Tank monitoring: a pAMN case study

Steve Schneider, Thai Son Hoang, Ken Robinson, and Helen Treharne

Technical Report
CSD-TR-03-17
March 4, 2004
1 Introduction

2 Introducing Probability 2
 2.1 Probabilistic GSL 2
 2.2 Some pGSL laws 3
 2.3 Probabilistic B 4

3 The Tank 4

4 A monitoring system 5
 4.1 The first simple system 5
 4.1.1 Specification 5
 4.1.2 Deriving A and B 6
 4.1.3 Example 7
 4.1.4 Implementation 8
 4.1.5 Summary 9
 4.2 Introducing error margins 10
 4.2.1 Specification 10
 4.2.2 Implementation; sensors 11
 4.2.3 Summary 11
 4.3 Removing sensor diagnostics 12
 4.3.1 Implementation sensor 12
 4.3.2 Specification 12
 4.3.3 Summary 14

5 Separating system updates and tank updates 15
 5.1 A first attempt 15
 5.1.1 Summary 16
 5.2 Restricting flow changes 17
 5.2.1 Summary 18

6 Discussion 19

7 Further work 20

A Calculation of expectation coefficients in VolumeTracker2 21

B Verifying the implementation of poll in VolumeTracker21 21

1 Introduction

The B-Method [Abr96] provides a framework for the development of provably correct systems, based on the weakest precondition semantics of the Generalised Substitution Language (GSL), and structured around the concept of Abstract Machines.

The introduction of probabilistic behaviour into the B-Method has recently been proposed [HJR+03], called probabilistic B. This approach builds on previous work which introduces probabilistic choice into program statements, and extends the notion of weakest precondition semantics to deal with expectations. An expectation can be considered as the expected value of a formula or expression. Thus programs can be viewed as expectation transformers rather than predicate transformers, and their semantics gives the expectation of an expression after the program has been executed in terms of expectations prior to execution.
In addition to allowing such probabilistic behaviour into programs, probabilistic
B introduces expectations on aspects of the state, in addition to the existing parts
of a B machine. Thus the relationship between the expected values of several
components of the machine state can be expressed and formally verified.

This paper explores the application of probabilistic B to a simple case study:
tracking the volume of liquid held in a tank by measuring the liquid flow into it.
The flow can change as time progresses. Sensors with a given reliability are used
to measure the flow and provide information to the system, so there is a small
probability that the sensors will fail, giving an incorrect reading. The behaviour of
the sensors is described using probabilistic B. We include the tank explicitly in our
model so that we can describe the relationship between the actual volume of liquid
it contains and our system's measurement for it. As well as probabilistic behaviour,
our system exhibits non-deterministic behaviour in the reading that a failed sensor
will give, and (after the first scenario we consider) in the reading that a correctly
working sensor will give any value from a particular range. Thus the case study
also explores the interaction between probabilistic and non-deterministic behaviour.

The case study is concerned with two stages of the development process: speci-
fication, and refinement. At the specification level we are concerned with obtaining
bounds on the accuracy of the system's value for the volume of liquid in the tank,
given a particular level of reliability for the combination of sensors providing the
readings. This analysis will be concerned with the EXPECTATION clause in the
probabilistic B machine. At the refinement level, we are concerned with establish-
ing that a particular combination of sensors does indeed deliver the required level
of reliability. This analysis will make use of refinement and equivalence laws on
probabilistic GSL.

2 Introducing Probability

2.1 Probabilistic GSL

$pGSL$ is an extension of GSL to include a probabilistic choice statement:

\[\text{prog}_1 p \oplus \text{prog}_2 \]

An execution of this choice will execute prog_1 with probability p, and will execute
prog_2 with probability $1 - p$. See [Mor98, MM04, MMH03] for a full introduction
to $pGSL$.

To give a semantics to $pGSL$ programs, we make use of expectations: bounded
non-negative real-valued functions of the state space. These are generally expressed
as formulas over the state variables. The weakest pre-expectation semantics for a
program prog maps an expectation \exp to another expectation $[\text{prog}]\exp$, analogous
to weakest precondition semantics. It gives the expected value for \exp after prog
in terms of expectations on the state before. The language and its semantics from
[Mor98] is given in Figure 1.

In this paper we will use a derived operator (also given in [MM04]) for expressing
a minimum probability on a choice. We define

\[\text{prog}_1 \geq p \oplus \text{prog}_2 \triangleq \forall q. (p \leq q \leq 1) \implies \text{prog}_1 q \oplus \text{prog}_2 \]

This program chooses prog_1 with a probability of at least p.

The operator is useful for describing systems with a minimum required reliability.
If a component is required to behave correctly at least 90% of the time, then this
may be described as $\text{correct} \geq 0.9 \oplus \text{incorrect}$. This would be refined by a component
that behaves correctly at least 95% of the time, for example.
The probabilistic generalised substitution language $pGSL$ acts over expectations rather than predicates. Expectations are bounded non-negative real-valued functions of the state space, with the exception that when dealing with miracles they can take a formal value ∞.

\[
\begin{align*}
[x := E]\exp &\quad \exp[E/x] \\
[x, y := E, F]\exp &\quad \exp[E, F/x, y] \\
\langle pred \rangle \exp &\quad \langle pred \rangle \times [pred]\exp, \text{where } 0 \times \infty \triangleq 0 \\
\text{progn} \bot \text{progl} &\quad [\text{progn}]\exp \text{min} [\text{progl}]\exp \\
\langle pred \Rightarrow \rangle \exp &\quad 1/\langle pred \rangle \times [\text{progl}]\exp, \text{where } \infty \times 0 \equal 0 \times \infty \\
\text{skip} &\quad \exp \\
\text{progl} _{p \oplus} \text{progl} &\quad \text{p} \times [\text{progl}]\exp + (1 - \text{p}) \times [\text{progl} 2]\exp \\
\text{pred} \Rightarrow \text{progl} &\quad \text{min } y \mid \text{pred.}[\text{progl}]\exp \\
\text{progl} \sqsubseteq \text{progl} &\quad [\text{progl}]\exp \Rightarrow [\text{progl} 2]\exp \text{ for all } \exp ,
\end{align*}
\]

\begin{itemize}
 \item \exp is an expectation
 \item $pred$ is a predicate (not an expectation)
 \item $\langle pred \rangle$ denotes predicate $pred$ converted to an expectation, here restricted to the unit interval: $\langle false \rangle$ is 0 and $\langle true \rangle$ is 1.
 \item \times is multiplication.
 \item progl, progl, progl are probabilistic generalised substitutions.
 \item p is an expression over the program variables (possibly but not necessarily constant), taking a value in $[0, 1]$.
 \item x is a variable.
 \item y is a variable or a vector of variables.
 \item E is an expression.
 \item F is an expression, or a vector of expressions.
 \item $\exp 1 \Rightarrow \exp 2$ means that $\exp 1$ is everywhere no more than $\exp 2$.
\end{itemize}

Figure 1 $pGSL$—the probabilistic Generalised Substitution Language [Mor98]

2.2 Some pGSL laws

The semantics supports a collection of algebraic laws concerning the various operators. An extended collection of laws is given in Appendix A.3 of [MM04]. The following laws from that Appendix will be used in this paper:

Law 13:

\[
\text{progl} \geq p \oplus \text{progl} 2 \mid \text{progl} 3 = (\text{progl} \mid \text{progl} 3) \geq p \oplus (\text{progl} 2 \mid \text{progl} 3)
\]

Law 24:

\[
\text{progl} \geq p q \oplus \text{progl} 2 = \text{progl} \geq p \oplus (\text{progl} \geq q \oplus \text{progl} 2)
\]

We also make use of the following law, which we will call Law A:

\[
\text{progl} \sqsubseteq \text{progl} \Rightarrow \text{progl} \geq p \oplus \text{progl} 2 = \text{progl} \geq p \oplus \text{progl} 2
\]
2.3 Probabilistic B

There are two aspects to the introduction of probabilistic behaviour into a B machine as proposed in [HJR+03]. The first is to allow operations to be constructed using probabilistic CSL, so probabilistic choices can be made within operations. The second is to introduce an EXPECTATION clause into a B machine in order to express requirements on various expectations on the state. An EXPECTATION clause will in general contain a collection of expectation expressions. This clause plays a role for expectations analogous to the INVARINAT clause on predicates on the state. The associated proof obligations are that every operation, from any legitimate state (i.e., any state that meets the invariant), must not decrease any of the expectations.

Each expectation is of the form $e \Rightarrow V$, meaning that the expected value of V is always at least the value of e initially. The new proof obligations associated with each such expectation are the following:

P1 Initialisation must establish the lower bound of the invariant:

$$e \Rightarrow [halt] V$$

P2 Each operation must not decrease the expected value of V:

$$V \Rightarrow [Op] V$$

In this paper we will use expectations of the form V. This is an abbreviation for $0 \Rightarrow V$. Observe that this still gives rise to a non-trivial proof obligation P1, that V is non-negative on initialisation.

3 The Tank

The system we aim to model is a tank being filled with a liquid. The liquid flows into the tank through a pipe. We wish to track the volume of liquid in the tank. This is illustrated in Figure 2.

The tank can be modelled using the machine given in Figure 3. This describes a model of the real tank, and will therefore be included in the specifications we will give, so that we can relate the state of the monitoring system to the real state of the tank.

Here we assume that in one time unit (as represented by t_{ock}), the volume of liquid increases by the value of $flow$. The value of $flow$ can itself be any value between $minflow$ and $maxflow$.

An interval of real numbers between l and h is denoted $[l, h]$. The interval $[x + l, x + h]$ is abbreviated $x + [l, h]$.

![Figure 2 The tank system](image)
4 A monitoring system

4.1 The first simple system

4.1.1 Specification

We want to produce a software system that tracks the volume of liquid in the tank to some level of accuracy. The system we require can be specified using the probabilistic B machine VolumeTracker1 of Figure 4. (The expectation makes use of values of A and B that will be given later.) For this first example, we take a simple approach where a single poll operation updates both the tank and the monitoring system state at the same time. Later in the paper we will consider the separation of system updates from tank updates.

Our first specification, VolumeTracker1, requires that a state update is either perfectly accurate (at least 99% of the time), or else completely arbitrary over the range of possible readings [minflow, maxflow].

The system maintains a single state variable rvolume, which contains the value the system has for the volume of liquid in the tank. Thus our specification will be concerned with the relationship between rvolume and the actual volume volume.

It is natural to have two expectations to provide a range on what the expected value for volume can be, given a particular value for the expected value of rvolume.
Because \(rvolume \) and \(volume \) are increased on each step with some value from a fixed range of possible values, we consider expectations as linear combinations of \(rvolume \) and \(volume \). Thus they would be of the form:

1. \(rvolume - A \times volume \)
2. \(B \times volume - rvolume \)

These must both be non-negative, so we can deduce for the expected values that

\[
rvolume/B \leq volume \leq rvolume/A
\]

Thus given an expected value for \(rvolume \) we have a range for the expected value of \(volume \). The required degree of accuracy will naturally emerge as part of the specification.

Since both \(E1 \) and \(E2 \) must be greater than 0, and non-decreasing on every occurrence of \(poll \), we obtain some constraints on the possibilities for \(A \) and \(B \).

Observe that any absolute restrictions on the relationship between \(volume \) and \(rvolume \) will appear in the invariant. In particular, the lower and upper bounds on \(volume \) for any given value of \(rvolume \) are given by the following inequalities:

\[
rvolume \times (minflow/maxflow) \leq volume \leq rvolume \times (maxflow/minflow)
\]

This will always be true, so it is included in the invariant. However, it does not provide a very tight relationship.

4.1.2 Deriving \(A \) and \(B \)

For \(VolumeTracker1 \) to meet its proof obligations, we require that the expectations will never decrease on any call of the operation \(poll \) from any state.

We can carry out some calculations to derive conditions for \(A \) and \(B \) to achieve this. We require that \(E1 \Rightarrow [poll]E1 \) and \(E2 \Rightarrow [poll]E2 \). Thus we require that for any \(flow \), \(volume \), and \(rvolume \), we must have that \(([poll]E1) - E1 \geq 0 \) and \(([poll]E2) - E2 \geq 0 \).

We calculate the requirement on \(A \) from the requirement on \(E1 \):

\[
([poll]E1) - E1 = ([T \parallel (S1 \oplus S2)]E1) - E1
\]
\[
= ([T \parallel S1 \oplus (T \parallel S2)]E1) - E1
\]
\[
= .99 \times [T \parallel S1]E1 + .01 \times [T \parallel S2]E1 - E1
\]
\[
(*) = .99 \times (rvolume + flow - A(volume + flow))
\]
\[
+ .01 \times (rvolume + minflow - A(volume + flow)) - (rvolume - A(volume))
\]
\[
= .99 \times (flow - A \times flow) + .01 \times (minflow - A \times flow)
\]
\[
= (.99 - A) \times flow + .01 \times minflow
\]

Since this must be non-negative everywhere (i.e. for all possible values of \(flow \)), we obtain that

\[
A \leq .99 + .01(minflow/flow)
\]

for any value of \(flow \). The bound takes its minimal value when \(flow \) is \(maxflow \), so we obtain that

\[
A \leq .99 + .01(minflow/maxflow)
\]

Thus the closer to 1 the ratio between \(minflow \) and \(maxflow \), the closer \(A \) can be to 1 and the more accurate the upper bound on the expected value for \(volume \).
for any given expectation on \textit{rvolume}. However, note that \(A \) can always be at least \(0.99 \).

For \(B \) we perform the following calculation:

\[
\begin{align*}
([\text{pool}]E2) - E2 & = ([T \parallel (S1, S2)]E2) - E2 \\
& = ([T \parallel S1], S2) \parallel ([T \parallel S2])E2 - E2 \\
& = (0.99 \times [T \parallel S1]E2 + 0.01 \times [T \parallel S2]E2) - E2 \\
(**) & = (0.99 \times (B_{\text{volume + flow}} - (r\text{volume} + \text{flow}))) \\
& \quad + 0.01 \times (B_{\text{volume + flow}} - (r\text{volume + maxflow}))) \\
& = (B_{\text{volume + flow}} - B_{\text{volume}} + 0.01 \times (r\text{volume + maxflow} - \text{flow})) \\
& = B \times \text{flow} - 0.99 \times \text{flow} - 0.01 \times \text{maxflow}
\end{align*}
\]

We require that this is non-negative for any value of \(\text{flow} \). Thus \(B \geq 0.99 + 0.01(\text{maxflow}/\text{minflow}) \) for any value of \(\text{flow} \). The largest value for the expression (i.e. the largest lower bound for \(B \)) is given when \(\text{flow} = \text{minflow} \), and we obtain

\[B \geq 0.99 + 0.01(\text{maxflow}/\text{minflow}) \]

Observe lines (*) and (**) concerning the evaluation of \([T \parallel S2] \) with respect to an expectation. Since \(S2 \) is nondeterministic in the assignment to \textit{rvolume}, the minimum expectation over all possible assignments to \textit{rvolume} must be taken. In \(E1 \), \textit{rvolume} is positive, so the smallest possible value of \textit{rvolume} is used in the calculation of the pre-expectation of \(E1 \). In \(E2 \) \textit{rvolume} is negative so the largest possible value of \textit{rvolume} is used in the calculation of the pre-expectation of \(E2 \). This means that however the nondeterminism is later resolved, the expectation will be at least the value calculated. Expectations should always be non-decreasing, so demonic nondeterminism always considers the worst case with respect to increases.

4.1.3 Example

As an illustration, we shall consider some concrete numbers: if \(\text{minflow} = 100 \) and \(\text{maxflow} = 400 \), then we obtain \(A \leq 0.9925 \) and \(B \geq 1.03 \). Thus we know that

\[(100/103) \times \text{rvolume} \leq \text{volume} \leq \text{rvolume} \times (400/397) \]

This implies for example that

\[0.97 \times \text{rvolume} \leq \text{volume} \leq 1.03 \times \text{rvolume} \]

so if we have a requirement for 97% accuracy, this will be met.

However, if we have a requirement for 99% accuracy, this will not be met. The description cannot ensure that \(0.99 \times \text{rvolume} \leq \text{volume} \). This is because an incorrect reading, that could occur with probability 0.01, could be wrong by a factor of 4, leading to a large increase of \textit{rvolume} over the real value of \textit{volume}. The level of accuracy is concerned not only with the probability of correct readings, but also with the amount by which a flawed reading could be out.

To ensure 99% accuracy we would either have to reduce the ratio between \textit{minflow} and \textit{maxflow} (so bad readings cannot be so wildly out), or decrease the probability of a bad reading. Observe that these alterations are concerned only with the specification machine. This machine gives the probability of an accurate reading that is required for ensuring the expectations.
MACHINE Sensorb1
SEES Tank
OPERATIONS
sb, stb <-> pollb1 =
Sb1: sb := flow || stb := ok
 >= 0.9 (+)
Sb2: sb := [minflow,maxflow] || stb := broken
END

END

Figure 5 A Sensor machine

IMPLEMENTATION VolumeTrackerII
REFINES VolumeTrackerI
IMPORTS Tank, Sensora1, Sensorb1, Context
VARiABLES rvolume
IN Viariant rvolume : REAL
INITIALISATION rvolume := 0
OPERATIONS
poll = VAR v1, v2, st1, st2, rflow
 IN
 Pa: v1, st1 <-> polla1;
 Pb: v2, st2 <-> pollb1;
 F: rflow <-> flow(v1, st1, v2, st2);
 R: rvolume := rvolume + rflow;
 T: tock
 END
END

Figure 6 The implementation VolumeTrackerII

4.1.4 Implementation

Our first implementation of VolumeTrackerI will make use of two sensors, which provide readings for the flow, and also give diagnostic information stating whether they are broken or not. We will firstly consider sensors which can fail on any particular reading independently of any other reading. We will consider sensors which have a reliability of at least 90%. We will need to make use of two of these, Sensora1 and Sensorb1 to give readings to 99% accuracy. Sensorb1 is given in Figure 5, and Sensora1 is entirely similar.

We propose an implementation VolumeTrackerII of VolumeTrackerI which uses two sensors in order to obtain a more reliable reading of the flow. This is given in Figure 6.

Observe that the implementation contains its own variable rvolume. To avoid complicating this example with imported state, we relax the normal restriction that implementation machines cannot have their own state.

We need to prove that the poll operation in the implementation is a refinement of the poll operation in the specification. This can be done by manipulating the probabilistic choices using the laws of [MM04] given in Section 2.2.

The poll operation in VolumeTrackerII is of the form Pa; Pb; F; R; T, where v1, v2, st1, st2, rflow are all local variables. We show that this operation is equivalent...
MACHINE Context
OPERATIONS
 ff <- flow(v1, st1, v2, st2) =
 PRE v1: REAL & v2: REAL
 & st1: STATUS & st2: STATUS
 THEN
 F: IF st1 = broken & st2 = broken THEN ff := [minflow, maxflow]
 ELSIF st1 = broken & st2 = ok THEN ff := v2
 ELSIF st1 = ok & st2 = broken THEN ff := v1
 ELSIF st1 = ok & st2 = ok THEN ff := (v1 + v2) / 2
 END
END

Figure 7 The AMN description of flow calculation

lent to poll given in the specification machine VolumeTracker1, as follows:

\[
Pa; Pb; F; R; T \\
= \{\text{expanding } Pa \text{ and } Pb\} \\
= (Sa1 \geq_{\alpha,0} Sa2); \\
(Sb1 \geq_{\alpha,0} Sb2); F; R; T \\
\geq_{\alpha,0} \\
= \{\text{Law 13}\} \\
= (Sa1; Sb1; F; R; T \geq_{\alpha,0} Sa1; Sb2; F; R; T) \\
\geq_{\alpha,0} \\
= \{\text{standard program algebra in each branch; removal of local variables}\} \\
= (S1 \parallel T \geq_{\alpha,0} S1 \parallel T) \geq_{\alpha,0} (S1 \parallel T \geq_{\alpha,0} S2 \parallel T) \\
= \{\text{idempotence of } \geq_{\alpha,0} \}\) \\
= (S1 \parallel T \geq_{\alpha,0} S2 \parallel T) \\
= \{\text{Law A, since } S2 \subseteq S1\} \\
= (S1 \parallel T \geq_{\alpha,0} S2 \parallel T)
\]

Thus we arrive at the operation poll given in the specification machine VolumeTracker1. This demonstrates that VolumeTracker11 indeed provides an implementation of VolumeTracker1.

4.1.5 Summary

This first example has illustrated several points:

- The expected value of the machine expectation expression should be non-decreasing on every occurrence of the operation.
MACHINE VolumeTracker2
INCLUDES Tank
CONSTANTS lowerror, higherror
PROPERTIES lowerror : REAL & lowerror <= 0
& higherror : REAL & higherror >= 0
VARIABLES rvolume
IN Variant rvolume : REAL
EXPECTATION E1: rvolume - A*times volume,
E2: B*times volume - rvolume
INITIALISATION rvolume := 0
OPERATIONS
poll = T: tock
|| S1: (rvolume := rvolume+flow+[lowerror,higherror]
& .99 (+)
S2: rvolume :: rvolume+[minflow+lowerror,maxflow+higherror])
END

Figure 8 The AMN description of the second monitoring system

- However, the actual value of the machine expectation expression can decrease on some operation calls (provided its expected value does not).

- Expectations can be used to express a relationship between the expected values of state variables, in our case providing a range for the expected value of volume in terms of the expected value of rvolume. This is checked as part of machine consistency, and is independent of any particular implementation.

- The accuracy of the approximation rvolume to the tank value volume depends not only on the probability of an incorrect reading, but also on the ratio between minflow and maxflow, since this affects the maximum possible error in rvolume.

- Probabilistic operations can be implemented using combinations of probabilistic components (sensors) in the way we would expect. Such implementations need only be checked for refinement against the machine descriptions of the operations. The machine consistency checks ensure that the machine operations provide the overall requirements on the expectations.

4.2 Introducing error margins

4.2.1 Specification

We now allow for a margin of error in the addition of flow to the current reading of volume rvolume. Specifically, the error can be any value in the range [lowerror, higherror]. Typically the possibility of no error at all should be within the range, so lowerror will be negative and higherror will be positive. The revised machine is given in Figure 8

The calculation of appropriate A and B follows the same pattern as shown previously in Section 4.1.2, and is given in Appendix A. Now two sources of nondeterminism must be taken into account: the reading of the sensors in S1 (which can be most pessimistic with regard to E1 when flow is low) and the arbitrary reading in S2 (which can be most pessimistic for E1 when flow is high). This combination of considerations results in A taking the minimum of the following two values (recall
$lowerror$ is negative):

$$1 + (lowerror/minflow)$$

and

$$0.99 + (lowerror/maxflow) + 0.01(minflow/maxflow)$$

For example, if $minflow = 100$, $maxflow = 400$, and $lowerror = -10$, then the first value is lower, and we obtain $A = 0.9$. On the other hand, if $lowerror = -0.1$, then the second value is lower and we obtain $A = 0.9915$. In the first case the possible error in the record of the flow is 10% of $minflow$, so the worst case occurs when the flow is $minflow$ and $minflow + lowerror$ is added to $volume$: the resulting $volume$ could be 10% out. On the other hand, in the second case the error in the flow can be at most 0.1%, so the error that can be introduced by $S2$ (1% of the time) dominates, and the worst case occurs when the flow is $maxflow$ and $volume$ is only incremented by $lowerror + minflow$.

Similar considerations for the expectation $E2$ yield that the value obtained for B is the maximum of the following two values, the first for the case where $flow = minflow$ and the second when $flow = maxflow$.

$$1 + (higherror/maxflow)$$

and

$$0.99 + (higherror/minflow) + 0.01(minflow/maxflow)$$

In this case, the second value will always be higher, and hence will give the appropriate value for B, since $maxflow/minflow \geq 1$, and $higherror/minflow \geq higherror/maxflow$. This informs us that the worst case always occurs with a flow of $minflow$, and an incorrect reading of $maxflow + higherror$. This is worse than the worst outcome (as far as ensuring that $E2$ does not decrease is concerned) that can be obtained with a flow of $maxflow$.

4.2.2 Implementation: sensors

The error is likely to have been included in the specification because the sensors introduce some error. We can include the sensor errors within the description of the sensors, resulting in a new version of sensor description. For example, in SensorB2 we will take the error range to be $[le2, he2]$. The resulting sensor is given in Figure 9.

The implementation VolumeTracker21 will be the same as VolumeTracker11, (though now importing SensorB2 and SensorB2 instead of the original sensors). However, observe that two sensors working correctly might not agree on their readings. In this case the context machine specifies the average of the two readings to be taken.

The machine VolumeTracker1 provides an implementation of poll, provided $[le1, he1] \subseteq [lowerror, higherror]$ and $[le1, he1] \subseteq [lowerror, higherror]$: in other words, that the error ranges for each sensor are within those given in the specification. The proof of this is given in Appendix A.

4.2.3 Summary

This second example illustrates several points:

- We can specify error ranges for readings of flow.
MACHINE Sensorb2
SEES Tank
CONSTANTS 1eb2, heb2
PROPERTIES 1eb2 : REAL & 1eb2 <= 0
& heb2 : REAL & heb2 >= 0
OPERATIONS
s2, st <-- pollb2 =
 S2a: s2 := flow+[le2,he2] || st := ok
 >=0.9 (+)
 S2b: s2 := [minflow+le2,maxflow+he2] || st := broken
END

Figure 9 The machine Sensorb2

- Such ranges have an impact on the expectations that will be non-decreasing on operations: the nondeterminism in the state updates means that the relationship between volume and volume will be weaker.
- The particular relationships that can be guaranteed between volume and volume depend on the error ranges of readings and also on the the ratio of maxflow to minflow. Each of these dominates in some cases.
- The flow readings can be implemented by sensors whose error ranges are within the specified range.

4.3 Removing sensor diagnostics

We now consider the situation where the sensors do not provide explicit status information. In this case the only way faulty readings can be identified is by comparison with other readings.

In this example we will work from the sensors to the specification: we will derive the specification that the combination of sensors delivers.

4.3.1 Implementation: sensor

A sensor without diagnostic information about its status is given in Figure 10. It provides only a flow reading.

To be tolerant to one faulty reading, we need three sensors: Sensora3, Sensorb3, and Sensorc3. By taking the median value of the three readings we obtain an accurate reading, provided no more than one of them goes wrong. This suggests the implementation given in Figure 11. We still assume a 90% reliability on the reading.

4.3.2 Specification

In fact here VolumeTracker3J is a refinement of the specification VolumeTracker3 given in Figure 12, provided all of the sensor errors are within the error given in VolumeTracker3, e.g. [le3,he3] ⊆ [lowererror, highererror].

For VolumeTracker3, carrying out the standard calculations on preservation of E1, we find that the best (highest) value we can obtain for A, which enables the
MACHINE Sensorb3
SEES Tank
CONSTANTS le3, he3
PROPERTIES le3 : REAL & le3 <= 0
& he3 : REAL & re3 >= 0
OPERATIONS
sb <- pollb3 =
 sb := flow+[le3,he3]
 >=0.9 (+)
 sb :: [minflow+le3,maxflow+he3]
END

END

Figure 10 A sensor without diagnostics

IMPLEMENTATION VolumeTrackerI3
REFINES VolumeTracker3
IMPORTS Tank, Sensora3, Sensorb3, Sensorc3
VARIABLES rvolume
IN Variant rvolume : REAL
INITIALISATION rvolume := 0
OPERATIONS
poll = VAR v1, v2, v3
 IN
 v1 <- polla3;
 v2 <- pollb3;
 v3 <- pollc3;
 rflow := median(v1,v2,v3);
R:
 rvolume := rvolume + rflow;
 tock
END
END

Figure 11 The implementation VolumeTrackerI3

expectation E_1 to be preserved, is the minimum of

$1 + \text{lowerr}/\text{minflow}$

and

$0.972 + 0.028(\text{minflow}/\text{maxflow}) + \text{lowerr}/\text{maxflow}$

Similarly, the best (lowest) value we can obtain for B is the maximum of

$1 + \text{higherr}/\text{maxflow}$

and

$0.972 + 0.028(\text{maxflow}/\text{minflow}) + \text{higherr}/\text{minflow}$

The second of these will always be the maximum, since $\text{maxflow} \geq \text{minflow}$. The situation is similar to the previous example considered in Section 4.2.2, but with
MACHINE VolumeTracker3
INCLUDES Tank
PROPERTIES llower error : REAL \& llower error <= 0
 & hupper error : REAL \& hupper error >= 0
VARIABLES rvolume
INVARIANT rvolume : REAL
EXPECTATION E1: rvolume = A\times volume,
E2: B\times volume - rvolume
INITIALISATION rvolume := 0
OPERATIONS
poll = T: tock
 | S1: (rvolume := rvolume+flow+[llower error,hupper error]
 .972 (+)
 S2: rvolume := rvolume+[minflow+llower error,maxflow+hupper error])

Figure 12 The third monitoring system specification

a probability of an incorrect reading now at 0.028 rather than 0.01. Thus the expectations on the relationship between rvolume and volume are correspondingly weaker, since more weighting is given to the ratio between maxflow and minflow.

For example, consider the situation where we have maxflow = 400, minflow = 100, hupper error = 1, llower error = -1.

Since the expectation E1 = rvolume = A \times volume must not decrease, whatever the value of flow, we have two extremes to consider:

- If flow = minflow, then volume is incremented by minflow, and the least that rvolume can be incremented by is minflow + llower error. Thus in this case we obtain a possible value of A = 0.99.

- If flow = maxflow, then volume is increased by maxflow, and the least that rvolume can be incremented by is minflow + llower error if at least two sensors go wrong (which can happen with probability 0.028), otherwise maxflow + llower error. Thus the most pessimistic expectation gives a possible value of A = 0.9765. Here the ratio between maxflow and minflow is more significant than the ratio between minflow and llower error in contributing to the amount by which rvolume can be down, and we obtain a value of 0.9765 for A.

We also require that the expectation E2 = volume = B \times rvolume must not decrease. Here we are concerned with the proportion by which volume can exceed rvolume, and the worst case always occurs when flow = minflow. In this case, the reading might at worst be maxflow + hupper error (with probability 0.028) and minflow + hupper error otherwise. This yields a value for B of at least 1.085 if the expectation of E2 is not to decrease. This is a margin of error of 8.5%.

4.3.3 Summary

This version of the tank monitoring system has considered a version of sensor which does not provide feedback on its status. Thus a sensor’s incorrect reading can only be discovered by comparing it with other sensors. We considered an implementation which uses three sensors in such a way that if no more than one has failed then an accurate reading is obtained. We found that if each sensor has at least 90% reliability, then the combination has at least 97.2% reliability in terms of providing an accurate reading. This allowed us to construct the specification that was
guaranteed by the implementation. This in turn enables the relationship between volume and rvolume to be established.

5 Separating system updates and tank updates

It could be useful to separate the model of the tank from the model of the system, and not refer to tank updates in the poll operation at all. Consequently, we could keep this abstract tank update operation throughout the refinement, and then throw it away once we have all the implementation. This is a small change from conventional B where we would expect to use all the operations of a machine’s implementation, but it is appropriate in modelling embedded systems. [DT97]. Here, we want to keep only the operations which model the actual software functionality, and throw away the model of the environment once it is no longer required. Normally the environment model is only needed at the abstract level in order to specify a safety property between the approximated value rvolume of the volume in the tank and the real value volume, as we have seen in the expectations of the VolumeTracker machines previously.

To achieve this separation, consider two operations, one called realPoll which advances flow and volume, and approxPoll, which advances rvolume. The latter is the one we want to implement.

Now it is possible (indeed inevitable) that there will be some states of the system where volume and rvolume do not match, because realPoll and approxPoll are out of step. Furthermore, any expectation of the form rvolume − A × volume must decrease on realPoll, since that increases volume but does not change rvolume. Similarly, an expectation of the form B × volume − rvolume must decrease on approxPoll, since that increases rvolume while leaving volume unchanged. Thus we require a way of dealing with the separation of realPoll from approxPoll.

There are in fact a variety of approaches we could take to dealing with this in the specification. In this section we will explore the introduction of auxiliary variables rr and aa to track the number of times the realPoll and approxPoll operations have respectively been called, and we will include this information in the expectations.

5.1 A first attempt

The description of the tank model is given in Figure 13. It incorporates a new variable rr to track the number of times realPoll has been called. Observe that flow can change on each occurrence of this operation.

The new monitoring system is given in Figure 14. This includes the model of the tank, and introduces its own counter aa for tracking the number of calls to approxPoll.

The expectations E1 and E2 that would be appropriate to include will need to take into account the difference between aa and rr. The general form of such expectations will be as follows:

\[E1 \quad rvolume - A \times volume - (aa - rr) \times A' \]

\[E2 \quad B \times volume - rvolume - (rr - aa) \times B' \]

These expectations must be non-decreasing on every operation. Thus they must both be preserved by both approxPoll and realPoll. In the case of E1, approxPoll will increase rvolume and aa, so the increase in aa can be used to offset the increase in rvolume, which in this operation is not matched by a corresponding increase in volume. Similarly, realPoll will increase volume and rr. Thus the decrease in (aa − rr) will be used to offset the decrease in volume − A × volume, so that the
MACHINE Tank
CONSTANTS minflow, maxflow
PROPERTIES minflow : REAL & maxflow : REAL
 & minflow > 0 & maxflow >= minflow

VARIABLES flow, volume, rr
INVARIANT flow : REAL & volume : REAL & rr : NAT
INITIALISATION volume := 0 || flow :: [minflow, maxflow] || rr := 0

OPERATIONS realPoll =
BEGIN
 flow :: [minflow, maxflow] ||
 volume := volume + flow ||
 rr := rr + 1
END

Figure 13 The new model of the tank, tracking the number of updates

overall expectation does not decrease. The appropriate values for A and A' can be
 calculated by using the inequalities [approxPoll]E1 \vdash E1 and [realPoll]E1 \vdash E1.

A similar form of reasoning applies to E2, and we obtain the following instantia-
tions:

E1 rvolume - (minflow/ maxflow)volume - (aa - rr)minflow
E2 (maxflow/minflow)volume - rvolume - (rr - aa)maxflow

These expectations do not provide very tight bounds. The difficulty that this cal-
culation has highlighted is that approxPoll and realPoll will in general be updating
rvolume and volume with different values of flow. In the most extreme case, realPoll
could perform a number of updates with flow = maxflow, and then approxPoll could
perform a number of updates with flow = minflow. In general, if the machines be-
come more out of step (which is certainly allowed within the specification), then
volume and rvolume might be incremented with different values of flow, and so
could become quite different. Since flow is updated nondeterministically on occu-
rences of realPoll, we must consider the worst case possibility, and this is so bad
that it completely overshadows any probabilistic behaviour that we might hope to
describe in the expectation.

5.1.1 Summary

In this example we have seen how the updates to the monitoring system and to
the tank can be separated. This separation introduces the possibility that the real
value volume and the system value rvolume can diverge quite considerably, for two
reasons: firstly, realPoll and approxPoll might not occur together in general, so
one might occur much more than the other; and secondly, realPoll and approxPoll
in general will read different values of flow, and so the updates they effect can be
different, even if they are reasonably closely in step.

The expectations must be non-decreasing for both operations however the non-
determinism is resolved. The separation of realPoll and approxPoll means that the
relationship between the expected values of volume and rvolume is weakened.

Note that the implementation of the approxPoll operation in terms of sensors
will be the same as it was previously (except that tock will not now be included), A
MACHINE VolumeTracker4
INCLUDES Tank
PROMOTES realPoll
VARIABLES rvolume, aa
INVARIANT rvolume : REAL & aa : NAT
EXPECTATION E1, E2
INITIALISATION rvolume := 0 \mid aa := 0

OPERATIONS

approxPoll = P1: BEGIN
 S1 : (rvolume := rvolume + flow
 0.99 (+)
 S2 : rvolume :: rvolume + [minflow, maxflow])
 \mid
 aa := aa + 1
END

Figure 14 A tank monitoring system separating system from tank updates

reading of the flow by means of two or three sensors as in the Section 4 will provide
a suitable implementation of the operation exactly as it did before.

5.2 Restricting flow changes

The first approach to separating realPoll from approxPoll yielded a very weak rela-
tionship between the system and the real values for the volume of the liquid in the
tank. However, in practice we might have certain assumptions about the way these
operations might be called. For example, we might expect approxPoll to be called
at roughly the same rate as realPoll, and to read the same values for flow. Thus we
would not expect flow to change between realPoll and the next approxPoll. We can
incorporate this into the model by introducing an explicit operation setFlow which
is the only operation that changes the flow; and we can include an assumption (by
means of a precondition) that this only occurs when realPoll and approxPoll are
in step. This builds our environmental assumptions, that realPoll and approxPoll
will effectively be in step, into the model. In fact we allow still allow rvolume and
volume to become out of step, but in a controlled way, as we will see below. The
updated version of the tank is given in Figure 15.

One way to incorporate this is to call setFlow from within the monitoring system,
under a precondition so that the flow can be changed only when rvolume and volume
are in step. Of course this precondition involves both the software and the tank
system, and incorporates a modelling assumption.

If the flow can be changed while the system is out of step, then a much weaker
expectation would result, in the extreme case corresponding to the expectations
derived in Section 5.1 — a rather weaker relationship between rvolume and volume.
Since we are concerned to exclude that, we will include the precondition in setNewFlow.
The resulting machine is given in Figure 16. The expectations in VolumeTracker4a
must be non-decreasing under all three operations. We obtain the following expec-
tations:

E1 (rvolume - (0.99 + 0.01(minflow/maxflow)) \times volume)
 + (rv - aa) \times ((0.99 + 0.01(minflow/maxflow)) \times flow)
MACHINE Tank
SEES Bool_TYPE
CONSTANTS minflow, maxflow
PROPERTIES minflow : REAL & maxflow : REAL
 & minflow > 0 & maxflow >= minflow

VARIABLES flow, volume, rr
INVARIANT flow : REAL & volume : REAL & rr : NAT
INITIALISATION volume := 0 || flow :: [minflow, maxflow] || rr : NAT

OPERATIONS realPoll =
 BEGIN
 volume := volume + flow ||
 rr := rr + 1
 END;

 setFlow(ff) =
 PRE ff : minflow..maxflow
 THEN flow := ff
 END

END

Figure 15 A tank monitoring system separating system from tank updates

E2 \[(0.99 + 0.01(\text{maxflow}/\text{minflow}) \times \text{volume} - \text{rvolume})
 + (aa - rr) \times ((0.99 + 0.01(\text{maxflow}/\text{minflow}))\text{flow})\]

Observe that setNewFlow does not change the expectations E1 and E2, because its preconditions states that \(rr = aa\), so the part of the expectation dependent on flow evaluates to 0. Observe also that the extent by which \(rvolume\) and \(volume\) are out of step is accounted for by a multiple of flow, which has been constant since the last time \(volume\) and \(rvolume\) were properly aligned.

5.2.1 Summary

The first approach to separating realPoll from approxPoll yielded a very weak relationship between the system and the real values for the volume of the liquid in the tank, because assumptions about the way the operations would be executed were not built into the model. In this section we built in the assumption that realPoll and approxPoll were dealing with the same values for flow by controlling more carefully when flow can be changed. We introduced a new operation setFlow to do this, but only when \(volume\) and \(rvolume\) were in step. We then required that the other operations could not alter flow. The expected operation of the system, whereby realPoll and approxPoll will essentially occur together, is incorporated within this model. But unexpected operation, in which realPoll and approxPoll occurring together will read completely different values of flow, is not permitted within this mode of the system.

The result is a much tighter relationship on the expected values of \(volume\) and \(rvolume\).

Note that the implementation of the approxPoll operation in terms of sensors will again be the same as it was previously. All the changes we have made are at the level of the specification.
MACHINE VolumeTracker4a
INCLUDES Tank
PROMOTES realPoll
VARIABLES rvolume, aa
INVARIANT rvolume : REAL & aa : NAT
EXPECTATION E1, E2
INITIALISATION rvolume := 0 || aa := 0

OPERATIONS

approxPoll = P1: BEGIN
 S1 : (rvolume := rvolume + flow
 p (+)
 S2 : rvolume :: rvolume + [minflow, maxflow])
 ||
 aa := aa + 1
END;

setNewFlow(ff) =
 PRE rr = aa & ff : minflow..maxflow
 THEN setFlow(ff)
END

Figure 16 The revised tank monitoring system incorporating explicit flow changes

6 Discussion

The case study in this paper has shown how probabilistic B can be applied to specify and refine a system which naturally includes both probabilistic and nondeterministic behaviour, and has highlighted a number of issues that can arise in this process.

We considered two progressions of scenarios. The first progression was given in Section 4. In the first scenario, we considered the simple case where sensor readings are either perfectly accurate, or completely arbitrary, with the sensors indicating whether they are working correctly or not. This enabled a value for the accuracy of the system's value rvolume to be given, given in terms of the range of possible flows. Essentially the accuracy is calculated by allowing for the worst case of nondeterminism, in accordance with the demonic approach to nondeterminism reflected in the semantics of the language. We obtained the expected result that the larger the ratio between the maximum and minimum flow, the less accurate the value we could expect.

In the second scenario, we allowed some error range on the values read even when the sensors were working correctly. This additional nondeterminism also entered into the calculation to determine the level of accuracy of rvolume, and again we saw that the wider the range of possibilities, for flow readings, and for the possible flows, the lower the level of accuracy for the system's record of the volume of liquid.

In the third scenario, the sensors no longer provided a direct indication of whether they were giving a correct reading or not, so it was necessary to use three sensors and compare readings to deduce which values are most likely correct. In this example we worked from the implementation to the specification, firstly obtaining the reliability provided by the combination of sensors, and then calculating the level of accuracy that the system could deliver.

All three of these scenarios were modelled using a machine which had only a
single operation, which synchronised updates of the real tank and updates of the
monitoring system.

In the second set of scenarios, we separated the model of the tank from the
description of the monitoring system. This approach is more common in the de-
development of embedded systems [DT97], since the separation allows a cleaner
development of the system. The fact that different operations were used to update
the states of the tank and of the monitoring system had a significant impact on
the relationship between the expectations of the real volume and the monitoring
system's value for it. We found that the first approach gave too weak a relationship,
especially no stronger than that provided by the invariant (which is concerned only
with all possible reachable states). The reason for this is that probabilistic B does
not provide any control on the invocation of machine operations, or assumptions on
the order and frequency of their occurrence, so it must allow for the machine to be
placed in any environment. The fact that the flow could change on any update of
the tank meant that the system readings and the real flow values could be wildly
different for some sequences of operation calls.

In the second scenario, we introduced behaviour incorporating realistic assump-
tions: that the flow would not change while the system updates and tank updates
were out of step. We considered this reasonable because in practice these updates
would tend to be in step. This assumption meant that the system readings for flow
corresponded to the real flow into the tank, and we regained a tighter relationship
between the expected values of the measured volume and the real volume of liquid.

We have shown that the requirement that every operation should not decrease the
machine’s expectation introduces a consistency condition between the expectation
and the probabilistic and nondeterministic behaviour in the machine operations.
This need for consistency can be pushed in either direction: either starting with
a required expectation and then deriving the reliability requirements and flow pa-
rameters necessary to achieve that; or starting with a given combination of sensors
with some known reliability and obtaining the tightest possible bounds on the ex-
pectation.

7 Further work

Although the case study was of a simple system, this paper has only explored some
of the interesting kinds of behaviour that can arise in such systems, and many other
scenarios remain ready to be explored. For example, we might wish to model sensors
that take some time to be repaired once they break. Such modelling would most
likely require some auxiliary variable to track the time left until the sensor is working
correctly again, and the best way of modelling such a system in probabilistic B is
far from clear.

Incorporating some information about the interactions between different oper-
ations raises some interesting problems. The final scenario we considered is quite
relaxed in that it allows the measured volume to become quite out of step with
the real volume. There are other possibilities for modelling such a scenario. For
example, it might be preferable to introduce a stronger model of control flow to
ensure that real updates and system updates occur alternately. This might require
the introduction of flags to track which operation should be performed next, and
guards to block operations from executing out of turn.

As an alternative, it may be appropriate to introduce controllers separately for
probabilistic B machines, and combine them in the style of CSP|B [TS00, TSB03].
Thus CSP processes will describe the permitted or expected sequences of operations,
and could be used to drive the probabilistic B machine. This would allow some
weaker requirements on expectations to be introduced in the context of such control
loops: such expectations might need to be non-decreasing over the body of a control loop, rather than the stronger requirement that each operation individually should not decrease it. This is a topic for future research.

References

A Calculation of expectation coefficients in VolumeTracker2

to be completed

B Verifying the implementation of poll in VolumeTracker2I

to be completed