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Abstract. Event-B is a formal method for system-level
modelling and analysis. Key features of Event-B are the
use of set theory as a modelling notation, the use of
refinement to represent systems at di↵erent abstraction
levels and the use of mathematical proof to verify con-
sistency between refinement levels. In this article we
present the Rodin modelling tool that seamlessly inte-
grates modelling and proving. We outline how the Event-
B language was designed to facilitate proof and how
the tool has been designed to support changes to mod-
els while minimising the impact of changes on existing
proofs. We outline the important features of the prover
architecture and explain how well-definedness is treated.
The tool is extensible and configurable so that it can be
adapted more easily to di↵erent application domains and
development methods.

1 Introduction

We consider modelling of software systems and more
generally of complex systems to be an important de-
velopment phase. This is certainly the case in other en-
gineering disciplines where models are often produced in
the form of blueprints. We also believe that more com-
plex models can only be written when the method of
stepwise refinement is used. In other words, a model
is built by successive enhancement of an original sim-
ple “sketch” carefully transforming it into more con-
crete representations. As an analogy, the first sketchy

? The continued development of the Rodin toolset is funded by
the EU research project ICT 214158 DEPLOY (Industrial deploy-
ment of system engineering methods providing high dependability
and productivity) www.deploy-project.eu. The toolset was origi-
nally developed as part of the project IST 511599 RODIN (Rigor-
ous Open Development Environment for Complex Systems). The
tool may be downloaded from www.event-b.org.

blueprint of an architect is gradually zoomed in order to
eventually represent all the fine details of the intended
building. On the way decisions are made concerning the
way it can be constructed, thus yielding the final com-
plete set of blueprints. We believe that formal notation
is indispensable in such a modelling activity. It provides
the foundation on which building models can be carried
out, similar to the formal conventions that are used when
drawing blueprints. Simply writing a formal text is in-
su�cient, though, to achieve a model of high quality. We
cannot test or execute a model to verify that the model
has the properties that we demand of it. Similarly, we
cannot open a window in the blueprint of a building.
The only serious way to analyse a model is to reason
about it, proving in a mathematically rigorous way that
the properties are satisfied.

In order for formal modelling to be used safely and
e↵ectively in engineering practice, good tool support is
necessary. Present day integrated development environ-
ments used for programming do carry out many tasks
automatically in the background, e.g. [20], and provide
fast feedback when changes are made to a program text.
In particular, there is no need for the user to start pro-
cesses like compilation. A program is written and then
run or debugged without compiling it. In this paper we
present the Rodin tool for Event-B [2] that applies these
techniques used in programming to formal modelling.
Instead of compilation, we are interested in proof obli-
gation generation and automatically discharging trivial
proof obligations. Instead of running a program we rea-
son about models or analyse them.

The Event-B language and proof method are influ-
enced by the B Method [1] and by Action Systems [8].
Following the Action System approach, system behaviour
in Event-B is modelled by a collection of state variables
and a collection of guarded actions that act on the state
variables. This structure allows for modelling of highly
concurrent systems. Following the B Method, the mathe-
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matical language for defining state structures and events
is typed set theory. While the B Method is aimed at soft-
ware development, Event-B is aimed at system develop-
ment. When modelling a system, we may include facets
of the non-software parts of the system and its environ-
ment, e.g., mechanical components. Systems that have
been modelled in Event-B include a mechanical press, a
train network, and a concurrent routing algorithm [2].

Verification by proof is not restricted to modelling. It
has a long tradition in programming methodology, too,
e.g. [27]. Software tools that support formal verification
methods in programming have been developed, e.g. [11,
21]. We mention [11], in particular, because the Boogie
architecture presented in the article provides character-
istics similar to the Rodin tool. We quote two points
from [11] about Boogie and present our view of them:

(1) “Design-Time Feedback”. The tool is very responsive
and provides almost immediate feedback that easily
relates to the program (resp. model).

(2) “Distinct Proof Obligation Generation and Verifica-
tion phases”. This allows decoupling the development
of the programming (resp. modelling) method and
prover technologies. It also allows the origin of a proof
obligation to be traced easily. This is particularly im-
portant when proofs fail.

The third point in the list describing Boogie in [11]
is “Abstract Interpretation and Verification Condition
Generation”. The corresponding problem does not exist
in the Event-B notation because it has been designed to
be very close to the proof obligations by means of which
we reason about Event-B. In Event-B all invariants are
specified directly and do not need to be inferred by a
tool. In Event-B refinement is used, that is, abstractions
of a model do not need to be inferred but are speci-
fied and then refined. Technical di�culties encountered
in Event-B stem more from the support of refinement
and from the requirement that proof obligations appear
transparent to the user. By transparency we mean that
the user should look at the proof obligation as being part
of the model. When a proof obligation cannot be proved,
it should be almost obvious what needs to be changed
in the model. When modelling, we usually do not simply
represent some system in a formal notation. At the same
time we learn what the system is and eliminate misun-
derstandings, inconsistencies, and specification gaps. In
particular, in order to eliminate misunderstandings, we
first must develop an understanding of the system. The
situation is quite di↵erent when programming. When we
start programming we should already understand what
we are implementing. We do not look any longer at the
system as a whole but only at the parts that we have to
implement, and our main concern is doing this correctly.
The task of a tool is to point out programming errors to
the user.

The Rodin tool is intended to support construction
and verification of Event-B models. The focus is very

much on verifying models rather than on verifying pro-
grams. No assumptions are made about finiteness of struc-
tures and the main verification method is deductive proof;
model checking can be used when structures are finite
(see Section 10.1). Both automatic and interactive proof
is provided (see Section 7). The main properties verified
of models are well-definedness of expressions, invariant
preservation and refinement between models. There are
a number of ways in which Rodin provides design-time
feedback in a responsive way. The user is encouraged
to follow an incremental approach to modelling whereby
verification is being applied automatically in the back-
ground as the model is being constructed. This means
that each incremental change to the model represents a
relatively small change to the set of proof obligations.
By designing the proof method and tool to support in-
cremental proof (see Section 5), the tools can cope with
the verification required for each model increment in a
timely fashion (of the order of a small number of sec-
onds). Occasionally, a major re-factoring of models may
be required and the re-proof e↵ort will take more time.

We believe that the Rodin tool is a significant con-
tribution to the goal of supporting modelling and proof
in industrial settings. The contribution of this paper is
to outline the principle functionality and design of the
tool and to explain the rationale for the various design
decision in the development of the tool.

The outline of the paper is as follows. We present a
brief description of existing modelling and proof meth-
ods and tools in Section 2. After an introduction to the
Event-B language in Section 3, we sketch the construc-
tion and proof of a simple Event-B model in Section 4 to
help the reader understand the various functions of the
tool. We then present the tool in more detail starting
with the definition of the standard proof obligations in
Section 5 followed by a description of the tool chain and
tool interface in Section 6. The management of proofs
and treatment of well-definedness are explained in Sec-
tions 7 and 8. Section 9 outlines how the tool is imple-
mented on top of Eclipse. Before concluding we describe
the extension possibilites of Rodin and some planned
future developments.

An earlier paper [3] outlines the main features of
Rodin. This current paper explains the key features of
the tool in more depth, especially concerning the proof
obligations, the proof manager, and the treatment of
well-definedness.

2 Existing Tools for Modelling and Proof

We review a selection of formal modelling tools. It is
not intended to be complete but to explain the kind of
problems that we try to overcome with the Rodin tool.

The use of general purpose theorem provers with
modelling notations like Z [16,39], Action Systems [6,
29], or Abstract State Machines [10,15] usually requires
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a lot of expert knowledge in order to make e�cient use
of them when reasoning about formal models. This is
not a problem of bad design of the theorem prover, but
more a problem of bridging the gap between the nota-
tion and the logic underlying the theorem prover. Gen-
eral purpose theorem provers are well-suited to proving
mathematical theorems in mathematical domains. The
main problem solved by the theorem prover is to provide
e�cient ways to prove theorems. They are not specifi-
cally geared for modelling or the typical proof obligations
associated with modelling. Theorem provers do assume
that the problems to be proved, i.e. the proof obligations,
are stated by the user and their proofs as such matter
to the user. However, if the main interest of the user is
modelling, the user is more concerned with understand-
ing and learning about a model than with the proofs.
In particular, generation of the proof obligations should
be built into the tool to free the user from tedious work
of writing them explicitly. In addition, we expect such
a tool to be extensible and adaptable to cope with new
and changing applications. This is not an issue with a
general purpose theorem prover because proof obligation
generation is manual anyway. In the Rodin tool we en-
sure that proof obligation generation remains extensible
and adaptable.

Isabelle [36,40] has been used with Z [16]. Although
well-integrated the main problem remains that the user
must explicitly specify proof obligations and is respon-
sible for maintaining them. Another problem is that the
user must understand the Isabelle logic as well as that of
Z. To some degree this is alleviated by the Isar language
[35] that extends Isabelle with more legible proofs. Sim-
ilarly, abstract state machines (ASM) have been used
with the KIV theorem prover [10]. The refinement the-
ory used with ASM is stated in KIV and the user has to
state the relevant theorems (proof obligations). When
dealing with large models the amount of proof obliga-
tions is simply to high to load the user with this task [9].
Our tool overcomes these problems by maintaining proof
obligations and by providing a prover that is tailored
for first-order logic and set theory (which are the basic
mathematical theories of Event-B). In the design of the
tool, great care has been taken to easily relate proof obli-
gations to a model, so that the user can quickly return
to the model when a proof fails. The prover interface
has also been designed to appear as natural as possible
to the user. It gives a graphical representation of a se-
quent calculus for classical logic that has been further
developed from the Click’n’Prove tool [4]. The major
shortcoming of Click’n’Prove is that it is built on top of
a theorem prover that executes proof scripts. As a con-
sequence, feedback to the user is slow. In addition, the
user must explicitly start tools to type-check a model,
or generate proof obligations for it. Because the proof
obligation generator has been developed for models of
sequential programs with the B-Method [1], some proof
obligations have variables renamed or are rewritten to a

point where they are di�cult to relate to the model. This
violates our requirement for transparency. Following the
experience with Click’n’Prove, we have also simplified
Event-B (see Section 5) so that it does not hinder the
design of a transparent proof obligation generator. In the
Event-B tool, models are stored in a repository and ma-
nipulated like spread sheets; instead of storing a model
as an abstract syntax tree and manipulating it as such,
models are stored and manipulated in tables. Further-
more, all elements of a model (e.g. invariants, axioms)
are named. This makes it possible for the tool to analyse
models di↵erentially, only generating proof obligations
when necessary. The proof obligations are connected to
the model by referring to involved repository elements.

The Z/EVES system [37] has a graphical front-end
for Z specifications. It has automatic support for type-
checking and some related properties. Although its prover
is part of the tool, the user is responsible for stating rele-
vant proof obligations. Z/EVES mostly provides a good
interface for entering models graphically but less so for
reasoning about them.

The approach of embedding a modelling notation
into a general purpose theorem prover [16] like Isabelle
[36] or Coq [14] provides a strong logical foundation. This
is very satisfactory from a logicians point of view. From
an industrial point of view, logical soundness is only one
design consideration. We also need reactivity, i.e., im-
mediate feedback, speed, and a notation and logic that
is familiar to the user of the tool. This is very di�cult
to achieve in embedded designs. In the area of safety-
critical embedded software, the approach of directly im-
plementing provers has been proved fruitful. The Ate-
lier B tool [18] has been used in large scale industrial
projects, e.g. [9].

3 The Event-B Language

Event-B is defined in terms of a few simple concepts that
describe a discrete event system and proof obligations
that permit verification of properties of the event system.
The syntax of Event-B is not fixed in order to allow
for easy extension (e.g., introducing probabilities [34]).
However, we present the notation using some syntactical
conventions. The keywordswhen, then, end, and so on,
are just delimiters to make the textual representation
more readable.

An Event-Bmodel consists of contexts andmachines.
In this description we focus on machines. A fuller de-
scription of Event-B can be found in [5].

Contexts contain the static parts of a model. These
are constants and axioms that describe the properties of
these constants.

Machines contain the dynamic parts of a model. A
machine is made of a state, which is defined by means of
variables. Variables, like constants, correspond to simple
mathematical objects: sets, binary relations, functions,
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numbers, etc. They are constrained by invariants I(v)
where v are the variables of the machine. Invariants are
supposed to hold whenever variable values change. But
this must be proved first (see Section 5.2).

Besides its state, a machine contains a number of
events which specify how the state may evolve. Each
event is composed of a guard and an action. The guard
is the necessary condition under which the event may
occur. The action, as its name indicates, determines the
way in which the state variables are going to evolve when
the event occurs. An event may have parameters that are
local to that event. Parameters can serve di↵erent func-
tions, for instance, to model arrays of events or as com-
munication channels in composition of machines [17].

An event may be executed only when its guard holds.
Events are atomic and when the guards of several events
hold simultaneously, then at most one of them may be
executed at any one moment. The choice of event to be
executed is non-deterministic. An event, named evt, is
specified in one of the three following forms:

evt b= any t where P (t, v) then S(t, v) end

evt b= when P (v) then S(v) end

evt b= begin S(v) end ,

where P (. . .) is a predicate denoting the guard, t denotes
parameters that are local to the event, and S(. . .) de-
notes the action that updates some variables. The vari-
ables of the machine containing the event are denoted
by v. The first event form is the most general one where
an event has some parameters t and a guard P (t, v). It
can be executed in a state represented by v provided
P (t, v) holds for some t; its e↵ect on v is specified by
action S(t, v). The second event form is used if an event
does not have any parameters. The third form is used if
an event does not have parameters and its guard is true.

An action consists of a collection of assignments that
modify the state simultaneously. An assignment has one
of the following three forms:

Assignment Before-After Predicate

x := E(t, v) – x0 = E(t, v)

x :2 E(t, v) – x0
2 E(t, v)

x :| Q(t, v, x0) – Q(t, v, x0) ,

where x are some variables, E(. . .) denotes an expres-
sion, and Q(. . .) a predicate. Assignments of the form
x := E(t, v) are called deterministic, the other two forms
are called nondeterministic. Form x :2 E(t, v) assigns x
to an element of a set, and form x :| Q(t, v, x0) assigns
to x a value satisfying a predicate. Simultaneity of a
collection of assignments is expressed by conjoining the
before-after predicates of an action. Variables y that do
not appear on the left hand side of an assignment of
action do not change. Formally this is achieved by con-
joining y0 = y to the before-after predicate of the action.

In order to be able to provide better tool support,
invariants, guards, actions are lists of named predicates

and assignments. These names can be used to refer to
these objects from within the documentation of a ma-
chine. But foremost, these names are used to identify all
objects and provide helpful information about the origin
of proof obligations in the prover interface. The di↵erent
predicates in the list are implicitly conjoined.

The mathematical language of Event-B has a simple
type system. The types are basic types (such as inte-
gers or given sets that are specific to a model) or are
formed from the cartesian product and powerset type
constructors. Structures such as relations and functions
are defined by combining these type constructors. A type
inference system is used to infer types of constants, vari-
ables and event parameters from axioms, invariants and
guards.

4 Incremental construction of an example

In this section we outline the construction of a small
Event-B model and its refinement using the Rodin tool.
Our aim is to illustrate the interaction between mod-
elling and proof during model construction. This will
serve to motivate the reactive nature of the support pro-
vided by the Rodin tool as models are constructed in-
crementally. Although we present this example before
presenting the details of the proof method (Section 5),
it is su�ciently self-explantory for the general reader at
this stage. The proof obligations being verified for the
example are invariant preservation, refinement and well-
definedness. We assume knowledge of basic set theory.

The model is of a system for checking registered users
in and out of a building. We start the construction of the
model by dealing only with registration of users. In the
tool we create a new context and introduce a given set
USER in the context. We create a new machine and add
a variable register to the machine to represent the set
of registered users. We create an invariant to specify the
register as a set of users:

inv1 register ✓ USER

The type inference mechanism infers the type of the
register variable, i.e., P(USER), from this invariant.

We create an event to add a new user to the register:

Register b= any u where

grd1 u 2 USER \ register

then

act1 register := register [ {u}

end

Here, parameter u represents the identity of the new
user. At this stage in the formal development, we do
not consider whether u is an input or an output of the
system rather we simply state that the new user is not
already in register (grd1).
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With the above elements (set USER, variable register,
invariant inv1 and event Register) added to the project,
the only error message we get is that the register vari-
able has not been initialised. This is remedied by adding
the action register := ? to the machine initialisation.
At this stage the model results in no proof obligations
since the invariant inv1 is nothing stronger than a typing
constraint.

Now we add variables to represent the set of people
who are in the building (in) and those that are outside
the building (out). These are typed and constrained to
be subsets of register through the following invariants:

inv2 in ✓ register

inv3 out ✓ register

Note that while these invariants allow the type infer-
ence mechanism to infer the types of in and out, they
are stronger that typing invariants since register is a
variable and not a type. We ensure that in and out are
initialised to be empty. We have an obvious requirement
that a user cannot be simultaneously inside and outside
the building so we add a further invariant:

inv4 in \ out = ?

The resulting model now gives rise to 6 proof obligations
in total; 3 of these are to verify that the initialisation
establishes invariants inv2 to inv4 and 3 are to verify
that the register event maintains invariants inv2 to inv4.
All 6 proof obligations are discharged automatically. The
general definition of the proof obligations is explained in
Section 5.

We add events to model users entering and leaving
the building. Our first attempt at the Enter event is

Enter b= any u where

grd1 u 2 out

then

act1 in := in [ {u}

end

This event gives rise to 3 new proof obligations (1 for
each of inv2 to inv4), 1 of which is not automatically
discharged. Using the proof obligation explorer we can
inspect this unproved proof obligation and see that it
has hypotheses and a goal as follows:

Hyp1 : in \ out = ?
Hyp2 : u 2 out

` (1)

Goal : (in [ {u}) \ out = ?

Clearly this cannot be proved: if u 2 out then {u} \ out
is not empty. Thus either the invariant it is associated
with (inv4) is wrong or the Enter event is wrong and
one or both need to be changed. The obligation explorer
provides hyperlinks to both inv4 and Enter to facilitate

any changes to either. In this case we decide that the
error is in the Enter operation since we neglected to
remove the user from the variable out. We remedy this
by clicking on the link to the Enter event and adding
the following action to this event:

act2 out := out \ {u}

This addition results in all proof obligations being dis-
charged automatically. Note that having a proof obliga-
tion that is not automatically discharged does not neces-
sarily mean there is an error in the model. It may be due
to a limitation of the automatic prover and instead the
obligation may be provable using the interactive prover.
The interactive prover of Rodin is explained in more de-
tail in Section 6.

A further requirement on the model is that each reg-
istered user must either be inside or outside the building.
Our existing invariants are not su�cient to express this
property so we add a further invariant:

inv5 register ✓ in [ out

This addition gives rise to 3 new proof obligations, 1 of
which is not automatically discharged:

Hyp1 : register ✓ in [ out

Hyp2 : u 2 USER \ register

` (2)

Goal : (register [ {u}) ✓ in [ out

Clearly this obligation is not provable: if u is not in
register, then it is not in in [ out. The obligation ex-
plorer tells us that this proof obligation arises from both
inv5 and the Register event. Inspection of the Register
event shows that it adds a user u to register but not to
either in or out. We remedy this by deciding that newly
registered users should be recorded as being outside the
building and adding the following action to the existing
Register event:

act2 out := out [ {u}

All proof obligations of the resulting model are automat-
ically discharged.

We now outline a data refinement of this model. Let
us assume that we decide to implement this model as a
simple database and replace the two abstract variables
in and out with a single status function. The variables of
the refined model (the concrete variables) are register,
as before, and a new variable status, a total function
from register to STATUS :

inv6 status 2 register ! STATUS

STATUS is an emumerated type with distinct values
IN and OUT .

The abstract Enter event is guarded by the condition
that u 2 out. In the refined Enter event, this guard
is replaced by a condition on the status function. The
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refined event updates the status function rather than
modifying the in and out variables:

Enter b= refines Enter

any u where

grd1 u 2 register

grd2 status(u) = OUT

then

act1 status(u) := IN

end

The clause refines Enter indicates that the refined
Enter event refines the Enter event of the abstract ma-
chine. In general, the names of refined events may di↵er
from the corresponding abstract event so that a refined
event must include an explicit reference to some event
of the abstract machine. This refined event gives rise to
an unproved refinement proof obligation as follows:

Hyp1 : u 2 register

Hyp2 : status(u) = OUT

` (3)

Goal : u 2 out

This proof obligation arises because of the need to show
that the guard of a refined event implies the correspond-
ing abstract guard. We can see that the hypotheses come
from the guards of the refined event (grd1 and grd2)
while the goal is the guard of the abstract event. As
it stands the goal cannot be proven since we have not
stated any invariant relating the concrete status vari-
able and the abstract in and out variables. Such an in-
variant is called a gluing invariant and will be described
more precisely in the next section. Refinement proofs
rely on such gluing invariants. We could simply convert
the above proof obligation (3) into a gluing invariant as
follows:

inv7 8u · u 2 register ^ status(u) = OUT

) u 2 out

Intuitively this invariant is reasonable since it is states
that for any registered user whose status is OUT at the
concrete level, that user is in the set out at the abstract
level. Adding this invariant allows proof obligation (3) to
be discharged automatically. A similar invariant about
users in the set in can be used to discharge a proof obli-
gation for a refined Leave operation. Note that invariant
inv7 refers to variables of both the abstract and refined
machines. Invariants of a refined machine may refer to
variables of the abstract machine. These are so-called
gluing invariants and are explained further in Section 5.

We consider one other proof obligation associated
with the refined Enter event:

Hyp1 : u 2 register

` (4)

Goal : u 2 dom(status) ^
status 2 USER 7! STATUS

This is a well-definedness obligation associated with the
expression status(u) in guard grd2 of the refined Enter
event. Function application in Event-B gives rise to a
well-definedness obligation which requires that argument
u is in the domain of status and that status is a par-
tial function (and not just a relation). Because of the
declaration of status (inv6), obligation (4) is discharged
automatically. The well-definedness obligations are ex-
plained in more detail in Section 8.

We have now completed our construction of the small
Event-B model and its refinement. With the old style
tools for B, after constructing the model, we would have
separately invoked the proof obligation generator and
then the automatic prover. With the Rodin tool, this is
taken care of automatically as we construct the model.
Based on undertaking a range of Event-B developments,
large and small, with Rodin, our experience is that by
making use of the feedback from the tool as we con-
struct the model, e.g., the unproved proof obligations,
we are guided towards construction of a model that has
less errors and is more easily proved than if we were to
delay any proof analysis until after constructing the full
model.

5 The Event-B Proof Method

In this section we outline standard proof obligations as-
sociated with Event-B models.

5.1 Feasibility of Assignment

Recall from Section 3 that a nondeterministic assign-
ment has the following form:

x :| Q(t, v, x0).

Event-B requires actions to be feasible under the guard
of the corresponding events, that is, when its guard is
true the action of an event must yield a successor state.
For the non-deterministic assignment we must prove

I(v)

P (t, v)

`

(9x0
·Q(t, v, x0)) ,

where I(v) is the invariant of the machine and P (t, v)
the guard of the event.

5.2 Consistency of a Machine

Once a machine has been written, one must prove that
it is consistent. This is done by proving that each event
of the machine preserves the invariant. More precisely,
it must be proved that the action associated with each
event modifies the state variables in such a way that the
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modified variables satisfy the invariant, under the hy-
pothesis that the invariant holds presently and the guard
of the event is true. For a machine with state variable
v, invariant I(v), and an event when P (v) then v :=
E(v) end the statement to be proved is the following:

I(v)

P (v)

` (5)

I(E(v)) .

Note that, in practice we carry out a decomposition
of (5) according to the lists of named invariants, guards,
and actions. So statement (5) is not the proof obligation
the user gets to see. Instead the user sees a collection of
simpler proof obligations.

Inspection of (5) reveals the simplicity that is at the
core of the Event-B method. In order to arrive at state-
ment (5) we simply copy elements from the model and
apply some basic rewriting. For the consistency proof
obligation we copy the invariant I(v) the guard P (v)
of the event in the hypothesis of the proof obligation
and the modified invariant I(E(v)) where v has been re-
placed by E(v) in the goal. This makes it easy to relate
elements of the model to corresponding proof obligations
when using Event-B in practice which is important when
making incremental changes to a model as shown in Sec-
tion 4. For example, proof obligation (1) is a consistency
obligation that comes from act1 of the abstract Enter
event and inv4.

5.3 Refining a Machine

Machine refinement provides a means to introduce more
detail about the dynamic properties of a model [5]. The
theory of refinement is a simplified form of the corre-
sponding notion of the Action Systems formalism [8]
that has inspired the development of Event-B. Action
Systems and and other refinement theories support both
forward and backward refinement. In common with the
B-Method, Event-B refinement currently supports for-
ward refinement; backwards refinement is not currently
supported.

Refining a machine consists of refining its state and
its events. A concrete machine (with regards to the more
abstract one) has a state that should be related to that
of the abstraction by a so-called gluing invariant, which
is expressed in terms of a predicate J(v, w) connecting
the abstract state represented by the variables v and the
concrete state represented by the variables w. We intro-
duce first refinement proof obligations for events with-
out parameters to illustrate the principle. Afterwards,
we show how we deal with parameters using witnesses.
We deal with non-deterministic assignments similarly as
explained in [24].

Each event of the abstract machine is refined to one
or more corresponding events of the concrete one. In-
formally speaking, a concrete event is said to refine its
abstraction (1) when the guard of the former is stronger
than that of the latter (guard strengthening), and (2)
when the gluing invariant is preserved by the conjoined
action of both events. In the case of an abstract event
abs and a corresponding concrete event con of the form

abs b= when P (v) then v := E(v) end

con b= when Q(w) then w := F (w) end ,

the statement to prove is the following:

I(v)

J(v, w)

Q(w)

` (6)

P (v) ^ J(E(v), F (w)) ,

where I(v) is the abstract invariant and J(v, w) is the
gluing invariant. Similarly to (5) the user never gets to
see (6) but only the decomposed form.

In the case of events abs and con with parameters

abs b= any

t

where

P (t, v)

then

v := E(t, v)

end

con b= any

u

with

t = W (u,w)

where

Q(u,w)

then

w := F (u,w)

end ,

we have to prove:

I(v)

J(v, w)

Q(u,w)

` (7)

P (W (u,w), v) ^ J(E(W (u,w), v), F (u,w)) ,

where W (u,w) are called witnesses; see [24]. Witnesses
are specified in the model because they provide an es-
sential insight into the refinement relationship of the ab-
stract and the concrete event. (If a variable or parameter
is repeated in a refinement, it is assumed that the con-
crete one and the abstract one are identical.) One could
say, they provide a local gluing invariant. They also per-
mit decomposition of (7) similarly to statement (5) in
Section 5.2. Without the use of witnesses, the goal would
be preceded by an existential quantifier 9 t and the wit-
ness W (u,w) would have to be provided interactively by
the user during the proof of the obligation. By making
the witness an explicit part of the model, its definition
is more obvious to the modeller and refinement proofs
go through more automatically.
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5.4 Adding New Events in a Refinement

When refining a machine by another one, it is possi-
ble to add new events. Such events must be proved to
refine a dummy event that does nothing (skip) in the
abstraction. Moreover, it may be proved that the new
events cannot collectively take control forever. For this,
a unique variant expression V (w) has to be provided,
that is decreased by each new event. We refer to this as
a convergence proof obligation.

In case the new event has the form:

evt b= when R(w) then w := G(w) end ,

the following statements (8) and (9) have to be proved:

I(v)

J(v, w)

` (8)

J(v,G(w))

I(v)

J(v, w)

` (9)

V (w) 2 N ^ V (G(w)) < V (w) ,

where we assume that the variant expression is a natural
number (but it can be more elaborate).

5.5 Event extension

A very common form of refinement is called superposi-
tion refinement [6] where only new elements are added
to a machine and none of the existing variables or pa-
rameters is data-refined [7]. In this case we only need to
specify what is new in each refined event: new param-
eters, new guards, new actions. By doing this, making
changes to a model becomes very e�cient which is par-
ticularly important in conjunction with the incremental
approach to modelling promoted by the Rodin tool.

In practice changes to a model occur as often to ab-
stract machines as to refinements. Suppose, we have a
model with 10 superposition refinements where we were
to repeat the contents of all abstractions in each refine-
ment. If we needed to change a guard of an event at the
most abstract machine in that model it would be neces-
sary to carry out the same change in all 9 refinements.
The use of event extension means we only have to make
a change in one place.

Let abs be an abstract event and con be an extension
of abs:

abs b= when P (v) then v := E(v) end

con b= when Q(w) then w := F (w) end .

Then the contents of event abs is automatically repli-
cated in event con:

con = when

P (v) ^ Q(w)

then

v, w := E(v), F (w)

end .

The Rodin tool takes care of the replication and avoids
generation of refinement proof obligations associated with
extended events.

5.6 Modelling language support for proof

In the description of Event-B above at some points we
have referred to the simplicity of Event-B, in particu-
lar, with respect to its support for proof as its main
technique for reasoning. As a matter of fact, during the
design of Event-B much attention has been paid to this.
The entire notation has been designed to facilitate sim-
ple proof obligation generation and e�cient retrieval of
old proofs associated with proof obligations.

Simple proof obligation generation is achieved by the
reduced structure of the notation. Contexts, machines,
and events provide only the structure necessary to al-
low the reasoning outlined above. All proof obligations
are generated from the model with as little rewriting
as possible. This is done in order to permit the user of
Rodin easy switching between modelling and proving. It
is essential that the user recognises immediately the el-
ements of a model that make up a proof obligation, and
conversely that the user can easily imagine the proof
obligations associated with elements being modified.

E�cient retrieval of proof obligations is achieved by
naming proof obligations systematically using labels as-
sociated with each element of a model. As an illustrative
example we consider a model with two invariants

inv1 I1(v)

inv2 I2(v)

and one event

Evt b= any t where

grd1 P1(t, v)

then

act1 v := E1(t, v)

end .

From this model two proof obligations
Evt/inv1 :

I1(v)

I2(v)

P1(t, v)

`

I1(E1(t, v))

Evt/inv2 :

I1(v)

I2(v)

P1(t, v)

`

I2(E1(t, v))
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are generated. Note, how easy it is to match model el-
ements and proof obligations and how this is reflected
in the naming. The naming remains when the elements
I1, I2, P1, or E1 are changed. Thus, it is trivial for the
Rodin tool to locate proofs associated with proof obliga-
tions before the change. The speed of this is crucial for
the incremental modelling approach to work. In a com-
plex model there are usually many proof obligations but
the feedback provided by the tool should depend as little
as possible on the number of proof obligations. The de-
velopment of the concept of witnesses also started with
e�ciency considerations. Without witnesses the goal of
refinement proof obligations would contain a conjunction
enclosed by an existential quantifier rendering decom-
position of the goal according to the labelled conjuncts
impossible. By the use of witnesses the existential quan-
tifier in the goal disappears [24].

The systematic naming scheme also contributes to
simplicity in the sense that the user can easily locate
proof obligations when analysing specific elements of a
model.

Which proof obligations are to be generated for a
model is controlled by attributes associated with events.
Proof obligations for convergence are associated with
events by providing them with a corresponding “conver-
gence attribute”. Similarly, event extension is available
by attributing events correspondingly.

5.7 Di↵erential Proving

In Event-B changes to a model are expected to occur
frequently. The user is expected to improve a model in
small increments. Changes happen for various reasons.
Most often a model is changed because of increased un-
derstanding that has been gained through the modelling
and reasoning. Sometimes a model is changed simply
because of small mistakes that occur when typing for-
mal text. And sometimes changing a model facilitates
proof. When a model changes, the impact on proofs al-
ready carried out should be as small as possible. Obvi-
ously, the user should not be asked to redo a valid proof.
But the same is expected concerning the tool. Proving
is very time consuming and should be avoided in order
to achieve better reactivity of Rodin and in order to
encourage incremental modelling. We want the user to
make frequent changes. Hence, the tool should manage
proofs di↵erentially only redoing a proof when its neces-
sary. We use a number of techniques to achieve this.

Proof obligations are filtered along three stages. The
first stage is purely syntactic. If a newly generated proof
obligation is syntactically identical to the old proof obli-
gation, the prover assumes validity of the old proof for
the new proof obligation. This process is speeded-up by
the naming scheme that permits fast retrieval of proof
obligations and proofs. In the second stage, proofs of
proof obligations that have changed syntactically are
analysed. For each proof the tool records the hypotheses

used for the proof to succeed. If none of the used hy-
potheses has changed and the goal has not changed, the
proof is assumed valid for the new proof obligation. Fi-
nally, in the third stage, the proof is replayed attempting
to rename identifiers that have been freed in quantified
expressions during the proof. If this fails, the old proof
has to be carried out again in full.

6 Tool Chain and Tool Interface

The software tool support for Event-B should not be
just another theorem prover. It should be a modelling
tool that constrains modelling activity as little as pos-
sible. Powerful theorem provers are available [14,19,26,
36] but not enough attention has been paid in formal
methods to tool support for the modelling activity per
se. Traditionally, it is assumed that one begins a formal
development with a specification and develops it into a
correct implementation. The flaw in this description is
that, initially, there is no specification. Writing a specifi-
cation involves making errors. The Rodin tool takes this
into account by being reactive and e�ciently supporting
incremental changes to models. Development towards an
implementation will profit from this, too. In fact, we con-
sider both, writing a specification and implementing it,
to be part of the modelling activity.

6.1 Tool Chain

The Rodin tool chain consists of three major compo-
nents: the static checker (SC), the proof obligation gen-
erator (POG), and the proof obligation manager (POM).
Their connection is shown in Figure 1 and their purpose
is described below.

The static checker (SC) for Event-B analyses Event-
B contexts and Event-B machines and provides feedback
to the user about syntactical and typing errors in them.

The proof obligation generator (POG) for Event-B
generates proof obligations many of which have been
outlined in Section 5. These cover proof obligations for

– feasibility
– event consistency
– refinement
– convergence
– well-definedness (see Section 8)

The POG has been designed to fit the requirement of
responsiveness needed for an incremental modelling ap-
proach. As a result proof obligation generation must
be very fast. This led to the decision that the POG
only performs “mild” rewriting of modelling elements
(see Section 5.6) and does not attempt any proof. The
POG tracks changes and tries to stop as soon as pos-
sible; for instance, if only an event is changed in a ma-
chine, only the proof obligations for that machine and
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Fig. 1: Tool-Chain in Event-B Core

its immediate refinement need to be generated. Proof
obligations are always computed for entire machines be-
cause it would take more time to determine which proof
obligations need to be generated than generate all proof
obligations and check afterwards which proof obligations
have changed.

The proof obligation manager (POM) keeps track of
proof obligations and associated proofs and is described
in Section 7.

6.2 On the Role of the Static Checker

The static checker has two main objectives:

(1) to generate feedback to the user;
(2) to filter elements of a model that are not well-formed.

Concerning (1), the design decision has been made
that only the SC generates error messages (whereas the
POG does not). This corresponds roughly to the tradi-
tional splitting of compilers into parsers and code gen-
erators. This architecture benefits the responsiveness of
the tool in that the POG needs only be started if the
output of the static checker has changed.

Concerning (2), the design decision has been made
that the SC does not reject whole machines or contexts
but only elements thereof that are not well-formed. Well-
formedness is defined in terms of the syntax of the math-
ematical language, dependencies between modelling ele-
ments, and type-correctness of all formulas and declared
identifiers. The POG does not check the output of the
SC. It just generates proof obligations from it. In this
sense one could say that the SC carries out a “di↵eren-
tial verification” of the precondition of the POG. As a
consequence of the well-formedness of its input the POG
does not generate proof obligations that just correspond
to type-checking identifiers.

6.3 The Graphical User Interface

The graphical user interface consists of two parts: one
user interface for modelling (MUI) and one user interface
for proving (PUI). Figure 2 shows how the core compo-
nents and the user interface are integrated. The prov-
ing user interface does not access proof obligations and

proofs directly but uses the services of the proof obli-
gation manager. Figure 3a and 3b show screen shots of
the modelling perspective and the proving perspective
respectively.

The two user interfaces are connected by the tool
chain of the Event-B core. They are available to the user
in form of Eclipse perspectives between which the user
can switch easily. The two perspectives are seamlessly
integrated so that it is not suggested that modelling and
proving are di↵erent activities. The user is intended to
perceive reasoning about models as being part of mod-
elling. Proof obligations are equipped with hypertext
links so that the user can select instantaneously mod-
elling elements related to that proof obligation.

7 Proof Obligation Manager

7.1 Overview architecture

The task of the Proof Obligation Manager is to maintain
the proof status (e.g., discharged/reviewed/pending) and
the proofs associated with the obligations. Hence the
Proof Obligation Manager needs to work both automat-
ically (as a part of the tool-chain) and interactively (with
the Proving UI). How the Proof Obligation Manager
handles the synchronisation in di↵erent modes is de-
scribed later in Section 7.6.

Internally, the Proof Obligation Manager architec-
ture is separated into two parts: “extensible” and “static”
part. The extensible part is responsible for generating in-
dividual proof rules (see Section 7.2) which is used for
proving proof obligations (which are respresented as se-
quents). The static part is responsible for putting these
proof rules together to construct and maintain proofs.
The components that generate proof rules are called
“reasoners” (Section 7.3).

The Proof Obligation Manager builds a (possibly par-
tial) proof for a proof obligation by constructing “proof
trees” (Section 7.4).

However, the users of the Proof Obligation Manager
do not work directly with reasoners. In order to encap-
sulate frequently used proof construction and manipu-
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lation steps, the Proof Obligation Manager provides the
concept of “tactics” (Section 7.5).

The Proof Obligation Manager can be extended by
adding new tactics and reasoners.

7.2 Proof Rules

In its pure mathematical form, a proof rule is a tool to
perform formal proof and is denoted by:

A

C

where A is a (possibly empty) list of sequents: the an-
tecedents of the proof rule; and C is a sequent: the con-
sequent of the rule. We interpret the above proof rule as
follows: the proofs of each sequent of A together give a
proof of sequent C.

In Rodin, the proof rule has more structure in or-
der to reduce the storage space and more importantly,
to support proof reuse. In its simplest form, the proof

schema in Rodin is as follows:

H,HA0 ` GA0 . . . H,HAn ` GAn

Hv, Hu ` Gu

Where:

– Hu is the set of used hypotheses
– Hv is the set of unused hypotheses
– Gu is the used goal, Gu may be absent if the proof

rule does not depend on the goal.
– HAi is the set of added hypotheses corresponding to

the ith antecedent.
– GAi is the new goal corresponding to the ith an-

tecedent.
– H = Hv [ Hu is the set of all hypotheses of the

consequent.

Note thatHv is a meta-variable that can be instantiated.
Di↵erent instantiations will give rise to di↵erent proof
rules. Additionally, an antecedent may contain a num-
ber of forward inferences for hypotheses that allows for
calculating finer grained hypotheses dependencies. An
example follow in Section 7.3.1 (SIM).
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Given a proof rule of the form mentioned above, the
proof rule is not applicable to a sequent if the goal of
the sequent is not exactly the same as the used goal Gu

(when Gu is present) or any of the required hypotheses
in Hu is missing in the sequent. In the case of applica-
bility, the output of the process of applying a proof rule
to a sequent is a set of sequents corresponding to the
antecedents. The required hypothesis are treated as the
used hypotheses Hu and the Proof Obligation Manager
instantiates Hv with the set of hypotheses of the input
sequent not in Hu. More details on using this approach
to represent proof rules can be found in [31].

7.3 Reasoners

Reasoners are responsible for generating proof rules. The
input of a reasoner is a sequent and possibly some op-
tional input (e.g. a predicate in the case of the Cut Rule).
The reasoner is successful if it can generate a proof rule
which is applicable to the input sequent. In this case, this
proof rule is the output of the reasoner and is trusted by
the Proof Obligation Manager. How the reasoners gen-
erate proof rules is not visible to the other parts of the
Proof Obligation Manager. The only assumptions that
the Proof Obligation Manager makes about the reasoner
are as follows:

Logically Valid: A generated proof rule must be valid
(i.e. can be derived) in the mathematical logic.

Re-playable: A reasoner must work deterministically, i.e.
the reasoner must generate the same proof rule if
given the same input.

7.3.1 Examples of Reasoners

The list of complete proof rules implemented in the Rodin
platform including information on how they are used by
default (i.e., automatic/manual) is available on-line at
http://wiki.event-b.org/index.php/Inference Rules. This
section gives some examples of the available reasoners.

Simplifier: The simplifier derives new hypotheses
and simplifies the goal of a sequent according to some
predefined simple rewriting rules. Examples of rewriting
rules are

E = E == >

>) P == P
E + 0 == E

The full set of rewriting rules is available on-line at
http://wiki.event-b.org/index.php/All Rewrite Rules.

The simplifier generates proof rules of the following
form:

H,H 0
` G0

H ` G
SIM

Here, H 0 and G0 are the rewritten form of H and G.
H 0 and G0 are formed by iteratively applying any ap-
plicable rewriting rules until none are applicable. Ap-
plication of the SIM inference rule results in the goal
changing from G to the rewritten G0 and the rewritten
hypotheses H 0 being added. The original hypotheses H
are maintained. For example, if we have the following
sequent

a = a) b = c ` b+ 0 = c ,

the SIM reasoner applied to this sequent generates the
following inference rule:

a = a) b = c, b = c ` b = c

a = a) b = c ` b+ 0 = c
SIM

Goal in Hypotheses: This reasoner generates proof
rules of the following form

H,G ` G
Hyp

The reasoner is successful if the goal of the input se-
quent appears in the set of hypotheses. Here both the
hypothesis G and the goal G are used.

Split Conjunctive Goal: This reasoner generates
proof rules of the following form

H ` P H ` Q

H ` P ^Q
ConjGoal

The reasoner sets the used goal to be P ^ Q. The used
hypotheses will be inherited from the sub-goals and there
are no additional used hypotheses.

7.4 Proof Trees

Proof trees are recursive structures based on Proof Tree
Nodes. Each node has three components: a sequent, a
proof rule (possibly null) and a list of children nodes
(possibly null, when the proof rule is present or empty
in the case when the node has no children). A proof tree
corresponds to a proof obligation if the sequent of the
root node of the tree is the same as the obligation.

A proof tree node is either pending if no rule is ap-
plied to this node or non-pending otherwise. A proof tree
is valid if all its nodes are valid. The validity of a proof
tree node is defined recursively as follows:

– For a pending node, its children must be null.
– For a non-pending node, its children must not be null.

Moreover the proof rule is applicable to the sequent
of the node and the children correspond to the result
of the application of the rule to the sequent. Lastly,
all of the child nodes are valid.
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The Proof Obligation Manager provides the following
operations on Proof Trees:

Construction: Create an initial proof tree corresponding
to an input sequent.

Rule Application: A proof tree grows when a rule ap-
plies to one of its pending nodes. The input rule is
first checked for applicability to the sequent corre-
sponding to the pending node. If successful, the rule
is attached to the node, then new children nodes are
attached according to the outcome of the application
of the rule.

Pruning: A proof tree can be pruned at any of its proof
tree nodes. The rule and the children associated with
that node will be removed (reset to null).

Getting pending nodes: A list of pending nodes can be
computed for any proof tree.

Checking completeness: A proof tree is complete if it
does not contain any pending proof tree nodes.

Although we do not go into this in detail here, an
important property of the proof tree is that the Proof
Obligation Manager can calculate the proof dependency
using information about used hypotheses and goals at
each node of the proof tree. More details on how this is
done can be found in [33]. This enables the Proof Obli-
gation Manager to e�ciently check for applicability of a
proof when the corresponding obligation has changed.

7.5 Tactics

Tactics provide a convenient way to construct and ma-
nipulate proofs. The input of a tactic is a proof tree node
which will be used as the point of application. A tactic
is successful if it modifies the proof tree. The output of a
tactic is a Boolean to indicate if it it was successfully ap-
plied. For clarification, we categorise tactics into types:
basic tactics and tacticals.

Basic tactics are those that do not depend on other
tactics. The following tactics are of this type.

Prune: A tactic that directly use the pruning facility
from the Proof Manager. This tactic is successful if
the input node is non-pending.

Reasoner Application: Tactics of this class provide a wrap-
per around a reasoner. The tactic is applied success-
fully if the reasoner is applicable to the input node.
As an example, we have tactics HypTac and Con-
jGoalTac corresponding to Goal in Hypothesis and
Split Conjunctive Goal reasoners as described in Sec-
tion 7.3.1.

Tacticals are tactics that are constructed from other
tactics. They usually indicate di↵erent strategic or heuris-
tic decisions. In order to construct this type of tactics,
the Proof Obligation Manager provides three di↵erent
operations as follows.

OnAllPending(t): Apply a sub-tactic t to all pending
nodes starting from the point of application. This

tactical tactic is applied successfully if the sub-tactic
t is applied successfully on one of the pending nodes.

Repeat(t): Repeating a sub-tactic t to the point of ap-
plication until the tactic is not successful. This tac-
tical tactic is applied successfully if the sub-tactic t
is applied successfully at least once.

t1; . . . ; tn: Sequentially composing a list of sub-tactics
t1, . . . , tn to apply at the point of application. This
tactical tactic is applied successfully if one of the sub-
tactic is applied successfully.

More complex proof strategies can be constructed by
recursively applying the above operations.

As an example, we can encode a tactic that repeat-
edly splits conjunctive goals on all pending nodes until
no more conjunctive goals exist then try to apply goal in
hypotheses to discharge pending sub-goals. This tactic
can be encoded as follows.
ConjGoalThenHyp ==
Repeat(OnAllPending(ConjGoal));
OnAllPending(Hyp)

7.6 Automatic and Interactive Modes

As mentioned earlier, the Proof Obligation Manager works
both automatically as part of the tool-chain (auto-proving
process) and interactively with the Proving User Inter-
face (manual-proving process). At times, the auto-prover
may be running in parallel with the manual-prover on
the same proof obligation. In order to manage the syn-
chronisation between the two modes, the Proof Obliga-
tion Manager uses di↵erent working copies of the proofs.
For example, the user is currently proving some obliga-
tions and decides to make some changes to his model.
These changes e↵ect the proof obligations that he is
working on. The Proof Obligation Manager should be
responsive so that the user does not work on out-of-
date obligations. Moreover, the Proof Obligation Man-
ager also should act in a way that the user does not need
to close all his proving sessions and re-open them again.
In other words, the change in the modeling should be
smoothly reflected to the user working on the proving
end. This is an important usability consideration of our
Rodin toolset. Moreover, the technical detail described
in this section is also to ensure that manual proofs can
be preserved and reused as long as possible.

For the above reason, the Proof Obligation Manager
maintains three di↵erent copies of the proofs for each
obligation: a copy on disc for persistency (persistent copy
- PC), a copy for auto-proving (AC), and a copy for
manual-proving (MC). The relationships between these
copies can be seen in Figure 4.

The auto-proving and manual-proving process have
exclusive access to update the PC. Moreover, the manual-
proving process can load and listen to the changes from
the PC.

Di↵erent statuses are associated with various copies
of the proofs. The only common status is the confidence
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Fig. 4: Di↵erent working copies of proof statuses

level of the proof (discharged, reviewed or pending). In
particular, for PC, there are two additional statuses:

Source: To indicate the source of the proof, either Au-
tomatic or Manual.

Out of Date: A Boolean status to indicate if the proof
is out-of-date with the proof obligation.

We distinguish between automatic and manual proofs
so that the tool can keep a manually constructed proof
even if a proof obligation change has rendered this proof
invalid. This allow it to be used later if it becomes valid
again.

7.6.1 Auto-Proving Actions

The auto-proving process creates an initial pending node
based on the proof obligation and invokes some pre-
defined automatic tactics. Typically this happens as part
of the tool-chain when the proof obligation changes. Upon
finishing, the auto-proving process updates the PC only
if the proof obligation is proved, so that any (old) man-
ual proof is still preserved if the auto-proof fails (even
though it might not be valid).

7.6.2 Manual-Proving Actions

The manual-proving process initially loads the proof from
the PC as its MC. When updating the PC, the manual-
proving process only saves modified proofs and sets the
source status toManual. Similar to the auto-proving pro-
cess, the manual-proving process also tries to preserve
the manual proofs as much as possible. Moreover, if the
proof obligation has changed the manual-proving process
needs to present to the user the up-to-date information
in order to help the user avoid working on out-of-date
proof obligation. For this, the manual-proving process
listens to the changes in the PC (e.g. updated by the
auto-proving process) and changes its states accordingly.

There are two di↵erent ways that the manual-proving
process reconstructs a proof when the corresponding proof
obligation changes.

Reuse: Checking if the proof can be reused is e�cient
based on the information of proof dependency. Reuse
of a proof for a new obligation is also straight-forward,
again based on the dependency information at each
proof node. This reuse process does not require the
reasoner to be re-run at each node.

Rebuild: A proof can be “rebuilt” for a new proof obli-
gation by re-trying the reasoner at each proof node.
This process is recursively apply to all the children
nodes if the reasoner is successful. Otherwise, the re-
building stop for this node. The idea of rebuilding a
proof is to try to carry out the same proof as far as
possible.

8 Well-definedness in modelling and proof

This section covers the treatment of partial functions in
the Rodin tool. Partial functions are frequently used for
modelling in Event-B. For example in Section 4 we used
the partial function expression status(u). Using partial
functions entails reasoning about potentially ill-defined
expressions in proofs which can be tedious and prob-
lematic to work with. Providing proper logical and tool
support for reasoning in the presence of partial functions
is therefore important in our setting.

The Rodin tool provides support for well-definedness
in order to aid the activities of modelling and proving. By
supporting well-definedness we mean that it is ensured
that partial functions are never applied to arguments
outside their domain. The formal definition of the no-
tion of well-definedness used by the Rodin platform can
be found in [32]. A novelty of this approach is that the
logic used is an extension of standard predicate calcu-
lus. Because of this, all proofs are reducible to standard
predicate calculus, which is widely understood and has
well-developed automated proof support. Further details
and comparisons with other approaches that deal with
partial functions can be found in [32]. In this section we
will only summarise the user’s view of the tool support
for well-definedness provided and how it aids working
with partial functions.

The tool ensures that partial functions are never ap-
plied to arguments outside their domain. This is achieved
by filtering all mathematically relevant user input en-
tered at the time of modeling or proving to reject any
user input containing potentially ill-defined expressions.
Figure 5 illustrates how well-definedness can be thought
of as an additional proof-based filter for mathematical
texts. The treatment of well-definedness within the Rodin
platform is done as follows:

During Modeling: In order to ensure that a model or
context is well-defined, the proof obligation generator
generates well-definedness proof obligations for each mod-
eling element whose well-definedness cannot be trivially
guaranteed on the basis of some simple syntactic rules.
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Fig. 5: Well-definedness as an additional filter

For instance, an invariant with no occurrences of the
function application symbol is trivially well-defined. An
example of a well-definedness proof obligation for the ex-
pression status(u) was shown as (4) in Section 4 . Fur-
ther details on well-definedness of models can be found
in [23] and [13].

During Proving: As a result of requiring all models and
contexts to be well-defined, all proof obligations pre-
sented to a user are also well-defined. This is shown in
[23] and [13]. The assumption that a proof obligation is
well-defined can be used to greatly ease and shorten its
proof (this is shown in §4 of [32]). It is therefore advan-
tageous to preserve well-definedness when carrying out
a proof. The inference rules built into the Rodin Prover
therefore preserve well-definedness. They are similar to
standard predicate calculus rules, except that they re-
quire the user to additionally prove the well-definedness
of all predicates or expressions that they introduce, for
instance when adding a lemma, or instantiating a uni-
versally quantified hypothesis. As an example, when a
user wishes to add the lemma “3/x = y” as a hypothesis
to a proof, they need to prove not only the lemma itself,
but also its well-definedness predicate ”x 6= 0”. Details
on how well-definedness predicates are calculated can be
found in [32].

Furthermore, since all proofs can be reduced to stan-
dard predicate calculus, the user may choose to discharge
a subgoal at any time using one of the many freely avail-
able external automated theorem provers for predicate
calculus, even though they have no support for well-
definedness.

The support for well-definedness provided by the Rodin
tool, as outlined above, aids the tasks of modeling and
proving since:

– It provides the user with quick design-time feedback
on possibly erroneous ill-defined expressions during
modeling and proof.

– It preserves well-definedness while performing a proof
and uses this assumption of well-definedness to shorten
and ease proof.

– It still allows external automated theorem provers
with no support for well definedness to be used to
discharge sub-goals.

Although the task of establishing and preserving well-
definedness during modeling and proving increases the
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Fig. 6: Architectural Overview of the Event-B Tool

total number of proof obligations and sub-goals that that
user has to prove, in practice we have noticed that these
proofs require only minimal additional e↵ort and can, in
most cases, be discharged automatically. The advantages
of establishing and preserving well-definedness therefore
seem to outweigh their additional cost.

9 Implementation Architecture

The Rodin tool (see Figure 6) is an extension of the
Eclipse platform. We do not explain Eclipse in this arti-
cle but only refer to the existing literature [22]. The tool
is implemented in Java though some of the plug-ins de-
scribed in Section 10 include large parts written in other
languages (e.g., Prolog).

9.1 The Rodin Core

The Rodin Core consists of two components: the Rodin
repository and the Rodin builder. These two components
are tightly integrated into Eclipse based on designs de-
rived from the Java Development Tools of Eclipse. In-
formal specifications for the repository and the builder
have been developed. Their functionality is simple. They
are however very dependent on the resources and con-
currency model of Eclipse. Neither the repository nor
the builder make any assumptions about elements being
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stored. In particular, they are independent of Event-B.
The use of a repository instead of a fixed syntax for the
modelling notations makes extending Event-B much eas-
ier. It is not necessary to change the syntax or to make
extensions inside comments (in order not to change the
syntax).

The Rodin repository manages persistence of data
elements. There is a simple correspondence between data
elements in form of Java objects and their persistent
storage in XML files. The main design characteristic of
the Rodin repository is easy extensibility.

The Rodin builder schedules jobs depending on changes
made to files contained in the Rodin repository. The
builder concept is supplied by the Eclipse platform. It is
responsible for automatically launching jobs in the back-
ground to achieve higher responsiveness. The builder can
be extended by adding new tools to it that keeps derived
data elements in the Rodin repository up to date.

9.2 The Event-B Library Packages

The full Event-B language of contexts and machines does
not have a concrete syntax that needs to be parsed. In-
stead Event-B models are maintained in a structured
repository. However, the mathematical notation used,
e.g., in invariants or guards, does have a concrete syn-
tax. It is specified by an attributed grammar that is used
to produce the abstract syntax tree (AST) package. The
grammar has not been specified in Event-B, although,
in principle this should be possible similarly to the tech-
nique proposed by Lamport based on TLA+ [28].

The sequent prover (SEQP) library provides the proof
engine. It contains the necessary data types, notably the
sequent data type, some inference rules and support for
tactics. The inference rules have been chosen to represent
proof trees that can be easily manipulated in interactive
proofs (see Section 7).

9.3 The Event-B Core

The Event-B Core consists of three components: the
static checker (SC), the proof obligation generator (POG),
and the proof obligation manager (POM). Their connec-
tion is shown in Figure 1. The scheduling of the three
components is taken care of by the Rodin builder. The
role of the POG was covered in Section 5 and the role of
the POM was covered in Section 7.

The Event-B static checker (SC) analyses Event-B
contexts and Event-B machines and provides feedback
to the user about syntactical and typing errors in them.
The mathematical notation of Event-B is specified by
a context-free grammar, whereas the rest of Event-B
is specified by a graph grammar based on the reposi-
tory elements. The static checker rejects repository el-
ements that do not satisfy the context-free grammar
and produces error messages. It does, however, accept

those repository elements that do satisfy the context-free
grammar for use by the proof obligation generator. This
mechanism supports incremental development by allow-
ing proofs to go ahead for those repository elements of
a model that are statically valid. The static checker can
be extended by rejecting more elements and by dealing
with new elements that can be added to the repository.

The proof obligation generator produces proof obli-
gations that have already been simplified. This makes
them easier to prove automatically and to read in case
automatic proof fails. The role of the static checker is to
filter all elements from the repository that would cause
errors in the proof obligation generator. Separating the
two yields a much simplified proof obligation generator.
This separation is similar to that of front-end and code
generator in a compiler.

10 Openness and Extension

We take the view that no one tool can solve all our de-
velopment problems and that it is important to apply a
range of tools in a complementary way in rigorous de-
velopment. For example, it makes sense to apply model
checking as a pre-filter, before applying a theorem prover
to a proof obligation. Similarly the use of diagrammatic
views (e.g., UML) of a formal model can aid with con-
struction and validation. Many analysis tools, such as
model checkers, theorem provers, translation tools (e.g.,
UML to B and code generators), have been developed,
some of which are commercial products and some re-
search tools. However a major drawback of these tools is
that they tend to be closed and di�cult to use together
in an integrated way. They also tend to be di�cult for
other interested parties to extend, making it di�cult for
the work of a larger research community to be combined.

Our aim with the Rodin open toolset is to greatly
extend the state of the art in formal methods tools, al-
lowing multiple parties to integrate their tools as plug-
ins to support rigorous development methods. The open
architecture of Rodin allows other parties to integrate
their tools, such as model checkers and theorem provers,
as plug-ins to support rigorous development. This will
allow many researchers to contribute to the provision of
a comprehensive integrated toolset and we believe it will
encourage greater industrial uptake of these tools.

As well as supporting the combination of di↵erent
complementary tools, openness and customizability is
very important in that it will allow users to customize
and adapt the basic tools to their particular needs. For
example, a car manufacturer using Event-B to study the
overall design of a car information system might be will-
ing to plug some special tools able to help defining the
corresponding documentation and maintenance package.
Likewise, a rocket manufacturer using Event-B might be
willing to plug a special tool for analysing and develop-
ing the failure detection part of its design.
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We outline two significant plug-in tools that have
been developed for Rodin, ProB and UML-B. These
plug-ins provide valuable additional functionality that
complement the existing modelling and proof function-
ality of the core Rodin platform.

10.1 ProB

The ProB animator and model checker has been pre-
sented in [30]. Based on Prolog, the ProB tool supports
automated consistency checking of B machines via model
checking. For exhaustive model checking, the given sets
must be restricted to small finite sets, and integer vari-
ables must be restricted to small numeric ranges. This
allows the checking to traverse all the reachable states
of the machine. ProB can also be used to explore the
state space non-exhaustively and find potential prob-
lems. The user can set an upper bound on the number
of states to be traversed or can interrupt the checking at
any stage. ProB will generate and graphically display
counter-examples when it discovers a violation of the in-
variant. ProB can also be used as an animator of a B
specification. So, the model checking facilities are still
useful for infinite state machines, not as a verification
tool, but as a sophisticated debugging and testing tool.
ProB is available as a plug-in for Rodin.

10.2 UML-B

The UML-B [38] is a profile of UML that defines a for-
mal modelling notation. It has a mapping to the Event-
B language. UML-B consists of class diagrams with at-
tached statecharts, and an integrated constraint and ac-
tion language, called µB, based on the Event-B notation.
UML-B provides a diagrammatic, formal modelling no-
tation based on UML. The popularity of the UML en-
ables UML-B to overcome some of the barriers to the
acceptance of formal methods in industry. Its familiar di-
agrammatic notations make specifications accessible to
domain experts who may not be familiar with formal
notations.

The UML-B [38] plug-in converts UML-B models
into Event-B models. Translation from UML-B into Event-
B enables the Rodin proof obligation generator and provers
to be utilised. Since the Event-B language is not object-
oriented, class instances must be modelled explicitly in
the generated Event-B. Attributes and associations are
represented as variables whose type is a function from
the class instances to the attribute type or associated
class. Operation behaviour may be represented textu-
ally in µB, as a state chart attached to the class, or as
a simultaneous combination of both. Further details of
UML-B are given in [38].

11 Roadmap

In its present form, Rodin provides a powerful and e↵ec-
tive toolset for Event-B development and it has been val-
idated by means of numerous medium-sized case studies.
Naturally further improvements and extensions are re-
quired in order to improve the productivity of users fur-
ther and in order to scale the application of the toolset
to large industrial-scale developments. We outline the
main extensions to Rodin that we have planned for a
four year time frame.

11.1 Scaling

Composition and decomposition: Composition and
decomposition of models is essential for scalability. There
are plans to support two styles of composition for Event-
B in Rodin:

Style A Sub-models interact via shared variables
Style B Sub-models interact via synchronisation over events

Rodin will be extended to provide support for composing
models as well as decomposing models according to these
styles. The proof obligation generator will be extended
to enable independent refinement of sub-models.

Team-based development: Support for composi-
tion and decomposition will go some way towards en-
abling team-based development. But there will still be
situations where a team needs to access a common set
of models. Rodin will be extended to support concur-
rent modification of developments by providing viewing
of change conflicts and automated merge of changes. It
will provide support for version control. Support to anal-
yse the impact of multiple user modifications on proof
will be investigated.

11.2 Extending the proof obligations and theory:

Proof obligations: Event-B models will be extended to
include external variables. The proof obligation for such
variables is that they must be preserved via a functional
gluing invariant between abstract and concrete external
variables. Other forms of proof obligations will also be
added to support di↵erent paradigms (concurrent, dis-
tributed, sequential systems). These include proof obli-
gations for preservation of event enabledness and richer
variant structures (such as pointwise ordering and lexi-
cographic ordering) for convergence proof obligations.

Mathematical extensions: Rodin will be extended
to support richer types such as record structures and
user-defined data types including inductive data types.
Appropriate automated and interactive proof support
for richer types will be investigated and provided. Higher
order provers should enable proof support for inductive
datatypes. Users will be able to define operators of poly-
morphic type (but not use operator overloading) as well
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as parameterised predicate definitions. Support for dis-
jointness constraints will be added.

Proof and model checking: Rodin provides an
open architecture for proof in the form of a proof man-
ager that can use a range of provers to discharge proofs
and sub-proofs. The existing automated provers will be
extended with more powerful decision procedures. The
use of existing first order and higher order automated
provers will be investigated. As mentioned already, higher
order provers should enable proof support for inductive
datatypes. The possibility of exploiting automated tech-
niques such as SMT [12] and SAT [25] will be investi-
gated.

Animation: Prototype animation plug-ins already
exist. The animation facilities will be extended to allow
for greater automation of large animations to support
regression testing of models. A clear API to the anima-
tion will be provided to allow for easy integration with
graphical animation tools.

11.3 Process and productivity

Requirements Handling and Traceability: The in-
terplay between informal requirements and formal mod-
elling is crucial in system development and needs bet-
ter tool support. Facilities for constructing structured
requirements documents and for building links between
informal and formal elements will be added to Rodin.
These will support traceability between requirements and
formal models. Support for recording validation of these
links and for managing consistency under change to re-
quirements and to formal models will be provided.

Document management: Currently, the B2Latex
plug-in for Rodin generates a LATEX version of an Event-
B model. The structure of the document follows the
structure of the model. For proper document generation
tool support will be provided whereby users dictate the
order in which parts of the model are presented. They
should be able to write a document, structured according
to their needs that includes parts of an Event-B project
and that is automatically kept in synchrony with the
models.

Automated model generation: Automatic gener-
ation of refinements will be investigated and appropri-
ate tool support provided. More general modelling and
refinement patterns, enabling greater reuse of modelling
and refinement idioms, will be investigated and tool sup-
port provided. Code generation from models will be in-
vestigated. An indirect route for achieving code genera-
tion will be to generated classical B and use the existing
code generators for classical B.

12 Conclusion

The Rodin tool is intended to o↵er the same reactive en-
vironment for constructing and analysing models as do

modern integrated development environments for pro-
gramming.

We believe that modelling will remain di�cult. This
does not mean, however, that it is impossible to develop
a productive modelling tool. Programming is di�cult,
too. Still we have very e�cient programming tools. But
we also have many people who simply got used to the
di�culties of programming. Hopefully, they will also get
used to the di�culties of modelling when appropriate
tools are available.

The Rodin tool provides a seamless integration be-
tween modelling and proving. This is important for the
user to focus on the modelling task and not on switching
between di↵erent tools. The purpose of modelling is not
just to write a specification. It also serves to improve
our understanding of the system being modelled. The
Event-B tool tries to reflect this view by providing a lot
of help for exploring a model and reasoning about it.

The tool is extensible and configurable because we
cannot predict future uses of Event-B. The architecture
has been designed to make this as easy as possible to
invite users who need a (formal) modelling tool tailor
it to their needs. We hope this will make it possible to
employ the tool in very di↵erent development processes.
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line Resource for Research on SAT. In I.P. Gent, H.V.
Maaren, and T. Walsh, editors, SAT 2000, pages 283–
292. IOS Press, 2000.

26. Matt Kaufmann and J. Strother Moore. An indus-
trial strength theorem prover for a logic based on com-
mon lisp. IEEE Transactions on Software Engineering,
23(4):203–213, 1997.

27. James C. King. A new approach to program testing.
In Proceedings of the international conference on Reli-
able software, pages 228–233, New York, NY, USA, 1975.
ACM Press.

28. Leslie Lamport. Specifying Systems, The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

29. Thomas L̊angbacka and Joakim von Wright. Refining re-
active systems in HOL using action systems. In Elsa L.
Gunter and Amy P. Felty, editors, Theorem Proving
in Higher Order Logics, 10th International Conference,
TPHOLs’97, volume 1275 of Lecture Notes in Computer
Science, pages 183–197. Springer, 1997.

30. M. Leuschel and M. Butler. ProB: A Model Checker for
B. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli,
editors, Proceedings FME 2003, Pisa, Italy, LNCS 2805,
pages 855–874. Springer, 2003.

31. Farhad Mehta. Supporting proof in a reactive devel-
opment environment. In SEFM, pages 103–112. IEEE
Computer Society, 2007.

32. Farhad Mehta. A practical approach to partiality -
a proof based approach. In Shaoying Liu, T. S. E.
Maibaum, and Keijiro Araki, editors, ICFEM, volume
5256 of Lecture Notes in Computer Science, pages 238–
257. Springer, 2008.

33. Farhad Mehta. Proofs for the Working Engineer. PhD
thesis, ETH Zurich, 2008.

34. Carroll Morgan, Thai Son Hoang, and Jean-Raymond
Abrial. The challenge of probabilistic Event-B – ex-
tended abstract. In Helen Treharne, Steve King, Mar-
tin C. Henson, and Steve A. Schneider, editors, ZB 2005:
Formal Specification and Development in Z and B, 4th
International Conference of B and Z Users, volume 3455
of Lecture Notes in Computer Science, pages 162–171.
Springer, 2005.

35. Tobias Nipkow. Structured Proofs in Isar/HOL. In
H. Geuvers and F. Wiedijk, editors, Types for Proofs and
Programs (TYPES 2002), volume 2646 of LNCS, pages
259–278. Springer, 2003.

36. Lawrence C. Paulson. Isabelle: A Generic Theorem
Prover, volume 828 of Lecture Notes in Computer Sci-
ence. Springer Verlag, 1994.

37. Mark Saaltink. The Z/EVES system. In Jonathan P.
Bowen, Michael G. Hinchey, and David Till, editors,
ZUM ’97: The Z Formal Specification Notation, 10th In-
ternational Conference of Z Users, volume 1212 of Lec-
ture Notes in Computer Science, pages 72–85. Springer,
1997.

38. Colin F. Snook and Michael J. Butler. UML-B: Formal
modeling and design aided by UML. ACM Trans. Softw.
Eng. Methodol., 15(1):92–122, 2006.



Appeared in: International Journal on Software Tools for Technology Transfer, vol. 12(6), 2010 c
�Springer

39. J. Michael Spivey. The Z Notation: A Reference Manual.
International Series in Computer Science. Prentice-Hall,
New York, NY, second edition, 1992.

40. Daniel Winterstein, David Aspinall, and Christoph Lüth.
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