soton.ac.uk/232/.
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cases (L2R NEQ and L2R EQ). Other events (R IN, R2L NEQ, and R2L EQ) are
modelled similarly. Note that events L IN and R IN are proved to be convergent
using variant V0 = T \ (li [ ri).

invariants :

inv0 3 : li = ? _ ri = ?
inv1 1 : partition(T , li , ri , lo, ro)
inv2 1 : L 2 N
inv2 2 : R 2 N
inv2 3 : np 2 T ! N

init

begin

li , ri := ?,?
lo, ro :| lo 0 = T \ ro0
L,R := 0, 0
np := T ⇥ {0}
end

final

status ordinary
when

ri = T _ li = T

then

SKIP
end

L IN

status convergent
any t where

ri = ?
t 2 lo

L < np(t) _ li 6= ?
then

li := li [ {t}
lo := lo \ {t}
end

L2R NEQ

status anticipated
refines L2R

any t where

t 2 lo

li = ?
np(t) < L

then

ro := ro [ {t}
lo := lo \ {t}
np(t) := L

end

L2R EQ

status anticipated
refines L2R

any t where

t 2 lo

li = ?
np(t) = L

then

ro := ro [ {t}
lo := lo \ {t}
L,np :| L0 2 {L+ 2,L+ 2} ^ np

0
= np C� {t 7! L

0}11

end

The next few refinements are dedicated to proving the convergence property of
events L2R NEQ, L2R EQ, R2L NEQ, and R2L EQ. We formalise the variant that

11C� denotes relational overriding.
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has been proposed in [13]. The variant is a lexicographic one, with two layers:
the outer layer (with higher priority) deals with the updating of L and R (3rd
and 4th refinements), the inner layer (with lower priority) deals with the tourists’
movements (5th and 6th refinements).

Outer layer. The outer layer of the variant relies on the relationship between L

and R.
Refinement 3. In this refinement, we prove several invariants about L and R.

In particular, an important property is that they cannot be too far apart, which is
represented by the following relationship e

L � e
R 2 {�2, 0, 2}, where en denotes

the minimum of n and its conjugate n. Imagining the set of natural number are
split into pairs: (0, 1) | (2, 3) | (4, 5) | (6, 7) | . . ., the invariant states that L and
R are either in the same pair or in adjacent pairs.

Refinement 4. Note that when e
L = e

R, i.e., L and R are in the same pair,
hence, either L = R or L = R (equivalently R = L). As a result, we can
distinguish the relationship between L and R in three different cases: either eL �
e
R 2 {�2, 2} or L = R or L = R. The variant V1 is defined as rE (L 7! R) where

• if L = R then rE (L 7! R) = 2,

• if L = R then rE (L 7! R) = 0.

• otherwise, rE (L 7! R) = 1.

The variant is clearly bounded above. We use the variant to prove the convergence
property of L2R EQ (and similarly R2L EQ), while L2R NEQ and R2L NEQ are
anticipated events.

To ease the burden of the proofs, we split event L2R EQ into three different
cases, depending on the current value of rE (L 7! R).

L2R EQ 0

status convergent
refines L2R EQ

any t where

t 2 lo

li = ?
np(t) = L

rE (L 7! R) = 0

then

. . .
end

L2R EQ 1

status probabilistic
refines L2R EQ

any t where

t 2 lo

li = ?
np(t) = L

rE (L 7! R) = 1

then

. . .
end

L2R EQ 2

status convergent
refines L2R EQ

any t where

t 2 lo

li = ?
np(t) = L

rE (L 7! R) = 2

then

. . .
end

23



We prove that L2R EQ 0 and L2R EQ 2 are convergent, and L2R EQ 1 is proba-
bilistically convergent whereas L2R NEQ is anticipated (which will be convergent
with using the inner variant). The convergence attribute for the events correspond-
ing to the RIGHT are symmetric. We left out the details of the formal proofs
here.

We make a remark here about splitting the events L2R EQ and R2L EQ into
different cases. The purpose of splitting events is to separate the proofs of correct-
ness into smaller and simpler proofs. As an alternative, we can perform proof by
cases during proving, without splitting the events. This would reduce the number
of proof obligations. However, it hides the termination argument inside the proofs
and they become more complicated. Our development is more intuitive, with the
correctness being easier to observe by splitting the events accordingly.

Inner layer. The variant for the inner layer is used to prove the convergence prop-
erty of events L2R NEQ and R2L NEQ. This is done in two refinement steps.

Refinement 5. We prove that L2R NEQ converges and R2L NEQ is antici-
pated with the variant V2 defined to be {t | np(t) < L}, i.e., the set of tourists
carrying a number strictly smaller than on the left notice board.

Refinement 6. In the second step, we prove that R2L NEQ converges with a
symmetric variant V3 that is {t | np(t) < R}.

Refinement 7 - Deadlock-freedom. In this final refinement, we merge the events
that have been split earlier, i.e., L2R EQ and R2L EQ. Combining the convergent
attribute of the sub-events, we have now that these two events are probabilistically
convergent. We add a theorem to prove that our system at this point is deadlock-
free. Together with the proof of convergence earlier, we can now ensure that our
system satisfies the requirement FUN 12, according to Theorem 2.

5. Related Work

Our illustrative examples have also been tackled elsewhere, but mostly without
machine-assisted proofs. The duelling cowboys example is extensively studied in
[13] (for two cowboys), both quantitatively and qualitatively.

Regarding Herman’s probabilistic self-stabilization, in the original version [6],
when two tokens collide, they cancel out each other, instead of merging with each
other. In Morgan and McIver’s version of the algorithm [13], a node is allowed
to carry more than one token. Instead of cancelling out or merging, tokens are
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simply accumulated. Our version of the algorithm can be seen as an abstrac-
tion of Morgan and McIver’s, which allows us to prove the almost certain con-
vergence property more conveniently. Comparing the probabilistic convergence
proofs to [6, 13], we use a different variant expression which, in our opinion, is
easier to formalise.

Regarding Rabin’s choice coordination algorithm, we formalise the proof from
Morgan and McIver [13]. The example is also used in [12, Chapter 3] as an ex-
ample for reasoning about almost certain termination using classical B [14]. The
main difference between the two developments is that in classical B one ends up
with a sequential program which is a model of the algorithm. Our development
in Event-B gives us a model of a fully distributed system. Moreover, the formal-
isation of lexicographic variants is suited better for Event-B since in classical B
one can only have a single natural number variant. As a result, the lexicographic
variant has to be encoded (unnaturally) into a natural number variant, which leads
to more complicated proofs.

In the context of temporal logic, the concept of correctness with probability
one is also used, and is called P-valid [21]. In particular, if only “simple” prop-
erties (only contain eventually (}), and always (⇤) as temporal operators) are
considered, it has been showed that probabilistic choice can be replaced by strong
fairness. As a result, ones can reason about P-validity without the actual concrete
probabilities [22]. While their work focused on model checking probabilistic al-
gorithms, we have showed that step-wise development of probabilistic algorithms
is possible using Event-B, in which the proofs are spread amongst different lev-
els of abstraction. Naturally, we can take the advantage of theorem proving over
model checking: establishing the correctness of systems with arbitrary parame-
ters.

Rao [23] showed a methodology for deriving properties of programs that hold
deterministically or with probability one, within the context of UNITY. The key
important idea of Rao is to assume that the execution of probabilistic statements
is extremely fair (a notion that has been introduced earlier by Pnueli [24]): if a
probabilistic statement is executed infinitely often, then every branch of the state-
ment is executed infinitely often. This is similar to our angelical interpretation of
the probabilistic action when it comes to reasoning about convergence properties.
The purpose of [23] is eventually to develop tools and techniques for designing
probabilistic algorithms. We showed in this paper that similar concepts are useful
and practical using Event-B and the supporting Rodin platform.
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6. Conclusion

We have presented a method for reasoning about almost-certain convergence
properties. Our approach is an extension of the work in [9], using Event-B as
the modelling method for development, combining the reasoning about deadlock-
freedom and (standard/probabilistic) convergence properties of events. We illus-
trated our approach using three examples: the duelling cowboys [12, 13], Her-
man’s self-stabilization [6], and Rabin’s choice coordination [5]. We extended
Rodin for supporting the generation of additional proof obligations [18], and
proved all the obligations using the proof support of Rodin.

To our best knowledge, this is the first tool supported method for proving
almost-certain properties for discrete transition systems. Using a tool assisted
development method, we can have immediate feedback about our proof of cor-
rectness, e.g., in terms of modelling the problems/algorithms, and/or in terms of
formalising appropriate variant. We believe that our approach can be used not
only for verifying existing algorithms, but also for developing new ones.

6.1. Future Work
Currently, the probabilistic behaviour is associated with events and interpreted

as for the event actions. We could benefit from having more fine-grained notion
of probabilistic choice by associating probabilistic behaviour to individual assign-
ments. An advantage is that we can have a more flexible notion of refinement
when refining probabilistic events: only probabilistic assignments need to be re-
tained, other (non-deterministic) assignment can be refined normally. We will
need to adjust the proof obligation PRV accordingly.

In some other cases, it is more convenient to have probability attached to
other modelling elements of the model, e.g., the guard constraining parameters
of events. This requires some alternative proof obligations for reasoning about
convergence properties of events and (possibly) additional constraints for refining
probabilistic events. We are investigating the example of the dining cryptogra-
phers [13] along this line of extension.

Recently, we investigate proving more general liveness properties [25]. Com-
bining the work done here with the approach in [25] would allow us to prove more
classes of properties, e.g., progress with probability one.

Using our newly developed tool support, we have modelled other examples
for proving termination including contention resolution [9]. In the future, we will
integrate the reasoning about contention resolution with the development of the
Firewire protocol [26]. Another example that we want to apply our approach to
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is the full k-version of Rabin’s Choice Coordination algorithm [5]. In particular,
for the latter example, the model of the algorithm will be straightforward with
each event having an additional parameter representing a particular alternative
(currently the alternative is “hard-coded” as LEFT and RIGHT and we have
separate events for each alternative). However the challenge will be on finding the
right lexicographic variant for proving probabilistic termination of the algorithm
using our tool.

Another interesting future direction is to investigate support for reasoning
about the expected time to converge. This requires to introduce more explicit
probabilities into the model and full reasoning about expectations as described in
[13, 12].
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