Probabilistic Refinement

B \rightarrow pB

Our aim is to produce a theoretical method, and associated tools, that will increase the rigour with which designers can incorporate the probabilistic information necessary to quantify risk and expected cost-of-failure in embedded computer systems.

B Method (B) is a formal development method that facilitates the refinement of specification to code.

Probabilistic B

Our probabilistic B (pB) replaces Boolean by real valued probabilities in the range 0..1. This allows probabilistic uncertainty to be modelled.

Probabilistic choice

$S \rightarrow^p T$

represents a choice between S and T in which S is taken with probability p and T is taken with probability $1-p$.

Questions?

- What is the expected running cost of a system?
- What is the reliability for a system given some information about its component?

Example
The following illustrates a simple library in which books are lost with probability p.

StartLoan

pre booksInLibrary > 0 then

booksInLibrary := booksInLibrary - 1 \&
loansStarted := loansStarted + 1

eend

EndLoan

pre loansEnded < loansStarted then

booksLost := booksLost + 1 \&
booksInLibrary := booksInLibrary + 1 \&
loansEnded := loansEnded + 1

eend

Invariants are replaced by expectations. For this specification, the expectation is defined by

$E \leq p \ast \text{booksLost} + (1-p) \ast \text{booksInLibrary} + \text{loansStarted} \ast \text{loansEnded}$.

We can conclude that the expected number of books lost is bounded above by $p \ast \text{booksInLibrary} + \text{loansStarted} \ast \text{loansEnded}$.

Current status
The extended B (pB) and modified B-Toolkit supports the following:

- Probabilistic invariant;
- Probabilistic specification substitution;
- Termination with probability 1;
- Fundamental theorem for refinement;
- Probabilistic loops.

This project was supported by the Australian Research Council under the Large grant 08020016.