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Abstract. The Shadow semantics is a qualitative model for noninterference security for sequential programs.
In this paper, we first extend the Shadow semantics to Event-B, to reason about discrete transition systems
with noninterference security properties. In particular, we investigate how these security properties can
be specified and proved as machine invariants. Next we highlight the role of security invariants during
refinement and identify some common patterns in specifying them. Finally, we propose a practical extension
to the supporting Rodin platform of Event-B, with the possibility of having some properties to be invariants-
by-construction.
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1. Introduction

Event-B [Abr10] is a formal modelling method for developing systems via step-wise refinement, based on
first-order logic and some typed set theory. The strength of the method is enhanced by the Rodin Platform
(Rodin) [ABH+10] for reasoning about Event-B models rigorously. Each machine, the basic construct in
Event-B, corresponds to a discrete transitions system, with its properties defined as machine invariants,
which need to be proved to hold always during the execution of the machine.

In [Mor06], Morgan introduced the “Shadow Knows” framework for sequential programs, including an
assertion language for expressing “knowledge” together with a weakest-precondition modal semantics, which
can be used as the basis for ignorance-preserving refinement. An attractive property of this work is the
possibility to translate (1) programs into standard statements and (2) properties into first-order logic (the
“shadow form”), and to reason about (1) and (2) within the standard context.

In [HMM+11], we investigated the possibility of using Event-B as a target language for translating
ignorance-sensitive sequential programs, and used Rodin as a back-end to generate and discharge the required
proof obligations for shadow refinement. While the technique meets our purpose of automating the refinement
proofs, it lacks certain aspects to become a development method for more general forms of systems. One of
the shortcomings is the disconnection between modelling and proving activities: Event-B models are used
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purely as a vehicle for verification purpose, rather than a helping tool to deepen the understanding of systems
under developing and their properties. In particular, during the translation into Event-B, several invariants
are added to the model based on some predefined heuristics. Several questions could arise including what
the meanings of these invariants are. More importantly, when there are undischarged proof obligations, it is
di�cult to determine the precise reason why the proofs fail, e.g., because of the weakness of the automatic
provers or because of some modelling mistakes, including missing invariants.

In this paper, we investigate how general discrete transition systems can be developed within the Event-
B framework, extended with the reasoning about noninterference security. In particular, we consider how
security properties can be specified as machine invariants. More importantly, we show why security invariants
are needed as the means to prove shadow refinement. We identify two common patterns for security invariants,
constraining what the observer knows and only knows about the value of the hidden variables. Finally we
propose some extensions to Rodin to practically support the development systems with noninterference
security properties.

Structure Overview The rest of our paper is structured as follows. In Sect. 2, we give some background
information on the Event-B modelling method and the Shadow Knows framework. We state our proposal
for Event-B models with security invariants in Sect. 3. We illustrate an application of our approach using
the well-known Chaum’s Dining Cryptographers algorithm [Cha88] in Sect. 4. In Sect. 5, we sketch our ideas
for extending Rodin to support developments of noninterference security systems. We compare related work
and propose future work in Sect. 6 and Sect. 7. Finally, we summarise and conclude in Sect. 8.

2. Background

In this section, we first give some background information on the Event-B modelling method. Afterwards we
review the Shadow Knows framework [Mor06] including the accompanying logic for expressing “knowledge”
(and its compliment “ignorance”).

2.1. The Event-B Modelling Method

Event-B [Abr10] is a modelling method for formalising and developing systems whose components can
be modelled as discrete transition systems. An evolution of the (classical) B-method [Abr96], Event-B is
centred around the general notion of events, which can be also found in other formal methods such as Action
Systems [Bac89], TLA [Lam94] and UNITY [CM89]. The semantics of Event-B based on transition systems
and simulation between such systems, is described in [Abr10]. We will not describe in detail the semantics
of Event-B here. Instead we only show some proof obligations that are important for our reasoning in later
examples.

Event-B models are organised in terms of the two basic constructs: contexts and machines. Contexts
specify the static part of a model whereas machines specify the dynamic part. Contexts may contain carrier
sets, constants, axioms, and theorems. Carrier sets are similar to types. Axioms constrain carrier sets and
constants, whereas theorems are additional properties derived from axioms. The role of a context is to isolate
the parameters of a formal model (carrier sets and constants) and their properties, which are intended to
hold for all instances. For simplification, we omit references to constants, carrier sets, and the properties of
them in the presentation of proof obligations.

We give an overview about machines in Sect. 2.1.1, then about machine refinement in Sect. 2.1.2.

2.1.1. Machines

Machines specify behavioural properties of Event-B models. Machines may contain variables, invariants,
and events1. Variables v define the state of a machine and are constrained by invariants I(v). Theorems are
additional properties of v derivable from I(v). Possible state changes are described by events.

1 We omit other modelling elements such as theorems and variants.
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Events An event evt can be represented by the term

evt b= any t where G(t, v) then S(t, v) end , (1)

where t stands for the event’s parameters2, G(t, v) is the guard (the conjunction of one or more predicates)
and S(t, v) is the action. The guard states the necessary condition under which an event may occur, and the
action describes how the state variables evolve when the event occurs. We use the short form

evt b= when G(v) then S(v) end (2)

when the event does not have any parameters, and we write

begin S(v) end (3)

when, in addition, the event’s guard equals true. A dedicated event in the form of (3) is used for the
initialisation event init. Note that events may be annotated to indicate whether they refine other events, and
to present the witnesses for refinement. We will say more about these annotations later.

The action of an event is composed of one or more assignments of the form

x := E(t, v) (4)

or

x :2 E(t, v) (5)

or

x :| Q(t, v, x0) , (6)

where x are some of the variables contained in v, E(t, v) is an expression, and Q(t, v, x0) is a predicate.
Note that the variables on the left-hand side of the assignments contained in an action must be disjoint. In
(4) and (5), x must be a single variable. Assignments of the form (4) are deterministic, whereas the other
two forms are nondeterministic. In (5), x is assigned any element of a set E(t, v). (6) refers to Q which is
a before-after predicate relating the values v (before the action) and x0 (afterwards). (6) is also the most
general form of assignment and nondeterministically selects an after-state x0 satisfying Q and assigns it to
x. Note that the before-after predicates for the other two forms are as expected; namely, x0 = E(t, v) and
x0 2 E(t, v), respectively. All assignments of an action S(t, v) occur simultaneously, which is expressed by
conjoining together their before-after predicates. Hence each event corresponding to a before-after predicate
S(t, v, v0) established by conjoining all before-after predicates associated with each assignment and y = y0,
where y are unchanged variables.

Proof Obligations Event-B defines proof obligations, which must be proved to show that machines have
their specified properties. We describe below the proof obligation for invariant preservation and feasibility.
Formal definitions of all proof obligations are given in [Abr10].

Invariant preservation states that invariants are maintained whenever variables change their values.
Obviously, this does not hold a priori for any combination of events and invariants, therefore must be
proved. For each event, we must prove that the invariants I are re-established after the event is carried
out. More precisely, under the assumption of the invariants I and the event’s guard G, we must prove that
the invariants still hold in any possible state after the event’s execution given by the before-after predicate
S(t, v, v0). The proof obligation is as follows.

I(v), G(t, v),S(t, v, v0) ` I(v0) (INV)

Similar proof obligations are associated with a machine’s initialisation event. The only di↵erence is that
there is no assumption that the invariants hold. Note that in practice, by the property of conjunctivity, we
can prove the preservation of each invariant separately.

2 When referring to variables v and parameters t, we usually allow for multiple variables and parameters, i.e., they may be
“vectors”. When we later write expressions like x := E(t, v) we mean that if x contains n > 0 variables, then E must also be
a vector of expressions, one for each of the n variables.
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2.1.2. Machine Refinement

Machine refinement is a mechanism for introducing details about the dynamic properties of a model [Abr10].
For more details on the theory of refinement, we refer the reader to the Action System formalism [Bac89],
which has inspired the development of Event-B.

When proving that a machine CM refines another machine AM, we refer to AM as the abstract machine
and CM as the concrete machine. The states of the abstract machine are related to the states of the concrete
machine by gluing invariants J(v, w), where v are the variables of the abstract machine and w are the
variables of the concrete machine. Typically, the gluing invariants are declared as invariants of CM and also
contain the local concrete invariants constraining only w. Basically the refinement is defined as simulation
of any trace of CM by a trace of AM.

Each event ea of the abstract machine is refined by a concrete event ec (later we will relax this one-to-one
constraint). Let the abstract event ea and concrete event ec be as follows.

ea b= any t where G(t, v) then S(t, v) end (7)

ec b= any u where H(u,w) then T (u,w) end (8)

Somewhat simplifying, we can say that ec refines ea if the guard of ec is stronger than the guard of ea
(guard strengthening), and the gluing invariants J(v, w) establish a simulation of ec by ea (simulation). This
condition is captured by the following proof obligation.

I(v)
J(v, w)
H(u,w)
T(u,w,w0)

`
9t, v0 ·G(t, v) ^ S(t, v, v0) ^ J(v0, w0)

(9)

In order to simplify and split the above proof obligation, Event-B introduces the notion of “witnesses” for
the abstract parameters t and the after value of the abstract variables v0. The witnesses are in the form of
predicates W1(t, u, v, w) (for t), and W2(v0, u, w,w0) (for v0), which are required to be feasible, i.e., satisfying
the following proof obligations.

I(v), J(v, w), H(u,w),T(t, w, w0) ` 9u·W1(u, t, v, w,w0) (WFIS)

I(v), J(v, w), H(u,w),T(t, w, w0) ` 9v0 ·W2(v0, u, v, w,w0) (WFIS)

Intuitively, the witnesses give some “hints” about how t and v0 can be instantiated during the proof of
(9). In practice, often the witnesses are given deterministically, i.e. of the form u = E(t, v, w, w0) or v0 =
E(u, v, w,w0), hence are trivially feasible. Given the witnesses, the refinement proof obligation (9) is replaced
by three di↵erent proof obligations as follows.

I(v), J(v, w), H(u,w),W1(t, u, v, w) ` G(t, v) (GRD)

I(v), J(v, w), H(t, w),T(u,w,w0),W1(t, u, v, w),W2(v0, u, w,w0) ` S(t, v, v0) (SIM)

I(v), J(v, w), H(t, w),T(u,w,w0),W1(t, u, v, w),W2(v0, u, w,w0) ` J(v0, w0) (INV REF)

In the case where t or v are retained in the concrete machine, the corresponding witnesses can be omitted.
The witnesses are denoted by the keyword with.

A special case of refinement (called superposition refinement) is when v are kept in the refinement,
i.e. v ✓ w. In particular, if the action of an abstract event is retained in the concrete event, the proof
obligation SIM is trivial, hence we only need to consider INV REF for proving that the gluing invariants
are re-established. Our reasoning in the later sections will often use this fact.

In the course of refinement, new events are often introduced into a model. New events must be proved
to refine the implicit abstract event skip, which does nothing, i.e., does not modify abstract variable v.

The one-to-one correspondence between the abstract and concrete events can be relaxed. When an ab-
stract event ea is refined by more than one concrete event ec, we say that the abstract event ae is split and
prove that each concrete ec is a valid refinement of the abstract event. Conversely, several abstract events
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Here bbScc denotes the translation of an ignorance sensitive v, h–program S into a traditional v, h,H–program.
Assuming that v and h are variables ranging over some set Tv and Th respectively, then H is a set of potential
values for h ranging over the power-set P(Th).
We use the notation {g ·P (g) | E(g)} for set comprehension: it denotes the set of expressions of the form E(g)
where P (g) holds. When E(g) is the same as g, the short-hand {g | P} is used. The notation

S
g ·P (g) | E(g)

denotes the (generalised) union of all sets of the form E(g) where P (g) holds.
Variable e is fresh for exposition.

bbv := E(v, h)cc e := E(v, h);H := {h | h 2 H ^ e = E(v, h)}; v := e (10)

bbv :2 E(v, h)cc e :2 E(v, h);H := {h | h 2 H ^ e 2 E(v, h)}; v := e (11)

bbh := E(v, h)cc h := E(v, h);H := {h·h 2 H | E(v, h)} (12)

bbh :2 E(v, h)cc h :2 E(v, h);H := (
[

h·h 2 H | E(v, h)) (13)

bbS u T cc bbScc u bbT cc (14)

bbS;T cc bbScc; bbT cc (15)

bbif G(v, h) then S else T endcc

if G(v, h) then
H := {h·h 2 H ^G(v, h)}; bbScc

else
H := {h·h 2 H ^ ¬G(v, h)}; bbT cc

end

(16)

Note that when there are more than one hidden variable h, the shadow H does not only keep the potential
values of each hidden variable in h individually, but also keeps the information on how these hidden

variables h are varied together. In particular, when there are n hidden variables h1, . . . , hn ranging over
some sets Th1 , . . . , Thn respectively then H is ranging over the power-set of the Cartesian product

P(Th1 ⇥ . . .⇥ Thn).

Fig. 1. The Shadow operational semantics for sequential programs

ae can be refined by one concrete ec. We say that these abstract events are merged together. A requirement
for merging events is that the abstract events must have identical actions. We need to prove that the guard
of the concrete event is stronger than the disjunction of the guards of the abstract events.

2.2. The Shadow Semantics for Sequential Programs

We now give a brief overview of the Shadow semantics for sequential programs [Mor06]. Assume that our
program state is partitioned into a “visible” part v and a “hidden” part h and our program operates over v
and h. Here we are interested in properties about what information an observer knows about the part of the
program states that he cannot directly see, i.e. h. In other words, we can ask the question “from the final
value of v, what can an observer deduce about the final value of h” [Mor06]. The answer obviously depends
on the actual program: if the program is v := 0 then what the observer knows is just the same as what he
knows before executing the program; if the program is v := h then he knows the exact value of h; if the
program is v := h mod 2, then he knows the parity of h (in addition to what he already knows about h
before).

2.2.1. Operational Semantics

Assume a state space with only two sets of variables: visible variables v and hidden variables h, an additional
variableH–called the shadow of h– which keeps all the values that h has potentially at any point. It is required
that h 2 H.

The Shadow operational model is given by translating the (v, h)– (ignorance sensitive) programs to
traditional (that is (v, h,H)–) programs (the shadow form) as showed in Fig. 1. The sequential language
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S bbScc
v := 0 e := 0;H := {h | h 2 H ^ e = 0}; v := e

simplifies as v := 0
v := h e := h;H := {h | h 2 H ^ e = h}; v := e

simpliflies as H := {h}; v := h
v := 1� h e := 1� h;H := {h | h 2 H ^ e = 1� h}; v := e

simpliflies as H := {h}; v := 1� h
v :2 {h, 1� h} e :2 {h, 1� h};H := {h | h 2 H ^ e 2 {h, 1� h}}; v := e

simplifies as H := {h | h 2 H ^ v 2 {h, 1� h}}; v :2 {h, 1� h}
v := h u v := 1� h v := h;H := {h} u v := 1� h;H := {h}

simplifies as H := {h}; v :2 {0, 1}
h := 0 h :2 0;H := {h·h 2 H | 0}

simplifies as h :2 0;H := {0}
h := 1 h :2 1;H := {h·h 2 H | 1}

simplifies as h :2 1;H := {1}
h :2 {0, 1} h :2 {0, 1};H := (

S
h·h 2 H | {0, 1})

simplifies as h :2 {0, 1};H := {0, 1}
h := 0 u h := 1 h := 0;H := {h·h 2 H | 0} u h := 1;H := {h·h 2 H | 1}

simplifies as h := 0;H := {0} u h := 1;H := {1}
v := h; v := 0 v := h;H := {h}; v := 0

simplifies as H := {h}; v := 0
h :2 {0, 1};
v :2 {h, 1� h}

h :2 {0, 1};H := {0, 1};
v :2 {h, 1� h};H := {h | h 2 H ^ v 2 {h, 1� h}}

simplifies as h :2 {0, 1};H := {0, 1}; v :2 {0, 1}
h :2 {0, 1};
v := h u v := 1� h

h :2 {0, 1};H := {0, 1};
v :2 {0, 1};H := {h}

simplifies as h :2 {0, 1};H := {h}; v :2 {0, 1}
Fig. 2. Examples for the Shadow semantics for sequential programs

contains deterministic assignments (:=), nondeterministic assignments (:2), demonic choices (u), sequential
compositions (;), and conditional statements (if . . . then . . . else . . . end).

Some special features of the Shadow semantics are as follows.

• It distinguishes (as expected) between assignments to visible variables (10), (11) and assignments to
hidden variables (12), (13) in terms of changes to the shadow H.

• There is a clear distinction between atomic nondeterminism :2 (12) and composite nondeterminism
u (14). In particular, in the case of the atomic nondeterminism, e.g., h :2 {0, 1}, the observer only knows
that h is set to either 0 or 1 but no more than that. In the case of composite nondeterminism, e.g.,
h := 0 u h := 1, the observer knows afterwards which choice has been executed and hence knows the
final value of h too.

• For conditional statements (16), the observer can also see the actual program flow, i.e., knowing which
branch has been taken. As a result, when S is executed, the observer knows that the guard G(v, h) holds
initially. Similarly, when T is executed, the observer knows that G(v, h) does not hold initially. The
operational semantics of conditional statements “shrinks” the shadow H accordingly to the branch being
executed.

Figure 2 shows some examples for the Shadow semantics.

2.2.2. Shadow Refinement

Given two program statements S and T , we said S is refined by T (denoted as S v T ) when for starting
from some before state (v, h,H), every possible after state (v0, h0, H 0

T ) of T can be matched by an after state
(v0, h0, H 0

S), whereH
0
S ✓ H 0

T . Intuitively, shadow refinement corresponds to standard functional refinement on
traditional variables v and h, with the possibility of enlarging the shadow H component (shadow refinement).
As a result, v :2 T in general cannot be refined to be v := h (this is often referred to as the Refinement
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Program Valid Conclusion
1. v := 0 v = 0
2. v := h K(v = h)
3. h := 0 K(h = 0)
4. h :2 {0, 1} P(h = 0)
5. h :2 {0, 1}; v :2 {h, 1� h} P(h = 0)) ^ P(h = 1)

• In 4, the choice of h is hidden, we know that h is either 0 or 1 and either choice is possible.
• In 5, after assignment h :2 {0, 1}, v :2 {h, 1� h} does not reveal additional information about h.

Fig. 3. Examples of the assertion logic

Paradox). While the former does not change the shadow component H , the latter shrinks the shadow to the
singleton set {h}.

2.2.3. The Assertion Logic

We review here the assertion logic for expressing knowledge from Morgan [Mor06, Mor09]. Informally, the
logic is defined to be first-order logic augmented with a modal operator “know” K [FHMV95]. K� (read
“know �”) holds in the state when � holds in every (other) state “compatible” with the visible part of this
state, the program text and the information about the execution path as well as earlier visible values. The
dual operator of K is P (hence P� read “possibly �”) is defined as P� b= ¬K(¬�). Examples about this
assertion logic are given in Figure 3.

We do not present explicitly the interpretation of the logic, details can be found in [Mor06]. However, we
state here some properties of the logic which are important for our reasoning here.

• Ignorance formulae are those in which all modalities K occur negatively, and all modalities P occur
positively. Shadow refinement preserves the only the truth value of ignorance formulae.

• We can assume wlog that the modalities, i.e. K and P are not nested, since we can remove the nesting
by K�, (8c·[[h := c]]¬�) K(h 6= c)). (Here [[h := c]]¬� replaces any free h in ¬� by c, note that any h
under the modal K or P is not free.)

• As a result, we can translate any modal formulae (i.e. containing either K or P) over the state consisting
of v, h into first-order logic over the state consisting of v, h,H (the shadow form), since we have

bbK(Q)cc b= 8h·h 2 H )Q . (17)

Note here that we overload the syntax bb·cc to translate both programs and formula from ignorance
sensitive to the shadow form. In a sense, the assertion logic is only syntactic sugar for the more basic form.
The operator bb·cc distributes through all classical operators as usual. We note the following important
properties of this operator.

– For all standard predicate Q, i.e. containing no modal operators, we have

bbQcc ,Q . (18)

– For operator P, the translation is as follows.

bbP(Q)cc , 9h·h 2 H ^Q . (19)

• A useful syntactic extension is the notion of complete ignorance from [Mor06], defined as follows.

<<h | Q(v, h)>> b= 8e·Q(v, e)) P(h = e) (20)

Intuitively, <<h | Q(v, h)>> expresses that the only fact known about h is Q(v, h), nothing more. Notice
that this complete ignorance notion explicitly quantifies over some hidden variables (i.e., not necessarily
over all hidden variables). As an example, assume that there are two hidden variables h1, h2, both are
in {0, 1}. Property

<<h1 | h1 2 {0, 1}>> (21)
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is di↵erent from.

<<h1, h2 | h1 2 {0, 1}>> (22)

This can be seen by translating both (21) and (22) to their shadow form. For (21), the reasoning is as
follows.

bb<<h1 | h1 2 {0, 1}>>cc
, bb8e1 ·e1 2 {0, 1}) P(h1 = e1)cc complete ignorance (20)

, 8e1 ·e1 2 {0, 1}) bbP(h1 = e1)cc Distribution of bb·cc
, 8e1 ·e1 2 {0, 1}) (9h1, h2 ·h1 7! h2 2 H ^ h1 = e1) Definition of P (19)

, 8e1 ·e1 2 {0, 1}) (9h2 ·e1 7! h2 2 H) One-point rule

For (22), the reasoning is as follows.

bb<<h1, h2 | h1 2 {0, 1}>>cc
, bb8e1, e2 ·e1 2 {0, 1}) P(h1 = e1 ^ h2 = e2)cc complete ignorance (20)

, 8e1, e2 ·e1 2 {0, 1}) bbP(h1 = e1 ^ h2 = e2)cc Distribution of bb·cc
, 8e1, e2 ·e1 2 {0, 1}) (9h1, h2 ·h1 7! h2 2 H ^ h1 = e1 ^ h2 = e2) Definition of P (19)

, 8e1, e2 ·e1 2 {0, 1}) e1 7! e2 2 H One-point rule

As one can see, the part of the hidden variables over which a complete ignorance property holds is
important.

3. Shadow Semantics for Event-B Models and Invariants

In this section, we consider how the Shadow semantics can be extended to a more general setting of discrete
transition systems, e.g., Event-B. We assume that the models contain some visible variables v and some
hidden variables h. We also assume that the observer is given the actual Event-B model (hence knows
how events are specified). Moreover, at any time he knows which events have actually been executed (i.e.,
knows the execution trace), and the earlier values of the visible variables v after each event execution. The
operational model is given by converting the ignorance sensitive Event-B models containing v and h into
traditional standard Event-B models including the additional shadow component H. It is required to adapt
the Shadow semantics as given in Sect. 2.2 to the Event-B modelling method accordingly.

3.1. Events

We consider the translation of an ignorance sensitive (v, h)–event of the form3

evt b= when G(v, h) then S(v, h) end

into a standard (v, h,H)� event. Our translation is influenced by the following decisions4.

• The Shadow semantics given in Figure 1 for assignments, i.e., (10), (11), (12), (13), uses standard se-
quential compositions. Since there is no sequential composition in Event-B, we “compress” sequential
compositions into equivalent multiple assignments.

bbv := E(v, h)cc b= v,H :=E(v, h), {g | g 2 H ^ E(v, h) = E(v, g)} (23)

bbv :2 E(v, h)cc b= v,H :| v0 2 E(v, h) ^H 0 = {g | g 2 H ^ v0 2 E(v, g)} (24)

bbh := E(v, h)cc b= h,H :=E(v, h), {g ·g 2 H | E(v, g)} (25)

bbh :2 E(v, h)cc b= h,H :| h0 2 E(v, h) ^H 0 = {g0 | 9g ·g 2 H ^ g0 2 E(v, g)} (26)

These translations have been applied in our earlier work [HMM+11].

3 We omit event parameters for clarity.
4 These translations are influenced by abstraction from a Kripke model given in Sect. A.
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• An important feature of a modelling method such as Event-B is the use of before-after predicates for
abstractly specifying the e↵ect of event execution. We extend the translation into the shadow form for
v :| Q(v, h, v0) and h :| Q(v, h, h0) as follows.

bbv :| Q(v, h, v0)cc b= v,H :|Q(v, h, v0) ^H 0 = {g | g 2 H ^Q(v, g, v0)} (27)

bbh :| Q(v, h, h0)cc b= h,H :| Q(v, h, h0) ^H 0 = {g0 | 9g ·g 2 H ^Q(v, g, g0)} (28)

Note that the other forms of assignments, i.e., (23), (24), (25), (26), are special cases of (27) and (28)
as expected. The general assignment form using :| allows making changes to several variables together,
suitable for a specification modelling method such as Event-B.
As a first example, assume the context of our model contains two hidden variables h1, h2, consider the
assignment

h1, h2 :| h0
1 2 {0, 1} ^ h0

2 2 {0, 1} (29)

which assigns non-deterministically a value in {0, 1} to h1 and h2. Intuitively, the assignment leads to
four possibilities for the final value of the pair h1 7! h2, which are any combination of 0 and 1. But in all
cases the shadow H is the same and is {0 7! 0, 0 7! 1, 1 7! 0, 1 7! 1}. The translation for example (29) is
as follows.

bbh1, h2 :| h0
1 2 {0, 1} ^ h0

2 2 {0, 1}cc

⌘ nondeterministic hidden substitution (28)

h1, h2, H :| h0
1 2 {0, 1} ^ h0

2 2 {0, 1} ^ H 0 =

⇢
g01 7! g02 | 9g1, g2 ·g1 7! g2 2 H^

g01 2 {0, 1} ^ g02 2 {0, 1}

�

⌘ logic (since h1 7! h2 2 H)

h1, h2, H :| h0
1 2 {0, 1} ^ h0

2 2 {0, 1} ^ H 0 = {g01 7! g02 | g01 2 {0, 1} ^ g02 2 {0, 1}}
⌘ set theory

h1, h2, H :| h0
1 2 {0, 1} ^ h0

2 2 {0, 1} ^ H 0 = {0 7! 0, 0 7! 1, 1 7! 0, 1 7! 1}

For the second example, we consider the assignment

h1, h2 :| h0
1 2 {0, 1} ^ h0

1 = h0
2 (30)

which assigns non-deterministically a value in {0, 1} to h1 and h2 such that they are equal. The assignment
leads to two possibilities for the value of h1 7! h2 which are either 0 7! 0 or 1 7! 1. In either case, the
final value of the shadow H is {0 7! 0, 1 7! 1} as illustrated below.

bbh1, h2 :| h0
1 2 {0, 1} ^ h0

1 = h0
2cc

⌘ non-deterministic hidden substitution (28)

h1, h2, H :| h0
1 2 {0, 1} ^ h10 = h0

2 ^ H 0 =

⇢
g01 7! g02 | 9g1, g2 ·g1 7! g2 2 H^

g01 2 {0, 1} ^ g01 = g02

�

⌘ logic (since h1 7! h2 2 H)

h1, h2, H :| h0
1 2 {0, 1} ^ h0

1 = h0
2 ^ H 0 = {g01 7! g02 | g01 2 {0, 1} ^ g01 = g02}

⌘ h1, h2, H :| h0
1 2 {0, 1} ^ h0

1 = h0
2 ^ H 0 = {0 7! 0, 1 7! 1} set theory

We emphasise here again the fact that the shadow H not only keeps the potential values for individual
variables hidden variables, e.g., h1, h2, but also restricts how these hidden variables relate to each other. If
we consider h1 and h2 separately, the possible values for each of them are either 0 or 1 for both examples.
Comparing the second example to the first example, we do not know more about the value of h1 and h2

individually, but we know more about how h1 and h2 are varied together: they must have the same value.
• Another important feature of Event-B is that events are guarded by their enabling conditions. The
events hence are interpreted as “naked guarded commands”, providing a simple mechanism for modelling
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concurrency and distributed systems. Inspired from the semantics of conditional statements (16), we
define the semantics of the naked guard command as follows.

bbwhen G(v, h) then S(v, h) endcc b=

when
G(v, h)

then
H := {h | h 2 H ^G(v, h)}; bbScc

end

(31)

The intuition here is that since the observer knows which event is executed, he then can subsequently
derive that its enabling condition (which he also knows from the model text) must hold when the event
is carried out. Furthermore, since there are no sequential composition allows in the action of events, we
(again) combine the shrinking e↵ect of the guard on the shadow H with the e↵ect of the action S. For
example, when S is a deterministic assignment to visible variables (23), we have5

bbwhen G(v, h) then v := E(v, h) endcc b=

when
G(v, h)

then
v := E(v, h)
H := {g | g 2 H ^G(v, g) ^ E(v, h) = E(v, g)}

end

(32)

3.2. Shadow Machines

We now turn to the issue of translating an ignorance sensitive (v, h)�machine into the shadow (v, h,H)�form.
Assume that our Event-B model has visible variables v, hidden variables h, some standard invariant I(v, h).
Additionally, our ignorance sensitive model have some modal invariant �(v, h) (i.e., containing K and P).

variables: v, h
invariants:
I(v, h)
�(v, h)

The modal invariant �(v, h) denotes some property related to knowledge about the hidden variables h that
hold for all reachable states of the system. The modal invariant �(v, h) can be translated into the shadow
form as described in Sect. 2.2.3, and proved as a standard invariant in the shadow (v, h,H)�machine.

We can see from the operational semantics of an ignorance sensitive (v, h)� event above that the its cor-
responding (v, h,H)� event “contains” the original (v, h)-event, with some additional assignment updating
the shadow H. Moreover, from our experience with shadow machines in [HMM+11], we notice the separa-
tion of concerns between the functional part of the model (related only to v and h) and the shadow part of
the model (related additionally to H). As a result, for each ignorance sensitive machine, we associate two
standard machines. The first one is the “functional” (v, h)-model, essentially a copy of the original model
without the modal invariant �(v, h). The second one is a superposition refinement of the first with additional
shadow variable H (the shadow model). This is summarised in Fig. 4. Later on, when there are multiple
points of view of the system, we extend this idea (i.e., separating functional and shadow parts) to allow
the functional part of the model to be shared between di↵erent points of view. More information is given in
Sect. 5.

The initialisation init of the shadow model (v, h,H)� has an additional assignment to initialise H ac-
cording to the initialisation for h. For example, when h is initialised according to an after predicate L(h0),
the initialisation for the shadow variable H is H := {h0 | L(h0)}.

Furthermore, an invariant is generated in the shadow machine stating that the values of the hidden
variables are always in the shadow, i.e., h 2 H. This property is in fact an invariant-by-construction as
a requirement of the Shadow semantics. Our translation of the initialisation and events into shadow form
establishes and maintains this invariant trivially.

5 As an alternative, we could use event’s parameters to “simulate” sequential substitution. However, this leads to some
complications later on for refining events with parameters.



Security Invariants in Discrete Transition Systems 11

ignorance sensitive model

functional model v, h

shadow model v, h,H

refines

Fig. 4. Translation of secure Event-B machine

3.3. Shadow Machine Refinement

Given two ignorance sensitive (v, h)–machines M1 and M2, we have M1 v M2 just when the translation
into standard (v, h,H2)–machine bbM2cc of M2 is a refinement of the (v, h,H1)–machine bbM1cc (the shadow
translation of M1) with the gluing invariant H1 ✓ H2

6, denoted as bbM1cc vH1✓H2 bbM2cc. The refinement
of M1 by M2 preserves all invariants in the form of ignorance formulae7. Intuitively, bbM1cc vH1✓H2 bbM2cc
guarantees that every concrete trace trc of bbM2cc, a sequence of (v, h,H2)–states, has an abstract counterpart
in the form of a trace tra of bbM1cc, a sequence of (v, h,H1)–states. More precisely, assume that trc is a
sequence of states h(v0, h0, H10), (v1, h1, H11), . . . , (vi, hi, H1i), . . .i, the corresponding trace tra is of the form
h(v0, h0, H20), (v1, h1, H21), . . . , (vi, hi, H2i), . . .i, where H1i ✓ H2i. As a result, if � is an ignorance invariant
for M1 then its translation bb�cc is an invariant of bbM1cc must hold at every reachable states of bbM1cc. In
particular, bb�cc must hold for every (vi, hi, H1i) states of tra. Since � is an ignorance formulae, it must also
hold for every (vi, hi, H2i) states since H1i ✓ H2i). As a result, � is also an invariant for H2i.

3.4. Patterns of Invariants

We identify two “patterns” for the modal invariants typically required for specifying properties and proving
the shadow refinement relationship. For shadow refinement, we need to prove that H0 ✓ H1 where H0 is
the shadow of the abstract model and H1 is the shadow of the concrete model8. In order to prove the above
relationship, most of the time, we need to constraint on how large H0 can get and how small H1 can be.
Subsequently, we identify two patterns of security invariants.

Type 1. What the observer knows This type of invariants is specified using the K operator. Recall the
translation of K(P (v, h)) into the shadow form as 8h·h 2 H ) P (v, h), we can use this invariant to
constraint the upper bound of the shadow, e.g., how large the abstract shadow H0 can get. This pattern
of invariants K(P (v, h)) corresponds to a standard invariant P (v, h). Our reasoning is as follows. If
K(P (v, h)) is an invariant of the machine, we always know that P (v, h) holds, hence P (v, h) must be
an invariant of the machine. More formally, since the translation of K(P (v, h)) into the shadow form is
8h·h 2 H ) P (v, h) and we have the invariant that stating that h 2 H, it is trivial that P (v, h) holds9.
Vice versa, if P (v, h) is an invariant of the machine, we must “know” that P (v, h) holds for all reachable
states, hence K(P (v, h)) must also hold for all reachable states, hence is an invariant of the machine10.

6 When there are new hidden variables introduced in M2, the gluing invariant between H1 and H2 is slightly more complicated.
7 Recall ignorance formulae are those in which K can only occur negatively and P can only occur positively.
8 The relationship can be more elaborated as we show in our example in Sect. 4. However our intuition about the patterns of
security invariants is still applicable.
9 This is similar to the Knowledge Axiom in [FHMV95].
10 This is similar to the Knowledge Generalisation Rule in [FHMV95].
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Type 2. What the observer does not know This type of invariants is specified using the complete igno-
rance notion << ·>>. Recall the definition of total ignorance as <<h | Q(v, h)>> as 8e·Q(v, e))P(h = e),
which can be use to constraint the lower bound of the shadow, e.g., how small the concrete shadow H1

can be: it must be large enough to contain every h satisfying Q(v, h).

Typically, these invariants are additionally guarded by some appropriated standard conditions.
Note that invariants of Type 2 are ignorance formulae hence are maintained by shadow refinement.

Invariants of Type 1 are not ignorance formulae, however are also preserved by refinement. This is because
a standard invariant P (v, h) is maintained by functional refinement.

4. Developing the Dining Cryptographers Protocol

We take Chaum’s Dining Cryptographers problem and algorithm [Cha88] as the case study to illustrate our
approach.

4.1. Description

Three cryptographers are sitting around a table for dinner. Afterwards, the waiter informs them that the
dinner has been paid by someone. The person who paid for the meal could be either one of the cryptographers
or the National Security Agency (NSA). The cryptographers on the one hand want to know whether the
NSA paid, but on the other hand respect each other’s right to make an anonymous payment.

Chaum [Cha88] presented an algorithm for developing a protocol containing two phases. In the first
phase, each pair of cryptographers will toss a coin between them, but the value is hidden from the other
cryptographer. In the second phase, each cryptographer publicly announces the exclusive-or �11 of the two
coins that he saw and if he already paid. The result of the algorithm is just the exclusive-or of the three
announcements, which are visible to everyone.

The Dining Cryptographers has been used as an illustrative example for the Shadow Knows semantics
in [Mor06]. Let a Boolean si denote whether or cryptographer i 2 1 .. 3 paid for the meal, and let r be the
result of the protocol, the specification of the problem is as follows.

{<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>} S {r = s1 � s2 � s3 ^ r )
 

<<s1 2 BOOL>>^
<<s2 2 BOOL>>^
<<s3 2 BOOL>>

!
}

The predicate AtMostOne(s1, s2, s3) states that at most one of the cryptographer paid. Here

<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>

states that the only information we know about s1, s3 and s3 is that there is at most one of them hold
at the same time. As the post-condition, besides the functional requirement, i.e., r = s1 � s2 � s3, we have
some security requirements, e.g., when some cryptographer paid for the dinner, we do not know which
cryptographer did (e.g., <<s1 2 BOOL>>). Moreover, the specification is satisfied when the program S is
r := s1 � s2 � s3. The proof is carried out using the weakest-precondition modal semantics.

4.2. Some Background on Previous Work

In [HMM+11], the Dining Cryptographers is used as one of the illustrated examples of using Rodin as
a back-end for verifying the correctness of the (sequential) algorithm. In particular, Event-B is used as
a target language for verifying the refinement relationship of the following two sequential programs. The
specification is a single assignment statement (abs )reveal as follows.

(abs )reveal : r := s1 � s2 � s3 (Spec)

11 The operator � is defined for a number of Booleans, b1, . . . , bn. b1 � . . .� bn is FALSE if and only if there are an even
number of TRUE’s in b1, . . . , bn.
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The refinement contains 4 sequential statements announce1, announce2, announce3, and (cnc )reveal, corre-
sponding to the informal descriptions of the algorithm above (with a specific order on the announcements
of each cryptographer). Here cij denotes the value of the hidden coin between cryptographers i and j, and
ai models the visible announcement made by cryptograph i.

announce1 : a1 := c31 � s1 � c12;
announce2 : a2 := c12 � s2 � c23;
announce3 : a3 := c23 � s3 � c31;
(cnc )reveal : r := a1 � a2 � a3

(Ref)

A tool is used to translated these input programs (together with some declarations about variables, func-
tions) into Event-B models. The initial version of the tool translates each statement into an Event-B event,
with an additional assignment to the shadow variable H (similar to what is described in Sect. 3). Control
variables are added to model the order of execution of events accordingly. However, with this translation, it
is impossible to prove that (Ref) is a refinement of (Spec). In particular, the translation requires to prove
that (cnc )reveal is a refinement of (abs )reveal and each of the announcement event announcei is a new
event, i.e., refines skip (does nothing). The proof attempt fails to verify that the last announcement event,
i.e., announce3 is a (shadow) refinement of skip. While announce3 refines skip functionally —i.e., does not
change visible variable r or hidden variables s1, s2, s3— it does “reveal” some additional information about
the hidden variables: their exclusive-or s1 � s2 � s3 (which is the same as a1 � a2 � a3).

In order to get around this problem, a later version of the tool translates one statement of the sequential
program into two events: the first event updates the shadow H and the second event updates the ordinary
variables. As a result, statement (abs )reveal is now modelled by two events (abs )reveal S (shadow part)
and (abs )reveal F (functional part). Similarly, each statement in (Ref) is modelled by two events. Control
variables are added to ensure the correct order of executing events, in particular, each shadow event must be
followed immediately by the corresponding functional event. The shadow refinement can now be proved by
associating the translated abstract and concrete events accordingly. For the dining cryptographer algorithm,
we prove that announce3 S (the shadow part of the last announcement event) is a refinement of (abs )reveal S
and (cnc )reveal F is a refinement of (abs )reveal F . Other events of the concrete Event-B machine are new
events. This (relationship between events) reflects our analysis above that the last announcement reveals
some information about the hidden variables.

The disadvantage with the approach of splitting the shadow and functional parts of a statement is that it
complicates the formal model (somewhat artificially). In particular, for the specification, it seems to indicate
that there is no information leaked before (abs )reveal occurred. This certainly does not hold for the concrete
program. As a result, we can see the problem here is because of an “unfaithful” specification of the algorithm.
In the subsequent, we develop a slightly di↵erent model in [HMM+11] which does not require us to split the
events.

In the subsequent sections, we present how the problem and subsequently the algorithm are developed in
Event-B. We model the protocol from the point of view of an outsider, e.g., the waiter. For each refinement
level, we present the ignorance sensitive model and its translation into shadow form. In particular, we focus
on how shadow invariants are discovered as means to prove the correctness of the formal model.

4.3. The Initial Model

We start with a slightly more abstract specification of the Dining Cryptographers problems (compared with
the specification given by Morgan [Mor06]).12

The cryptographers are represented by three Boolean variables s1, s2, s3. Invariant inv0 1 corresponds to
the assumption that at most one cryptographer paid13. Variable r is to keep the final result of the algorithm.
Our specification has two events, namely calc and reveal, scheduled such that calc occurred before reveal.
Event calc “calculates” (somehow) if a cryptographer pays or not (bool(TRUE 2 {s1, s2, s3}))14 and reveals
the value using some visible variable t . Afterwards, the result t is copied to the final r in event reveal. As a

12 We regard the encoding of the result of the protocol using exclusive-or (�) as already revealing too much implementation
details.
13 We use the Theory plug-in [Maa12] to define predicate AtMostOne.
14 bool is a function converting a predicate to either TRUE or FALSE according to its truth value.
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result, the information about the exclusive-or of whether one of the cryptographer paid or not is revealed by
calc (i.e., before reveal happens). Note that we already anticipate the fact that some secret has been revealed
event before final result is produced. Additional control (Boolean) variables c and f are added to schedule
the events accordingly. Invariant inv0 2 constrains the order of the events. The initialisation init assigns
initial values to the variables accordingly.

variables: s1, s2, s3, r , t , f , c
invariants:
inv0 1 : AtMostOne(s1, s2, s3)
inv0 2 : c = FALSE) f = FALSE

init
begin
s1, s2, s3 :| AtMostOne(s 01, s

0
2, s

0
3)

r :2 BOOL
t :2 BOOL
f := FALSE
c := FALSE

end

calc
when
c = FALSE

then
c := TRUE
t := bool(TRUE 2 {s1, s2, s3})

end

reveal
when
f = FALSE
c = TRUE

then
f := TRUE
r := t

end

Invariant inv0 3 states the functional requirement of the system: the result once computed will indicate if
one of the cryptographer paid for the meal or not. In order to prove the maintenance of inv0 3, an additional
invariant inv0 4 is required, states the assertion about the value of t after the calc has been carried out.

invariants:
inv0 3 : f = TRUE) r = bool(TRUE 2 {s1, s2, s3})
inv0 4 : c = TRUE) t = bool(TRUE 2 {s1, s2, s3})

The most important property that we want to analyse is that the protocol never reveals any information
about each cryptographer having paid for the meal or not, in the case it is reveals that some of them paid.
For s1, this is expressed as f = TRUE ^ r = TRUE ) <<s1 | s1 2 BOOL>> using the notion of complete
ignorance as mentioned earlier in Sect. 2.2.3. This is specified as a shadow invariant of our model.

invariants:
inv0 5 : f = TRUE ^ r = TRUE)<<s1 | s1 2 BOOL>>

4.3.1. The Shadow Model

The shadow is a superposition refinement of the functional model, with and additional variable H0 for
tracking the possible values of the hidden variables, i.e., s1, s2, and s3. Invariant Shadow0 captures the fact
that the values of the hidden variables are always in the shadow. The additional assignments in init and c
update H0 according to the Shadow semantics. Event reveal stays unchanged since it does not refer to any
hidden variables.
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variables: . . . ,H0
invariants:
Shadow0 : s1 7! s2 7! s3 2 H0

init
begin
. . .
H0 := {s01 7! s02 7! s03 | AtMostOne(s01, s

0
2, s

0
3)}

end

calc
when
. . .

then
. . .

H0 :=

⇢
g1 7! g2 7! g3 |

g1 7! g2 7! g3 2 H0 ^
bool(TRUE 2 {g1, g2, g3}) = bool(TRUE 2 {s1, s2, s3})

�

end

We translate the invariant inv0 5 to its shadow version as follows.

bbf = TRUE ^ r = TRUE)<<s1 | s1 2 BOOL>>cc
, f = TRUE ^ r = TRUE) bb<<s1 | s1 2 BOOL>>cc Distribution of bb·cc
, f = TRUE ^ r = TRUE) bb(8e1 ·e1 2 BOOL) P(s1 = e1))cc complete ignorance (20)

, f = TRUE ^ r = TRUE) (8e1 ·e1 2 BOOL) bbP(s1 = e1)cc) Distribution of bb·cc
, Definition of P (19)

f = TRUE ^ r = TRUE) (8e1 ·e1 2 BOOL) (9s1, s2, s3 ·s1 7! s2 7! s3 2 H0 ^ s1 = e1))
, f = TRUE ^ r = TRUE) (8e1 ·e1 2 BOOL) (9s2, s3 ·e1 7! s2 7! s3 2 H0)) One-point rule

As a result, we add the following invariant (translation of inv0 5) to the shadow model.

inv0 5S : f = TRUE ^ r = TRUE) (8e1 ·e1 2 BOOL) (9s2, s3 ·e1 7! s2 7! s3 2 H0))

The consistency of the model suggest an additional (similar) invariant about the result of the intermediate
calculation.

invariants:
inv0 6 : t = TRUE)<<s1 | s1 2 BOOL>>

The translated version of the invariant is added to the shadow model is as follows.

inv0 6S : t = TRUE) (8e1 ·e1 2 BOOL) (9s2, s3 ·e1 7! s2 7! s3 2 H0))

Proof obligation init/inv0 6S/INV The proof obligation stating that inv0 6S is established by init (after
some simplification) is as follows.

. . .
e1 2 BOOL

`
9s2, s3 ·AtMostOne(e1 7! s2 7! s3)
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The obligation is trivial to prove: for any given Boolean e1, there exists two Booleans s2, s3 such that there
are at most one of them to be TRUE.

Proof obligation calc/inv0 6S/INV The obligation stating that inv0 6S is maintained by calc is as follows
(after some simplification).

. . .
c = FALSE
e1 2 BOOL

`
9s2, s3 ·e1 7! s2 7! s3 2 H0 ^ TRUE 2 {e1, s2, s3}

We discover at this point that we need an additional assumption about H0 when the temporary
value has not yet been computed, i.e., when c = FALSE. This is expressed as c = FALSE )
<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>. The meaning is that initially, we do not know any information about
whether or not each cryptographer paid, except the fact that at most one of them did. We add this as an
invariant of the model.

invariants:
inv0 7 : c = FALSE)<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>

The translation of invariant inv0 7 into the shadow form is as follows.

bbc = FALSE)<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>cc
, c = FALSE) bb<<s1, s2, s3 | AtMostOne(s1, s2, s3)>>cc Distribution of bb·cc
, complete ignorance (20)

c = FALSE) bb(8e1, e2, e3 ·AtMostOne(e1, e2, e3)) P(s1 = e1 ^ s2 = e2 ^ s3 = e3))cc
, Distribution of bb·cc

c = FALSE) (8e1, e2, e3 ·AtMostOne(e1, e2, e3)) bbP(s1 = e1 ^ s2 = e2 ^ s3 = e3))cc
, Definition of P (19)

c = FALSE) (8e1, e2, e3 ·AtMostOne(e1, e2, e3)) (9s1, s2, s3 ·s1 7! s2 7! s3 2 H0 ^
 

s1 = e1 ^
s2 = e2 ^
s3 = e3

!
))

, One-point rule

c = FALSE) (8e1, e2, e3 ·AtMostOne(e1, e2, e3)) e1 7! e2 7! e3 2 H0)

As a result, we add the following invariant into the shadow model.

inv0 7S : c = FALSE) (8e1, e2, e3 ·AtMostOne(e1, e2, e3)) e1 7! e2 7! e3 2 H0)

The new additional invariant inv0 7S is trivially maintained by reveal and established by init.
Coming back to the proof obligation calc/inv0 6S/INV, with the additional invariant, the proof obligation

is (after some simplification) as follows.

. . .
c = FALSE
e1 2 BOOL
8e1, e2, e3 ·AtMostOne(e1, e2, e3)) e1 7! e2 7! e3 2 H0

`
9s2, s3 ·e1 7! s2 7! s3 2 H0 ^ TRUE = e1 � s2 � s3
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The obligation can now be discharged: depending on the value of e1, we can choose the value for s2, s3 to
satisfy the goal. When e1 is TRUE, we can instantiate FALSE for both s2 and s3: since at most one of them
TRUE, e1 7! s2 7! s3 2 H0 according to invariant inv0S 3; and their exclusive-or is TRUE. Similarly, when
e1 is FALSE, we can instantiate TRUE for s2 and FALSE for s3.

Symmetrically, we can have the following additional invariants stating the ignorance of the protocol with
respect to s2 and s3.

inv0 8 : f = TRUE ^ r = TRUE)<<s2 | s2 2 BOOL>>
inv0 9 : t = TRUE)<<s2 | s2 2 BOOL>>
inv0 10 : f = TRUE ^ r = TRUE)<<s3 | s3 2 BOOL>>
inv0 11 : t = TRUE)<<s3 | s3 2 BOOL>>

4.4. The First Refinement

In the first refinement, we introduce the first detail about the implementation: the result can be calculated
as the exclusive-or15 of s1, s2, and s3. We focus here on the functional refinement of calc (event init and reveal
stays unchanged).

(abs )calc
when

. . .
then

. . .
t := bool(TRUE 2 {s1, s2, s3})

end

(cnc )calc
when
. . .

then
. . .
t := s1 � s2 � s3

end

For simulation proof obligation, we have to prove that the expressions assigned to t are equivalent between
the abstract and concrete models, i.e. bool(TRUE 2 {s1, s2, s3}) = s1 � s2 � s3. This is indeed a property
of exclusive-or �, given that at most one of s1, s2 and s3 is TRUE. Together with invariant inv0 1 defined
earlier, i.e., AtMostOne(s1, s2, s3), the proof obligation is trivial to be discharged.

4.4.1. The Shadow Model

The shadow model of this refinement introduces the concrete shadow variable H1 in place the abstract
shadow H0. Invariant Shadow1 states that the values of hidden variables s1, s2, and s3 are always within
the H1.

variables: s1, s2, s3, r , t , f , c,H1

invariants:
Shadow1 : s1 7! s2 7! s3 2 H1

The initial value of H1 reflects the non-deterministic initial assignment to the hidden variables (28) s1,
s2, and s3 (the same as with H0).

15 We also use the Theory plug-in [Maa12] to define exclusive-or �.
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init
begin
s1, s2, s3 :| AtMostOne(s 01, s

0
2, s

0
3)

r :2 BOOL
t :2 BOOL
f := FALSE
c := FALSE
H1 := {s01 7! s02 7! s03 | AtMostOne(s01, s

0
2, s

0
3)}

end

For calc, the additional assignment updating H1 according the definition (23).

calc
when
c = FALSE

then
c := TRUE
t := s1 � s2 � s3
H1 := {g1 7! g2 7! g3 | g1 7! g2 7! g3 2 H1 ^ s1 � s2 � s3 = g1 � g2 � g3}

end

The shadow refinement requires us to prove that the shadow cannot be decreased, which is stated as an
invariant ShadowRefinement1.

ShadowRefinement1 : H0 ✓ H1

Since the initial expressions assigned to H0 and H1 in the initialisation init are identical, the invari-
ant is trivially established. For calc, the proof obligation calc/ShadowRefinement1/INV stating that calc
maintain the invariant ShadowRefinement1 (after some simplification) is as follows.

. . .
AtMostOne(s1, s2, s3)
g1 7! g2 7! g3 2 H0

bool(TRUE 2 {g1, g2, g3}) = bool(TRUE 2 {s1, s2, s3})
`
g1 � g2 � g3 = s1 � s2 � s3

From property of exclusive-or and the fact that AtMostOne(s1, s2, s3), we derive that bool(TRUE 2
{s1, s2, s3}) = s1 � s2 � s3. However, we stuck when trying to prove that bool(TRUE 2 {g1, g2, g3}) =
g1 � g2 � g3 using the same reasoning: we do not have the necessary condition that AtMostOne(g1, g2, g3). In
fact, we only know that they are within the abstract shadow, i.e., g1 7! g2 7! g3 2 H0, and bool(TRUE 2
{g1, g2, g3}) = bool(TRUE 2 {s1, s2, s3}). It suggests that we need an additional invariant about property of
H0 (which we added to the initial shadow model).

prj0S inv0 1 : 8g1, g2, g3 ·g1 7! g2 7! g3 2 H0 ) AtMostOne(g1, g2, g3)

Given the invariant, the proof obligation calc/ShadowRefinement1/INV can be trivially discharged.
Note that invariant prj0S inv0 1 states that K(AtMostOne(s1, s2, s3)) (using the modal operator K), i.e.,

the observer knows that at most one of the cryptographers paid for dinner. This is indeed the corresponding
projected version of standard invariant inv0 1 (i.e., Type 1 as mentioned earlier in Sect. 3). In fact, we
should expect prj0S inv0 1 being an “invariant-by-construction”, from the way the shadow H0 and its
modification is added into the model.

Similarly, we can add the following invariant about H1 to the shadow model of the first refinement.
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prj1S inv0 1 : 8g1, g2, g3 ·g1 7! g2 7! g3 2 H1 ) AtMostOne(g1, g2, g3)

4.5. The Sequential Second Refinement

In this second refinement, we introduce the details of algorithm, i.e.,, the coin tossing and announcement by
each cryptographer. What we mean by sequential is that the order under which the announcement is made
is fixed.

We introduce three new Boolean variables c12, c23, c31 to denote the value of the hidden coins between the
pair of corresponding cryptographers. The value of the coins are assigned randomly within the initialisation.

variables: . . . , c12, c23, c31

init
begin

. . .
c12 :2 BOOL
c23 :2 BOOL
c31 :2 BOOL

end

In order to schedule the announcement of event, we introduce three additional Boolean control variables
f1, f2, f3 to denote if a corresponding cryptographer has announce his computation or not. Initially, they are
all FALSE. The control variables are visible. The sequential nature of the announcements is captured by
invariants inv2A 1 and inv2A 2. Invariant inv2A 3 allows us to replace abstract variable c by f3.

variables: . . . , f1, f2, f3

invariants:
inv2A 1 : f2 = TRUE) f1 = TRUE
inv2A 2 : f3 = TRUE) f2 = TRUE
inv2A 3 : c = f3

init
begin
. . .
f1 := FALSE
f2 := FALSE
f3 := FALSE

end

Last but not least, we introduce three visible Boolean variables a1, a2, and a3 to model the announcements
made by the cryptographers.

variables: . . . , a1, a2, a3

init
begin

. . .
a1 :2 BOOL
a2 :2 BOOL
a3 :2 BOOL

end

We have three events to model the announcements of the cryptographers as follows. Notice the use of
the control variables to schedule the announcements sequentially. Of these events, announce1 and announce2
are new events, and announce3 is a refinement of the abstract event calc. This reflects the fact that the
last announcement actually reveals some information about the hidden variables, namely, the exclusive-or
s1 � s2 � s3.
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announce1
when
f1 = FALSE

then
f1 := TRUE
a1 := c31 � s1 � c12

end

announce2
when

f2 = FALSE
f1 = TRUE

then
f2 := TRUE
a2 := c12 � s2 � c23

end

announce3
refines calc
when
f3 = FALSE
f2 = TRUE

then
f3 := TRUE
a3 := c23 � s3 � c31

end

The refinement of the original event reveal is as follows.

(abs )reveal
when
f = FALSE
c = TRUE

then
f := TRUE
r := t

end

(cnc )reveal
when

f = FALSE
f3 = TRUE

then
f := TRUE
r := a1 � a2 � a3

end

Simulation between the abstract and the concrete version of reveal relies on the following additional
invariants related to the announcement made by each cryptographer.

invariants:
inv2A 4 : f3 = TRUE) t = a1 � a2 � a3
inv2A 5 : f1 = TRUE) a1 = c31 � s1 � c12
inv2A 6 : f2 = TRUE) a2 = c12 � s2 � c23
inv2A 7 : f3 = TRUE) a3 = c23 � s3 � c31

4.5.1. The Shadow Model

We replace the abstract shadow H1 by H2 keeping track of the possible for concrete hidden variables which
now includes c12, c23, and c31.

variables: . . . ,H2
invariants:
Shadow2A : s1 7! s2 7! s3 7! c12 7! c23 7! c31 2 H2

init
begin

. . .
s1, s2, s3 :| AtMostOne(s 01, s

0
2, s

0
3)

c12 :| c012 2 BOOL
c23 :| c023 2 BOOL
c31 :| c031 2 BOOL

H2 :=

⇢
s01 7! s02 7! s03 7! c012 7! c023 7! c031 |

AtMostOne(s01, s
0
2, s

0
3) ^

c012 2 BOOL ^ c023 2 BOOL ^ c031 2 BOOL

�

end

The update of the shadow variable H2 is straightforward for the announcement events, i.e., announce1,
announce2 and announce3. For example, for announce2, the additional assignment is as follows.

H2 := {g1 7! g2 7! g3 7! d12 7! d23 7! d31 2 H2 | d12 � g2 � d23 = c12 � s2 � c23}
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Moreover, the shadow H2 is unchanged within reveal: the concrete event reveal only refers to visible variables,
i.e., r , a1, a2 and a3.

We now discuss the possible link between the abstract shadow H1 and the concrete shadow H2. First of
all, the simple inclusion ✓ relationship no longer works since H2 now also includes information about the
hidden coins, i.e., c12, c23, and c31. However, we still wish to express the fact that the shadow (with respect
to s1, s2, s3) does not decrease during refinement. With this intuition, the shadow refinement relationship
between H1 and H2 could be expressed as the following invariant.

invariants:
ShadowRefinement2A : 8s1, s2, s3 ·s1 7! s2 7! s3 2 H1 )

(9c12, c23, c31 ·s1 7! s2 7! s3 7! c12 7! c23 7! c31 2 H2)

The intuitive meaning of this relationship is that any possible value of s1, s2 and s3 in the abstract system
according to H1 is also a possible value in the concrete system according to H2. Basically, we compare H1

with the projection of H2 onto the states containing only s1, s2, s3.
The fact that events announce3 (together with its abstract version calc) maintains invariant

ShadowRefinement2A requires some additional invariants about the revealed information after each an-
nouncement. For announce3, intuitively, what we know is that at most one of the cryptographer paid, and
the values of the three announcements. It can be stated as follows using the notion of complete ignorance.

invariants:

inv2A 8 : f3 = TRUE)<<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ^
a1 = c31 � s1 � c12 ^
a2 = c12 � s2 � c23 ^
a3 = c23 � s3 � c31

>>

Translated into the standard first-order logic, it corresponds to the following standard invariant (which
is added to the shadow model).

inv2A 8S : f3 = TRUE) (
8g1, g2, g3, d12, d23, d31 ·
AtMostOne(g1, g2, g3) ^
a1 = d31 � g1 � d12 ^
a2 = d12 � g2 � d23 ^
a3 = d23 � g3 � d31

)
g1 7! g2 7! g3 7! d12 7! d23 7! d31 2 H2

)

Similarly, we have the following invariants about what information is leaked after announce2 and
announce1 respectively.

invariants:

inv2A 9 : f2 = TRUE ^ f3 = FALSE)<<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ^
a1 = c31 � s1 � c12 ^
a2 = c12 � s2 � c23

>>

inv2A 10 : f1 = TRUE ^ f2 = FALSE)<<s1, s2, s3, c12, c23, c31 | AtMostOne(s1, s2, s3) ^
a1 = c31 � s1 � c12

>>

Finally, we need to specify what information about the hidden variables is known initially, i.e., before
announce1. In this case, the only information is that at most one cryptographer paid, which is captured as
follows.
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invariants:
inv2A 11 : f1 = FALSE)<<s1, s2, s3, c12, c23, c31 | AtMostOne(s1, s2, s3)>>

Given the additional invariants, the machine is fully proved (including the establishment and maintenance
of the newly introduced invariants), using properties of the exclusive-or � operator.

4.6. The Parallel Second Refinement

In the previous section, we considered a specific sequential order of announcements by each cryptographer.
Intuitively, any order of announcements made by the cryptographers should work, i.e., it does not e↵ect the
outcome of algorithm. An advantage of using Event-B is that the non-determinism between events can be
used directly to model concurrency. In this section, we make an attempt to model the dining cryptographers
algorithm that includes any order of announcements, and consider the challenge of ensuring that the result
still correct.

We use the same additional variables as for modelling the sequential algorithm, including the control
variables f1, f2, and f3. The abstract variable c is refined according to the following invariant, indicating that
calculation happens when all announcements have been made.

invariants:
inv2B 1 : c = TRUE , f1 = TRUE ^ f2 = TRUE ^ f3 = TRUE

Since (as we analysed before) the last announcement is di↵erent from other announcements (it reveals
some secret), we split the announcement for each cryptographer into two cases. For example, for cryptogra-
pher 3, the events are as follows.

announce3
when
f3 = FALSE
f1 = FALSE _ f2 = FALSE

then
f3 := TRUE
a3 := c23 � s3 � c31

end

announce last3
refines calc
when

f3 = FALSE
f1 = TRUE ^ f2 = TRUE

then
f3 := TRUE
a3 := c23 � s3 � c31

end

Event announce3 models the case where cryptographer 3 announces, when one of the other cryptographer
has not yet made his announcement. In this case, no secret is revealed and this is a new event in our model.
Event announce last3 models the case where cryptographer 3 announces and he is the last one to do so. As
the result, this will reveal some information about the hidden variables and is a refinement of abstract event
calc. Compare to the sequential version, the guards of the announcement events do not enforce any specific
order on how these announcements must be carried out between the cryptographers.

Finally, the guard of event reveal should ensure that it is enabled only when all the announcements have
been made.
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(abs )reveal
when
f = FALSE
c = TRUE

then
f := TRUE
r := t

end

(cnc )reveal
when

f = FALSE
f1 = TRUE
f2 = TRUE
f3 = TRUE

then
f := TRUE
r := a1 � a2 � a3

end

Consistency for reveal, in particular to ensure that the abstract can simulate the concrete version, is guar-
anteed by the additional invariants (similar to the sequential version of the algorithm).

inv2B 2 : f1 = TRUE) a1 = c31 � s1 � c12
inv2B 3 : f2 = TRUE) a2 = c12 � s2 � c23
inv2B 4 : f3 = TRUE) a3 = c23 � s3 � c31

4.6.1. The Shadow Model

For the shadow model, we introduce in place of the abstract shadow H1 a new concrete shadow variable H2

(the same as with the sequential version).

invariants:
Shadow2B : s1 7! s2 7! s3 7! c12 7! c23 7! c31 2 H2

ShadowRefinement2B : 8s1, s2, s3 ·s1 7! s2 7! s3 2 H1 )
(9c12, c23, c31 ·s1 7! s2 7! s3 7! c12 7! c23 7! c31 2 H2)

The update of the shadow variable H2 is the same as in the sequential version of the algorithm. For example,
the update assignment for announce3 is as follows.

H3 := {g1 7! g2 7! g3 7! d12 7! d23 7! d31 2 H2 | d23 � g3 � d31 = c23 � s3 � c31}

Notice that the shadow H2 is unchanged by event reveal.

So far, the model is almost identical to the sequential version of the algorithm. The main di↵erences will
be the invariants about the leaked information by each announcement. Intuitively, for each announcement,
the information leaked is the exclusive-or of whether or not a cryptographer paid for the dinner and the two
coins that the same cryptographer sees. For example, for cryptographer s1, we knows that a1 = c31 � s1 � c12.
However, what we need is invariants in the form of complete ignorance to specify what we only knows. And
what we only know after each announcement depends on which other announcements have already been
made. As a result, in total we have 8 di↵erent invariants, some of them are as follows.
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Table 1. Proof Statistics

Model Total Auto. (%) Manual (%) Reviewed (%)

Initial Func. 11 11 (100%) 0 (0%) 0 (0%)
Shadow 21 17 (81%) 0 (0%) 4 (19%)

1st Ref. Func. 1 1 (100%) 0 (0%) 0 (0%)
Shadow 7 3 (43%) 0 (0%) 4 (57%)

2nd Ref. (Seq.) Func. 29 29 (100%) 0 (0%) 0 (0%)
Shadow 27 23 (85%) 0 (0%) 4 (15%)

2nd Ref. (Par.) Func. 31 31 (100%) 0 (0%) 0 (0%)
Shadow 76 69 (91%) 0 (0%) 7 (9%)

Total 203 184 (91%) 0 (0%) 19 (9%)

inv2B 5 : f1 = TRUE ^ f2 = TRUE ^ f3 = TRUE )

<<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ^
a1 = c31 � s1 � c12 ^
a2 = c12 � s2 � c23 ^
a3 = c23 � s3 � c31

>>

. . . . . .

inv2B 8 : f1 = FALSE ^ f2 = TRUE ^ f3 = TRUE )

<<s1, s2, s3, c12, c23, c31 |
AtMostOne(s1, s2, s3) ^
a2 = c12 � s2 � c23 ^
a3 = c23 � s3 � c31

>>

. . . . . .

inv2B 12 : f1 = FALSE ^ f2 = FALSE ^ f3 = FALSE )
<<s1, s2, s3, c12, c23, c31 | AtMostOne(s1, s2, s3)>>

In fact the invariants enumerate through all the possibilities about what announcements have been
already made so far. For example, invariant inv2B 8 states that if the second and third cryptographers have
already announce, but not the first one, then what we only know is:

• at most one of them paid (the original knowledge),
• that a2 = c12 � s2 � c23 (information leaked through announce2),
• and that a3 = c23 � s3 � c31 (information leaked through announce3).

It seems that defining several invariants like this is cumbersome. However, this is certainly necessary
for the correctness of the algorithm. A remaining challenge is to find a better way for representing these
invariants and proving that they are indeed invariants of the model.

4.7. Proof Statistics

The proof statistics of the development16 in Rodin is in Tab. 1. In particular, column “Reviewed” shows
the number of proof obligations that are reviewed. They are proof obligations related to certain correct by
construction invariants which are discussed in Sect. 3. As a result, it is not required to discharge them. We
highlight these obligations to indicate how much proof e↵ort is saved by identifying these invariants.

All proof obligations are discharged automatically. We use an additional plug-in [DFGV12] recently de-
veloped for Rodin, allowing external SMT solvers to be used to discharge proof obligations. Without the

16 The model is available on-line at http://www.inf.ethz.ch/
~

thoang/event-b/dining-crypto

http://www.inf.ethz.ch/~thoang/event-b/dining-crypto
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additional SMT solvers, we have to prove some (around 17%) obligations manually. As one can see, devel-
oping the shadow models is slightly more di�cult than the functional models, with more proof obligations.
Moreover, the parallel version of the algorithm is also (as expected) more involved than the sequential version
of the algorithm. This is because the parallel version requires more invariants taking into account all possible
orders of announcements made by the cryptographers.

5. Tool Support

So far, we manually encode the development as standard Event-B model and prove its consistency within
Rodin [ABH+10]. It is an extensible Eclipse-based tool, allows contributors to implement additional support
by providing plug-ins. In this section, we discuss the possibility of extending Rodin to support the generation
of the standard and shadow model directly.

First of all, even though we present the development of the Dining Cryptographer in the view of an agent
(e.g., the waiter) di↵erent from the cryptographers involved in the protocol, it should be straight-forward to
model the algorithm through another di↵erent point of view (e.g., of one of the cryptographers). Di↵erent
points of view give di↵erent partitions of the state in terms of hidden and visible variables. A variable
therefore can be associated with some declaration to denote its visibility.

Taking into account the di↵erent agent’s view, an algorithm is correct if it is correct in every agent’s
view. As a result, we need to have several developments, each corresponding to a particular agent’s view.
Despite of having di↵erent developments, the functional part of these developments should be identical. In
other words, the di↵erent points of view only make the di↵erent to shadow model, not the functional one. As
a result, we can share the functional part of all development, prove the functional consistency of the system
once and for all.

We propose the following extensions to Event-B models.

• Declaration of agents. For example, the following declaration defines two agents A and B.

agents: A,B

A special reserved constant other is used to refer to any third party agent, i.e., di↵erent from A and B.

• For each variable, declaration of its visibility. This is defined by a list of agents (possibly empty) which
the variable is visible to. For example, consider the following declarations.

variables: x visible to A, other
y visible to other
z visible to A,B

In A’s view, x and z are visible, y is hidden. In B’s view, only z is visible. In the point of view of a third
party (di↵erent from A and B), x and y are visible.

• The additional security invariants can be added using new clause shadow invariants. Since these in-
formation can be di↵erent with respect to di↵erent points of view, we declare them separately for each
agent. As mentioned earlier, a security invariant is of the following form using complete ignorance.

some conditions P (v) ) <<h | some property Q(v, h)>>

Without introducing additional mathematical notation for << ·>>, we can define the security invariants
using some additional syntax. Note that the shadow invariants depend on agent’s view.

shadow invariants:
invX : if P (v) then knows only Q(v, h) about h (visible to list)

• As shown earlier in Sect. 4.4.1, some of the standard invariants I(v, h) can be lifted to be the shadow
invariable, i.e., of the form K(I(v, h)), we add this declaration (list of agents) as an attribute of the
traditional invariant.



26 T.S. Hoang

Security model

Initial Model

Refinement 1

refines

Refinement n

refines

Agent A (shadow)

Initial Model

Refinement 1

refines

Refinement n

refines

generated

generated

generated

Agent B (shadow)

Initial Model

Refinement 1

refines

Refinement n

refines

generated

generated

generated

Fig. 5. Development in Security Event-B

invariants:
invY : I(v, h) visible to list

Given the above extension to Event-B models, the additional shadow development can be generated
accordingly by adding the shadow variables, how they are updated, the gluing invariants between di↵erent
shadow variables across di↵erent refinement levels, and the generated shadow invariants from the declared
security invariants. The summary of how di↵erent developments are generated is in Fig. 5. In the middle is
the security model which is an Event-B model with additional decorations for about visible/hidden variables
and security invariants. This security model also act as the shared functional development between di↵erent
shadow developments. The shadow developments are generated accordingly to the declaration about agents’
point of view. We depict here two developments according to agent A and B’s views.

6. Related Work

Our motivation starts from the work of Morgan [Mor06, Mor09] on the Shadow semantics for sequential
programs. We extend the work to discrete transition systems, allowing us to formalise and reasoning about
non-interference security for di↵erent types of systems including distributed and parallel ones. We use Event-
B as the language to illustrate the extension, with the basic modelling elements are guarded events. Similar
to the work in [Mor06], we distinguish between two types of non-determinism: atomic non-determinism rep-
resented by non-deterministic event actions (assignments of the form :2, :|), and composite non-determinism
represented by the implicite choice between enabled events. The semantics of guarded events is designed
based on the semantics given to conditional statement if G then S else T end in [Mor06]. In fact, a
conditional statement usually modelled using two guarded events as follows.
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evt1 b= when G then S end
evt2 b= when ¬G then T end

The semantics of conditional statements can be deduced from our semantics of guarded events by combining
the e↵ect of the two events evt1, evt2.

The link between the Shadow semantics and Event-B/Rodin is first explored in [HMM+11]. There Rodin
is used as a back-end for verifying the Shadow refinement of sequential programs by encoding the shadow
sequential programs into Event-B. We go one step further in this paper to give a Shadow semantics to Event-
B models themselves and use it to reason about discrete transition systems. We also translate ignorance-
sensitive Event-B models into standard Event-B model via an additional shadow variable H . As a result,
there are similarities between our work and [HMM+11], including how the shadow variable H is updated
for assignments of the form :=, :2. Ultimately, we moved away from purely verifying sequential programs
into modelling and reasoning about discrete transition systems. In particular, we do not split the events into
shadow and functional parts as described earlier in Sect. 4.2. While separation of shadow and functional
updates make perfect sense for sequential programs, it introduces some complications in reasoning about
discrete transition systems.

The logic of knowledge that we used is essentially identical to what described by Morgan in [Mor06],
subsequently inspired by the standard model for knowledge-based reasoning of Fagin et. al. [FHMV95]. In
particular, compared to [FHMV95, HO08, HO04], we only consider one agent (one point of view) at a time
and the (v, h,H)-model only allow the h component to be varied in the underlying Kripke model [FHMV95].

The example of the Dining Cryptographer is used to illustrate the Shadow semantics in [Mor09]. There
its reasoning is based on the accompanying weakest precondition semantics. Subsequently, it is used as one
of the illustrating examples in [HMM+11]. We focus here on developing the specification of the problem and
the algorithm within a development method like Event-B. In particular, we show that shadow invariants
can be discovered during development as conditions for maintaining the consistency of the model. Compared
to [HMM+11] where invariants are generated according to some heuristics based on strongest post-conditions
(often containing some redundant information), our invariants are added manually on demand and often
simpler. Moreover, we identify two patterns for invariants which should help the developers in guiding their
intuition when reasoning about non-interference security. This is of particular important for reasoning about
discrete transition systems where invariants often play an important role for deriving the correctness of the
formal models.

The Dining Cryptographers problem has been studied in [HO04]. Moreover, it has also been extensively
analysed mostly using model checking techniques [vdMS04, vdM11, ABvdM10, RL07, KLN+06]. In most
of these works, the models of the protocol are often generic in terms of the number of cryptographers. We
presented a 3-agent version of the protocol in this example. Later, we discuss the possibility of having a generic
model in Sect. 7. A clear distinction between these fore-mentioned work and our work is also the di↵erence
between model checking and theorem proving. We develop our model gradually via refinement, starting with
an abstract specification. Most of the existing work using model checkers involves some “implementation”
models and having properties of the protocol verify directly on these concrete models. An abstraction of
the Dining Cryptographers protocol is discussed in [ABvdM10]. However, in our opinion, their purpose of
abstracting the protocol is di↵erent from our work. We present an abstract system capturing the essential
properties of the protocol, whereas their abstract system is a means for optimising the model checking
problem.

7. Future Work

We presented a 3-agent model for the Dining Cryptographers, and our invariants (in particular for the
parallel version) are often symmetric. It is clear that a more generic model parameterised by the number
agents is desirable. In particular, assume that there are n cryptographers, the choices of the cryptographers
can be represented by a single variable s as follows.

s 2 1 .. n! BOOL

It is hence required to have a generalised version of exclusive-or and reasoning about properties of this
operator. Note that here s is a single variable, rather than n di↵erent variables representing the choice of
each individual cryptographer. As a result, the shadow H will be a set of total functions, each function
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represent a possible value of s. The first theoretical question we need to solve is how the shadow H is
represented in the case where only part of s is hidden. For example, in the view of cryptographer i, only
s(i) is visible, whereas s(j) is hidden for j 6= i. Even in the case where s is all hidden, e.g., in the view of
the waiter, it is also required to adapt the interpretation of complete ignorance accordingly. For example,
considering we want to express the fact that we do not know the exact value of s(i) for some i. Currently,
using the notion of complete ignorance, the best of what we can express is <<s | s(i) 2 BOOL>> and its
translation into the shadow form is as follows.

bb<<s | s(i) 2 BOOL>>cc
, bb8t·t(i) 2 BOOL) P(s = t)cc complete ignorance (20)

, 8t·t(i) 2 BOOL) bbP(s = t)cc Distribution of bb·cc
, 8t·t(i) 2 BOOL) (9s ·s 2 H ^ s = t) Definition of P (19)

, 8t·t(i) 2 BOOL) t 2 H One-point rule

However, this is obviously too strong compared to the property that we want to express. Basically,
<<s | s(i) 2 BOOL>> states that the complete ignorance not only about s(i) but also of all other cryp-
tographers, and their possible combinations. Intuitively, the precise property that we want to express using
H is as follows.

8e·e 2 BOOL) (9s ·s 2 H ^ s(i) = e) (33)

The Shadow semantics is designed only for possibilistic (qualitative) reasoning about noninterference
security. In [HMM+11], it is showed that in some important class of security protocols, this (qualitative)
reasoning can be soundly lifted to probabilistic (quantitative) context. We want to study the conditions
(similar to those in [HMM+11, Sect. 4]) under which this lifting is also valid in the context of discrete
transition systems.

We plan to extend Rodin to implement the tool support according to the proposal mentioned in Sect. 5.
In particular, the connection with a model checker for Event-B such as ProB [LB08] will be investigated. We
believe that the use of model checkers will complement the theorem proving task, in particular in verifying
generic parameterised models.

Last but not least, we intend to apply our approach to other examples, such as Rivest’s Oblivious Transfer
[Riv99]. Note that the specifications will be our building blocks for reuse later, i.e. we are going to build more
complex protocols using sub-protocols. This is illustrated in the work of McIver and Morgan [MM09]. For
reusing specification, we propose to make use of techniques such as generic instantiation and design patterns
[HFA09] for Event-B.

8. Conclusion

Our work presented in this paper is strongly motivated by the work of Morgan [Mor06, Mor09] and built on
the experience from [HMM+11]. However, while the original work of Morgan concentrated on the ignorance
preserving refinement of programs using mainly program algebra, we focus here on how the Shadow Knows
framework fits into a development method such as Event-B. In particular, we showed that the Shadow Knows
framework can be extended from reasoning about sequential programs to more general discrete transition
systems (including concurrent or distributed systems).

We presented an extension to the Event-B method for handling security invariants: properties of systems
constraining the knowledge of observers about some hidden variables. The state variables are split into the
set of visible variables and hidden variables. The underlying logic of Event-B is extended with the “knows”
operator K, where K� holds in the state where � hold in every state compatible with the visible part
of the state, the formal model text and the information about the execution path including the previous
visible values and the order of executed events. We identify two patterns of security invariants to constraints
the knowledge of the observer about hidden variables. Moreover, we propose the notion of invariant-by-
construction and determine certain properties which fit into this category to reduce the number of obligations
to be discharged.

For tool support, we propose an extension to Rodin. In particular, we consider multiple agents’ point of
view and generated di↵erent developments accordingly. A novel idea here the separation between functional
model and shadow model, allowing di↵erent developments to share the functional part.
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A. The Model as a Kripke Structure and Connection with the Operational
Model

We make similar approach to [Mor06, A] for building a Kripke structure of our model.
Given an Event-B model M. For simplicity, suppose that M contains a visible variable v and a hidden

variable h. Composite nondeterministic choice is the choice between events, whereas atomic nondeterministic
choice is within event actions, i.e., assignments of the forms := or :|. The global state of the system comprises
both v and h, sequences of previous and current values of v and h, respectively, and p, sequences of events
that has been executed so far. The observer can see v and p, but not h.

The possible runs of a modelM is all sequences of global states produced by successive execution of events,

http://wiki.event-b.org/index.php/Theory_Plug-in
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf
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starting from some initial state v0, h0 specified by the initialisation init. If the current state is (v, h, p), the
set of possible states associated with it is the set of triple (v, h1, p) that M can produced. We use denote this
equivalence relationship as (v, h, p) ⇠ (v, h1, p).

The correspondence between the above Kripke model and the operational model described in Section 3
is via the following abstraction

v = last(v) ^ h = last(h) ^ H = {h1 · (v, h, p) ⇠ (v, h1, p) | last(h1)}
The abstraction determines how H is initialised and updated as described in Sect. 3.
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